]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'riku/linux-user-for-upstream' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/i386/pc.h"
32 #include "hw/i386/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static bool has_msr_kvm_steal_time;
72 static int lm_capable_kernel;
73
74 bool kvm_allows_irq0_override(void)
75 {
76 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
77 }
78
79 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
80 {
81 struct kvm_cpuid2 *cpuid;
82 int r, size;
83
84 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
85 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
86 cpuid->nent = max;
87 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
88 if (r == 0 && cpuid->nent >= max) {
89 r = -E2BIG;
90 }
91 if (r < 0) {
92 if (r == -E2BIG) {
93 g_free(cpuid);
94 return NULL;
95 } else {
96 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
97 strerror(-r));
98 exit(1);
99 }
100 }
101 return cpuid;
102 }
103
104 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
105 * for all entries.
106 */
107 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
108 {
109 struct kvm_cpuid2 *cpuid;
110 int max = 1;
111 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
112 max *= 2;
113 }
114 return cpuid;
115 }
116
117 struct kvm_para_features {
118 int cap;
119 int feature;
120 } para_features[] = {
121 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
122 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
123 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
124 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
125 { -1, -1 }
126 };
127
128 static int get_para_features(KVMState *s)
129 {
130 int i, features = 0;
131
132 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
133 if (kvm_check_extension(s, para_features[i].cap)) {
134 features |= (1 << para_features[i].feature);
135 }
136 }
137
138 return features;
139 }
140
141
142 /* Returns the value for a specific register on the cpuid entry
143 */
144 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
145 {
146 uint32_t ret = 0;
147 switch (reg) {
148 case R_EAX:
149 ret = entry->eax;
150 break;
151 case R_EBX:
152 ret = entry->ebx;
153 break;
154 case R_ECX:
155 ret = entry->ecx;
156 break;
157 case R_EDX:
158 ret = entry->edx;
159 break;
160 }
161 return ret;
162 }
163
164 /* Find matching entry for function/index on kvm_cpuid2 struct
165 */
166 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
167 uint32_t function,
168 uint32_t index)
169 {
170 int i;
171 for (i = 0; i < cpuid->nent; ++i) {
172 if (cpuid->entries[i].function == function &&
173 cpuid->entries[i].index == index) {
174 return &cpuid->entries[i];
175 }
176 }
177 /* not found: */
178 return NULL;
179 }
180
181 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
182 uint32_t index, int reg)
183 {
184 struct kvm_cpuid2 *cpuid;
185 uint32_t ret = 0;
186 uint32_t cpuid_1_edx;
187 bool found = false;
188
189 cpuid = get_supported_cpuid(s);
190
191 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
192 if (entry) {
193 found = true;
194 ret = cpuid_entry_get_reg(entry, reg);
195 }
196
197 /* Fixups for the data returned by KVM, below */
198
199 if (function == 1 && reg == R_EDX) {
200 /* KVM before 2.6.30 misreports the following features */
201 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
202 } else if (function == 1 && reg == R_ECX) {
203 /* We can set the hypervisor flag, even if KVM does not return it on
204 * GET_SUPPORTED_CPUID
205 */
206 ret |= CPUID_EXT_HYPERVISOR;
207 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
208 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
209 * and the irqchip is in the kernel.
210 */
211 if (kvm_irqchip_in_kernel() &&
212 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
213 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
214 }
215
216 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
217 * without the in-kernel irqchip
218 */
219 if (!kvm_irqchip_in_kernel()) {
220 ret &= ~CPUID_EXT_X2APIC;
221 }
222 } else if (function == 0x80000001 && reg == R_EDX) {
223 /* On Intel, kvm returns cpuid according to the Intel spec,
224 * so add missing bits according to the AMD spec:
225 */
226 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
227 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
228 }
229
230 g_free(cpuid);
231
232 /* fallback for older kernels */
233 if ((function == KVM_CPUID_FEATURES) && !found) {
234 ret = get_para_features(s);
235 }
236
237 return ret;
238 }
239
240 typedef struct HWPoisonPage {
241 ram_addr_t ram_addr;
242 QLIST_ENTRY(HWPoisonPage) list;
243 } HWPoisonPage;
244
245 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
246 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
247
248 static void kvm_unpoison_all(void *param)
249 {
250 HWPoisonPage *page, *next_page;
251
252 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
253 QLIST_REMOVE(page, list);
254 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
255 g_free(page);
256 }
257 }
258
259 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
260 {
261 HWPoisonPage *page;
262
263 QLIST_FOREACH(page, &hwpoison_page_list, list) {
264 if (page->ram_addr == ram_addr) {
265 return;
266 }
267 }
268 page = g_malloc(sizeof(HWPoisonPage));
269 page->ram_addr = ram_addr;
270 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
271 }
272
273 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
274 int *max_banks)
275 {
276 int r;
277
278 r = kvm_check_extension(s, KVM_CAP_MCE);
279 if (r > 0) {
280 *max_banks = r;
281 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
282 }
283 return -ENOSYS;
284 }
285
286 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
287 {
288 CPUX86State *env = &cpu->env;
289 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
290 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
291 uint64_t mcg_status = MCG_STATUS_MCIP;
292
293 if (code == BUS_MCEERR_AR) {
294 status |= MCI_STATUS_AR | 0x134;
295 mcg_status |= MCG_STATUS_EIPV;
296 } else {
297 status |= 0xc0;
298 mcg_status |= MCG_STATUS_RIPV;
299 }
300 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
301 (MCM_ADDR_PHYS << 6) | 0xc,
302 cpu_x86_support_mca_broadcast(env) ?
303 MCE_INJECT_BROADCAST : 0);
304 }
305
306 static void hardware_memory_error(void)
307 {
308 fprintf(stderr, "Hardware memory error!\n");
309 exit(1);
310 }
311
312 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
313 {
314 X86CPU *cpu = X86_CPU(c);
315 CPUX86State *env = &cpu->env;
316 ram_addr_t ram_addr;
317 hwaddr paddr;
318
319 if ((env->mcg_cap & MCG_SER_P) && addr
320 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
321 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
322 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
323 fprintf(stderr, "Hardware memory error for memory used by "
324 "QEMU itself instead of guest system!\n");
325 /* Hope we are lucky for AO MCE */
326 if (code == BUS_MCEERR_AO) {
327 return 0;
328 } else {
329 hardware_memory_error();
330 }
331 }
332 kvm_hwpoison_page_add(ram_addr);
333 kvm_mce_inject(cpu, paddr, code);
334 } else {
335 if (code == BUS_MCEERR_AO) {
336 return 0;
337 } else if (code == BUS_MCEERR_AR) {
338 hardware_memory_error();
339 } else {
340 return 1;
341 }
342 }
343 return 0;
344 }
345
346 int kvm_arch_on_sigbus(int code, void *addr)
347 {
348 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
349 ram_addr_t ram_addr;
350 hwaddr paddr;
351
352 /* Hope we are lucky for AO MCE */
353 if (qemu_ram_addr_from_host(addr, &ram_addr) == NULL ||
354 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
355 addr, &paddr)) {
356 fprintf(stderr, "Hardware memory error for memory used by "
357 "QEMU itself instead of guest system!: %p\n", addr);
358 return 0;
359 }
360 kvm_hwpoison_page_add(ram_addr);
361 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
362 } else {
363 if (code == BUS_MCEERR_AO) {
364 return 0;
365 } else if (code == BUS_MCEERR_AR) {
366 hardware_memory_error();
367 } else {
368 return 1;
369 }
370 }
371 return 0;
372 }
373
374 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
375 {
376 CPUX86State *env = &cpu->env;
377
378 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
379 unsigned int bank, bank_num = env->mcg_cap & 0xff;
380 struct kvm_x86_mce mce;
381
382 env->exception_injected = -1;
383
384 /*
385 * There must be at least one bank in use if an MCE is pending.
386 * Find it and use its values for the event injection.
