]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'kraxel/usb.66' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 struct kvm_para_features {
102 int cap;
103 int feature;
104 } para_features[] = {
105 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
106 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
107 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
108 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
109 { -1, -1 }
110 };
111
112 static int get_para_features(KVMState *s)
113 {
114 int i, features = 0;
115
116 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
117 if (kvm_check_extension(s, para_features[i].cap)) {
118 features |= (1 << para_features[i].feature);
119 }
120 }
121
122 return features;
123 }
124
125
126 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
127 uint32_t index, int reg)
128 {
129 struct kvm_cpuid2 *cpuid;
130 int i, max;
131 uint32_t ret = 0;
132 uint32_t cpuid_1_edx;
133 int has_kvm_features = 0;
134
135 max = 1;
136 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
137 max *= 2;
138 }
139
140 for (i = 0; i < cpuid->nent; ++i) {
141 if (cpuid->entries[i].function == function &&
142 cpuid->entries[i].index == index) {
143 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
144 has_kvm_features = 1;
145 }
146 switch (reg) {
147 case R_EAX:
148 ret = cpuid->entries[i].eax;
149 break;
150 case R_EBX:
151 ret = cpuid->entries[i].ebx;
152 break;
153 case R_ECX:
154 ret = cpuid->entries[i].ecx;
155 break;
156 case R_EDX:
157 ret = cpuid->entries[i].edx;
158 switch (function) {
159 case 1:
160 /* KVM before 2.6.30 misreports the following features */
161 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
162 break;
163 case 0x80000001:
164 /* On Intel, kvm returns cpuid according to the Intel spec,
165 * so add missing bits according to the AMD spec:
166 */
167 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
168 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
169 break;
170 }
171 break;
172 }
173 }
174 }
175
176 g_free(cpuid);
177
178 /* fallback for older kernels */
179 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
180 ret = get_para_features(s);
181 }
182
183 return ret;
184 }
185
186 typedef struct HWPoisonPage {
187 ram_addr_t ram_addr;
188 QLIST_ENTRY(HWPoisonPage) list;
189 } HWPoisonPage;
190
191 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
192 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
193
194 static void kvm_unpoison_all(void *param)
195 {
196 HWPoisonPage *page, *next_page;
197
198 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
199 QLIST_REMOVE(page, list);
200 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
201 g_free(page);
202 }
203 }
204
205 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
206 {
207 HWPoisonPage *page;
208
209 QLIST_FOREACH(page, &hwpoison_page_list, list) {
210 if (page->ram_addr == ram_addr) {
211 return;
212 }
213 }
214 page = g_malloc(sizeof(HWPoisonPage));
215 page->ram_addr = ram_addr;
216 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
217 }
218
219 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
220 int *max_banks)
221 {
222 int r;
223
224 r = kvm_check_extension(s, KVM_CAP_MCE);
225 if (r > 0) {
226 *max_banks = r;
227 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
228 }
229 return -ENOSYS;
230 }
231
232 static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
233 {
234 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
235 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
236 uint64_t mcg_status = MCG_STATUS_MCIP;
237
238 if (code == BUS_MCEERR_AR) {
239 status |= MCI_STATUS_AR | 0x134;
240 mcg_status |= MCG_STATUS_EIPV;
241 } else {
242 status |= 0xc0;
243 mcg_status |= MCG_STATUS_RIPV;
244 }
245 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
246 (MCM_ADDR_PHYS << 6) | 0xc,
247 cpu_x86_support_mca_broadcast(env) ?
248 MCE_INJECT_BROADCAST : 0);
249 }
250
251 static void hardware_memory_error(void)
252 {
253 fprintf(stderr, "Hardware memory error!\n");
254 exit(1);
255 }
256
257 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
258 {
259 ram_addr_t ram_addr;
260 target_phys_addr_t paddr;
261
262 if ((env->mcg_cap & MCG_SER_P) && addr
263 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
264 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
265 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
266 fprintf(stderr, "Hardware memory error for memory used by "
267 "QEMU itself instead of guest system!\n");
268 /* Hope we are lucky for AO MCE */
269 if (code == BUS_MCEERR_AO) {
270 return 0;
271 } else {
272 hardware_memory_error();
273 }
274 }
275 kvm_hwpoison_page_add(ram_addr);
276 kvm_mce_inject(env, paddr, code);
277 } else {
278 if (code == BUS_MCEERR_AO) {
279 return 0;
280 } else if (code == BUS_MCEERR_AR) {
281 hardware_memory_error();
282 } else {
283 return 1;
284 }
285 }
286 return 0;
287 }
288
289 int kvm_arch_on_sigbus(int code, void *addr)
290 {
291 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
292 ram_addr_t ram_addr;
293 target_phys_addr_t paddr;
294
295 /* Hope we are lucky for AO MCE */
296 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
297 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
298 &paddr)) {
299 fprintf(stderr, "Hardware memory error for memory used by "
300 "QEMU itself instead of guest system!: %p\n", addr);
301 return 0;
302 }
303 kvm_hwpoison_page_add(ram_addr);
304 kvm_mce_inject(first_cpu, paddr, code);
305 } else {
306 if (code == BUS_MCEERR_AO) {
307 return 0;
308 } else if (code == BUS_MCEERR_AR) {
309 hardware_memory_error();
310 } else {
311 return 1;
312 }
313 }
314 return 0;
315 }
316
317 static int kvm_inject_mce_oldstyle(CPUX86State *env)
318 {
319 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
320 unsigned int bank, bank_num = env->mcg_cap & 0xff;
321 struct kvm_x86_mce mce;
322
323 env->exception_injected = -1;
324
325 /*
326 * There must be at least one bank in use if an MCE is pending.
327 * Find it and use its values for the event injection.
