]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: Provide sigbus services arch-independently
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
68 #endif
69 static int lm_capable_kernel;
70
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72 {
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
75
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
82 }
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
91 }
92 }
93 return cpuid;
94 }
95
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
98 {
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
103
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
107 }
108
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
132 */
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
135 break;
136 }
137 break;
138 }
139 }
140 }
141
142 qemu_free(cpuid);
143
144 return ret;
145 }
146
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157 #endif
158 { -1, -1 }
159 };
160
161 static int get_para_features(CPUState *env)
162 {
163 int i, features = 0;
164
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
168 }
169 }
170 #ifdef KVM_CAP_ASYNC_PF
171 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
172 #endif
173 return features;
174 }
175 #endif
176
177 #ifdef KVM_CAP_MCE
178 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
179 int *max_banks)
180 {
181 int r;
182
183 r = kvm_check_extension(s, KVM_CAP_MCE);
184 if (r > 0) {
185 *max_banks = r;
186 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
187 }
188 return -ENOSYS;
189 }
190
191 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
192 {
193 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
194 }
195
196 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
197 {
198 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
199 }
200
201 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
202 {
203 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
204 int r;
205
206 kmsrs->nmsrs = n;
207 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
208 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
209 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
210 free(kmsrs);
211 return r;
212 }
213
214 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
215 static int kvm_mce_in_progress(CPUState *env)
216 {
217 struct kvm_msr_entry msr_mcg_status = {
218 .index = MSR_MCG_STATUS,
219 };
220 int r;
221
222 r = kvm_get_msr(env, &msr_mcg_status, 1);
223 if (r == -1 || r == 0) {
224 fprintf(stderr, "Failed to get MCE status\n");
225 return 0;
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228 }
229
230 struct kvm_x86_mce_data
231 {
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
235 };
236
237 static void kvm_do_inject_x86_mce(void *_data)
238 {
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 if (kvm_mce_in_progress(data->env)) {
246 return;
247 }
248 }
249
250 r = kvm_set_mce(data->env, data->mce);
251 if (r < 0) {
252 perror("kvm_set_mce FAILED");
253 if (data->abort_on_error) {
254 abort();
255 }
256 }
257 }
258
259 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
260 int flag)
261 {
262 struct kvm_x86_mce_data data = {
263 .env = env,
264 .mce = mce,
265 .abort_on_error = (flag & ABORT_ON_ERROR),
266 };
267
268 if (!env->mcg_cap) {
269 fprintf(stderr, "MCE support is not enabled!\n");
270 return;
271 }
272
273 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
274 }
275
276 static void kvm_mce_broadcast_rest(CPUState *env);
277 #endif
278
279 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
280 uint64_t mcg_status, uint64_t addr, uint64_t misc,
281 int flag)
282 {
283 #ifdef KVM_CAP_MCE
284 struct kvm_x86_mce mce = {
285 .bank = bank,
286 .status = status,
287 .mcg_status = mcg_status,
288 .addr = addr,
289 .misc = misc,
290 };
291
292 if (flag & MCE_BROADCAST) {
293 kvm_mce_broadcast_rest(cenv);
294 }
295
296 kvm_inject_x86_mce_on(cenv, &mce, flag);
297 #else
298 if (flag & ABORT_ON_ERROR) {
299 abort();
300 }
301 #endif
302 }
303
304 int kvm_arch_init_vcpu(CPUState *env)
305 {
306 struct {
307 struct kvm_cpuid2 cpuid;
308 struct kvm_cpuid_entry2 entries[100];
309 } __attribute__((packed)) cpuid_data;
310 uint32_t limit, i, j, cpuid_i;
311 uint32_t unused;
312 struct kvm_cpuid_entry2 *c;
313 #ifdef CONFIG_KVM_PARA
314 uint32_t signature[3];
315 #endif
316
317 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
318
319 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
320 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
321 env->cpuid_ext_features |= i;
322
323 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
324 0, R_EDX);
325 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
326 0, R_ECX);
327 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
328 0, R_EDX);
329
330
331 cpuid_i = 0;
332
333 #ifdef CONFIG_KVM_PARA
334 /* Paravirtualization CPUIDs */
335 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
336 c = &cpuid_data.entries[cpuid_i++];
337 memset(c, 0, sizeof(*c));
338 c->function = KVM_CPUID_SIGNATURE;
339 c->eax = 0;
340 c->ebx = signature[0];
341 c->ecx = signature[1];
342 c->edx = signature[2];
343
344 c = &cpuid_data.entries[cpuid_i++];
345 memset(c, 0, sizeof(*c));
346 c->function = KVM_CPUID_FEATURES;
347 c->eax = env->cpuid_kvm_features & get_para_features(env);
348 #endif
349
350 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
351
352 for (i = 0; i <= limit; i++) {
353 c = &cpuid_data.entries[cpuid_i++];
354
355 switch (i) {
356 case 2: {
357 /* Keep reading function 2 till all the input is received */
358 int times;
359
360 c->function = i;
361 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
362 KVM_CPUID_FLAG_STATE_READ_NEXT;
363 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
364 times = c->eax & 0xff;
365
366 for (j = 1; j < times; ++j) {
367 c = &cpuid_data.entries[cpuid_i++];
368 c->function = i;
369 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
370 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
371 }
372 break;
373 }
374 case 4:
375 case 0xb:
376 case 0xd:
377 for (j = 0; ; j++) {
378 c->function = i;
379 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
380 c->index = j;
381 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