387 */
388 for (bank = 0; bank < bank_num; bank++) {
389 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
390 break;
391 }
392 }
393 assert(bank < bank_num);
394
395 mce.bank = bank;
396 mce.status = env->mce_banks[bank * 4 + 1];
397 mce.mcg_status = env->mcg_status;
398 mce.addr = env->mce_banks[bank * 4 + 2];
399 mce.misc = env->mce_banks[bank * 4 + 3];
400
401 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
402 }
403 return 0;
404 }
405
406 static void cpu_update_state(void *opaque, int running, RunState state)
407 {
408 CPUX86State *env = opaque;
409
410 if (running) {
411 env->tsc_valid = false;
412 }
413 }
414
415 unsigned long kvm_arch_vcpu_id(CPUState *cs)
416 {
417 X86CPU *cpu = X86_CPU(cs);
418 return cpu->env.cpuid_apic_id;
419 }
420
421 #define KVM_MAX_CPUID_ENTRIES 100
422
423 int kvm_arch_init_vcpu(CPUState *cs)
424 {
425 struct {
426 struct kvm_cpuid2 cpuid;
427 struct kvm_cpuid_entry2 entries[KVM_MAX_CPUID_ENTRIES];
428 } QEMU_PACKED cpuid_data;
429 X86CPU *cpu = X86_CPU(cs);
430 CPUX86State *env = &cpu->env;
431 uint32_t limit, i, j, cpuid_i;
432 uint32_t unused;
433 struct kvm_cpuid_entry2 *c;
434 uint32_t signature[3];
435 int r;
436
437 cpuid_i = 0;
438
439 /* Paravirtualization CPUIDs */
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = KVM_CPUID_SIGNATURE;
443 if (!hyperv_enabled()) {
444 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
445 c->eax = 0;
446 } else {
447 memcpy(signature, "Microsoft Hv", 12);
448 c->eax = HYPERV_CPUID_MIN;
449 }
450 c->ebx = signature[0];
451 c->ecx = signature[1];
452 c->edx = signature[2];
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = KVM_CPUID_FEATURES;
457 c->eax = env->features[FEAT_KVM];
458
459 if (hyperv_enabled()) {
460 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
461 c->eax = signature[0];
462
463 c = &cpuid_data.entries[cpuid_i++];
464 memset(c, 0, sizeof(*c));
465 c->function = HYPERV_CPUID_VERSION;
466 c->eax = 0x00001bbc;
467 c->ebx = 0x00060001;
468
469 c = &cpuid_data.entries[cpuid_i++];
470 memset(c, 0, sizeof(*c));
471 c->function = HYPERV_CPUID_FEATURES;
472 if (hyperv_relaxed_timing_enabled()) {
473 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
474 }
475 if (hyperv_vapic_recommended()) {
476 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
477 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
478 }
479
480 c = &cpuid_data.entries[cpuid_i++];
481 memset(c, 0, sizeof(*c));
482 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
483 if (hyperv_relaxed_timing_enabled()) {
484 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
485 }
486 if (hyperv_vapic_recommended()) {
487 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
488 }
489 c->ebx = hyperv_get_spinlock_retries();
490
491 c = &cpuid_data.entries[cpuid_i++];
492 memset(c, 0, sizeof(*c));
493 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
494 c->eax = 0x40;
495 c->ebx = 0x40;
496
497 c = &cpuid_data.entries[cpuid_i++];
498 memset(c, 0, sizeof(*c));
499 c->function = KVM_CPUID_SIGNATURE_NEXT;
500 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
501 c->eax = 0;
502 c->ebx = signature[0];
503 c->ecx = signature[1];
504 c->edx = signature[2];
505 }
506
507 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
508
509 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
510
511 has_msr_kvm_steal_time = c->eax & (1 << KVM_FEATURE_STEAL_TIME);
512
513 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
514
515 for (i = 0; i <= limit; i++) {
516 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
517 fprintf(stderr, "unsupported level value: 0x%x\n", limit);
518 abort();
519 }
520 c = &cpuid_data.entries[cpuid_i++];
521
522 switch (i) {
523 case 2: {
524 /* Keep reading function 2 till all the input is received */
525 int times;
526
527 c->function = i;
528 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
529 KVM_CPUID_FLAG_STATE_READ_NEXT;
530 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
531 times = c->eax & 0xff;
532
533 for (j = 1; j < times; ++j) {
534 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
535 fprintf(stderr, "cpuid_data is full, no space for "
536 "cpuid(eax:2):eax & 0xf = 0x%x\n", times);
537 abort();
538 }
539 c = &cpuid_data.entries[cpuid_i++];
540 c->function = i;
541 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
542 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
543 }
544 break;
545 }
546 case 4:
547 case 0xb:
548 case 0xd:
549 for (j = 0; ; j++) {
550 if (i == 0xd && j == 64) {
551 break;
552 }
553 c->function = i;
554 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
555 c->index = j;
556 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
557
558 if (i == 4 && c->eax == 0) {
559 break;
560 }
561 if (i == 0xb && !(c->ecx & 0xff00)) {
562 break;
563 }
564 if (i == 0xd && c->eax == 0) {
565 continue;
566 }
567 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
568 fprintf(stderr, "cpuid_data is full, no space for "
569 "cpuid(eax:0x%x,ecx:0x%x)\n", i, j);
570 abort();
571 }
572 c = &cpuid_data.entries[cpuid_i++];
573 }
574 break;
575 default:
576 c->function = i;
577 c->flags = 0;
578 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
579 break;
580 }
581 }
582 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
583
584 for (i = 0x80000000; i <= limit; i++) {
585 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
586 fprintf(stderr, "unsupported xlevel value: 0x%x\n", limit);
587 abort();
588 }
589 c = &cpuid_data.entries[cpuid_i++];
590
591 c->function = i;
592 c->flags = 0;
593 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
594 }
595
596 /* Call Centaur's CPUID instructions they are supported. */
597 if (env->cpuid_xlevel2 > 0) {
598 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
599
600 for (i = 0xC0000000; i <= limit; i++) {
601 if (cpuid_i == KVM_MAX_CPUID_ENTRIES) {
602 fprintf(stderr, "unsupported xlevel2 value: 0x%x\n", limit);
603 abort();
604 }
605 c = &cpuid_data.entries[cpuid_i++];
606
607 c->function = i;
608 c->flags = 0;
609 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
610 }
611 }
612
613 cpuid_data.cpuid.nent = cpuid_i;
614
615 if (((env->cpuid_version >> 8)&0xF) >= 6
616 && (env->features[FEAT_1_EDX] & (CPUID_MCE | CPUID_MCA)) ==
617 (CPUID_MCE | CPUID_MCA)
618 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
619 uint64_t mcg_cap;
620 int banks;
621 int ret;
622
623 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
624 if (ret < 0) {
625 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
626 return ret;
627 }
628
629 if (banks > MCE_BANKS_DEF) {
630 banks = MCE_BANKS_DEF;
631 }
632 mcg_cap &= MCE_CAP_DEF;
633 mcg_cap |= banks;
634 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
635 if (ret < 0) {
636 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
637 return ret;
638 }
639
640 env->mcg_cap = mcg_cap;
641 }
642
643 qemu_add_vm_change_state_handler(cpu_update_state, env);
644
645 cpuid_data.cpuid.padding = 0;
646 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
647 if (r) {
648 return r;
649 }
650
651 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
652 if (r && env->tsc_khz) {
653 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
654 if (r < 0) {
655 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
656 return r;
657 }
658 }
659
660 if (kvm_has_xsave()) {
661 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
662 }
663
664 return 0;
665 }
666
667 void kvm_arch_reset_vcpu(CPUState *cs)
668 {
669 X86CPU *cpu = X86_CPU(cs);
670 CPUX86State *env = &cpu->env;
671
672 env->exception_injected = -1;
673 env->interrupt_injected = -1;
674 env->xcr0 = 1;
675 if (kvm_irqchip_in_kernel()) {
676 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
677 KVM_MP_STATE_UNINITIALIZED;
678 } else {
679 env->mp_state = KVM_MP_STATE_RUNNABLE;
680 }
681 }
682
683 static int kvm_get_supported_msrs(KVMState *s)
684 {
685 static int kvm_supported_msrs;
686 int ret = 0;
687
688 /* first time */
689 if (kvm_supported_msrs == 0) {
690 struct kvm_msr_list msr_list, *kvm_msr_list;
691
692 kvm_supported_msrs = -1;
693
694 /* Obtain MSR list from KVM. These are the MSRs that we must
695 * save/restore */
696 msr_list.nmsrs = 0;
697 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
698 if (ret < 0 && ret != -E2BIG) {
699 return ret;
700 }
701 /* Old kernel modules had a bug and could write beyond the provided
702 memory. Allocate at least a safe amount of 1K. */
703 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
704 msr_list.nmsrs *
705 sizeof(msr_list.indices[0])));
706
707 kvm_msr_list->nmsrs = msr_list.nmsrs;
708 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
709 if (ret >= 0) {
710 int i;
711
712 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
713 if (kvm_msr_list->indices[i] == MSR_STAR) {
714 has_msr_star = true;
715 continue;
716 }
717 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
718 has_msr_hsave_pa = true;
719 continue;
720 }
721 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
722 has_msr_tsc_adjust = true;
723 continue;
724 }
725 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
726 has_msr_tsc_deadline = true;
727 continue;
728 }
729 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
730 has_msr_misc_enable = true;
731 continue;
732 }
733 }
734 }
735
736 g_free(kvm_msr_list);
737 }
738
739 return ret;
740 }
741
742 int kvm_arch_init(KVMState *s)
743 {
744 uint64_t identity_base = 0xfffbc000;
745 uint64_t shadow_mem;
746 int ret;
747 struct utsname utsname;
748
749 ret = kvm_get_supported_msrs(s);
750 if (ret < 0) {
751 return ret;
752 }
753
754 uname(&utsname);
755 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
756
757 /*
758 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
759 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
760 * Since these must be part of guest physical memory, we need to allocate
761 * them, both by setting their start addresses in the kernel and by
762 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
763 *
764 * Older KVM versions may not support setting the identity map base. In
765 * that case we need to stick with the default, i.e. a 256K maximum BIOS
766 * size.