328 */
329 for (bank = 0; bank < bank_num; bank++) {
330 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
331 break;
332 }
333 }
334 assert(bank < bank_num);
335
336 mce.bank = bank;
337 mce.status = env->mce_banks[bank * 4 + 1];
338 mce.mcg_status = env->mcg_status;
339 mce.addr = env->mce_banks[bank * 4 + 2];
340 mce.misc = env->mce_banks[bank * 4 + 3];
341
342 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
343 }
344 return 0;
345 }
346
347 static void cpu_update_state(void *opaque, int running, RunState state)
348 {
349 CPUX86State *env = opaque;
350
351 if (running) {
352 env->tsc_valid = false;
353 }
354 }
355
356 int kvm_arch_init_vcpu(CPUX86State *env)
357 {
358 struct {
359 struct kvm_cpuid2 cpuid;
360 struct kvm_cpuid_entry2 entries[100];
361 } QEMU_PACKED cpuid_data;
362 KVMState *s = env->kvm_state;
363 uint32_t limit, i, j, cpuid_i;
364 uint32_t unused;
365 struct kvm_cpuid_entry2 *c;
366 uint32_t signature[3];
367 int r;
368
369 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
370
371 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
372 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
373 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
374 env->cpuid_ext_features |= i;
375 if (j && kvm_irqchip_in_kernel() &&
376 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
377 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
378 }
379
380 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
381 0, R_EDX);
382 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
383 0, R_ECX);
384 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
385 0, R_EDX);
386
387 cpuid_i = 0;
388
389 /* Paravirtualization CPUIDs */
390 c = &cpuid_data.entries[cpuid_i++];
391 memset(c, 0, sizeof(*c));
392 c->function = KVM_CPUID_SIGNATURE;
393 if (!hyperv_enabled()) {
394 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
395 c->eax = 0;
396 } else {
397 memcpy(signature, "Microsoft Hv", 12);
398 c->eax = HYPERV_CPUID_MIN;
399 }
400 c->ebx = signature[0];
401 c->ecx = signature[1];
402 c->edx = signature[2];
403
404 c = &cpuid_data.entries[cpuid_i++];
405 memset(c, 0, sizeof(*c));
406 c->function = KVM_CPUID_FEATURES;
407 c->eax = env->cpuid_kvm_features &
408 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
409
410 if (hyperv_enabled()) {
411 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
412 c->eax = signature[0];
413
414 c = &cpuid_data.entries[cpuid_i++];
415 memset(c, 0, sizeof(*c));
416 c->function = HYPERV_CPUID_VERSION;
417 c->eax = 0x00001bbc;
418 c->ebx = 0x00060001;
419
420 c = &cpuid_data.entries[cpuid_i++];
421 memset(c, 0, sizeof(*c));
422 c->function = HYPERV_CPUID_FEATURES;
423 if (hyperv_relaxed_timing_enabled()) {
424 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
425 }
426 if (hyperv_vapic_recommended()) {
427 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
428 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
429 }
430
431 c = &cpuid_data.entries[cpuid_i++];
432 memset(c, 0, sizeof(*c));
433 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
434 if (hyperv_relaxed_timing_enabled()) {
435 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
436 }
437 if (hyperv_vapic_recommended()) {
438 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
439 }
440 c->ebx = hyperv_get_spinlock_retries();
441
442 c = &cpuid_data.entries[cpuid_i++];
443 memset(c, 0, sizeof(*c));
444 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
445 c->eax = 0x40;
446 c->ebx = 0x40;
447
448 c = &cpuid_data.entries[cpuid_i++];
449 memset(c, 0, sizeof(*c));
450 c->function = KVM_CPUID_SIGNATURE_NEXT;
451 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
452 c->eax = 0;
453 c->ebx = signature[0];
454 c->ecx = signature[1];
455 c->edx = signature[2];
456 }
457
458 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
459
460 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
461
462 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
463
464 for (i = 0; i <= limit; i++) {
465 c = &cpuid_data.entries[cpuid_i++];
466
467 switch (i) {
468 case 2: {
469 /* Keep reading function 2 till all the input is received */
470 int times;
471
472 c->function = i;
473 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
474 KVM_CPUID_FLAG_STATE_READ_NEXT;
475 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
476 times = c->eax & 0xff;
477
478 for (j = 1; j < times; ++j) {
479 c = &cpuid_data.entries[cpuid_i++];
480 c->function = i;
481 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
482 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
483 }
484 break;
485 }
486 case 4:
487 case 0xb:
488 case 0xd:
489 for (j = 0; ; j++) {
490 if (i == 0xd && j == 64) {
491 break;
492 }
493 c->function = i;
494 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
495 c->index = j;
496 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
497
498 if (i == 4 && c->eax == 0) {
499 break;
500 }
501 if (i == 0xb && !(c->ecx & 0xff00)) {
502 break;
503 }
504 if (i == 0xd && c->eax == 0) {
505 continue;
506 }
507 c = &cpuid_data.entries[cpuid_i++];
508 }
509 break;
510 default:
511 c->function = i;
512 c->flags = 0;
513 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
514 break;
515 }
516 }
517 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
518
519 for (i = 0x80000000; i <= limit; i++) {
520 c = &cpuid_data.entries[cpuid_i++];
521
522 c->function = i;
523 c->flags = 0;
524 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
525 }
526
527 /* Call Centaur's CPUID instructions they are supported. */
528 if (env->cpuid_xlevel2 > 0) {
529 env->cpuid_ext4_features &=
530 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
531 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
532
533 for (i = 0xC0000000; i <= limit; i++) {
534 c = &cpuid_data.entries[cpuid_i++];
535
536 c->function = i;
537 c->flags = 0;
538 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
539 }
540 }
541
542 cpuid_data.cpuid.nent = cpuid_i;
543
544 if (((env->cpuid_version >> 8)&0xF) >= 6
545 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
546 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
547 uint64_t mcg_cap;
548 int banks;
549 int ret;
550
551 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
552 if (ret < 0) {
553 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
554 return ret;
555 }
556
557 if (banks > MCE_BANKS_DEF) {
558 banks = MCE_BANKS_DEF;
559 }
560 mcg_cap &= MCE_CAP_DEF;
561 mcg_cap |= banks;
562 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
563 if (ret < 0) {
564 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
565 return ret;
566 }
567
568 env->mcg_cap = mcg_cap;
569 }
570
571 qemu_add_vm_change_state_handler(cpu_update_state, env);
572
573 cpuid_data.cpuid.padding = 0;
574 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
575 if (r) {
576 return r;
577 }
578
579 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
580 if (r && env->tsc_khz) {
581 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
582 if (r < 0) {
583 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
584 return r;
585 }
586 }
587
588 if (kvm_has_xsave()) {
589 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
590 }
591
592 return 0;
593 }
594
595 void kvm_arch_reset_vcpu(CPUX86State *env)
596 {
597 X86CPU *cpu = x86_env_get_cpu(env);
598
599 env->exception_injected = -1;
600 env->interrupt_injected = -1;
601 env->xcr0 = 1;
602 if (kvm_irqchip_in_kernel()) {
603 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
604 KVM_MP_STATE_UNINITIALIZED;
605 } else {
606 env->mp_state = KVM_MP_STATE_RUNNABLE;
607 }
608 }
609
610 static int kvm_get_supported_msrs(KVMState *s)
611 {
612 static int kvm_supported_msrs;
613 int ret = 0;
614
615 /* first time */
616 if (kvm_supported_msrs == 0) {
617 struct kvm_msr_list msr_list, *kvm_msr_list;
618
619 kvm_supported_msrs = -1;
620
621 /* Obtain MSR list from KVM. These are the MSRs that we must
622 * save/restore */
623 msr_list.nmsrs = 0;
624 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
625 if (ret < 0 && ret != -E2BIG) {
626 return ret;
627 }
628 /* Old kernel modules had a bug and could write beyond the provided
629 memory. Allocate at least a safe amount of 1K. */
630 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
631 msr_list.nmsrs *
632 sizeof(msr_list.indices[0])));
633
634 kvm_msr_list->nmsrs = msr_list.nmsrs;
635 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
636 if (ret >= 0) {
637 int i;
638
639 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
640 if (kvm_msr_list->indices[i] == MSR_STAR) {
641 has_msr_star = true;
642 continue;
643 }
644 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
645 has_msr_hsave_pa = true;
646 continue;
647 }
648 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
649 has_msr_tsc_deadline = true;
650 continue;
651 }
652 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
653 has_msr_misc_enable = true;
654 continue;
655 }
656 }
657 }
658
659 g_free(kvm_msr_list);
660 }
661
662 return ret;
663 }
664
665 int kvm_arch_init(KVMState *s)
666 {
667 QemuOptsList *list = qemu_find_opts("machine");
668 uint64_t identity_base = 0xfffbc000;
669 uint64_t shadow_mem;
670 int ret;
671 struct utsname utsname;
672
673 ret = kvm_get_supported_msrs(s);
674 if (ret < 0) {
675 return ret;
676 }
677
678 uname(&utsname);
679 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
680
681 /*
682 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
683 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
684 * Since these must be part of guest physical memory, we need to allocate
685 * them, both by setting their start addresses in the kernel and by
686 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
687 *
688 * Older KVM versions may not support setting the identity map base. In
689 * that case we need to stick with the default, i.e. a 256K maximum BIOS
690 * size.
