]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: set CPUID_EXT_TSC_DEADLINE_TIMER on kvm_arch_get_supported_cpuid()
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105 {
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112 }
113
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
123 };
124
125 static int get_para_features(KVMState *s)
126 {
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136 }
137
138
139 /* Returns the value for a specific register on the cpuid entry
140 */
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142 {
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159 }
160
161 /* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166 {
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176 }
177
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
180 {
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
185
186 cpuid = get_supported_cpuid(s);
187
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
192 }
193
194 /* Fixups for the data returned by KVM, below */
195
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
212 } else if (function == 0x80000001 && reg == R_EDX) {
213 /* On Intel, kvm returns cpuid according to the Intel spec,
214 * so add missing bits according to the AMD spec:
215 */
216 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
217 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
218 }
219
220 g_free(cpuid);
221
222 /* fallback for older kernels */
223 if ((function == KVM_CPUID_FEATURES) && !found) {
224 ret = get_para_features(s);
225 }
226
227 return ret;
228 }
229
230 typedef struct HWPoisonPage {
231 ram_addr_t ram_addr;
232 QLIST_ENTRY(HWPoisonPage) list;
233 } HWPoisonPage;
234
235 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
236 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
237
238 static void kvm_unpoison_all(void *param)
239 {
240 HWPoisonPage *page, *next_page;
241
242 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
243 QLIST_REMOVE(page, list);
244 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
245 g_free(page);
246 }
247 }
248
249 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
250 {
251 HWPoisonPage *page;
252
253 QLIST_FOREACH(page, &hwpoison_page_list, list) {
254 if (page->ram_addr == ram_addr) {
255 return;
256 }
257 }
258 page = g_malloc(sizeof(HWPoisonPage));
259 page->ram_addr = ram_addr;
260 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
261 }
262
263 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
264 int *max_banks)
265 {
266 int r;
267
268 r = kvm_check_extension(s, KVM_CAP_MCE);
269 if (r > 0) {
270 *max_banks = r;
271 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
272 }
273 return -ENOSYS;
274 }
275
276 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
277 {
278 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
279 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
280 uint64_t mcg_status = MCG_STATUS_MCIP;
281
282 if (code == BUS_MCEERR_AR) {
283 status |= MCI_STATUS_AR | 0x134;
284 mcg_status |= MCG_STATUS_EIPV;
285 } else {
286 status |= 0xc0;
287 mcg_status |= MCG_STATUS_RIPV;
288 }
289 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
290 (MCM_ADDR_PHYS << 6) | 0xc,
291 cpu_x86_support_mca_broadcast(env) ?
292 MCE_INJECT_BROADCAST : 0);
293 }
294
295 static void hardware_memory_error(void)
296 {
297 fprintf(stderr, "Hardware memory error!\n");
298 exit(1);
299 }
300
301 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
302 {
303 ram_addr_t ram_addr;
304 hwaddr paddr;
305
306 if ((env->mcg_cap & MCG_SER_P) && addr
307 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
308 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
309 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
310 fprintf(stderr, "Hardware memory error for memory used by "
311 "QEMU itself instead of guest system!\n");
312 /* Hope we are lucky for AO MCE */
313 if (code == BUS_MCEERR_AO) {
314 return 0;
315 } else {
316 hardware_memory_error();
317 }
318 }
319 kvm_hwpoison_page_add(ram_addr);
320 kvm_mce_inject(env, paddr, code);
321 } else {
322 if (code == BUS_MCEERR_AO) {
323 return 0;
324 } else if (code == BUS_MCEERR_AR) {
325 hardware_memory_error();
326 } else {
327 return 1;
328 }
329 }
330 return 0;
331 }
332
333 int kvm_arch_on_sigbus(int code, void *addr)
334 {
335 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
336 ram_addr_t ram_addr;
337 hwaddr paddr;
338
339 /* Hope we are lucky for AO MCE */
340 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
341 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
342 &paddr)) {
343 fprintf(stderr, "Hardware memory error for memory used by "
344 "QEMU itself instead of guest system!: %p\n", addr);
345 return 0;
346 }
347 kvm_hwpoison_page_add(ram_addr);
348 kvm_mce_inject(first_cpu, paddr, code);
349 } else {
350 if (code == BUS_MCEERR_AO) {
351 return 0;
352 } else if (code == BUS_MCEERR_AR) {
353 hardware_memory_error();
354 } else {
355 return 1;
356 }
357 }
358 return 0;
359 }
360
361 static int kvm_inject_mce_oldstyle(CPUX86State *env)
362 {
363 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
364 unsigned int bank, bank_num = env->mcg_cap & 0xff;
365 struct kvm_x86_mce mce;
366
367 env->exception_injected = -1;
368
369 /*
370 * There must be at least one bank in use if an MCE is pending.