382
383 if (i == 4 && c->eax == 0) {
384 break;
385 }
386 if (i == 0xb && !(c->ecx & 0xff00)) {
387 break;
388 }
389 if (i == 0xd && c->eax == 0) {
390 break;
391 }
392 c = &cpuid_data.entries[cpuid_i++];
393 }
394 break;
395 default:
396 c->function = i;
397 c->flags = 0;
398 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
399 break;
400 }
401 }
402 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
403
404 for (i = 0x80000000; i <= limit; i++) {
405 c = &cpuid_data.entries[cpuid_i++];
406
407 c->function = i;
408 c->flags = 0;
409 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
410 }
411
412 cpuid_data.cpuid.nent = cpuid_i;
413
414 #ifdef KVM_CAP_MCE
415 if (((env->cpuid_version >> 8)&0xF) >= 6
416 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
417 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
418 uint64_t mcg_cap;
419 int banks;
420
421 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
422 perror("kvm_get_mce_cap_supported FAILED");
423 } else {
424 if (banks > MCE_BANKS_DEF)
425 banks = MCE_BANKS_DEF;
426 mcg_cap &= MCE_CAP_DEF;
427 mcg_cap |= banks;
428 if (kvm_setup_mce(env, &mcg_cap)) {
429 perror("kvm_setup_mce FAILED");
430 } else {
431 env->mcg_cap = mcg_cap;
432 }
433 }
434 }
435 #endif
436
437 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
438 }
439
440 void kvm_arch_reset_vcpu(CPUState *env)
441 {
442 env->exception_injected = -1;
443 env->interrupt_injected = -1;
444 env->xcr0 = 1;
445 if (kvm_irqchip_in_kernel()) {
446 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
447 KVM_MP_STATE_UNINITIALIZED;
448 } else {
449 env->mp_state = KVM_MP_STATE_RUNNABLE;
450 }
451 }
452
453 static int kvm_get_supported_msrs(KVMState *s)
454 {
455 static int kvm_supported_msrs;
456 int ret = 0;
457
458 /* first time */
459 if (kvm_supported_msrs == 0) {
460 struct kvm_msr_list msr_list, *kvm_msr_list;
461
462 kvm_supported_msrs = -1;
463
464 /* Obtain MSR list from KVM. These are the MSRs that we must
465 * save/restore */
466 msr_list.nmsrs = 0;
467 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
468 if (ret < 0 && ret != -E2BIG) {
469 return ret;
470 }
471 /* Old kernel modules had a bug and could write beyond the provided
472 memory. Allocate at least a safe amount of 1K. */
473 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
474 msr_list.nmsrs *
475 sizeof(msr_list.indices[0])));
476
477 kvm_msr_list->nmsrs = msr_list.nmsrs;
478 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
479 if (ret >= 0) {
480 int i;
481
482 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
483 if (kvm_msr_list->indices[i] == MSR_STAR) {
484 has_msr_star = true;
485 continue;
486 }
487 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
488 has_msr_hsave_pa = true;
489 continue;
490 }
491 }
492 }
493
494 free(kvm_msr_list);
495 }
496
497 return ret;
498 }
499
500 int kvm_arch_init(KVMState *s)
501 {
502 uint64_t identity_base = 0xfffbc000;
503 int ret;
504 struct utsname utsname;
505
506 ret = kvm_get_supported_msrs(s);
507 if (ret < 0) {
508 return ret;
509 }
510
511 uname(&utsname);
512 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
513
514 /*
515 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
516 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
517 * Since these must be part of guest physical memory, we need to allocate
518 * them, both by setting their start addresses in the kernel and by
519 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
520 *
521 * Older KVM versions may not support setting the identity map base. In
522 * that case we need to stick with the default, i.e. a 256K maximum BIOS
523 * size.
524 */
525 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
526 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
527 /* Allows up to 16M BIOSes. */
528 identity_base = 0xfeffc000;
529
530 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
531 if (ret < 0) {
532 return ret;
533 }
534 }
535 #endif
536 /* Set TSS base one page after EPT identity map. */
537 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
538 if (ret < 0) {
539 return ret;
540 }
541
542 /* Tell fw_cfg to notify the BIOS to reserve the range. */
543 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
544 if (ret < 0) {
545 fprintf(stderr, "e820_add_entry() table is full\n");
546 return ret;
547 }
548
549 return 0;
550 }
551
552 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
553 {
554 lhs->selector = rhs->selector;
555 lhs->base = rhs->base;
556 lhs->limit = rhs->limit;
557 lhs->type = 3;
558 lhs->present = 1;
559 lhs->dpl = 3;
560 lhs->db = 0;
561 lhs->s = 1;
562 lhs->l = 0;
563 lhs->g = 0;
564 lhs->avl = 0;
565 lhs->unusable = 0;
566 }
567
568 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
569 {
570 unsigned flags = rhs->flags;
571 lhs->selector = rhs->selector;
572 lhs->base = rhs->base;
573 lhs->limit = rhs->limit;
574 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
575 lhs->present = (flags & DESC_P_MASK) != 0;
576 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
577 lhs->db = (flags >> DESC_B_SHIFT) & 1;
578 lhs->s = (flags & DESC_S_MASK) != 0;
579 lhs->l = (flags >> DESC_L_SHIFT) & 1;
580 lhs->g = (flags & DESC_G_MASK) != 0;
581 lhs->avl = (flags & DESC_AVL_MASK) != 0;
582 lhs->unusable = 0;
583 }
584
585 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
586 {
587 lhs->selector = rhs->selector;
588 lhs->base = rhs->base;
589 lhs->limit = rhs->limit;
590 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
591 (rhs->present * DESC_P_MASK) |
592 (rhs->dpl << DESC_DPL_SHIFT) |
593 (rhs->db << DESC_B_SHIFT) |
594 (rhs->s * DESC_S_MASK) |
595 (rhs->l << DESC_L_SHIFT) |
596 (rhs->g * DESC_G_MASK) |
597 (rhs->avl * DESC_AVL_MASK);
598 }
599
600 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
601 {
602 if (set) {
603 *kvm_reg = *qemu_reg;
604 } else {
605 *qemu_reg = *kvm_reg;
606 }
607 }
608
609 static int kvm_getput_regs(CPUState *env, int set)
610 {
611 struct kvm_regs regs;
612 int ret = 0;
613
614 if (!set) {
615 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
616 if (ret < 0) {
617 return ret;
618 }
619 }
620
621 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