767 */
768 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
769 /* Allows up to 16M BIOSes. */
770 identity_base = 0xfeffc000;
771
772 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
773 if (ret < 0) {
774 return ret;
775 }
776 }
777
778 /* Set TSS base one page after EPT identity map. */
779 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
780 if (ret < 0) {
781 return ret;
782 }
783
784 /* Tell fw_cfg to notify the BIOS to reserve the range. */
785 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
786 if (ret < 0) {
787 fprintf(stderr, "e820_add_entry() table is full\n");
788 return ret;
789 }
790 qemu_register_reset(kvm_unpoison_all, NULL);
791
792 shadow_mem = qemu_opt_get_size(qemu_get_machine_opts(),
793 "kvm_shadow_mem", -1);
794 if (shadow_mem != -1) {
795 shadow_mem /= 4096;
796 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
797 if (ret < 0) {
798 return ret;
799 }
800 }
801 return 0;
802 }
803
804 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
805 {
806 lhs->selector = rhs->selector;
807 lhs->base = rhs->base;
808 lhs->limit = rhs->limit;
809 lhs->type = 3;
810 lhs->present = 1;
811 lhs->dpl = 3;
812 lhs->db = 0;
813 lhs->s = 1;
814 lhs->l = 0;
815 lhs->g = 0;
816 lhs->avl = 0;
817 lhs->unusable = 0;
818 }
819
820 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
821 {
822 unsigned flags = rhs->flags;
823 lhs->selector = rhs->selector;
824 lhs->base = rhs->base;
825 lhs->limit = rhs->limit;
826 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
827 lhs->present = (flags & DESC_P_MASK) != 0;
828 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
829 lhs->db = (flags >> DESC_B_SHIFT) & 1;
830 lhs->s = (flags & DESC_S_MASK) != 0;
831 lhs->l = (flags >> DESC_L_SHIFT) & 1;
832 lhs->g = (flags & DESC_G_MASK) != 0;
833 lhs->avl = (flags & DESC_AVL_MASK) != 0;
834 lhs->unusable = 0;
835 lhs->padding = 0;
836 }
837
838 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
839 {
840 lhs->selector = rhs->selector;
841 lhs->base = rhs->base;
842 lhs->limit = rhs->limit;
843 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
844 (rhs->present * DESC_P_MASK) |
845 (rhs->dpl << DESC_DPL_SHIFT) |
846 (rhs->db << DESC_B_SHIFT) |
847 (rhs->s * DESC_S_MASK) |
848 (rhs->l << DESC_L_SHIFT) |
849 (rhs->g * DESC_G_MASK) |
850 (rhs->avl * DESC_AVL_MASK);
851 }
852
853 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
854 {
855 if (set) {
856 *kvm_reg = *qemu_reg;
857 } else {
858 *qemu_reg = *kvm_reg;
859 }
860 }
861
862 static int kvm_getput_regs(X86CPU *cpu, int set)
863 {
864 CPUX86State *env = &cpu->env;
865 struct kvm_regs regs;
866 int ret = 0;
867
868 if (!set) {
869 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
870 if (ret < 0) {
871 return ret;
872 }
873 }
874
875 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
876 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
877 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
878 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
879 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
880 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
881 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
882 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
883 #ifdef TARGET_X86_64
884 kvm_getput_reg(&regs.r8, &env->regs[8], set);
885 kvm_getput_reg(&regs.r9, &env->regs[9], set);
886 kvm_getput_reg(&regs.r10, &env->regs[10], set);
887 kvm_getput_reg(&regs.r11, &env->regs[11], set);
888 kvm_getput_reg(&regs.r12, &env->regs[12], set);
889 kvm_getput_reg(&regs.r13, &env->regs[13], set);
890 kvm_getput_reg(&regs.r14, &env->regs[14], set);
891 kvm_getput_reg(&regs.r15, &env->regs[15], set);
892 #endif
893
894 kvm_getput_reg(&regs.rflags, &env->eflags, set);
895 kvm_getput_reg(&regs.rip, &env->eip, set);
896
897 if (set) {
898 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
899 }
900
901 return ret;
902 }
903
904 static int kvm_put_fpu(X86CPU *cpu)
905 {
906 CPUX86State *env = &cpu->env;
907 struct kvm_fpu fpu;
908 int i;
909
910 memset(&fpu, 0, sizeof fpu);
911 fpu.fsw = env->fpus & ~(7 << 11);
912 fpu.fsw |= (env->fpstt & 7) << 11;
913 fpu.fcw = env->fpuc;
914 fpu.last_opcode = env->fpop;
915 fpu.last_ip = env->fpip;
916 fpu.last_dp = env->fpdp;
917 for (i = 0; i < 8; ++i) {
918 fpu.ftwx |= (!env->fptags[i]) << i;
919 }
920 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
921 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
922 fpu.mxcsr = env->mxcsr;
923
924 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
925 }
926
927 #define XSAVE_FCW_FSW 0
928 #define XSAVE_FTW_FOP 1
929 #define XSAVE_CWD_RIP 2
930 #define XSAVE_CWD_RDP 4
931 #define XSAVE_MXCSR 6
932 #define XSAVE_ST_SPACE 8
933 #define XSAVE_XMM_SPACE 40
934 #define XSAVE_XSTATE_BV 128
935 #define XSAVE_YMMH_SPACE 144
936
937 static int kvm_put_xsave(X86CPU *cpu)
938 {
939 CPUX86State *env = &cpu->env;
940 struct kvm_xsave* xsave = env->kvm_xsave_buf;
941 uint16_t cwd, swd, twd;
942 int i, r;
943
944 if (!kvm_has_xsave()) {
945 return kvm_put_fpu(cpu);
946 }
947
948 memset(xsave, 0, sizeof(struct kvm_xsave));
949 twd = 0;
950 swd = env->fpus & ~(7 << 11);
951 swd |= (env->fpstt & 7) << 11;
952 cwd = env->fpuc;
953 for (i = 0; i < 8; ++i) {
954 twd |= (!env->fptags[i]) << i;
955 }
956 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
957 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
958 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
959 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
960 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
961 sizeof env->fpregs);
962 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
963 sizeof env->xmm_regs);
964 xsave->region[XSAVE_MXCSR] = env->mxcsr;
965 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
966 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
967 sizeof env->ymmh_regs);
968 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
969 return r;
970 }
971
972 static int kvm_put_xcrs(X86CPU *cpu)
973 {
974 CPUX86State *env = &cpu->env;
975 struct kvm_xcrs xcrs;
976
977 if (!kvm_has_xcrs()) {
978 return 0;
979 }
980
981 xcrs.nr_xcrs = 1;
982 xcrs.flags = 0;
983 xcrs.xcrs[0].xcr = 0;
984 xcrs.xcrs[0].value = env->xcr0;
985 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
986 }
987
988 static int kvm_put_sregs(X86CPU *cpu)
989 {
990 CPUX86State *env = &cpu->env;
991 struct kvm_sregs sregs;
992
993 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
994 if (env->interrupt_injected >= 0) {
995 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
996 (uint64_t)1 << (env->interrupt_injected % 64);
997 }
998
999 if ((env->eflags & VM_MASK)) {
1000 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
1001 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
1002 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
1003 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
1004 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
1005 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
1006 } else {
1007 set_seg(&sregs.cs, &env->segs[R_CS]);
1008 set_seg(&sregs.ds, &env->segs[R_DS]);
1009 set_seg(&sregs.es, &env->segs[R_ES]);
1010 set_seg(&sregs.fs, &env->segs[R_FS]);
1011 set_seg(&sregs.gs, &env->segs[R_GS]);
1012 set_seg(&sregs.ss, &env->segs[R_SS]);