371 * Find it and use its values for the event injection.
372 */
373 for (bank = 0; bank < bank_num; bank++) {
374 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
375 break;
376 }
377 }
378 assert(bank < bank_num);
379
380 mce.bank = bank;
381 mce.status = env->mce_banks[bank * 4 + 1];
382 mce.mcg_status = env->mcg_status;
383 mce.addr = env->mce_banks[bank * 4 + 2];
384 mce.misc = env->mce_banks[bank * 4 + 3];
385
386 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
387 }
388 return 0;
389 }
390
391 static void cpu_update_state(void *opaque, int running, RunState state)
392 {
393 CPUX86State *env = opaque;
394
395 if (running) {
396 env->tsc_valid = false;
397 }
398 }
399
400 int kvm_arch_init_vcpu(CPUX86State *env)
401 {
402 struct {
403 struct kvm_cpuid2 cpuid;
404 struct kvm_cpuid_entry2 entries[100];
405 } QEMU_PACKED cpuid_data;
406 KVMState *s = env->kvm_state;
407 uint32_t limit, i, j, cpuid_i;
408 uint32_t unused;
409 struct kvm_cpuid_entry2 *c;
410 uint32_t signature[3];
411 int r;
412
413 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
414
415 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
416
417 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
418 0, R_EDX);
419 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
420 0, R_ECX);
421 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
422 0, R_EDX);
423
424 cpuid_i = 0;
425
426 /* Paravirtualization CPUIDs */
427 c = &cpuid_data.entries[cpuid_i++];
428 memset(c, 0, sizeof(*c));
429 c->function = KVM_CPUID_SIGNATURE;
430 if (!hyperv_enabled()) {
431 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
432 c->eax = 0;
433 } else {
434 memcpy(signature, "Microsoft Hv", 12);
435 c->eax = HYPERV_CPUID_MIN;
436 }
437 c->ebx = signature[0];
438 c->ecx = signature[1];
439 c->edx = signature[2];
440
441 c = &cpuid_data.entries[cpuid_i++];
442 memset(c, 0, sizeof(*c));
443 c->function = KVM_CPUID_FEATURES;
444 c->eax = env->cpuid_kvm_features &
445 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
446
447 if (hyperv_enabled()) {
448 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
449 c->eax = signature[0];
450
451 c = &cpuid_data.entries[cpuid_i++];
452 memset(c, 0, sizeof(*c));
453 c->function = HYPERV_CPUID_VERSION;
454 c->eax = 0x00001bbc;
455 c->ebx = 0x00060001;
456
457 c = &cpuid_data.entries[cpuid_i++];
458 memset(c, 0, sizeof(*c));
459 c->function = HYPERV_CPUID_FEATURES;
460 if (hyperv_relaxed_timing_enabled()) {
461 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
462 }
463 if (hyperv_vapic_recommended()) {
464 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
465 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
466 }
467
468 c = &cpuid_data.entries[cpuid_i++];
469 memset(c, 0, sizeof(*c));
470 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
471 if (hyperv_relaxed_timing_enabled()) {
472 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
473 }
474 if (hyperv_vapic_recommended()) {
475 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
476 }
477 c->ebx = hyperv_get_spinlock_retries();
478
479 c = &cpuid_data.entries[cpuid_i++];
480 memset(c, 0, sizeof(*c));
481 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
482 c->eax = 0x40;
483 c->ebx = 0x40;
484
485 c = &cpuid_data.entries[cpuid_i++];
486 memset(c, 0, sizeof(*c));
487 c->function = KVM_CPUID_SIGNATURE_NEXT;
488 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
489 c->eax = 0;
490 c->ebx = signature[0];
491 c->ecx = signature[1];
492 c->edx = signature[2];
493 }
494
495 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
496
497 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
498
499 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
500
501 for (i = 0; i <= limit; i++) {
502 c = &cpuid_data.entries[cpuid_i++];
503
504 switch (i) {
505 case 2: {
506 /* Keep reading function 2 till all the input is received */