622 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
623 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
624 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
625 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
626 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
627 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
628 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
629 #ifdef TARGET_X86_64
630 kvm_getput_reg(&regs.r8, &env->regs[8], set);
631 kvm_getput_reg(&regs.r9, &env->regs[9], set);
632 kvm_getput_reg(&regs.r10, &env->regs[10], set);
633 kvm_getput_reg(&regs.r11, &env->regs[11], set);
634 kvm_getput_reg(&regs.r12, &env->regs[12], set);
635 kvm_getput_reg(&regs.r13, &env->regs[13], set);
636 kvm_getput_reg(&regs.r14, &env->regs[14], set);
637 kvm_getput_reg(&regs.r15, &env->regs[15], set);
638 #endif
639
640 kvm_getput_reg(&regs.rflags, &env->eflags, set);
641 kvm_getput_reg(&regs.rip, &env->eip, set);
642
643 if (set) {
644 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
645 }
646
647 return ret;
648 }
649
650 static int kvm_put_fpu(CPUState *env)
651 {
652 struct kvm_fpu fpu;
653 int i;
654
655 memset(&fpu, 0, sizeof fpu);
656 fpu.fsw = env->fpus & ~(7 << 11);
657 fpu.fsw |= (env->fpstt & 7) << 11;
658 fpu.fcw = env->fpuc;
659 for (i = 0; i < 8; ++i) {
660 fpu.ftwx |= (!env->fptags[i]) << i;
661 }
662 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
663 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
664 fpu.mxcsr = env->mxcsr;
665
666 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
667 }
668
669 #ifdef KVM_CAP_XSAVE
670 #define XSAVE_CWD_RIP 2
671 #define XSAVE_CWD_RDP 4
672 #define XSAVE_MXCSR 6
673 #define XSAVE_ST_SPACE 8
674 #define XSAVE_XMM_SPACE 40
675 #define XSAVE_XSTATE_BV 128
676 #define XSAVE_YMMH_SPACE 144
677 #endif
678
679 static int kvm_put_xsave(CPUState *env)
680 {
681 #ifdef KVM_CAP_XSAVE
682 int i, r;
683 struct kvm_xsave* xsave;
684 uint16_t cwd, swd, twd, fop;
685
686 if (!kvm_has_xsave()) {
687 return kvm_put_fpu(env);
688 }
689
690 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
691 memset(xsave, 0, sizeof(struct kvm_xsave));
692 cwd = swd = twd = fop = 0;
693 swd = env->fpus & ~(7 << 11);
694 swd |= (env->fpstt & 7) << 11;
695 cwd = env->fpuc;
696 for (i = 0; i < 8; ++i) {
697 twd |= (!env->fptags[i]) << i;
698 }
699 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
700 xsave->region[1] = (uint32_t)(fop << 16) + twd;
701 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
702 sizeof env->fpregs);
703 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
704 sizeof env->xmm_regs);
705 xsave->region[XSAVE_MXCSR] = env->mxcsr;
706 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
707 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
708 sizeof env->ymmh_regs);
709 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
710 qemu_free(xsave);
711 return r;
712 #else
713 return kvm_put_fpu(env);
714 #endif
715 }
716
717 static int kvm_put_xcrs(CPUState *env)
718 {
719 #ifdef KVM_CAP_XCRS
720 struct kvm_xcrs xcrs;
721
722 if (!kvm_has_xcrs()) {
723 return 0;
724 }
725
726 xcrs.nr_xcrs = 1;
727 xcrs.flags = 0;
728 xcrs.xcrs[0].xcr = 0;
729 xcrs.xcrs[0].value = env->xcr0;
730 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
731 #else
732 return 0;
733 #endif
734 }
735
736 static int kvm_put_sregs(CPUState *env)
737 {
738 struct kvm_sregs sregs;
739
740 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
741 if (env->interrupt_injected >= 0) {
742 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
743 (uint64_t)1 << (env->interrupt_injected % 64);
744 }
745
746 if ((env->eflags & VM_MASK)) {
747 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
748 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
749 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
750 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
751 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
752 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
753 } else {
754 set_seg(&sregs.cs, &env->segs[R_CS]);
755 set_seg(&sregs.ds, &env->segs[R_DS]);
756 set_seg(&sregs.es, &env->segs[R_ES]);
757 set_seg(&sregs.fs, &env->segs[R_FS]);
758 set_seg(&sregs.gs, &env->segs[R_GS]);
759 set_seg(&sregs.ss, &env->segs[R_SS]);
760 }
761
762 set_seg(&sregs.tr, &env->tr);
763 set_seg(&sregs.ldt, &env->ldt);
764
765 sregs.idt.limit = env->idt.limit;
766 sregs.idt.base = env->idt.base;
767 sregs.gdt.limit = env->gdt.limit;
768 sregs.gdt.base = env->gdt.base;
769
770 sregs.cr0 = env->cr[0];
771 sregs.cr2 = env->cr[2];
772 sregs.cr3 = env->cr[3];
773 sregs.cr4 = env->cr[4];
774
775 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
776 sregs.apic_base = cpu_get_apic_base(env->apic_state);
777
778 sregs.efer = env->efer;
779
780 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
781 }
782
783 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
784 uint32_t index, uint64_t value)
785 {
786 entry->index = index;
787 entry->data = value;
788 }
789
790 static int kvm_put_msrs(CPUState *env, int level)
791 {
792 struct {
793 struct kvm_msrs info;
794 struct kvm_msr_entry entries[100];
795 } msr_data;
796 struct kvm_msr_entry *msrs = msr_data.entries;
797 int n = 0;
798
799 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
800 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
801 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
802 if (has_msr_star) {
803 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
804 }
805 if (has_msr_hsave_pa) {
806 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
807 }
808 #ifdef TARGET_X86_64
809 if (lm_capable_kernel) {
810 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
811 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
812 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
813 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
814 }
815 #endif
816 if (level == KVM_PUT_FULL_STATE) {
817 /*
818 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
819 * writeback. Until this is fixed, we only write the offset to SMP
820 * guests after migration, desynchronizing the VCPUs, but avoiding
821 * huge jump-backs that would occur without any writeback at all.