1013 }
1014
1015 set_seg(&sregs.tr, &env->tr);
1016 set_seg(&sregs.ldt, &env->ldt);
1017
1018 sregs.idt.limit = env->idt.limit;
1019 sregs.idt.base = env->idt.base;
1020 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
1021 sregs.gdt.limit = env->gdt.limit;
1022 sregs.gdt.base = env->gdt.base;
1023 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
1024
1025 sregs.cr0 = env->cr[0];
1026 sregs.cr2 = env->cr[2];
1027 sregs.cr3 = env->cr[3];
1028 sregs.cr4 = env->cr[4];
1029
1030 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1031 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1032
1033 sregs.efer = env->efer;
1034
1035 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1036 }
1037
1038 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1039 uint32_t index, uint64_t value)
1040 {
1041 entry->index = index;
1042 entry->data = value;
1043 }
1044
1045 static int kvm_put_msrs(X86CPU *cpu, int level)
1046 {
1047 CPUX86State *env = &cpu->env;
1048 struct {
1049 struct kvm_msrs info;
1050 struct kvm_msr_entry entries[100];
1051 } msr_data;
1052 struct kvm_msr_entry *msrs = msr_data.entries;
1053 int n = 0;
1054
1055 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1056 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1057 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1058 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1059 if (has_msr_star) {
1060 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1061 }
1062 if (has_msr_hsave_pa) {
1063 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1064 }
1065 if (has_msr_tsc_adjust) {
1066 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1067 }
1068 if (has_msr_tsc_deadline) {
1069 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1070 }
1071 if (has_msr_misc_enable) {
1072 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1073 env->msr_ia32_misc_enable);
1074 }
1075 #ifdef TARGET_X86_64
1076 if (lm_capable_kernel) {
1077 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1078 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1079 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1080 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1081 }
1082 #endif
1083 if (level == KVM_PUT_FULL_STATE) {
1084 /*
1085 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1086 * writeback. Until this is fixed, we only write the offset to SMP
1087 * guests after migration, desynchronizing the VCPUs, but avoiding
1088 * huge jump-backs that would occur without any writeback at all.
1089 */
1090 if (smp_cpus == 1 || env->tsc != 0) {
1091 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1092 }
1093 }
1094 /*
1095 * The following paravirtual MSRs have side effects on the guest or are
1096 * too heavy for normal writeback. Limit them to reset or full state
1097 * updates.
1098 */
1099 if (level >= KVM_PUT_RESET_STATE) {
1100 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1101 env->system_time_msr);
1102 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1103 if (has_msr_async_pf_en) {
1104 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1105 env->async_pf_en_msr);
1106 }
1107 if (has_msr_pv_eoi_en) {
1108 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1109 env->pv_eoi_en_msr);
1110 }
1111 if (has_msr_kvm_steal_time) {
1112 kvm_msr_entry_set(&msrs[n++], MSR_KVM_STEAL_TIME,
1113 env->steal_time_msr);
1114 }
1115 if (hyperv_hypercall_available()) {
1116 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1117 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1118 }
1119 if (hyperv_vapic_recommended()) {
1120 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1121 }
1122 }
1123 if (env->mcg_cap) {
1124 int i;
1125
1126 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1127 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1128 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1129 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1130 }
1131 }
1132
1133 msr_data.info.nmsrs = n;
1134
1135 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1136
1137 }
1138
1139
1140 static int kvm_get_fpu(X86CPU *cpu)
1141 {
1142 CPUX86State *env = &cpu->env;
1143 struct kvm_fpu fpu;
1144 int i, ret;
1145
1146 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1147 if (ret < 0) {
1148 return ret;
1149 }
1150
1151 env->fpstt = (fpu.fsw >> 11) & 7;
1152 env->fpus = fpu.fsw;
1153 env->fpuc = fpu.fcw;
1154 env->fpop = fpu.last_opcode;
1155 env->fpip = fpu.last_ip;
1156 env->fpdp = fpu.last_dp;
1157 for (i = 0; i < 8; ++i) {
1158 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1159 }
1160 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1161 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1162 env->mxcsr = fpu.mxcsr;
1163
1164 return 0;
1165 }
1166
1167 static int kvm_get_xsave(X86CPU *cpu)
1168 {
1169 CPUX86State *env = &cpu->env;
1170 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1171 int ret, i;
1172 uint16_t cwd, swd, twd;
1173
1174 if (!kvm_has_xsave()) {
1175 return kvm_get_fpu(cpu);
1176 }
1177
1178 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1179 if (ret < 0) {
1180 return ret;
1181 }
1182
1183 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1184 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1185 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1186 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1187 env->fpstt = (swd >> 11) & 7;
1188 env->fpus = swd;
1189 env->fpuc = cwd;
1190 for (i = 0; i < 8; ++i) {
1191 env->fptags[i] = !((twd >> i) & 1);
1192 }
1193 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1194 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1195 env->mxcsr = xsave->region[XSAVE_MXCSR];
1196 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1197 sizeof env->fpregs);
1198 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1199 sizeof env->xmm_regs);
1200 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1201 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1202 sizeof env->ymmh_regs);
1203 return 0;
1204 }
1205
1206 static int kvm_get_xcrs(X86CPU *cpu)
1207 {
1208 CPUX86State *env = &cpu->env;
1209 int i, ret;
1210 struct kvm_xcrs xcrs;
1211
1212 if (!kvm_has_xcrs()) {
1213 return 0;
1214 }
1215
1216 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1217 if (ret < 0) {
1218 return ret;
1219 }
1220
1221 for (i = 0; i < xcrs.nr_xcrs; i++) {
1222 /* Only support xcr0 now */
1223 if (xcrs.xcrs[0].xcr == 0) {
1224 env->xcr0 = xcrs.xcrs[0].value;
1225 break;
1226 }
1227 }
1228 return 0;
1229 }
1230
1231 static int kvm_get_sregs(X86CPU *cpu)
1232 {
1233 CPUX86State *env = &cpu->env;
1234 struct kvm_sregs sregs;
1235 uint32_t hflags;
1236 int bit, i, ret;
1237
1238 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1239 if (ret < 0) {
1240 return ret;
1241 }
1242
1243 /* There can only be one pending IRQ set in the bitmap at a time, so try
1244 to find it and save its number instead (-1 for none). */
1245 env->interrupt_injected = -1;
1246 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1247 if (sregs.interrupt_bitmap[i]) {
1248 bit = ctz64(sregs.interrupt_bitmap[i]);
1249 env->interrupt_injected = i * 64 + bit;
1250 break;
1251 }
1252 }
1253
1254 get_seg(&env->segs[R_CS], &sregs.cs);
1255 get_seg(&env->segs[R_DS], &sregs.ds);