507 int times;
508
509 c->function = i;
510 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
511 KVM_CPUID_FLAG_STATE_READ_NEXT;
512 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
513 times = c->eax & 0xff;
514
515 for (j = 1; j < times; ++j) {
516 c = &cpuid_data.entries[cpuid_i++];
517 c->function = i;
518 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
519 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
520 }
521 break;
522 }
523 case 4:
524 case 0xb:
525 case 0xd:
526 for (j = 0; ; j++) {
527 if (i == 0xd && j == 64) {
528 break;
529 }
530 c->function = i;
531 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
532 c->index = j;
533 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
534
535 if (i == 4 && c->eax == 0) {
536 break;
537 }
538 if (i == 0xb && !(c->ecx & 0xff00)) {
539 break;
540 }
541 if (i == 0xd && c->eax == 0) {
542 continue;
543 }
544 c = &cpuid_data.entries[cpuid_i++];
545 }
546 break;
547 default:
548 c->function = i;
549 c->flags = 0;
550 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
551 break;
552 }
553 }
554 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
555
556 for (i = 0x80000000; i <= limit; i++) {
557 c = &cpuid_data.entries[cpuid_i++];
558
559 c->function = i;
560 c->flags = 0;
561 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
562 }
563
564 /* Call Centaur's CPUID instructions they are supported. */
565 if (env->cpuid_xlevel2 > 0) {
566 env->cpuid_ext4_features &=
567 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
568 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
569
570 for (i = 0xC0000000; i <= limit; i++) {
571 c = &cpuid_data.entries[cpuid_i++];
572
573 c->function = i;
574 c->flags = 0;
575 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
576 }
577 }
578
579 cpuid_data.cpuid.nent = cpuid_i;
580
581 if (((env->cpuid_version >> 8)&0xF) >= 6
582 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
583 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
584 uint64_t mcg_cap;
585 int banks;
586 int ret;
587
588 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
589 if (ret < 0) {
590 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
591 return ret;
592 }
593
594 if (banks > MCE_BANKS_DEF) {
595 banks = MCE_BANKS_DEF;
596 }
597 mcg_cap &= MCE_CAP_DEF;
598 mcg_cap |= banks;
599 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
600 if (ret < 0) {
601 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
602 return ret;
603 }
604
605 env->mcg_cap = mcg_cap;
606 }
607
608 qemu_add_vm_change_state_handler(cpu_update_state, env);
609
610 cpuid_data.cpuid.padding = 0;
611 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
612 if (r) {
613 return r;
614 }
615
616 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
617 if (r && env->tsc_khz) {
618 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
619 if (r < 0) {
620 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
621 return r;
622 }
623 }
624
625 if (kvm_has_xsave()) {
626 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
627 }
628
629 return 0;
630 }
631
632 void kvm_arch_reset_vcpu(CPUX86State *env)
633 {
634 X86CPU *cpu = x86_env_get_cpu(env);
635
636 env->exception_injected = -1;
637 env->interrupt_injected = -1;
638 env->xcr0 = 1;
639 if (kvm_irqchip_in_kernel()) {
640 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
641 KVM_MP_STATE_UNINITIALIZED;
642 } else {
643 env->mp_state = KVM_MP_STATE_RUNNABLE;
644 }
645 }
646
647 static int kvm_get_supported_msrs(KVMState *s)
648 {
649 static int kvm_supported_msrs;
650 int ret = 0;
651
652 /* first time */
653 if (kvm_supported_msrs == 0) {
654 struct kvm_msr_list msr_list, *kvm_msr_list;
655
656 kvm_supported_msrs = -1;
657
658 /* Obtain MSR list from KVM. These are the MSRs that we must
659 * save/restore */
660 msr_list.nmsrs = 0;
661 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