822 */
823 if (smp_cpus == 1 || env->tsc != 0) {
824 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
825 }
826 }
827 /*
828 * The following paravirtual MSRs have side effects on the guest or are
829 * too heavy for normal writeback. Limit them to reset or full state
830 * updates.
831 */
832 if (level >= KVM_PUT_RESET_STATE) {
833 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
834 env->system_time_msr);
835 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
836 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
837 if (has_msr_async_pf_en) {
838 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
839 env->async_pf_en_msr);
840 }
841 #endif
842 }
843 #ifdef KVM_CAP_MCE
844 if (env->mcg_cap) {
845 int i;
846
847 if (level == KVM_PUT_RESET_STATE) {
848 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849 } else if (level == KVM_PUT_FULL_STATE) {
850 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
851 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
852 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
853 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
854 }
855 }
856 }
857 #endif
858
859 msr_data.info.nmsrs = n;
860
861 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
862
863 }
864
865
866 static int kvm_get_fpu(CPUState *env)
867 {
868 struct kvm_fpu fpu;
869 int i, ret;
870
871 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
872 if (ret < 0) {
873 return ret;
874 }
875
876 env->fpstt = (fpu.fsw >> 11) & 7;
877 env->fpus = fpu.fsw;
878 env->fpuc = fpu.fcw;
879 for (i = 0; i < 8; ++i) {
880 env->fptags[i] = !((fpu.ftwx >> i) & 1);
881 }
882 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
883 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
884 env->mxcsr = fpu.mxcsr;
885
886 return 0;
887 }
888
889 static int kvm_get_xsave(CPUState *env)
890 {
891 #ifdef KVM_CAP_XSAVE
892 struct kvm_xsave* xsave;
893 int ret, i;
894 uint16_t cwd, swd, twd, fop;
895
896 if (!kvm_has_xsave()) {
897 return kvm_get_fpu(env);
898 }
899
900 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
901 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
902 if (ret < 0) {
903 qemu_free(xsave);
904 return ret;
905 }
906
907 cwd = (uint16_t)xsave->region[0];
908 swd = (uint16_t)(xsave->region[0] >> 16);
909 twd = (uint16_t)xsave->region[1];
910 fop = (uint16_t)(xsave->region[1] >> 16);
911 env->fpstt = (swd >> 11) & 7;
912 env->fpus = swd;
913 env->fpuc = cwd;
914 for (i = 0; i < 8; ++i) {
915 env->fptags[i] = !((twd >> i) & 1);
916 }
917 env->mxcsr = xsave->region[XSAVE_MXCSR];
918 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
919 sizeof env->fpregs);
920 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
921 sizeof env->xmm_regs);
922 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
923 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
924 sizeof env->ymmh_regs);
925 qemu_free(xsave);
926 return 0;
927 #else
928 return kvm_get_fpu(env);
929 #endif
930 }
931
932 static int kvm_get_xcrs(CPUState *env)
933 {
934 #ifdef KVM_CAP_XCRS
935 int i, ret;
936 struct kvm_xcrs xcrs;
937
938 if (!kvm_has_xcrs()) {
939 return 0;
940 }
941
942 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
943 if (ret < 0) {
944 return ret;
945 }
946
947 for (i = 0; i < xcrs.nr_xcrs; i++) {
948 /* Only support xcr0 now */
949 if (xcrs.xcrs[0].xcr == 0) {
950 env->xcr0 = xcrs.xcrs[0].value;
951 break;
952 }
953 }
954 return 0;
955 #else
956 return 0;
957 #endif
958 }
959
960 static int kvm_get_sregs(CPUState *env)
961 {
962 struct kvm_sregs sregs;
963 uint32_t hflags;
964 int bit, i, ret;
965
966 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
967 if (ret < 0) {
968 return ret;
969 }
970
971 /* There can only be one pending IRQ set in the bitmap at a time, so try
972 to find it and save its number instead (-1 for none). */
973 env->interrupt_injected = -1;
974 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
975 if (sregs.interrupt_bitmap[i]) {
976 bit = ctz64(sregs.interrupt_bitmap[i]);
977 env->interrupt_injected = i * 64 + bit;
978 break;
979 }
980 }
981
982 get_seg(&env->segs[R_CS], &sregs.cs);
983 get_seg(&env->segs[R_DS], &sregs.ds);
984 get_seg(&env->segs[R_ES], &sregs.es);
985 get_seg(&env->segs[R_FS], &sregs.fs);
986 get_seg(&env->segs[R_GS], &sregs.gs);
987 get_seg(&env->segs[R_SS], &sregs.ss);
988
989 get_seg(&env->tr, &sregs.tr);
990 get_seg(&env->ldt, &sregs.ldt);
991
992 env->idt.limit = sregs.idt.limit;
993 env->idt.base = sregs.idt.base;
994 env->gdt.limit = sregs.gdt.limit;
995 env->gdt.base = sregs.gdt.base;
996
997 env->cr[0] = sregs.cr0;
998 env->cr[2] = sregs.cr2;
999 env->cr[3] = sregs.cr3;
1000 env->cr[4] = sregs.cr4;
1001
1002 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1003
1004 env->efer = sregs.efer;
1005 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1006
1007 #define HFLAG_COPY_MASK \
1008 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1009 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1010 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1011 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1012
1013 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1014 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1015 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1016 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1017 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1018 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1019 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1020
1021 if (env->efer & MSR_EFER_LMA) {
1022 hflags |= HF_LMA_MASK;
1023 }
1024
1025 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1026 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1027 } else {
1028 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1029 (DESC_B_SHIFT - HF_CS32_SHIFT);
1030 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1031 (DESC_B_SHIFT - HF_SS32_SHIFT);
1032 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1033 !(hflags & HF_CS32_MASK)) {
1034 hflags |= HF_ADDSEG_MASK;
1035 } else {
1036 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1037 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1038 }
1039 }
1040 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1041
1042 return 0;
1043 }
1044
1045 static int kvm_get_msrs(CPUState *env)