691 */
692 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
693 /* Allows up to 16M BIOSes. */
694 identity_base = 0xfeffc000;
695
696 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
697 if (ret < 0) {
698 return ret;
699 }
700 }
701
702 /* Set TSS base one page after EPT identity map. */
703 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
704 if (ret < 0) {
705 return ret;
706 }
707
708 /* Tell fw_cfg to notify the BIOS to reserve the range. */
709 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
710 if (ret < 0) {
711 fprintf(stderr, "e820_add_entry() table is full\n");
712 return ret;
713 }
714 qemu_register_reset(kvm_unpoison_all, NULL);
715
716 if (!QTAILQ_EMPTY(&list->head)) {
717 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
718 "kvm_shadow_mem", -1);
719 if (shadow_mem != -1) {
720 shadow_mem /= 4096;
721 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
722 if (ret < 0) {
723 return ret;
724 }
725 }
726 }
727 return 0;
728 }
729
730 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
731 {
732 lhs->selector = rhs->selector;
733 lhs->base = rhs->base;
734 lhs->limit = rhs->limit;
735 lhs->type = 3;
736 lhs->present = 1;
737 lhs->dpl = 3;
738 lhs->db = 0;
739 lhs->s = 1;
740 lhs->l = 0;
741 lhs->g = 0;
742 lhs->avl = 0;
743 lhs->unusable = 0;
744 }
745
746 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
747 {
748 unsigned flags = rhs->flags;
749 lhs->selector = rhs->selector;
750 lhs->base = rhs->base;
751 lhs->limit = rhs->limit;
752 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
753 lhs->present = (flags & DESC_P_MASK) != 0;
754 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
755 lhs->db = (flags >> DESC_B_SHIFT) & 1;
756 lhs->s = (flags & DESC_S_MASK) != 0;
757 lhs->l = (flags >> DESC_L_SHIFT) & 1;
758 lhs->g = (flags & DESC_G_MASK) != 0;
759 lhs->avl = (flags & DESC_AVL_MASK) != 0;
760 lhs->unusable = 0;
761 lhs->padding = 0;
762 }
763
764 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
765 {
766 lhs->selector = rhs->selector;
767 lhs->base = rhs->base;
768 lhs->limit = rhs->limit;
769 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
770 (rhs->present * DESC_P_MASK) |
771 (rhs->dpl << DESC_DPL_SHIFT) |
772 (rhs->db << DESC_B_SHIFT) |
773 (rhs->s * DESC_S_MASK) |
774 (rhs->l << DESC_L_SHIFT) |
775 (rhs->g * DESC_G_MASK) |
776 (rhs->avl * DESC_AVL_MASK);
777 }
778
779 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
780 {
781 if (set) {
782 *kvm_reg = *qemu_reg;
783 } else {
784 *qemu_reg = *kvm_reg;
785 }
786 }
787
788 static int kvm_getput_regs(CPUX86State *env, int set)
789 {
790 struct kvm_regs regs;
791 int ret = 0;
792
793 if (!set) {
794 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
795 if (ret < 0) {
796 return ret;
797 }
798 }
799
800 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
801 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
802 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
803 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
804 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
805 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
806 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
807 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
808 #ifdef TARGET_X86_64
809 kvm_getput_reg(&regs.r8, &env->regs[8], set);
810 kvm_getput_reg(&regs.r9, &env->regs[9], set);
811 kvm_getput_reg(&regs.r10, &env->regs[10], set);
812 kvm_getput_reg(&regs.r11, &env->regs[11], set);
813 kvm_getput_reg(&regs.r12, &env->regs[12], set);
814 kvm_getput_reg(&regs.r13, &env->regs[13], set);
815 kvm_getput_reg(&regs.r14, &env->regs[14], set);
816 kvm_getput_reg(&regs.r15, &env->regs[15], set);
817 #endif
818
819 kvm_getput_reg(&regs.rflags, &env->eflags, set);
820 kvm_getput_reg(&regs.rip, &env->eip, set);
821
822 if (set) {
823 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
824 }
825
826 return ret;
827 }
828
829 static int kvm_put_fpu(CPUX86State *env)
830 {
831 struct kvm_fpu fpu;
832 int i;
833
834 memset(&fpu, 0, sizeof fpu);
835 fpu.fsw = env->fpus & ~(7 << 11);
836 fpu.fsw |= (env->fpstt & 7) << 11;
837 fpu.fcw = env->fpuc;
838 fpu.last_opcode = env->fpop;
839 fpu.last_ip = env->fpip;
840 fpu.last_dp = env->fpdp;
841 for (i = 0; i < 8; ++i) {
842 fpu.ftwx |= (!env->fptags[i]) << i;
843 }
844 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
845 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
846 fpu.mxcsr = env->mxcsr;
847
848 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
849 }
850
851 #define XSAVE_FCW_FSW 0
852 #define XSAVE_FTW_FOP 1
853 #define XSAVE_CWD_RIP 2
854 #define XSAVE_CWD_RDP 4
855 #define XSAVE_MXCSR 6
856 #define XSAVE_ST_SPACE 8
857 #define XSAVE_XMM_SPACE 40
858 #define XSAVE_XSTATE_BV 128
859 #define XSAVE_YMMH_SPACE 144
860
861 static int kvm_put_xsave(CPUX86State *env)
862 {
863 struct kvm_xsave* xsave = env->kvm_xsave_buf;
864 uint16_t cwd, swd, twd;
865 int i, r;
866
867 if (!kvm_has_xsave()) {
868 return kvm_put_fpu(env);
869 }
870
871 memset(xsave, 0, sizeof(struct kvm_xsave));
872 twd = 0;
873 swd = env->fpus & ~(7 << 11);
874 swd |= (env->fpstt & 7) << 11;
875 cwd = env->fpuc;
876 for (i = 0; i < 8; ++i) {
877 twd |= (!env->fptags[i]) << i;
878 }
879 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
880 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
881 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
882 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
883 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
884 sizeof env->fpregs);
885 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
886 sizeof env->xmm_regs);
887 xsave->region[XSAVE_MXCSR] = env->mxcsr;
888 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
889 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
890 sizeof env->ymmh_regs);
891 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
892 return r;
893 }
894
895 static int kvm_put_xcrs(CPUX86State *env)
896 {
897 struct kvm_xcrs xcrs;
898
899 if (!kvm_has_xcrs()) {
900 return 0;
901 }
902
903 xcrs.nr_xcrs = 1;
904 xcrs.flags = 0;
905 xcrs.xcrs[0].xcr = 0;
906 xcrs.xcrs[0].value = env->xcr0;
907 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
908 }
909
910 static int kvm_put_sregs(CPUX86State *env)
911 {
912 struct kvm_sregs sregs;
913
914 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
915 if (env->interrupt_injected >= 0) {
916 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
917 (uint64_t)1 << (env->interrupt_injected % 64);
918 }
919
920 if ((env->eflags & VM_MASK)) {
921 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
922 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
923 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
924 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
925 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
926 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
927 } else {
928 set_seg(&sregs.cs, &env->segs[R_CS]);
929 set_seg(&sregs.ds, &env->segs[R_DS]);