1256 get_seg(&env->segs[R_ES], &sregs.es);
1257 get_seg(&env->segs[R_FS], &sregs.fs);
1258 get_seg(&env->segs[R_GS], &sregs.gs);
1259 get_seg(&env->segs[R_SS], &sregs.ss);
1260
1261 get_seg(&env->tr, &sregs.tr);
1262 get_seg(&env->ldt, &sregs.ldt);
1263
1264 env->idt.limit = sregs.idt.limit;
1265 env->idt.base = sregs.idt.base;
1266 env->gdt.limit = sregs.gdt.limit;
1267 env->gdt.base = sregs.gdt.base;
1268
1269 env->cr[0] = sregs.cr0;
1270 env->cr[2] = sregs.cr2;
1271 env->cr[3] = sregs.cr3;
1272 env->cr[4] = sregs.cr4;
1273
1274 env->efer = sregs.efer;
1275
1276 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1277
1278 #define HFLAG_COPY_MASK \
1279 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1280 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1281 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1282 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1283
1284 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1285 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1286 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1287 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1288 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1289 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1290 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1291
1292 if (env->efer & MSR_EFER_LMA) {
1293 hflags |= HF_LMA_MASK;
1294 }
1295
1296 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1297 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1298 } else {
1299 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1300 (DESC_B_SHIFT - HF_CS32_SHIFT);
1301 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1302 (DESC_B_SHIFT - HF_SS32_SHIFT);
1303 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1304 !(hflags & HF_CS32_MASK)) {
1305 hflags |= HF_ADDSEG_MASK;
1306 } else {
1307 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1308 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1309 }
1310 }
1311 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1312
1313 return 0;
1314 }
1315
1316 static int kvm_get_msrs(X86CPU *cpu)
1317 {
1318 CPUX86State *env = &cpu->env;
1319 struct {
1320 struct kvm_msrs info;
1321 struct kvm_msr_entry entries[100];
1322 } msr_data;
1323 struct kvm_msr_entry *msrs = msr_data.entries;
1324 int ret, i, n;
1325
1326 n = 0;
1327 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1328 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1329 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1330 msrs[n++].index = MSR_PAT;
1331 if (has_msr_star) {
1332 msrs[n++].index = MSR_STAR;
1333 }
1334 if (has_msr_hsave_pa) {
1335 msrs[n++].index = MSR_VM_HSAVE_PA;
1336 }
1337 if (has_msr_tsc_adjust) {
1338 msrs[n++].index = MSR_TSC_ADJUST;
1339 }
1340 if (has_msr_tsc_deadline) {
1341 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1342 }
1343 if (has_msr_misc_enable) {
1344 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1345 }
1346
1347 if (!env->tsc_valid) {
1348 msrs[n++].index = MSR_IA32_TSC;
1349 env->tsc_valid = !runstate_is_running();
1350 }
1351
1352 #ifdef TARGET_X86_64
1353 if (lm_capable_kernel) {
1354 msrs[n++].index = MSR_CSTAR;
1355 msrs[n++].index = MSR_KERNELGSBASE;
1356 msrs[n++].index = MSR_FMASK;
1357 msrs[n++].index = MSR_LSTAR;
1358 }
1359 #endif
1360 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1361 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1362 if (has_msr_async_pf_en) {
1363 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1364 }
1365 if (has_msr_pv_eoi_en) {
1366 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1367 }
1368 if (has_msr_kvm_steal_time) {
1369 msrs[n++].index = MSR_KVM_STEAL_TIME;
1370 }
1371
1372 if (env->mcg_cap) {
1373 msrs[n++].index = MSR_MCG_STATUS;
1374 msrs[n++].index = MSR_MCG_CTL;
1375 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1376 msrs[n++].index = MSR_MC0_CTL + i;
1377 }
1378 }
1379
1380 msr_data.info.nmsrs = n;
1381 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1382 if (ret < 0) {
1383 return ret;
1384 }
1385
1386 for (i = 0; i < ret; i++) {
1387 switch (msrs[i].index) {
1388 case MSR_IA32_SYSENTER_CS:
1389 env->sysenter_cs = msrs[i].data;
1390 break;
1391 case MSR_IA32_SYSENTER_ESP:
1392 env->sysenter_esp = msrs[i].data;
1393 break;
1394 case MSR_IA32_SYSENTER_EIP:
1395 env->sysenter_eip = msrs[i].data;
1396 break;
1397 case MSR_PAT:
1398 env->pat = msrs[i].data;
1399 break;
1400 case MSR_STAR:
1401 env->star = msrs[i].data;
1402 break;
1403 #ifdef TARGET_X86_64
1404 case MSR_CSTAR:
1405 env->cstar = msrs[i].data;
1406 break;
1407 case MSR_KERNELGSBASE:
1408 env->kernelgsbase = msrs[i].data;
1409 break;
1410 case MSR_FMASK:
1411 env->fmask = msrs[i].data;
1412 break;
1413 case MSR_LSTAR:
1414 env->lstar = msrs[i].data;
1415 break;
1416 #endif
1417 case MSR_IA32_TSC:
1418 env->tsc = msrs[i].data;
1419 break;
1420 case MSR_TSC_ADJUST:
1421 env->tsc_adjust = msrs[i].data;
1422 break;
1423 case MSR_IA32_TSCDEADLINE:
1424 env->tsc_deadline = msrs[i].data;
1425 break;
1426 case MSR_VM_HSAVE_PA:
1427 env->vm_hsave = msrs[i].data;
1428 break;
1429 case MSR_KVM_SYSTEM_TIME:
1430 env->system_time_msr = msrs[i].data;
1431 break;
1432 case MSR_KVM_WALL_CLOCK:
1433 env->wall_clock_msr = msrs[i].data;
1434 break;
1435 case MSR_MCG_STATUS:
1436 env->mcg_status = msrs[i].data;
1437 break;
1438 case MSR_MCG_CTL:
1439 env->mcg_ctl = msrs[i].data;
1440 break;
1441 case MSR_IA32_MISC_ENABLE:
1442 env->msr_ia32_misc_enable = msrs[i].data;
1443 break;
1444 default:
1445 if (msrs[i].index >= MSR_MC0_CTL &&
1446 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1447 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1448 }
1449 break;
1450 case MSR_KVM_ASYNC_PF_EN:
1451 env->async_pf_en_msr = msrs[i].data;
1452 break;
1453 case MSR_KVM_PV_EOI_EN:
1454 env->pv_eoi_en_msr = msrs[i].data;
1455 break;
1456 case MSR_KVM_STEAL_TIME:
1457 env->steal_time_msr = msrs[i].data;
1458 break;
1459 }
1460 }
1461
1462 return 0;
1463 }
1464
1465 static int kvm_put_mp_state(X86CPU *cpu)
1466 {
1467 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1468
1469 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1470 }
1471
1472 static int kvm_get_mp_state(X86CPU *cpu)
1473 {
1474 CPUState *cs = CPU(cpu);
1475 CPUX86State *env = &cpu->env;
1476 struct kvm_mp_state mp_state;
1477 int ret;
1478
1479 ret = kvm_vcpu_ioctl(cs, KVM_GET_MP_STATE, &mp_state);
1480 if (ret < 0) {
1481 return ret;
1482 }
1483 env->mp_state = mp_state.mp_state;
1484 if (kvm_irqchip_in_kernel()) {
1485 cs->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1486 }
1487 return 0;
1488 }
1489
1490 static int kvm_get_apic(X86CPU *cpu)
1491 {
1492 CPUX86State *env = &cpu->env;
1493 DeviceState *apic = env->apic_state;
1494 struct kvm_lapic_state kapic;
1495 int ret;
1496
1497 if (apic && kvm_irqchip_in_kernel()) {
1498 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1499 if (ret < 0) {
1500 return ret;
1501 }
1502
1503 kvm_get_apic_state(apic, &kapic);
1504 }
1505 return 0;
1506 }
1507
1508 static int kvm_put_apic(X86CPU *cpu)
1509 {
1510 CPUX86State *env = &cpu->env;
1511 DeviceState *apic = env->apic_state;
1512 struct kvm_lapic_state kapic;
1513
1514 if (apic && kvm_irqchip_in_kernel()) {
1515 kvm_put_apic_state(apic, &kapic);