1046 {
1047 struct {
1048 struct kvm_msrs info;
1049 struct kvm_msr_entry entries[100];
1050 } msr_data;
1051 struct kvm_msr_entry *msrs = msr_data.entries;
1052 int ret, i, n;
1053
1054 n = 0;
1055 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1056 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1057 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1058 if (has_msr_star) {
1059 msrs[n++].index = MSR_STAR;
1060 }
1061 if (has_msr_hsave_pa) {
1062 msrs[n++].index = MSR_VM_HSAVE_PA;
1063 }
1064 msrs[n++].index = MSR_IA32_TSC;
1065 #ifdef TARGET_X86_64
1066 if (lm_capable_kernel) {
1067 msrs[n++].index = MSR_CSTAR;
1068 msrs[n++].index = MSR_KERNELGSBASE;
1069 msrs[n++].index = MSR_FMASK;
1070 msrs[n++].index = MSR_LSTAR;
1071 }
1072 #endif
1073 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1074 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1075 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1076 if (has_msr_async_pf_en) {
1077 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1078 }
1079 #endif
1080
1081 #ifdef KVM_CAP_MCE
1082 if (env->mcg_cap) {
1083 msrs[n++].index = MSR_MCG_STATUS;
1084 msrs[n++].index = MSR_MCG_CTL;
1085 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1086 msrs[n++].index = MSR_MC0_CTL + i;
1087 }
1088 }
1089 #endif
1090
1091 msr_data.info.nmsrs = n;
1092 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1093 if (ret < 0) {
1094 return ret;
1095 }
1096
1097 for (i = 0; i < ret; i++) {
1098 switch (msrs[i].index) {
1099 case MSR_IA32_SYSENTER_CS:
1100 env->sysenter_cs = msrs[i].data;
1101 break;
1102 case MSR_IA32_SYSENTER_ESP:
1103 env->sysenter_esp = msrs[i].data;
1104 break;
1105 case MSR_IA32_SYSENTER_EIP:
1106 env->sysenter_eip = msrs[i].data;
1107 break;
1108 case MSR_STAR:
1109 env->star = msrs[i].data;
1110 break;
1111 #ifdef TARGET_X86_64
1112 case MSR_CSTAR:
1113 env->cstar = msrs[i].data;
1114 break;
1115 case MSR_KERNELGSBASE:
1116 env->kernelgsbase = msrs[i].data;
1117 break;
1118 case MSR_FMASK:
1119 env->fmask = msrs[i].data;
1120 break;
1121 case MSR_LSTAR:
1122 env->lstar = msrs[i].data;
1123 break;
1124 #endif
1125 case MSR_IA32_TSC:
1126 env->tsc = msrs[i].data;
1127 break;
1128 case MSR_VM_HSAVE_PA:
1129 env->vm_hsave = msrs[i].data;
1130 break;
1131 case MSR_KVM_SYSTEM_TIME:
1132 env->system_time_msr = msrs[i].data;
1133 break;
1134 case MSR_KVM_WALL_CLOCK:
1135 env->wall_clock_msr = msrs[i].data;
1136 break;
1137 #ifdef KVM_CAP_MCE
1138 case MSR_MCG_STATUS:
1139 env->mcg_status = msrs[i].data;
1140 break;
1141 case MSR_MCG_CTL:
1142 env->mcg_ctl = msrs[i].data;
1143 break;
1144 #endif
1145 default:
1146 #ifdef KVM_CAP_MCE
1147 if (msrs[i].index >= MSR_MC0_CTL &&
1148 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1149 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1150 }
1151 #endif
1152 break;
1153 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1154 case MSR_KVM_ASYNC_PF_EN:
1155 env->async_pf_en_msr = msrs[i].data;
1156 break;
1157 #endif
1158 }
1159 }
1160
1161 return 0;
1162 }
1163
1164 static int kvm_put_mp_state(CPUState *env)
1165 {
1166 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1167
1168 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1169 }
1170
1171 static int kvm_get_mp_state(CPUState *env)
1172 {
1173 struct kvm_mp_state mp_state;
1174 int ret;
1175
1176 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1177 if (ret < 0) {
1178 return ret;
1179 }
1180 env->mp_state = mp_state.mp_state;
1181 if (kvm_irqchip_in_kernel()) {
1182 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1183 }
1184 return 0;
1185 }
1186
1187 static int kvm_put_vcpu_events(CPUState *env, int level)
1188 {
1189 #ifdef KVM_CAP_VCPU_EVENTS
1190 struct kvm_vcpu_events events;
1191
1192 if (!kvm_has_vcpu_events()) {
1193 return 0;
1194 }
1195
1196 events.exception.injected = (env->exception_injected >= 0);
1197 events.exception.nr = env->exception_injected;
1198 events.exception.has_error_code = env->has_error_code;
1199 events.exception.error_code = env->error_code;
1200
1201 events.interrupt.injected = (env->interrupt_injected >= 0);
1202 events.interrupt.nr = env->interrupt_injected;
1203 events.interrupt.soft = env->soft_interrupt;
1204
1205 events.nmi.injected = env->nmi_injected;
1206 events.nmi.pending = env->nmi_pending;
1207 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1208
1209 events.sipi_vector = env->sipi_vector;
1210
1211 events.flags = 0;
1212 if (level >= KVM_PUT_RESET_STATE) {
1213 events.flags |=
1214 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1215 }
1216
1217 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1218 #else
1219 return 0;
1220 #endif
1221 }
1222
1223 static int kvm_get_vcpu_events(CPUState *env)
1224 {
1225 #ifdef KVM_CAP_VCPU_EVENTS
1226 struct kvm_vcpu_events events;
1227 int ret;
1228
1229 if (!kvm_has_vcpu_events()) {
1230 return 0;
1231 }
1232
1233 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1234 if (ret < 0) {
1235 return ret;
1236 }
1237 env->exception_injected =
1238 events.exception.injected ? events.exception.nr : -1;
1239 env->has_error_code = events.exception.has_error_code;
1240 env->error_code = events.exception.error_code;
1241
1242 env->interrupt_injected =
1243 events.interrupt.injected ? events.interrupt.nr : -1;
1244 env->soft_interrupt = events.interrupt.soft;
1245
1246 env->nmi_injected = events.nmi.injected;
1247 env->nmi_pending = events.nmi.pending;
1248 if (events.nmi.masked) {
1249 env->hflags2 |= HF2_NMI_MASK;
1250 } else {
1251 env->hflags2 &= ~HF2_NMI_MASK;
1252 }
1253
1254 env->sipi_vector = events.sipi_vector;
1255 #endif
1256
1257 return 0;
1258 }
1259
1260 static int kvm_guest_debug_workarounds(CPUState *env)
1261 {
1262 int ret = 0;
1263 #ifdef KVM_CAP_SET_GUEST_DEBUG
1264 unsigned long reinject_trap = 0;
1265
1266 if (!kvm_has_vcpu_events()) {
1267 if (env->exception_injected == 1) {
1268 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1269 } else if (env->exception_injected == 3) {
1270 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1271 }
1272 env->exception_injected = -1;
1273 }
1274
1275 /*
1276 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1277 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1278 * by updating the debug state once again if single-stepping is on.