930 set_seg(&sregs.es, &env->segs[R_ES]);
931 set_seg(&sregs.fs, &env->segs[R_FS]);
932 set_seg(&sregs.gs, &env->segs[R_GS]);
933 set_seg(&sregs.ss, &env->segs[R_SS]);
934 }
935
936 set_seg(&sregs.tr, &env->tr);
937 set_seg(&sregs.ldt, &env->ldt);
938
939 sregs.idt.limit = env->idt.limit;
940 sregs.idt.base = env->idt.base;
941 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
942 sregs.gdt.limit = env->gdt.limit;
943 sregs.gdt.base = env->gdt.base;
944 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
945
946 sregs.cr0 = env->cr[0];
947 sregs.cr2 = env->cr[2];
948 sregs.cr3 = env->cr[3];
949 sregs.cr4 = env->cr[4];
950
951 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
952 sregs.apic_base = cpu_get_apic_base(env->apic_state);
953
954 sregs.efer = env->efer;
955
956 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
957 }
958
959 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
960 uint32_t index, uint64_t value)
961 {
962 entry->index = index;
963 entry->data = value;
964 }
965
966 static int kvm_put_msrs(CPUX86State *env, int level)
967 {
968 struct {
969 struct kvm_msrs info;
970 struct kvm_msr_entry entries[100];
971 } msr_data;
972 struct kvm_msr_entry *msrs = msr_data.entries;
973 int n = 0;
974
975 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
977 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
978 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
979 if (has_msr_star) {
980 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
981 }
982 if (has_msr_hsave_pa) {
983 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
984 }
985 if (has_msr_tsc_deadline) {
986 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
987 }
988 if (has_msr_misc_enable) {
989 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
990 env->msr_ia32_misc_enable);
991 }
992 #ifdef TARGET_X86_64
993 if (lm_capable_kernel) {
994 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
995 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
996 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
997 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
998 }
999 #endif
1000 if (level == KVM_PUT_FULL_STATE) {
1001 /*
1002 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1003 * writeback. Until this is fixed, we only write the offset to SMP
1004 * guests after migration, desynchronizing the VCPUs, but avoiding
1005 * huge jump-backs that would occur without any writeback at all.
1006 */
1007 if (smp_cpus == 1 || env->tsc != 0) {
1008 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1009 }
1010 }
1011 /*
1012 * The following paravirtual MSRs have side effects on the guest or are
1013 * too heavy for normal writeback. Limit them to reset or full state
1014 * updates.
1015 */
1016 if (level >= KVM_PUT_RESET_STATE) {
1017 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1018 env->system_time_msr);
1019 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1020 if (has_msr_async_pf_en) {
1021 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1022 env->async_pf_en_msr);
1023 }
1024 if (has_msr_pv_eoi_en) {
1025 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1026 env->pv_eoi_en_msr);
1027 }
1028 if (hyperv_hypercall_available()) {
1029 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1030 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1031 }
1032 if (hyperv_vapic_recommended()) {
1033 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1034 }
1035 }
1036 if (env->mcg_cap) {
1037 int i;
1038
1039 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1040 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1041 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1042 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1043 }
1044 }
1045
1046 msr_data.info.nmsrs = n;
1047
1048 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1049
1050 }
1051
1052
1053 static int kvm_get_fpu(CPUX86State *env)
1054 {
1055 struct kvm_fpu fpu;
1056 int i, ret;
1057
1058 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1059 if (ret < 0) {
1060 return ret;
1061 }
1062
1063 env->fpstt = (fpu.fsw >> 11) & 7;
1064 env->fpus = fpu.fsw;
1065 env->fpuc = fpu.fcw;
1066 env->fpop = fpu.last_opcode;
1067 env->fpip = fpu.last_ip;
1068 env->fpdp = fpu.last_dp;
1069 for (i = 0; i < 8; ++i) {
1070 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1071 }
1072 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1073 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1074 env->mxcsr = fpu.mxcsr;
1075
1076 return 0;
1077 }
1078
1079 static int kvm_get_xsave(CPUX86State *env)
1080 {
1081 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1082 int ret, i;
1083 uint16_t cwd, swd, twd;
1084
1085 if (!kvm_has_xsave()) {
1086 return kvm_get_fpu(env);
1087 }
1088
1089 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1090 if (ret < 0) {
1091 return ret;
1092 }
1093
1094 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1095 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1096 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1097 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1098 env->fpstt = (swd >> 11) & 7;
1099 env->fpus = swd;
1100 env->fpuc = cwd;
1101 for (i = 0; i < 8; ++i) {
1102 env->fptags[i] = !((twd >> i) & 1);
1103 }
1104 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1105 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1106 env->mxcsr = xsave->region[XSAVE_MXCSR];
1107 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1108 sizeof env->fpregs);
1109 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1110 sizeof env->xmm_regs);
1111 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1112 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1113 sizeof env->ymmh_regs);
1114 return 0;
1115 }
1116
1117 static int kvm_get_xcrs(CPUX86State *env)
1118 {
1119 int i, ret;
1120 struct kvm_xcrs xcrs;
1121
1122 if (!kvm_has_xcrs()) {
1123 return 0;
1124 }
1125
1126 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1127 if (ret < 0) {
1128 return ret;
1129 }
1130
1131 for (i = 0; i < xcrs.nr_xcrs; i++) {
1132 /* Only support xcr0 now */
1133 if (xcrs.xcrs[0].xcr == 0) {
1134 env->xcr0 = xcrs.xcrs[0].value;
1135 break;
1136 }
1137 }
1138 return 0;
1139 }
1140
1141 static int kvm_get_sregs(CPUX86State *env)
1142 {
1143 struct kvm_sregs sregs;
1144 uint32_t hflags;
1145 int bit, i, ret;
1146
1147 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1148 if (ret < 0) {
1149 return ret;
1150 }
1151
1152 /* There can only be one pending IRQ set in the bitmap at a time, so try
1153 to find it and save its number instead (-1 for none). */
1154 env->interrupt_injected = -1;
1155 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1156 if (sregs.interrupt_bitmap[i]) {
1157 bit = ctz64(sregs.interrupt_bitmap[i]);
1158 env->interrupt_injected = i * 64 + bit;
1159 break;
1160 }
1161 }
1162
1163 get_seg(&env->segs[R_CS], &sregs.cs);
1164 get_seg(&env->segs[R_DS], &sregs.ds);
1165 get_seg(&env->segs[R_ES], &sregs.es);