1516
1517 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1518 }
1519 return 0;
1520 }
1521
1522 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1523 {
1524 CPUX86State *env = &cpu->env;
1525 struct kvm_vcpu_events events;
1526
1527 if (!kvm_has_vcpu_events()) {
1528 return 0;
1529 }
1530
1531 events.exception.injected = (env->exception_injected >= 0);
1532 events.exception.nr = env->exception_injected;
1533 events.exception.has_error_code = env->has_error_code;
1534 events.exception.error_code = env->error_code;
1535 events.exception.pad = 0;
1536
1537 events.interrupt.injected = (env->interrupt_injected >= 0);
1538 events.interrupt.nr = env->interrupt_injected;
1539 events.interrupt.soft = env->soft_interrupt;
1540
1541 events.nmi.injected = env->nmi_injected;
1542 events.nmi.pending = env->nmi_pending;
1543 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1544 events.nmi.pad = 0;
1545
1546 events.sipi_vector = env->sipi_vector;
1547
1548 events.flags = 0;
1549 if (level >= KVM_PUT_RESET_STATE) {
1550 events.flags |=
1551 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1552 }
1553
1554 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1555 }
1556
1557 static int kvm_get_vcpu_events(X86CPU *cpu)
1558 {
1559 CPUX86State *env = &cpu->env;
1560 struct kvm_vcpu_events events;
1561 int ret;
1562
1563 if (!kvm_has_vcpu_events()) {
1564 return 0;
1565 }
1566
1567 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1568 if (ret < 0) {
1569 return ret;
1570 }
1571 env->exception_injected =
1572 events.exception.injected ? events.exception.nr : -1;
1573 env->has_error_code = events.exception.has_error_code;
1574 env->error_code = events.exception.error_code;
1575
1576 env->interrupt_injected =
1577 events.interrupt.injected ? events.interrupt.nr : -1;
1578 env->soft_interrupt = events.interrupt.soft;
1579
1580 env->nmi_injected = events.nmi.injected;
1581 env->nmi_pending = events.nmi.pending;
1582 if (events.nmi.masked) {
1583 env->hflags2 |= HF2_NMI_MASK;
1584 } else {
1585 env->hflags2 &= ~HF2_NMI_MASK;
1586 }
1587
1588 env->sipi_vector = events.sipi_vector;
1589
1590 return 0;
1591 }
1592
1593 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1594 {
1595 CPUX86State *env = &cpu->env;
1596 int ret = 0;
1597 unsigned long reinject_trap = 0;
1598
1599 if (!kvm_has_vcpu_events()) {
1600 if (env->exception_injected == 1) {
1601 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1602 } else if (env->exception_injected == 3) {
1603 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1604 }
1605 env->exception_injected = -1;
1606 }
1607
1608 /*
1609 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1610 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1611 * by updating the debug state once again if single-stepping is on.
1612 * Another reason to call kvm_update_guest_debug here is a pending debug
1613 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1614 * reinject them via SET_GUEST_DEBUG.
1615 */
1616 if (reinject_trap ||
1617 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1618 ret = kvm_update_guest_debug(env, reinject_trap);
1619 }
1620 return ret;
1621 }
1622
1623 static int kvm_put_debugregs(X86CPU *cpu)
1624 {
1625 CPUX86State *env = &cpu->env;
1626 struct kvm_debugregs dbgregs;
1627 int i;
1628
1629 if (!kvm_has_debugregs()) {
1630 return 0;
1631 }
1632
1633 for (i = 0; i < 4; i++) {
1634 dbgregs.db[i] = env->dr[i];
1635 }
1636 dbgregs.dr6 = env->dr[6];
1637 dbgregs.dr7 = env->dr[7];
1638 dbgregs.flags = 0;
1639
1640 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1641 }
1642
1643 static int kvm_get_debugregs(X86CPU *cpu)
1644 {
1645 CPUX86State *env = &cpu->env;
1646 struct kvm_debugregs dbgregs;
1647 int i, ret;
1648
1649 if (!kvm_has_debugregs()) {
1650 return 0;
1651 }
1652
1653 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1654 if (ret < 0) {
1655 return ret;
1656 }
1657 for (i = 0; i < 4; i++) {
1658 env->dr[i] = dbgregs.db[i];
1659 }
1660 env->dr[4] = env->dr[6] = dbgregs.dr6;
1661 env->dr[5] = env->dr[7] = dbgregs.dr7;
1662
1663 return 0;
1664 }
1665
1666 int kvm_arch_put_registers(CPUState *cpu, int level)
1667 {
1668 X86CPU *x86_cpu = X86_CPU(cpu);
1669 int ret;
1670
1671 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1672
1673 ret = kvm_getput_regs(x86_cpu, 1);
1674 if (ret < 0) {
1675 return ret;
1676 }
1677 ret = kvm_put_xsave(x86_cpu);
1678 if (ret < 0) {
1679 return ret;
1680 }
1681 ret = kvm_put_xcrs(x86_cpu);
1682 if (ret < 0) {
1683 return ret;
1684 }
1685 ret = kvm_put_sregs(x86_cpu);
1686 if (ret < 0) {
1687 return ret;
1688 }
1689 /* must be before kvm_put_msrs */
1690 ret = kvm_inject_mce_oldstyle(x86_cpu);
1691 if (ret < 0) {
1692 return ret;
1693 }
1694 ret = kvm_put_msrs(x86_cpu, level);
1695 if (ret < 0) {
1696 return ret;
1697 }
1698 if (level >= KVM_PUT_RESET_STATE) {
1699 ret = kvm_put_mp_state(x86_cpu);
1700 if (ret < 0) {
1701 return ret;
1702 }
1703 ret = kvm_put_apic(x86_cpu);
1704 if (ret < 0) {
1705 return ret;
1706 }
1707 }
1708 ret = kvm_put_vcpu_events(x86_cpu, level);
1709 if (ret < 0) {
1710 return ret;
1711 }
1712 ret = kvm_put_debugregs(x86_cpu);
1713 if (ret < 0) {
1714 return ret;
1715 }
1716 /* must be last */
1717 ret = kvm_guest_debug_workarounds(x86_cpu);
1718 if (ret < 0) {
1719 return ret;
1720 }
1721 return 0;
1722 }
1723
1724 int kvm_arch_get_registers(CPUState *cs)
1725 {
1726 X86CPU *cpu = X86_CPU(cs);
1727 int ret;
1728
1729 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1730
1731 ret = kvm_getput_regs(cpu, 0);
1732 if (ret < 0) {
1733 return ret;
1734 }
1735 ret = kvm_get_xsave(cpu);
1736 if (ret < 0) {
1737 return ret;
1738 }
1739 ret = kvm_get_xcrs(cpu);
1740 if (ret < 0) {
1741 return ret;
1742 }
1743 ret = kvm_get_sregs(cpu);
1744 if (ret < 0) {
1745 return ret;
1746 }
1747 ret = kvm_get_msrs(cpu);
1748 if (ret < 0) {
1749 return ret;
1750 }
1751 ret = kvm_get_mp_state(cpu);
1752 if (ret < 0) {
1753 return ret;
1754 }
1755 ret = kvm_get_apic(cpu);
1756 if (ret < 0) {
1757 return ret;
1758 }
1759 ret = kvm_get_vcpu_events(cpu);
1760 if (ret < 0) {
1761 return ret;
1762 }
1763 ret = kvm_get_debugregs(cpu);
1764 if (ret < 0) {
1765 return ret;
1766 }
1767 return 0;
1768 }
1769
1770 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1771 {
1772 X86CPU *x86_cpu = X86_CPU(cpu);
1773 CPUX86State *env = &x86_cpu->env;
1774 int ret;
1775
1776 /* Inject NMI */
1777 if (cpu->interrupt_request & CPU_INTERRUPT_NMI) {
1778 cpu->interrupt_request &= ~CPU_INTERRUPT_NMI;
1779 DPRINTF("injected NMI\n");
1780 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1781 if (ret < 0) {
1782 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1783 strerror(-ret));
1784 }
1785 }
1786
1787 if (!kvm_irqchip_in_kernel()) {
1788 /* Force the VCPU out of its inner loop to process any INIT requests
1789 * or pending TPR access reports. */
1790 if (cpu->interrupt_request &
1791 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1792 cpu->exit_request = 1;
1793 }
1794
1795 /* Try to inject an interrupt if the guest can accept it */
1796 if (run->ready_for_interrupt_injection &&
1797 (cpu->interrupt_request & CPU_INTERRUPT_HARD) &&
1798 (env->eflags & IF_MASK)) {
1799 int irq;
1800
1801 cpu->interrupt_request &= ~CPU_INTERRUPT_HARD;