662 if (ret < 0 && ret != -E2BIG) {
663 return ret;
664 }
665 /* Old kernel modules had a bug and could write beyond the provided
666 memory. Allocate at least a safe amount of 1K. */
667 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
668 msr_list.nmsrs *
669 sizeof(msr_list.indices[0])));
670
671 kvm_msr_list->nmsrs = msr_list.nmsrs;
672 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
673 if (ret >= 0) {
674 int i;
675
676 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
677 if (kvm_msr_list->indices[i] == MSR_STAR) {
678 has_msr_star = true;
679 continue;
680 }
681 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
682 has_msr_hsave_pa = true;
683 continue;
684 }
685 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
686 has_msr_tsc_deadline = true;
687 continue;
688 }
689 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
690 has_msr_misc_enable = true;
691 continue;
692 }
693 }
694 }
695
696 g_free(kvm_msr_list);
697 }
698
699 return ret;
700 }
701
702 int kvm_arch_init(KVMState *s)
703 {
704 QemuOptsList *list = qemu_find_opts("machine");
705 uint64_t identity_base = 0xfffbc000;
706 uint64_t shadow_mem;
707 int ret;
708 struct utsname utsname;
709
710 ret = kvm_get_supported_msrs(s);
711 if (ret < 0) {
712 return ret;
713 }
714
715 uname(&utsname);
716 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
717
718 /*
719 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
720 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
721 * Since these must be part of guest physical memory, we need to allocate
722 * them, both by setting their start addresses in the kernel and by
723 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
724 *
725 * Older KVM versions may not support setting the identity map base. In
726 * that case we need to stick with the default, i.e. a 256K maximum BIOS
727 * size.
728 */
729 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
730 /* Allows up to 16M BIOSes. */
731 identity_base = 0xfeffc000;
732
733 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
734 if (ret < 0) {
735 return ret;
736 }
737 }
738
739 /* Set TSS base one page after EPT identity map. */
740 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
741 if (ret < 0) {
742 return ret;
743 }
744
745 /* Tell fw_cfg to notify the BIOS to reserve the range. */
746 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
747 if (ret < 0) {
748 fprintf(stderr, "e820_add_entry() table is full\n");
749 return ret;
750 }
751 qemu_register_reset(kvm_unpoison_all, NULL);
752
753 if (!QTAILQ_EMPTY(&list->head)) {
754 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
755 "kvm_shadow_mem", -1);
756 if (shadow_mem != -1) {
757 shadow_mem /= 4096;
758 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
759 if (ret < 0) {
760 return ret;
761 }
762 }
763 }
764 return 0;
765 }
766
767 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
768 {
769 lhs->selector = rhs->selector;
770 lhs->base = rhs->base;
771 lhs->limit = rhs->limit;
772 lhs->type = 3;
773 lhs->present = 1;
774 lhs->dpl = 3;
775 lhs->db = 0;
776 lhs->s = 1;
777 lhs->l = 0;
778 lhs->g = 0;
779 lhs->avl = 0;
780 lhs->unusable = 0;
781 }
782
783 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
784 {
785 unsigned flags = rhs->flags;
786 lhs->selector = rhs->selector;
787 lhs->base = rhs->base;
788 lhs->limit = rhs->limit;
789 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
790 lhs->present = (flags & DESC_P_MASK) != 0;
791 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
792 lhs->db = (flags >> DESC_B_SHIFT) & 1;
793 lhs->s = (flags & DESC_S_MASK) != 0;
794 lhs->l = (flags >> DESC_L_SHIFT) & 1;
795 lhs->g = (flags & DESC_G_MASK) != 0;
796 lhs->avl = (flags & DESC_AVL_MASK) != 0;
797 lhs->unusable = 0;
798 lhs->padding = 0;
799 }
800
801 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
802 {
803 lhs->selector = rhs->selector;