1166 get_seg(&env->segs[R_FS], &sregs.fs);
1167 get_seg(&env->segs[R_GS], &sregs.gs);
1168 get_seg(&env->segs[R_SS], &sregs.ss);
1169
1170 get_seg(&env->tr, &sregs.tr);
1171 get_seg(&env->ldt, &sregs.ldt);
1172
1173 env->idt.limit = sregs.idt.limit;
1174 env->idt.base = sregs.idt.base;
1175 env->gdt.limit = sregs.gdt.limit;
1176 env->gdt.base = sregs.gdt.base;
1177
1178 env->cr[0] = sregs.cr0;
1179 env->cr[2] = sregs.cr2;
1180 env->cr[3] = sregs.cr3;
1181 env->cr[4] = sregs.cr4;
1182
1183 env->efer = sregs.efer;
1184
1185 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1186
1187 #define HFLAG_COPY_MASK \
1188 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1189 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1190 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1191 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1192
1193 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1194 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1195 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1196 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1197 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1198 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1199 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1200
1201 if (env->efer & MSR_EFER_LMA) {
1202 hflags |= HF_LMA_MASK;
1203 }
1204
1205 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1206 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1207 } else {
1208 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1209 (DESC_B_SHIFT - HF_CS32_SHIFT);
1210 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1211 (DESC_B_SHIFT - HF_SS32_SHIFT);
1212 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1213 !(hflags & HF_CS32_MASK)) {
1214 hflags |= HF_ADDSEG_MASK;
1215 } else {
1216 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1217 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1218 }
1219 }
1220 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1221
1222 return 0;
1223 }
1224
1225 static int kvm_get_msrs(CPUX86State *env)
1226 {
1227 struct {
1228 struct kvm_msrs info;
1229 struct kvm_msr_entry entries[100];
1230 } msr_data;
1231 struct kvm_msr_entry *msrs = msr_data.entries;
1232 int ret, i, n;
1233
1234 n = 0;
1235 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1236 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1237 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1238 msrs[n++].index = MSR_PAT;
1239 if (has_msr_star) {
1240 msrs[n++].index = MSR_STAR;
1241 }
1242 if (has_msr_hsave_pa) {
1243 msrs[n++].index = MSR_VM_HSAVE_PA;
1244 }
1245 if (has_msr_tsc_deadline) {
1246 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1247 }
1248 if (has_msr_misc_enable) {
1249 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1250 }
1251
1252 if (!env->tsc_valid) {
1253 msrs[n++].index = MSR_IA32_TSC;
1254 env->tsc_valid = !runstate_is_running();
1255 }
1256
1257 #ifdef TARGET_X86_64
1258 if (lm_capable_kernel) {
1259 msrs[n++].index = MSR_CSTAR;
1260 msrs[n++].index = MSR_KERNELGSBASE;
1261 msrs[n++].index = MSR_FMASK;
1262 msrs[n++].index = MSR_LSTAR;
1263 }
1264 #endif
1265 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1266 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1267 if (has_msr_async_pf_en) {
1268 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1269 }
1270 if (has_msr_pv_eoi_en) {
1271 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1272 }
1273
1274 if (env->mcg_cap) {
1275 msrs[n++].index = MSR_MCG_STATUS;
1276 msrs[n++].index = MSR_MCG_CTL;
1277 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1278 msrs[n++].index = MSR_MC0_CTL + i;
1279 }
1280 }
1281
1282 msr_data.info.nmsrs = n;
1283 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1284 if (ret < 0) {
1285 return ret;
1286 }
1287
1288 for (i = 0; i < ret; i++) {
1289 switch (msrs[i].index) {
1290 case MSR_IA32_SYSENTER_CS:
1291 env->sysenter_cs = msrs[i].data;
1292 break;
1293 case MSR_IA32_SYSENTER_ESP:
1294 env->sysenter_esp = msrs[i].data;
1295 break;
1296 case MSR_IA32_SYSENTER_EIP:
1297 env->sysenter_eip = msrs[i].data;
1298 break;
1299 case MSR_PAT:
1300 env->pat = msrs[i].data;
1301 break;
1302 case MSR_STAR:
1303 env->star = msrs[i].data;
1304 break;
1305 #ifdef TARGET_X86_64
1306 case MSR_CSTAR:
1307 env->cstar = msrs[i].data;
1308 break;
1309 case MSR_KERNELGSBASE:
1310 env->kernelgsbase = msrs[i].data;
1311 break;
1312 case MSR_FMASK:
1313 env->fmask = msrs[i].data;
1314 break;
1315 case MSR_LSTAR:
1316 env->lstar = msrs[i].data;
1317 break;
1318 #endif
1319 case MSR_IA32_TSC:
1320 env->tsc = msrs[i].data;
1321 break;
1322 case MSR_IA32_TSCDEADLINE:
1323 env->tsc_deadline = msrs[i].data;
1324 break;
1325 case MSR_VM_HSAVE_PA:
1326 env->vm_hsave = msrs[i].data;
1327 break;
1328 case MSR_KVM_SYSTEM_TIME:
1329 env->system_time_msr = msrs[i].data;
1330 break;
1331 case MSR_KVM_WALL_CLOCK:
1332 env->wall_clock_msr = msrs[i].data;
1333 break;
1334 case MSR_MCG_STATUS:
1335 env->mcg_status = msrs[i].data;
1336 break;
1337 case MSR_MCG_CTL:
1338 env->mcg_ctl = msrs[i].data;
1339 break;
1340 case MSR_IA32_MISC_ENABLE:
1341 env->msr_ia32_misc_enable = msrs[i].data;
1342 break;
1343 default:
1344 if (msrs[i].index >= MSR_MC0_CTL &&
1345 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1346 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1347 }
1348 break;
1349 case MSR_KVM_ASYNC_PF_EN:
1350 env->async_pf_en_msr = msrs[i].data;
1351 break;
1352 case MSR_KVM_PV_EOI_EN:
1353 env->pv_eoi_en_msr = msrs[i].data;
1354 break;
1355 }
1356 }
1357
1358 return 0;
1359 }
1360
1361 static int kvm_put_mp_state(CPUX86State *env)
1362 {
1363 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1364
1365 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1366 }
1367
1368 static int kvm_get_mp_state(CPUX86State *env)
1369 {
1370 struct kvm_mp_state mp_state;
1371 int ret;
1372
1373 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1374 if (ret < 0) {
1375 return ret;
1376 }
1377 env->mp_state = mp_state.mp_state;
1378 if (kvm_irqchip_in_kernel()) {
1379 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1380 }
1381 return 0;
1382 }
1383
1384 static int kvm_get_apic(CPUX86State *env)
1385 {
1386 DeviceState *apic = env->apic_state;
1387 struct kvm_lapic_state kapic;
1388 int ret;
1389
1390 if (apic && kvm_irqchip_in_kernel()) {
1391 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1392 if (ret < 0) {
1393 return ret;
1394 }
1395
1396 kvm_get_apic_state(apic, &kapic);
1397 }
1398 return 0;
1399 }
1400
1401 static int kvm_put_apic(CPUX86State *env)
1402 {
1403 DeviceState *apic = env->apic_state;
1404 struct kvm_lapic_state kapic;
1405
1406 if (apic && kvm_irqchip_in_kernel()) {
1407 kvm_put_apic_state(apic, &kapic);
1408
1409 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1410 }
1411 return 0;
1412 }
1413
1414 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1415 {
1416 struct kvm_vcpu_events events;