1279 * Another reason to call kvm_update_guest_debug here is a pending debug
1280 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1281 * reinject them via SET_GUEST_DEBUG.
1282 */
1283 if (reinject_trap ||
1284 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1285 ret = kvm_update_guest_debug(env, reinject_trap);
1286 }
1287 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1288 return ret;
1289 }
1290
1291 static int kvm_put_debugregs(CPUState *env)
1292 {
1293 #ifdef KVM_CAP_DEBUGREGS
1294 struct kvm_debugregs dbgregs;
1295 int i;
1296
1297 if (!kvm_has_debugregs()) {
1298 return 0;
1299 }
1300
1301 for (i = 0; i < 4; i++) {
1302 dbgregs.db[i] = env->dr[i];
1303 }
1304 dbgregs.dr6 = env->dr[6];
1305 dbgregs.dr7 = env->dr[7];
1306 dbgregs.flags = 0;
1307
1308 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1309 #else
1310 return 0;
1311 #endif
1312 }
1313
1314 static int kvm_get_debugregs(CPUState *env)
1315 {
1316 #ifdef KVM_CAP_DEBUGREGS
1317 struct kvm_debugregs dbgregs;
1318 int i, ret;
1319
1320 if (!kvm_has_debugregs()) {
1321 return 0;
1322 }
1323
1324 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1325 if (ret < 0) {
1326 return ret;
1327 }
1328 for (i = 0; i < 4; i++) {
1329 env->dr[i] = dbgregs.db[i];
1330 }
1331 env->dr[4] = env->dr[6] = dbgregs.dr6;
1332 env->dr[5] = env->dr[7] = dbgregs.dr7;
1333 #endif
1334
1335 return 0;
1336 }
1337
1338 int kvm_arch_put_registers(CPUState *env, int level)
1339 {
1340 int ret;
1341
1342 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1343
1344 ret = kvm_getput_regs(env, 1);
1345 if (ret < 0) {
1346 return ret;
1347 }
1348 ret = kvm_put_xsave(env);
1349 if (ret < 0) {
1350 return ret;
1351 }
1352 ret = kvm_put_xcrs(env);
1353 if (ret < 0) {
1354 return ret;
1355 }
1356 ret = kvm_put_sregs(env);
1357 if (ret < 0) {
1358 return ret;
1359 }
1360 ret = kvm_put_msrs(env, level);
1361 if (ret < 0) {
1362 return ret;
1363 }
1364 if (level >= KVM_PUT_RESET_STATE) {
1365 ret = kvm_put_mp_state(env);
1366 if (ret < 0) {
1367 return ret;
1368 }
1369 }
1370 ret = kvm_put_vcpu_events(env, level);
1371 if (ret < 0) {
1372 return ret;
1373 }
1374 ret = kvm_put_debugregs(env);
1375 if (ret < 0) {
1376 return ret;
1377 }
1378 /* must be last */
1379 ret = kvm_guest_debug_workarounds(env);
1380 if (ret < 0) {
1381 return ret;
1382 }
1383 return 0;
1384 }
1385
1386 int kvm_arch_get_registers(CPUState *env)
1387 {
1388 int ret;
1389
1390 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1391
1392 ret = kvm_getput_regs(env, 0);
1393 if (ret < 0) {
1394 return ret;
1395 }
1396 ret = kvm_get_xsave(env);
1397 if (ret < 0) {
1398 return ret;
1399 }
1400 ret = kvm_get_xcrs(env);
1401 if (ret < 0) {
1402 return ret;
1403 }
1404 ret = kvm_get_sregs(env);
1405 if (ret < 0) {
1406 return ret;
1407 }
1408 ret = kvm_get_msrs(env);
1409 if (ret < 0) {
1410 return ret;
1411 }
1412 ret = kvm_get_mp_state(env);
1413 if (ret < 0) {
1414 return ret;
1415 }
1416 ret = kvm_get_vcpu_events(env);
1417 if (ret < 0) {
1418 return ret;
1419 }
1420 ret = kvm_get_debugregs(env);
1421 if (ret < 0) {
1422 return ret;
1423 }
1424 return 0;
1425 }
1426
1427 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1428 {
1429 /* Inject NMI */
1430 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1431 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1432 DPRINTF("injected NMI\n");
1433 kvm_vcpu_ioctl(env, KVM_NMI);
1434 }
1435
1436 /* Try to inject an interrupt if the guest can accept it */
1437 if (run->ready_for_interrupt_injection &&
1438 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1439 (env->eflags & IF_MASK)) {
1440 int irq;
1441
1442 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1443 irq = cpu_get_pic_interrupt(env);
1444 if (irq >= 0) {
1445 struct kvm_interrupt intr;
1446 intr.irq = irq;
1447 /* FIXME: errors */
1448 DPRINTF("injected interrupt %d\n", irq);
1449 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1450 }
1451 }
1452
1453 /* If we have an interrupt but the guest is not ready to receive an
1454 * interrupt, request an interrupt window exit. This will
1455 * cause a return to userspace as soon as the guest is ready to
1456 * receive interrupts. */
1457 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1458 run->request_interrupt_window = 1;
1459 } else {
1460 run->request_interrupt_window = 0;
1461 }
1462
1463 DPRINTF("setting tpr\n");
1464 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1465
1466 return 0;
1467 }
1468
1469 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1470 {
1471 if (run->if_flag) {
1472 env->eflags |= IF_MASK;
1473 } else {
1474 env->eflags &= ~IF_MASK;
1475 }
1476 cpu_set_apic_tpr(env->apic_state, run->cr8);
1477 cpu_set_apic_base(env->apic_state, run->apic_base);
1478
1479 return 0;
1480 }
1481
1482 int kvm_arch_process_irqchip_events(CPUState *env)
1483 {
1484 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1485 kvm_cpu_synchronize_state(env);
1486 do_cpu_init(env);
1487 env->exception_index = EXCP_HALTED;
1488 }
1489
1490 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1491 kvm_cpu_synchronize_state(env);
1492 do_cpu_sipi(env);
1493 }
1494
1495 return env->halted;
1496 }
1497
1498 static int kvm_handle_halt(CPUState *env)
1499 {
1500 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1501 (env->eflags & IF_MASK)) &&
1502 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1503 env->halted = 1;