804 lhs->base = rhs->base;
805 lhs->limit = rhs->limit;
806 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
807 (rhs->present * DESC_P_MASK) |
808 (rhs->dpl << DESC_DPL_SHIFT) |
809 (rhs->db << DESC_B_SHIFT) |
810 (rhs->s * DESC_S_MASK) |
811 (rhs->l << DESC_L_SHIFT) |
812 (rhs->g * DESC_G_MASK) |
813 (rhs->avl * DESC_AVL_MASK);
814 }
815
816 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
817 {
818 if (set) {
819 *kvm_reg = *qemu_reg;
820 } else {
821 *qemu_reg = *kvm_reg;
822 }
823 }
824
825 static int kvm_getput_regs(CPUX86State *env, int set)
826 {
827 struct kvm_regs regs;
828 int ret = 0;
829
830 if (!set) {
831 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
832 if (ret < 0) {
833 return ret;
834 }
835 }
836
837 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
838 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
839 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
840 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
841 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
842 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
843 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
844 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
845 #ifdef TARGET_X86_64
846 kvm_getput_reg(&regs.r8, &env->regs[8], set);
847 kvm_getput_reg(&regs.r9, &env->regs[9], set);
848 kvm_getput_reg(&regs.r10, &env->regs[10], set);
849 kvm_getput_reg(&regs.r11, &env->regs[11], set);
850 kvm_getput_reg(&regs.r12, &env->regs[12], set);
851 kvm_getput_reg(&regs.r13, &env->regs[13], set);
852 kvm_getput_reg(&regs.r14, &env->regs[14], set);
853 kvm_getput_reg(&regs.r15, &env->regs[15], set);
854 #endif
855
856 kvm_getput_reg(&regs.rflags, &env->eflags, set);
857 kvm_getput_reg(&regs.rip, &env->eip, set);
858
859 if (set) {
860 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
861 }
862
863 return ret;
864 }
865
866 static int kvm_put_fpu(CPUX86State *env)
867 {
868 struct kvm_fpu fpu;
869 int i;
870
871 memset(&fpu, 0, sizeof fpu);
872 fpu.fsw = env->fpus & ~(7 << 11);
873 fpu.fsw |= (env->fpstt & 7) << 11;
874 fpu.fcw = env->fpuc;
875 fpu.last_opcode = env->fpop;
876 fpu.last_ip = env->fpip;
877 fpu.last_dp = env->fpdp;
878 for (i = 0; i < 8; ++i) {
879 fpu.ftwx |= (!env->fptags[i]) << i;
880 }
881 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
882 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
883 fpu.mxcsr = env->mxcsr;
884
885 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
886 }
887
888 #define XSAVE_FCW_FSW 0
889 #define XSAVE_FTW_FOP 1
890 #define XSAVE_CWD_RIP 2
891 #define XSAVE_CWD_RDP 4
892 #define XSAVE_MXCSR 6
893 #define XSAVE_ST_SPACE 8
894 #define XSAVE_XMM_SPACE 40
895 #define XSAVE_XSTATE_BV 128
896 #define XSAVE_YMMH_SPACE 144
897
898 static int kvm_put_xsave(CPUX86State *env)
899 {
900 struct kvm_xsave* xsave = env->kvm_xsave_buf;
901 uint16_t cwd, swd, twd;
902 int i, r;
903
904 if (!kvm_has_xsave()) {
905 return kvm_put_fpu(env);
906 }
907
908 memset(xsave, 0, sizeof(struct kvm_xsave));
909 twd = 0;
910 swd = env->fpus & ~(7 << 11);
911 swd |= (env->fpstt & 7) << 11;
912 cwd = env->fpuc;
913 for (i = 0; i < 8; ++i) {
914 twd |= (!env->fptags[i]) << i;
915 }
916 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
917 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
918 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
919 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
920 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
921 sizeof env->fpregs);
922 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
923 sizeof env->xmm_regs);
924 xsave->region[XSAVE_MXCSR] = env->mxcsr;
925 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
926 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
927 sizeof env->ymmh_regs);
928 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
929 return r;
930 }
931