1417
1418 if (!kvm_has_vcpu_events()) {
1419 return 0;
1420 }
1421
1422 events.exception.injected = (env->exception_injected >= 0);
1423 events.exception.nr = env->exception_injected;
1424 events.exception.has_error_code = env->has_error_code;
1425 events.exception.error_code = env->error_code;
1426 events.exception.pad = 0;
1427
1428 events.interrupt.injected = (env->interrupt_injected >= 0);
1429 events.interrupt.nr = env->interrupt_injected;
1430 events.interrupt.soft = env->soft_interrupt;
1431
1432 events.nmi.injected = env->nmi_injected;
1433 events.nmi.pending = env->nmi_pending;
1434 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1435 events.nmi.pad = 0;
1436
1437 events.sipi_vector = env->sipi_vector;
1438
1439 events.flags = 0;
1440 if (level >= KVM_PUT_RESET_STATE) {
1441 events.flags |=
1442 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1443 }
1444
1445 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1446 }
1447
1448 static int kvm_get_vcpu_events(CPUX86State *env)
1449 {
1450 struct kvm_vcpu_events events;
1451 int ret;
1452
1453 if (!kvm_has_vcpu_events()) {
1454 return 0;
1455 }
1456
1457 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1458 if (ret < 0) {
1459 return ret;
1460 }
1461 env->exception_injected =
1462 events.exception.injected ? events.exception.nr : -1;
1463 env->has_error_code = events.exception.has_error_code;
1464 env->error_code = events.exception.error_code;
1465
1466 env->interrupt_injected =
1467 events.interrupt.injected ? events.interrupt.nr : -1;
1468 env->soft_interrupt = events.interrupt.soft;
1469
1470 env->nmi_injected = events.nmi.injected;
1471 env->nmi_pending = events.nmi.pending;
1472 if (events.nmi.masked) {
1473 env->hflags2 |= HF2_NMI_MASK;
1474 } else {
1475 env->hflags2 &= ~HF2_NMI_MASK;
1476 }
1477
1478 env->sipi_vector = events.sipi_vector;
1479
1480 return 0;
1481 }
1482
1483 static int kvm_guest_debug_workarounds(CPUX86State *env)
1484 {
1485 int ret = 0;
1486 unsigned long reinject_trap = 0;
1487
1488 if (!kvm_has_vcpu_events()) {
1489 if (env->exception_injected == 1) {
1490 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1491 } else if (env->exception_injected == 3) {
1492 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1493 }
1494 env->exception_injected = -1;
1495 }
1496
1497 /*
1498 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1499 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1500 * by updating the debug state once again if single-stepping is on.
1501 * Another reason to call kvm_update_guest_debug here is a pending debug
1502 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1503 * reinject them via SET_GUEST_DEBUG.
1504 */
1505 if (reinject_trap ||
1506 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1507 ret = kvm_update_guest_debug(env, reinject_trap);
1508 }
1509 return ret;
1510 }
1511
1512 static int kvm_put_debugregs(CPUX86State *env)
1513 {
1514 struct kvm_debugregs dbgregs;
1515 int i;
1516
1517 if (!kvm_has_debugregs()) {
1518 return 0;
1519 }
1520
1521 for (i = 0; i < 4; i++) {
1522 dbgregs.db[i] = env->dr[i];
1523 }
1524 dbgregs.dr6 = env->dr[6];
1525 dbgregs.dr7 = env->dr[7];
1526 dbgregs.flags = 0;
1527
1528 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1529 }
1530
1531 static int kvm_get_debugregs(CPUX86State *env)
1532 {
1533 struct kvm_debugregs dbgregs;
1534 int i, ret;
1535
1536 if (!kvm_has_debugregs()) {
1537 return 0;
1538 }
1539
1540 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1541 if (ret < 0) {
1542 return ret;
1543 }
1544 for (i = 0; i < 4; i++) {
1545 env->dr[i] = dbgregs.db[i];
1546 }
1547 env->dr[4] = env->dr[6] = dbgregs.dr6;
1548 env->dr[5] = env->dr[7] = dbgregs.dr7;
1549
1550 return 0;
1551 }
1552
1553 int kvm_arch_put_registers(CPUX86State *env, int level)
1554 {
1555 int ret;
1556
1557 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1558
1559 ret = kvm_getput_regs(env, 1);
1560 if (ret < 0) {
1561 return ret;
1562 }
1563 ret = kvm_put_xsave(env);
1564 if (ret < 0) {
1565 return ret;
1566 }
1567 ret = kvm_put_xcrs(env);
1568 if (ret < 0) {
1569 return ret;
1570 }
1571 ret = kvm_put_sregs(env);
1572 if (ret < 0) {
1573 return ret;
1574 }
1575 /* must be before kvm_put_msrs */
1576 ret = kvm_inject_mce_oldstyle(env);
1577 if (ret < 0) {
1578 return ret;
1579 }
1580 ret = kvm_put_msrs(env, level);
1581 if (ret < 0) {
1582 return ret;
1583 }
1584 if (level >= KVM_PUT_RESET_STATE) {
1585 ret = kvm_put_mp_state(env);
1586 if (ret < 0) {
1587 return ret;
1588 }
1589 ret = kvm_put_apic(env);
1590 if (ret < 0) {
1591 return ret;
1592 }
1593 }
1594 ret = kvm_put_vcpu_events(env, level);
1595 if (ret < 0) {
1596 return ret;
1597 }
1598 ret = kvm_put_debugregs(env);
1599 if (ret < 0) {
1600 return ret;
1601 }
1602 /* must be last */
1603 ret = kvm_guest_debug_workarounds(env);
1604 if (ret < 0) {
1605 return ret;
1606 }
1607 return 0;
1608 }
1609
1610 int kvm_arch_get_registers(CPUX86State *env)
1611 {
1612 int ret;
1613
1614 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1615
1616 ret = kvm_getput_regs(env, 0);
1617 if (ret < 0) {
1618 return ret;
1619 }
1620 ret = kvm_get_xsave(env);
1621 if (ret < 0) {
1622 return ret;
1623 }
1624 ret = kvm_get_xcrs(env);
1625 if (ret < 0) {
1626 return ret;
1627 }
1628 ret = kvm_get_sregs(env);
1629 if (ret < 0) {
1630 return ret;
1631 }
1632 ret = kvm_get_msrs(env);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636 ret = kvm_get_mp_state(env);
1637 if (ret < 0) {
1638 return ret;
1639 }
1640 ret = kvm_get_apic(env);
1641 if (ret < 0) {
1642 return ret;
1643 }
1644 ret = kvm_get_vcpu_events(env);
1645 if (ret < 0) {
1646 return ret;
1647 }
1648 ret = kvm_get_debugregs(env);
1649 if (ret < 0) {
1650 return ret;
1651 }
1652 return 0;
1653 }
1654
1655 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1656 {
1657 int ret;
1658
1659 /* Inject NMI */
1660 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1661 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1662 DPRINTF("injected NMI\n");
1663 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1664 if (ret < 0) {
1665 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1666 strerror(-ret));
1667 }
1668 }
1669
1670 if (!kvm_irqchip_in_kernel()) {
1671 /* Force the VCPU out of its inner loop to process any INIT requests
1672 * or pending TPR access reports. */
1673 if (env->interrupt_request &
1674 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1675 env->exit_request = 1;
1676 }
1677
1678 /* Try to inject an interrupt if the guest can accept it */
1679 if (run->ready_for_interrupt_injection &&
1680 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1681 (env->eflags & IF_MASK)) {
1682 int irq;
1683
1684 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1685 irq = cpu_get_pic_interrupt(env);
1686 if (irq >= 0) {
1687 struct kvm_interrupt intr;
1688
1689 intr.irq = irq;
1690 DPRINTF("injected interrupt %d\n", irq);
1691 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1692 if (ret < 0) {