1802 irq = cpu_get_pic_interrupt(env);
1803 if (irq >= 0) {
1804 struct kvm_interrupt intr;
1805
1806 intr.irq = irq;
1807 DPRINTF("injected interrupt %d\n", irq);
1808 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1809 if (ret < 0) {
1810 fprintf(stderr,
1811 "KVM: injection failed, interrupt lost (%s)\n",
1812 strerror(-ret));
1813 }
1814 }
1815 }
1816
1817 /* If we have an interrupt but the guest is not ready to receive an
1818 * interrupt, request an interrupt window exit. This will
1819 * cause a return to userspace as soon as the guest is ready to
1820 * receive interrupts. */
1821 if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) {
1822 run->request_interrupt_window = 1;
1823 } else {
1824 run->request_interrupt_window = 0;
1825 }
1826
1827 DPRINTF("setting tpr\n");
1828 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1829 }
1830 }
1831
1832 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1833 {
1834 X86CPU *x86_cpu = X86_CPU(cpu);
1835 CPUX86State *env = &x86_cpu->env;
1836
1837 if (run->if_flag) {
1838 env->eflags |= IF_MASK;
1839 } else {
1840 env->eflags &= ~IF_MASK;
1841 }
1842 cpu_set_apic_tpr(env->apic_state, run->cr8);
1843 cpu_set_apic_base(env->apic_state, run->apic_base);
1844 }
1845
1846 int kvm_arch_process_async_events(CPUState *cs)
1847 {
1848 X86CPU *cpu = X86_CPU(cs);
1849 CPUX86State *env = &cpu->env;
1850
1851 if (cs->interrupt_request & CPU_INTERRUPT_MCE) {
1852 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1853 assert(env->mcg_cap);
1854
1855 cs->interrupt_request &= ~CPU_INTERRUPT_MCE;
1856
1857 kvm_cpu_synchronize_state(cs);
1858
1859 if (env->exception_injected == EXCP08_DBLE) {
1860 /* this means triple fault */
1861 qemu_system_reset_request();
1862 cs->exit_request = 1;
1863 return 0;
1864 }
1865 env->exception_injected = EXCP12_MCHK;
1866 env->has_error_code = 0;
1867
1868 cs->halted = 0;
1869 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1870 env->mp_state = KVM_MP_STATE_RUNNABLE;
1871 }
1872 }
1873
1874 if (kvm_irqchip_in_kernel()) {
1875 return 0;
1876 }
1877
1878 if (cs->interrupt_request & CPU_INTERRUPT_POLL) {
1879 cs->interrupt_request &= ~CPU_INTERRUPT_POLL;
1880 apic_poll_irq(env->apic_state);
1881 }
1882 if (((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1883 (env->eflags & IF_MASK)) ||
1884 (cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1885 cs->halted = 0;
1886 }
1887 if (cs->interrupt_request & CPU_INTERRUPT_INIT) {
1888 kvm_cpu_synchronize_state(cs);
1889 do_cpu_init(cpu);
1890 }
1891 if (cs->interrupt_request & CPU_INTERRUPT_SIPI) {
1892 kvm_cpu_synchronize_state(cs);
1893 do_cpu_sipi(cpu);
1894 }
1895 if (cs->interrupt_request & CPU_INTERRUPT_TPR) {
1896 cs->interrupt_request &= ~CPU_INTERRUPT_TPR;
1897 kvm_cpu_synchronize_state(cs);
1898 apic_handle_tpr_access_report(env->apic_state, env->eip,
1899 env->tpr_access_type);
1900 }
1901
1902 return cs->halted;
1903 }
1904
1905 static int kvm_handle_halt(X86CPU *cpu)
1906 {
1907 CPUState *cs = CPU(cpu);
1908 CPUX86State *env = &cpu->env;
1909
1910 if (!((cs->interrupt_request & CPU_INTERRUPT_HARD) &&
1911 (env->eflags & IF_MASK)) &&
1912 !(cs->interrupt_request & CPU_INTERRUPT_NMI)) {
1913 cs->halted = 1;
1914 return EXCP_HLT;
1915 }
1916
1917 return 0;
1918 }
1919
1920 static int kvm_handle_tpr_access(X86CPU *cpu)
1921 {
1922 CPUX86State *env = &cpu->env;
1923 CPUState *cs = CPU(cpu);
1924 struct kvm_run *run = cs->kvm_run;
1925
1926 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1927 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1928 : TPR_ACCESS_READ);
1929 return 1;
1930 }
1931
1932 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1933 {
1934 CPUX86State *env = &X86_CPU(cpu)->env;
1935 static const uint8_t int3 = 0xcc;
1936
1937 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1938 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1939 return -EINVAL;
1940 }
1941 return 0;
1942 }
1943
1944 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1945 {
1946 CPUX86State *env = &X86_CPU(cpu)->env;
1947 uint8_t int3;
1948
1949 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1950 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1951 return -EINVAL;
1952 }
1953 return 0;
1954 }
1955
1956 static struct {
1957 target_ulong addr;
1958 int len;
1959 int type;
1960 } hw_breakpoint[4];
1961
1962 static int nb_hw_breakpoint;
1963
1964 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1965 {
1966 int n;
1967
1968 for (n = 0; n < nb_hw_breakpoint; n++) {
1969 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1970 (hw_breakpoint[n].len == len || len == -1)) {
1971 return n;
1972 }
1973 }
1974 return -1;
1975 }
1976
1977 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1978 target_ulong len, int type)
1979 {
1980 switch (type) {
1981 case GDB_BREAKPOINT_HW:
1982 len = 1;
1983 break;
1984 case GDB_WATCHPOINT_WRITE:
1985 case GDB_WATCHPOINT_ACCESS:
1986 switch (len) {
1987 case 1:
1988 break;
1989 case 2:
1990 case 4:
1991 case 8:
1992 if (addr & (len - 1)) {
1993 return -EINVAL;
1994 }
1995 break;
1996 default:
1997 return -EINVAL;
1998 }
1999 break;
2000 default:
2001 return -ENOSYS;
2002 }
2003
2004 if (nb_hw_breakpoint == 4) {
2005 return -ENOBUFS;
2006 }
2007 if (find_hw_breakpoint(addr, len, type) >= 0) {
2008 return -EEXIST;
2009 }
2010 hw_breakpoint[nb_hw_breakpoint].addr = addr;
2011 hw_breakpoint[nb_hw_breakpoint].len = len;
2012 hw_breakpoint[nb_hw_breakpoint].type = type;
2013 nb_hw_breakpoint++;
2014
2015 return 0;
2016 }
2017
2018 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
2019 target_ulong len, int type)
2020 {
2021 int n;
2022
2023 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
2024 if (n < 0) {
2025 return -ENOENT;
2026 }
2027 nb_hw_breakpoint--;
2028 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
2029
2030 return 0;
2031 }
2032
2033 void kvm_arch_remove_all_hw_breakpoints(void)
2034 {
2035 nb_hw_breakpoint = 0;
2036 }
2037
2038 static CPUWatchpoint hw_watchpoint;
2039
2040 static int kvm_handle_debug(X86CPU *cpu,
2041 struct kvm_debug_exit_arch *arch_info)
2042 {
2043 CPUX86State *env = &cpu->env;
2044 int ret = 0;
2045 int n;
2046
2047 if (arch_info->exception == 1) {
2048 if (arch_info->dr6 & (1 << 14)) {
2049 if (env->singlestep_enabled) {
2050 ret = EXCP_DEBUG;
2051 }
2052 } else {
2053 for (n = 0; n < 4; n++) {
2054 if (arch_info->dr6 & (1 << n)) {
2055 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2056 case 0x0:
2057 ret = EXCP_DEBUG;
2058 break;
2059 case 0x1:
2060 ret = EXCP_DEBUG;
2061 env->watchpoint_hit = &hw_watchpoint;
2062 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2063 hw_watchpoint.flags = BP_MEM_WRITE;
2064 break;
2065 case 0x3:
2066 ret = EXCP_DEBUG;
2067 env->watchpoint_hit = &hw_watchpoint;
2068 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2069 hw_watchpoint.flags = BP_MEM_ACCESS;
2070 break;
2071 }
2072 }
2073 }
2074 }
2075 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2076 ret = EXCP_DEBUG;
2077 }
2078 if (ret == 0) {
2079 cpu_synchronize_state(CPU(cpu));
2080 assert(env->exception_injected == -1);
2081
2082 /* pass to guest */
2083 env->exception_injected = arch_info->exception;
2084 env->has_error_code = 0;
2085 }
2086
2087 return ret;
2088 }
2089