932 static int kvm_put_xcrs(CPUX86State *env)
933 {
934 struct kvm_xcrs xcrs;
935
936 if (!kvm_has_xcrs()) {
937 return 0;
938 }
939
940 xcrs.nr_xcrs = 1;
941 xcrs.flags = 0;
942 xcrs.xcrs[0].xcr = 0;
943 xcrs.xcrs[0].value = env->xcr0;
944 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
945 }
946
947 static int kvm_put_sregs(CPUX86State *env)
948 {
949 struct kvm_sregs sregs;
950
951 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
952 if (env->interrupt_injected >= 0) {
953 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
954 (uint64_t)1 << (env->interrupt_injected % 64);
955 }
956
957 if ((env->eflags & VM_MASK)) {
958 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
959 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
960 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
961 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
962 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
963 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
964 } else {
965 set_seg(&sregs.cs, &env->segs[R_CS]);
966 set_seg(&sregs.ds, &env->segs[R_DS]);
967 set_seg(&sregs.es, &env->segs[R_ES]);
968 set_seg(&sregs.fs, &env->segs[R_FS]);
969 set_seg(&sregs.gs, &env->segs[R_GS]);
970 set_seg(&sregs.ss, &env->segs[R_SS]);
971 }
972
973 set_seg(&sregs.tr, &env->tr);
974 set_seg(&sregs.ldt, &env->ldt);
975
976 sregs.idt.limit = env->idt.limit;
977 sregs.idt.base = env->idt.base;
978 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
979 sregs.gdt.limit = env->gdt.limit;
980 sregs.gdt.base = env->gdt.base;
981 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
982
983 sregs.cr0 = env->cr[0];
984 sregs.cr2 = env->cr[2];
985 sregs.cr3 = env->cr[3];
986 sregs.cr4 = env->cr[4];
987
988 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
989 sregs.apic_base = cpu_get_apic_base(env->apic_state);
990
991 sregs.efer = env->efer;
992
993 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
994 }
995
996 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
997 uint32_t index, uint64_t value)
998 {
999 entry->index = index;
1000 entry->data = value;
1001 }
1002
1003 static int kvm_put_msrs(CPUX86State *env, int level)
1004 {
1005 struct {
1006 struct kvm_msrs info;
1007 struct kvm_msr_entry entries[100];
1008 } msr_data;
1009 struct kvm_msr_entry *msrs = msr_data.entries;
1010 int n = 0;
1011
1012 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1013 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1014 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1015 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1016 if (has_msr_star) {
1017 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1018 }
1019 if (has_msr_hsave_pa) {
1020 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1021 }
1022 if (has_msr_tsc_deadline) {
1023 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1024 }
1025 if (has_msr_misc_enable) {
1026 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1027 env->msr_ia32_misc_enable);
1028 }
1029 #ifdef TARGET_X86_64
1030 if (lm_capable_kernel) {
1031 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1032 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1033 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1034 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1035 }
1036 #endif
1037 if (level == KVM_PUT_FULL_STATE) {
1038 /*
1039 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1040 * writeback. Until this is fixed, we only write the offset to SMP
1041 * guests after migration, desynchronizing the VCPUs, but avoiding
1042 * huge jump-backs that would occur without any writeback at all.
1043 */
1044 if (smp_cpus == 1 || env->tsc != 0) {
1045 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1046 }
1047 }
1048 /*
1049 * The following paravirtual MSRs have side effects on the guest or are
1050 * too heavy for normal writeback. Limit them to reset or full state
1051 * updates.