1693 fprintf(stderr,
1694 "KVM: injection failed, interrupt lost (%s)\n",
1695 strerror(-ret));
1696 }
1697 }
1698 }
1699
1700 /* If we have an interrupt but the guest is not ready to receive an
1701 * interrupt, request an interrupt window exit. This will
1702 * cause a return to userspace as soon as the guest is ready to
1703 * receive interrupts. */
1704 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1705 run->request_interrupt_window = 1;
1706 } else {
1707 run->request_interrupt_window = 0;
1708 }
1709
1710 DPRINTF("setting tpr\n");
1711 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1712 }
1713 }
1714
1715 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1716 {
1717 if (run->if_flag) {
1718 env->eflags |= IF_MASK;
1719 } else {
1720 env->eflags &= ~IF_MASK;
1721 }
1722 cpu_set_apic_tpr(env->apic_state, run->cr8);
1723 cpu_set_apic_base(env->apic_state, run->apic_base);
1724 }
1725
1726 int kvm_arch_process_async_events(CPUX86State *env)
1727 {
1728 X86CPU *cpu = x86_env_get_cpu(env);
1729
1730 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1731 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1732 assert(env->mcg_cap);
1733
1734 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1735
1736 kvm_cpu_synchronize_state(env);
1737
1738 if (env->exception_injected == EXCP08_DBLE) {
1739 /* this means triple fault */
1740 qemu_system_reset_request();
1741 env->exit_request = 1;
1742 return 0;
1743 }
1744 env->exception_injected = EXCP12_MCHK;
1745 env->has_error_code = 0;
1746
1747 env->halted = 0;
1748 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1749 env->mp_state = KVM_MP_STATE_RUNNABLE;
1750 }
1751 }
1752
1753 if (kvm_irqchip_in_kernel()) {
1754 return 0;
1755 }
1756
1757 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1758 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1759 apic_poll_irq(env->apic_state);
1760 }
1761 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1762 (env->eflags & IF_MASK)) ||
1763 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1764 env->halted = 0;
1765 }
1766 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1767 kvm_cpu_synchronize_state(env);
1768 do_cpu_init(cpu);
1769 }
1770 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1771 kvm_cpu_synchronize_state(env);
1772 do_cpu_sipi(cpu);
1773 }
1774 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1775 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1776 kvm_cpu_synchronize_state(env);
1777 apic_handle_tpr_access_report(env->apic_state, env->eip,
1778 env->tpr_access_type);
1779 }
1780
1781 return env->halted;
1782 }
1783
1784 static int kvm_handle_halt(CPUX86State *env)
1785 {
1786 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1787 (env->eflags & IF_MASK)) &&
1788 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1789 env->halted = 1;
1790 return EXCP_HLT;
1791 }
1792
1793 return 0;
1794 }
1795
1796 static int kvm_handle_tpr_access(CPUX86State *env)
1797 {
1798 struct kvm_run *run = env->kvm_run;
1799
1800 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1801 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1802 : TPR_ACCESS_READ);
1803 return 1;
1804 }
1805
1806 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1807 {
1808 static const uint8_t int3 = 0xcc;
1809
1810 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1811 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1812 return -EINVAL;
1813 }
1814 return 0;
1815 }
1816
1817 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1818 {
1819 uint8_t int3;
1820
1821 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1822 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1823 return -EINVAL;
1824 }
1825 return 0;
1826 }
1827
1828 static struct {
1829 target_ulong addr;
1830 int len;
1831 int type;
1832 } hw_breakpoint[4];
1833
1834 static int nb_hw_breakpoint;
1835
1836 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1837 {
1838 int n;
1839
1840 for (n = 0; n < nb_hw_breakpoint; n++) {
1841 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1842 (hw_breakpoint[n].len == len || len == -1)) {
1843 return n;
1844 }
1845 }
1846 return -1;
1847 }
1848
1849 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1850 target_ulong len, int type)
1851 {
1852 switch (type) {
1853 case GDB_BREAKPOINT_HW:
1854 len = 1;
1855 break;
1856 case GDB_WATCHPOINT_WRITE:
1857 case GDB_WATCHPOINT_ACCESS:
1858 switch (len) {
1859 case 1:
1860 break;
1861 case 2:
1862 case 4:
1863 case 8:
1864 if (addr & (len - 1)) {
1865 return -EINVAL;
1866 }
1867 break;
1868 default:
1869 return -EINVAL;
1870 }
1871 break;
1872 default:
1873 return -ENOSYS;
1874 }
1875
1876 if (nb_hw_breakpoint == 4) {
1877 return -ENOBUFS;
1878 }
1879 if (find_hw_breakpoint(addr, len, type) >= 0) {
1880 return -EEXIST;
1881 }
1882 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1883 hw_breakpoint[nb_hw_breakpoint].len = len;
1884 hw_breakpoint[nb_hw_breakpoint].type = type;
1885 nb_hw_breakpoint++;
1886
1887 return 0;
1888 }
1889
1890 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1891 target_ulong len, int type)
1892 {
1893 int n;
1894
1895 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1896 if (n < 0) {
1897 return -ENOENT;
1898 }
1899 nb_hw_breakpoint--;
1900 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1901
1902 return 0;
1903 }
1904
1905 void kvm_arch_remove_all_hw_breakpoints(void)
1906 {
1907 nb_hw_breakpoint = 0;
1908 }
1909
1910 static CPUWatchpoint hw_watchpoint;
1911
1912 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1913 {
1914 int ret = 0;
1915 int n;
1916
1917 if (arch_info->exception == 1) {
1918 if (arch_info->dr6 & (1 << 14)) {
1919 if (cpu_single_env->singlestep_enabled) {
1920 ret = EXCP_DEBUG;
1921 }
1922 } else {
1923 for (n = 0; n < 4; n++) {
1924 if (arch_info->dr6 & (1 << n)) {
1925 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1926 case 0x0:
1927 ret = EXCP_DEBUG;
1928 break;
1929 case 0x1:
1930 ret = EXCP_DEBUG;
1931 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1932 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1933 hw_watchpoint.flags = BP_MEM_WRITE;
1934 break;
1935 case 0x3:
1936 ret = EXCP_DEBUG;
1937 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1938 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1939 hw_watchpoint.flags = BP_MEM_ACCESS;
1940 break;
1941 }
1942 }
1943 }
1944 }
1945 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1946 ret = EXCP_DEBUG;
1947 }
1948 if (ret == 0) {
1949 cpu_synchronize_state(cpu_single_env);
1950 assert(cpu_single_env->exception_injected == -1);
1951
1952 /* pass to guest */
1953 cpu_single_env->exception_injected = arch_info->exception;
1954 cpu_single_env->has_error_code = 0;
1955 }
1956
1957 return ret;
1958 }
1959
1960 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1961 {
1962 const uint8_t type_code[] = {
1963 [GDB_BREAKPOINT_HW] = 0x0,
1964 [GDB_WATCHPOINT_WRITE] = 0x1,
1965 [GDB_WATCHPOINT_ACCESS] = 0x3