2090 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2091 {
2092 const uint8_t type_code[] = {
2093 [GDB_BREAKPOINT_HW] = 0x0,
2094 [GDB_WATCHPOINT_WRITE] = 0x1,
2095 [GDB_WATCHPOINT_ACCESS] = 0x3
2096 };
2097 const uint8_t len_code[] = {
2098 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2099 };
2100 int n;
2101
2102 if (kvm_sw_breakpoints_active(cpu)) {
2103 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2104 }
2105 if (nb_hw_breakpoint > 0) {
2106 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2107 dbg->arch.debugreg[7] = 0x0600;
2108 for (n = 0; n < nb_hw_breakpoint; n++) {
2109 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2110 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2111 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2112 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2113 }
2114 }
2115 }
2116
2117 static bool host_supports_vmx(void)
2118 {
2119 uint32_t ecx, unused;
2120
2121 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2122 return ecx & CPUID_EXT_VMX;
2123 }
2124
2125 #define VMX_INVALID_GUEST_STATE 0x80000021
2126
2127 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2128 {
2129 X86CPU *cpu = X86_CPU(cs);
2130 uint64_t code;
2131 int ret;
2132
2133 switch (run->exit_reason) {
2134 case KVM_EXIT_HLT:
2135 DPRINTF("handle_hlt\n");
2136 ret = kvm_handle_halt(cpu);
2137 break;
2138 case KVM_EXIT_SET_TPR:
2139 ret = 0;
2140 break;
2141 case KVM_EXIT_TPR_ACCESS:
2142 ret = kvm_handle_tpr_access(cpu);
2143 break;
2144 case KVM_EXIT_FAIL_ENTRY:
2145 code = run->fail_entry.hardware_entry_failure_reason;
2146 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2147 code);
2148 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2149 fprintf(stderr,
2150 "\nIf you're running a guest on an Intel machine without "
2151 "unrestricted mode\n"
2152 "support, the failure can be most likely due to the guest "
2153 "entering an invalid\n"
2154 "state for Intel VT. For example, the guest maybe running "
2155 "in big real mode\n"
2156 "which is not supported on less recent Intel processors."
2157 "\n\n");
2158 }
2159 ret = -1;
2160 break;
2161 case KVM_EXIT_EXCEPTION:
2162 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2163 run->ex.exception, run->ex.error_code);
2164 ret = -1;
2165 break;
2166 case KVM_EXIT_DEBUG:
2167 DPRINTF("kvm_exit_debug\n");
2168 ret = kvm_handle_debug(cpu, &run->debug.arch);
2169 break;
2170 default:
2171 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2172 ret = -1;
2173 break;
2174 }
2175
2176 return ret;
2177 }
2178
2179 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2180 {
2181 X86CPU *cpu = X86_CPU(cs);
2182 CPUX86State *env = &cpu->env;
2183
2184 kvm_cpu_synchronize_state(cs);
2185 return !(env->cr[0] & CR0_PE_MASK) ||
2186 ((env->segs[R_CS].selector & 3) != 3);
2187 }
2188
2189 void kvm_arch_init_irq_routing(KVMState *s)
2190 {
2191 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2192 /* If kernel can't do irq routing, interrupt source
2193 * override 0->2 cannot be set up as required by HPET.
2194 * So we have to disable it.
2195 */
2196 no_hpet = 1;
2197 }
2198 /* We know at this point that we're using the in-kernel
2199 * irqchip, so we can use irqfds, and on x86 we know
2200 * we can use msi via irqfd and GSI routing.
2201 */
2202 kvm_irqfds_allowed = true;
2203 kvm_msi_via_irqfd_allowed = true;
2204 kvm_gsi_routing_allowed = true;
2205 }
2206
2207 /* Classic KVM device assignment interface. Will remain x86 only. */
2208 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2209 uint32_t flags, uint32_t *dev_id)
2210 {
2211 struct kvm_assigned_pci_dev dev_data = {
2212 .segnr = dev_addr->domain,
2213 .busnr = dev_addr->bus,
2214 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2215 .flags = flags,
2216 };
2217 int ret;
2218
2219 dev_data.assigned_dev_id =
2220 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2221
2222 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2223 if (ret < 0) {
2224 return ret;
2225 }
2226
2227 *dev_id = dev_data.assigned_dev_id;
2228
2229 return 0;
2230 }
2231
2232 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2233 {
2234 struct kvm_assigned_pci_dev dev_data = {
2235 .assigned_dev_id = dev_id,
2236 };
2237
2238 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2239 }
2240
2241 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2242 uint32_t irq_type, uint32_t guest_irq)
2243 {
2244 struct kvm_assigned_irq assigned_irq = {
2245 .assigned_dev_id = dev_id,
2246 .guest_irq = guest_irq,
2247 .flags = irq_type,
2248 };
2249
2250 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2251 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2252 } else {
2253 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2254 }
2255 }
2256
2257 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2258 uint32_t guest_irq)
2259 {
2260 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2261 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2262
2263 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2264 }
2265
2266 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2267 {
2268 struct kvm_assigned_pci_dev dev_data = {
2269 .assigned_dev_id = dev_id,
2270 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2271 };
2272
2273 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2274 }
2275
2276 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2277 uint32_t type)
2278 {
2279 struct kvm_assigned_irq assigned_irq = {
2280 .assigned_dev_id = dev_id,
2281 .flags = type,
2282 };
2283
2284 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2285 }
2286
2287 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2288 {
2289 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2290 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2291 }
2292
2293 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2294 {
2295 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2296 KVM_DEV_IRQ_GUEST_MSI, virq);
2297 }
2298
2299 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2300 {
2301 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2302 KVM_DEV_IRQ_HOST_MSI);
2303 }
2304
2305 bool kvm_device_msix_supported(KVMState *s)
2306 {
2307 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2308 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2309 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2310 }
2311
2312 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2313 uint32_t nr_vectors)
2314 {
2315 struct kvm_assigned_msix_nr msix_nr = {
2316 .assigned_dev_id = dev_id,
2317 .entry_nr = nr_vectors,
2318 };
2319
2320 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2321 }
2322
2323 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2324 int virq)
2325 {
2326 struct kvm_assigned_msix_entry msix_entry = {
2327 .assigned_dev_id = dev_id,
2328 .gsi = virq,
2329 .entry = vector,
2330 };
2331
2332 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2333 }
2334
2335 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2336 {
2337 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2338 KVM_DEV_IRQ_GUEST_MSIX, 0);
2339 }
2340
2341 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2342 {
2343 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2344 KVM_DEV_IRQ_HOST_MSIX);
2345 }