1052 */
1053 if (level >= KVM_PUT_RESET_STATE) {
1054 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1055 env->system_time_msr);
1056 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1057 if (has_msr_async_pf_en) {
1058 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1059 env->async_pf_en_msr);
1060 }
1061 if (has_msr_pv_eoi_en) {
1062 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1063 env->pv_eoi_en_msr);
1064 }
1065 if (hyperv_hypercall_available()) {
1066 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1067 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1068 }
1069 if (hyperv_vapic_recommended()) {
1070 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1071 }
1072 }
1073 if (env->mcg_cap) {
1074 int i;
1075
1076 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1077 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1078 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1079 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1080 }
1081 }
1082
1083 msr_data.info.nmsrs = n;
1084
1085 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1086
1087 }
1088
1089
1090 static int kvm_get_fpu(CPUX86State *env)
1091 {
1092 struct kvm_fpu fpu;
1093 int i, ret;
1094
1095 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1096 if (ret < 0) {
1097 return ret;
1098 }
1099
1100 env->fpstt = (fpu.fsw >> 11) & 7;
1101 env->fpus = fpu.fsw;
1102 env->fpuc = fpu.fcw;
1103 env->fpop = fpu.last_opcode;
1104 env->fpip = fpu.last_ip;
1105 env->fpdp = fpu.last_dp;
1106 for (i = 0; i < 8; ++i) {
1107 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1108 }
1109 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1110 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1111 env->mxcsr = fpu.mxcsr;
1112
1113 return 0;
1114 }
1115
1116 static int kvm_get_xsave(CPUX86State *env)
1117 {
1118 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1119 int ret, i;
1120 uint16_t cwd, swd, twd;
1121
1122 if (!kvm_has_xsave()) {
1123 return kvm_get_fpu(env);
1124 }
1125
1126 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1127 if (ret < 0) {
1128 return ret;
1129 }
1130
1131 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1132 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1133 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1134 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1135 env->fpstt = (swd >> 11) & 7;
1136 env->fpus = swd;
1137 env->fpuc = cwd;
1138 for (i = 0; i < 8; ++i) {
1139 env->fptags[i] = !((twd >> i) & 1);
1140 }
1141 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1142 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1143 env->mxcsr = xsave->region[XSAVE_MXCSR];
1144 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1145 sizeof env->fpregs);
1146 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1147 sizeof env->xmm_regs);
1148 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1149 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1150 sizeof env->ymmh_regs);
1151 return 0;
1152 }
1153
1154 static int kvm_get_xcrs(CPUX86State *env)
1155 {
1156 int i, ret;
1157 struct kvm_xcrs xcrs;
1158
1159 if (!kvm_has_xcrs()) {
1160 return 0;
1161 }
1162
1163 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1164 if (ret < 0) {
1165 return ret;
1166 }
1167
1168 for (i = 0; i < xcrs.nr_xcrs; i++) {
1169 /* Only support xcr0 now */
1170 if (xcrs.xcrs[0].xcr == 0) {
1171 env->xcr0 = xcrs.xcrs[0].value;
1172 break;
1173 }
1174 }
1175 return 0;
1176 }
1177
1178 static int kvm_get_sregs(CPUX86State *env)
1179 {
1180 struct kvm_sregs sregs;
1181 uint32_t hflags;
1182 int bit, i, ret;
1183
1184 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1185 if (ret < 0) {
1186 return ret;
1187 }
1188
1189 /* There can only be one pending IRQ set in the bitmap at a time, so try
1190 to find it and save its number instead (-1 for none). */
1191 env->interrupt_injected = -1;
1192 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1193 if (sregs.interrupt_bitmap[i]) {
1194 bit = ctz64(sregs.interrupt_bitmap[i]);
1195 env->interrupt_injected = i * 64 + bit;
1196 break;
1197 }
1198 }
1199
1200 get_seg(&env->segs[R_CS], &sregs.cs);