1504 env->exception_index = EXCP_HLT;
1505 return 0;
1506 }
1507
1508 return 1;
1509 }
1510
1511 static bool host_supports_vmx(void)
1512 {
1513 uint32_t ecx, unused;
1514
1515 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1516 return ecx & CPUID_EXT_VMX;
1517 }
1518
1519 #define VMX_INVALID_GUEST_STATE 0x80000021
1520
1521 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1522 {
1523 uint64_t code;
1524 int ret = 0;
1525
1526 switch (run->exit_reason) {
1527 case KVM_EXIT_HLT:
1528 DPRINTF("handle_hlt\n");
1529 ret = kvm_handle_halt(env);
1530 break;
1531 case KVM_EXIT_SET_TPR:
1532 ret = 1;
1533 break;
1534 case KVM_EXIT_FAIL_ENTRY:
1535 code = run->fail_entry.hardware_entry_failure_reason;
1536 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1537 code);
1538 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1539 fprintf(stderr,
1540 "\nIf you're runnning a guest on an Intel machine without "
1541 "unrestricted mode\n"
1542 "support, the failure can be most likely due to the guest "
1543 "entering an invalid\n"
1544 "state for Intel VT. For example, the guest maybe running "
1545 "in big real mode\n"
1546 "which is not supported on less recent Intel processors."
1547 "\n\n");
1548 }
1549 ret = -1;
1550 break;
1551 case KVM_EXIT_EXCEPTION:
1552 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1553 run->ex.exception, run->ex.error_code);
1554 ret = -1;
1555 break;
1556 default:
1557 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1558 ret = -1;
1559 break;
1560 }
1561
1562 return ret;
1563 }
1564
1565 #ifdef KVM_CAP_SET_GUEST_DEBUG
1566 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1567 {
1568 static const uint8_t int3 = 0xcc;
1569
1570 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1571 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1572 return -EINVAL;
1573 }
1574 return 0;
1575 }
1576
1577 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1578 {
1579 uint8_t int3;
1580
1581 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1582 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1583 return -EINVAL;
1584 }
1585 return 0;
1586 }
1587
1588 static struct {
1589 target_ulong addr;
1590 int len;
1591 int type;
1592 } hw_breakpoint[4];
1593
1594 static int nb_hw_breakpoint;
1595
1596 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1597 {
1598 int n;
1599
1600 for (n = 0; n < nb_hw_breakpoint; n++) {
1601 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1602 (hw_breakpoint[n].len == len || len == -1)) {
1603 return n;
1604 }
1605 }
1606 return -1;
1607 }
1608
1609 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1610 target_ulong len, int type)
1611 {
1612 switch (type) {
1613 case GDB_BREAKPOINT_HW:
1614 len = 1;
1615 break;
1616 case GDB_WATCHPOINT_WRITE:
1617 case GDB_WATCHPOINT_ACCESS:
1618 switch (len) {
1619 case 1:
1620 break;
1621 case 2:
1622 case 4:
1623 case 8:
1624 if (addr & (len - 1)) {
1625 return -EINVAL;
1626 }
1627 break;
1628 default:
1629 return -EINVAL;
1630 }
1631 break;
1632 default:
1633 return -ENOSYS;
1634 }
1635
1636 if (nb_hw_breakpoint == 4) {
1637 return -ENOBUFS;
1638 }
1639 if (find_hw_breakpoint(addr, len, type) >= 0) {
1640 return -EEXIST;
1641 }
1642 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1643 hw_breakpoint[nb_hw_breakpoint].len = len;
1644 hw_breakpoint[nb_hw_breakpoint].type = type;
1645 nb_hw_breakpoint++;
1646
1647 return 0;
1648 }
1649
1650 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1651 target_ulong len, int type)
1652 {
1653 int n;
1654
1655 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1656 if (n < 0) {
1657 return -ENOENT;
1658 }
1659 nb_hw_breakpoint--;
1660 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1661
1662 return 0;
1663 }
1664
1665 void kvm_arch_remove_all_hw_breakpoints(void)
1666 {
1667 nb_hw_breakpoint = 0;
1668 }
1669
1670 static CPUWatchpoint hw_watchpoint;
1671
1672 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1673 {
1674 int handle = 0;
1675 int n;
1676
1677 if (arch_info->exception == 1) {
1678 if (arch_info->dr6 & (1 << 14)) {
1679 if (cpu_single_env->singlestep_enabled) {
1680 handle = 1;
1681 }
1682 } else {
1683 for (n = 0; n < 4; n++) {
1684 if (arch_info->dr6 & (1 << n)) {
1685 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1686 case 0x0:
1687 handle = 1;
1688 break;
1689 case 0x1:
1690 handle = 1;
1691 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1692 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1693 hw_watchpoint.flags = BP_MEM_WRITE;
1694 break;
1695 case 0x3:
1696 handle = 1;
1697 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1698 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1699 hw_watchpoint.flags = BP_MEM_ACCESS;
1700 break;
1701 }
1702 }
1703 }
1704 }
1705 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1706 handle = 1;
1707 }
1708 if (!handle) {
1709 cpu_synchronize_state(cpu_single_env);
1710 assert(cpu_single_env->exception_injected == -1);
1711
1712 cpu_single_env->exception_injected = arch_info->exception;
1713 cpu_single_env->has_error_code = 0;
1714 }
1715
1716 return handle;
1717 }
1718
1719 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1720 {
1721 const uint8_t type_code[] = {
1722 [GDB_BREAKPOINT_HW] = 0x0,
1723 [GDB_WATCHPOINT_WRITE] = 0x1,
1724 [GDB_WATCHPOINT_ACCESS] = 0x3
1725 };
1726 const uint8_t len_code[] = {