1966 };
1967 const uint8_t len_code[] = {
1968 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1969 };
1970 int n;
1971
1972 if (kvm_sw_breakpoints_active(env)) {
1973 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1974 }
1975 if (nb_hw_breakpoint > 0) {
1976 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1977 dbg->arch.debugreg[7] = 0x0600;
1978 for (n = 0; n < nb_hw_breakpoint; n++) {
1979 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1980 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1981 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1982 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1983 }
1984 }
1985 }
1986
1987 static bool host_supports_vmx(void)
1988 {
1989 uint32_t ecx, unused;
1990
1991 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1992 return ecx & CPUID_EXT_VMX;
1993 }
1994
1995 #define VMX_INVALID_GUEST_STATE 0x80000021
1996
1997 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
1998 {
1999 uint64_t code;
2000 int ret;
2001
2002 switch (run->exit_reason) {
2003 case KVM_EXIT_HLT:
2004 DPRINTF("handle_hlt\n");
2005 ret = kvm_handle_halt(env);
2006 break;
2007 case KVM_EXIT_SET_TPR:
2008 ret = 0;
2009 break;
2010 case KVM_EXIT_TPR_ACCESS:
2011 ret = kvm_handle_tpr_access(env);
2012 break;
2013 case KVM_EXIT_FAIL_ENTRY:
2014 code = run->fail_entry.hardware_entry_failure_reason;
2015 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2016 code);
2017 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2018 fprintf(stderr,
2019 "\nIf you're running a guest on an Intel machine without "
2020 "unrestricted mode\n"
2021 "support, the failure can be most likely due to the guest "
2022 "entering an invalid\n"
2023 "state for Intel VT. For example, the guest maybe running "
2024 "in big real mode\n"
2025 "which is not supported on less recent Intel processors."
2026 "\n\n");
2027 }
2028 ret = -1;
2029 break;
2030 case KVM_EXIT_EXCEPTION:
2031 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2032 run->ex.exception, run->ex.error_code);
2033 ret = -1;
2034 break;
2035 case KVM_EXIT_DEBUG:
2036 DPRINTF("kvm_exit_debug\n");
2037 ret = kvm_handle_debug(&run->debug.arch);
2038 break;
2039 default:
2040 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2041 ret = -1;
2042 break;
2043 }
2044
2045 return ret;
2046 }
2047
2048 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2049 {
2050 kvm_cpu_synchronize_state(env);
2051 return !(env->cr[0] & CR0_PE_MASK) ||
2052 ((env->segs[R_CS].selector & 3) != 3);
2053 }
2054
2055 void kvm_arch_init_irq_routing(KVMState *s)
2056 {
2057 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2058 /* If kernel can't do irq routing, interrupt source
2059 * override 0->2 cannot be set up as required by HPET.
2060 * So we have to disable it.
2061 */
2062 no_hpet = 1;
2063 }
2064 /* We know at this point that we're using the in-kernel
2065 * irqchip, so we can use irqfds, and on x86 we know
2066 * we can use msi via irqfd and GSI routing.
2067 */
2068 kvm_irqfds_allowed = true;
2069 kvm_msi_via_irqfd_allowed = true;
2070 kvm_gsi_routing_allowed = true;
2071 }
2072
2073 /* Classic KVM device assignment interface. Will remain x86 only. */
2074 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2075 uint32_t flags, uint32_t *dev_id)
2076 {
2077 struct kvm_assigned_pci_dev dev_data = {
2078 .segnr = dev_addr->domain,
2079 .busnr = dev_addr->bus,
2080 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2081 .flags = flags,
2082 };
2083 int ret;
2084
2085 dev_data.assigned_dev_id =
2086 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2087
2088 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2089 if (ret < 0) {
2090 return ret;
2091 }
2092
2093 *dev_id = dev_data.assigned_dev_id;
2094
2095 return 0;
2096 }
2097
2098 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2099 {
2100 struct kvm_assigned_pci_dev dev_data = {
2101 .assigned_dev_id = dev_id,
2102 };
2103
2104 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2105 }
2106
2107 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2108 uint32_t irq_type, uint32_t guest_irq)
2109 {
2110 struct kvm_assigned_irq assigned_irq = {
2111 .assigned_dev_id = dev_id,
2112 .guest_irq = guest_irq,
2113 .flags = irq_type,
2114 };
2115
2116 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2117 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2118 } else {
2119 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2120 }
2121 }
2122
2123 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2124 uint32_t guest_irq)
2125 {
2126 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2127 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2128
2129 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2130 }
2131
2132 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2133 {
2134 struct kvm_assigned_pci_dev dev_data = {
2135 .assigned_dev_id = dev_id,
2136 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2137 };
2138
2139 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2140 }
2141
2142 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2143 uint32_t type)
2144 {
2145 struct kvm_assigned_irq assigned_irq = {
2146 .assigned_dev_id = dev_id,
2147 .flags = type,
2148 };
2149
2150 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2151 }
2152
2153 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2154 {
2155 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2156 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2157 }
2158
2159 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2160 {
2161 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2162 KVM_DEV_IRQ_GUEST_MSI, virq);
2163 }
2164
2165 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2166 {
2167 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2168 KVM_DEV_IRQ_HOST_MSI);
2169 }
2170
2171 bool kvm_device_msix_supported(KVMState *s)
2172 {
2173 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2174 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2175 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2176 }
2177
2178 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2179 uint32_t nr_vectors)
2180 {
2181 struct kvm_assigned_msix_nr msix_nr = {
2182 .assigned_dev_id = dev_id,
2183 .entry_nr = nr_vectors,
2184 };
2185
2186 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2187 }
2188
2189 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2190 int virq)
2191 {
2192 struct kvm_assigned_msix_entry msix_entry = {
2193 .assigned_dev_id = dev_id,
2194 .gsi = virq,
2195 .entry = vector,
2196 };
2197
2198 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2199 }
2200
2201 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2202 {
2203 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2204 KVM_DEV_IRQ_GUEST_MSIX, 0);
2205 }
2206
2207 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2208 {
2209 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2210 KVM_DEV_IRQ_HOST_MSIX);
2211 }