1727 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1728 };
1729 int n;
1730
1731 if (kvm_sw_breakpoints_active(env)) {
1732 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1733 }
1734 if (nb_hw_breakpoint > 0) {
1735 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1736 dbg->arch.debugreg[7] = 0x0600;
1737 for (n = 0; n < nb_hw_breakpoint; n++) {
1738 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1739 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1740 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1741 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1742 }
1743 }
1744 }
1745 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1746
1747 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1748 {
1749 return !(env->cr[0] & CR0_PE_MASK) ||
1750 ((env->segs[R_CS].selector & 3) != 3);
1751 }
1752
1753 static void hardware_memory_error(void)
1754 {
1755 fprintf(stderr, "Hardware memory error!\n");
1756 exit(1);
1757 }
1758
1759 #ifdef KVM_CAP_MCE
1760 static void kvm_mce_broadcast_rest(CPUState *env)
1761 {
1762 struct kvm_x86_mce mce = {
1763 .bank = 1,
1764 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1765 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1766 .addr = 0,
1767 .misc = 0,
1768 };
1769 CPUState *cenv;
1770
1771 /* Broadcast MCA signal for processor version 06H_EH and above */
1772 if (cpu_x86_support_mca_broadcast(env)) {
1773 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1774 if (cenv == env) {
1775 continue;
1776 }
1777 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1778 }
1779 }
1780 }
1781
1782 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1783 {
1784 struct kvm_x86_mce mce = {
1785 .bank = 9,
1786 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1787 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1788 | MCI_STATUS_AR | 0x134,
1789 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1790 .addr = paddr,
1791 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1792 };
1793 int r;
1794
1795 r = kvm_set_mce(env, &mce);
1796 if (r < 0) {
1797 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1798 abort();
1799 }
1800 kvm_mce_broadcast_rest(env);
1801 }
1802
1803 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1804 {
1805 struct kvm_x86_mce mce = {
1806 .bank = 9,
1807 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1808 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1809 | 0xc0,
1810 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1811 .addr = paddr,
1812 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1813 };
1814 int r;
1815
1816 r = kvm_set_mce(env, &mce);
1817 if (r < 0) {
1818 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1819 abort();
1820 }
1821 kvm_mce_broadcast_rest(env);
1822 }
1823
1824 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1825 {
1826 struct kvm_x86_mce mce = {
1827 .bank = 9,
1828 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1829 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1830 | 0xc0,
1831 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1832 .addr = paddr,
1833 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1834 };
1835
1836 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1837 kvm_mce_broadcast_rest(env);
1838 }
1839
1840 #endif
1841
1842 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1843 {
1844 #if defined(KVM_CAP_MCE)
1845 void *vaddr;
1846 ram_addr_t ram_addr;
1847 target_phys_addr_t paddr;
1848
1849 if ((env->mcg_cap & MCG_SER_P) && addr
1850 && (code == BUS_MCEERR_AR
1851 || code == BUS_MCEERR_AO)) {
1852 vaddr = (void *)addr;
1853 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1854 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1855 fprintf(stderr, "Hardware memory error for memory used by "
1856 "QEMU itself instead of guest system!\n");
1857 /* Hope we are lucky for AO MCE */
1858 if (code == BUS_MCEERR_AO) {
1859 return 0;
1860 } else {
1861 hardware_memory_error();
1862 }
1863 }
1864
1865 if (code == BUS_MCEERR_AR) {
1866 /* Fake an Intel architectural Data Load SRAR UCR */
1867 kvm_mce_inj_srar_dataload(env, paddr);
1868 } else {
1869 /*
1870 * If there is an MCE excpetion being processed, ignore
1871 * this SRAO MCE
1872 */
1873 if (!kvm_mce_in_progress(env)) {
1874 /* Fake an Intel architectural Memory scrubbing UCR */
1875 kvm_mce_inj_srao_memscrub(env, paddr);
1876 }
1877 }
1878 } else
1879 #endif
1880 {
1881 if (code == BUS_MCEERR_AO) {
1882 return 0;
1883 } else if (code == BUS_MCEERR_AR) {
1884 hardware_memory_error();
1885 } else {
1886 return 1;
1887 }
1888 }
1889 return 0;
1890 }
1891
1892 int kvm_arch_on_sigbus(int code, void *addr)
1893 {
1894 #if defined(KVM_CAP_MCE)
1895 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1896 void *vaddr;
1897 ram_addr_t ram_addr;
1898 target_phys_addr_t paddr;
1899
1900 /* Hope we are lucky for AO MCE */
1901 vaddr = addr;
1902 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1903 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1904 fprintf(stderr, "Hardware memory error for memory used by "
1905 "QEMU itself instead of guest system!: %p\n", addr);
1906 return 0;
1907 }
1908 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1909 } else
1910 #endif
1911 {
1912 if (code == BUS_MCEERR_AO) {
1913 return 0;
1914 } else if (code == BUS_MCEERR_AR) {
1915 hardware_memory_error();
1916 } else {
1917 return 1;
1918 }
1919 }
1920 return 0;
1921 }