1201 get_seg(&env->segs[R_DS], &sregs.ds);
1202 get_seg(&env->segs[R_ES], &sregs.es);
1203 get_seg(&env->segs[R_FS], &sregs.fs);
1204 get_seg(&env->segs[R_GS], &sregs.gs);
1205 get_seg(&env->segs[R_SS], &sregs.ss);
1206
1207 get_seg(&env->tr, &sregs.tr);
1208 get_seg(&env->ldt, &sregs.ldt);
1209
1210 env->idt.limit = sregs.idt.limit;
1211 env->idt.base = sregs.idt.base;
1212 env->gdt.limit = sregs.gdt.limit;
1213 env->gdt.base = sregs.gdt.base;
1214
1215 env->cr[0] = sregs.cr0;
1216 env->cr[2] = sregs.cr2;
1217 env->cr[3] = sregs.cr3;
1218 env->cr[4] = sregs.cr4;
1219
1220 env->efer = sregs.efer;
1221
1222 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1223
1224 #define HFLAG_COPY_MASK \
1225 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1226 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1227 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1228 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1229
1230 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1231 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1232 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1233 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1234 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1235 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1236 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1237
1238 if (env->efer & MSR_EFER_LMA) {
1239 hflags |= HF_LMA_MASK;
1240 }
1241
1242 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1243 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1244 } else {
1245 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1246 (DESC_B_SHIFT - HF_CS32_SHIFT);
1247 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1248 (DESC_B_SHIFT - HF_SS32_SHIFT);
1249 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1250 !(hflags & HF_CS32_MASK)) {
1251 hflags |= HF_ADDSEG_MASK;
1252 } else {
1253 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1254 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1255 }
1256 }
1257 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1258
1259 return 0;
1260 }
1261
1262 static int kvm_get_msrs(CPUX86State *env)
1263 {
1264 struct {
1265 struct kvm_msrs info;
1266 struct kvm_msr_entry entries[100];
1267 } msr_data;
1268 struct kvm_msr_entry *msrs = msr_data.entries;
1269 int ret, i, n;
1270
1271 n = 0;
1272 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1273 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1274 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1275 msrs[n++].index = MSR_PAT;
1276 if (has_msr_star) {
1277 msrs[n++].index = MSR_STAR;
1278 }
1279 if (has_msr_hsave_pa) {
1280 msrs[n++].index = MSR_VM_HSAVE_PA;
1281 }
1282 if (has_msr_tsc_deadline) {
1283 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1284 }
1285 if (has_msr_misc_enable) {
1286 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1287 }
1288
1289 if (!env->tsc_valid) {
1290 msrs[n++].index = MSR_IA32_TSC;
1291 env->tsc_valid = !runstate_is_running();
1292 }
1293
1294 #ifdef TARGET_X86_64
1295 if (lm_capable_kernel) {
1296 msrs[n++].index = MSR_CSTAR;
1297 msrs[n++].index = MSR_KERNELGSBASE;
1298 msrs[n++].index = MSR_FMASK;
1299 msrs[n++].index = MSR_LSTAR;
1300 }
1301 #endif
1302 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1303 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1304 if (has_msr_async_pf_en) {
1305 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1306 }
1307 if (has_msr_pv_eoi_en) {
1308 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1309 }
1310
1311 if (env->mcg_cap) {
1312 msrs[n++].index = MSR_MCG_STATUS;
1313 msrs[n++].index = MSR_MCG_CTL;
1314 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1315 msrs[n++].index = MSR_MC0_CTL + i;
1316 }
1317 }
1318
1319 msr_data.info.nmsrs = n;
1320 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1321 if (ret < 0) {
1322 return ret;
1323 }
1324
1325 for (i = 0; i < ret; i++) {
1326 switch (msrs[i].index) {
1327 case MSR_IA32_SYSENTER_CS:
1328 env->sysenter_cs = msrs[i].data;
1329 break;
1330 case MSR_IA32_SYSENTER_ESP:
1331 env->sysenter_esp = msrs[i].data;
1332 break;
1333 case MSR_IA32_SYSENTER_EIP:
1334 env->sysenter_eip = msrs[i].data;
1335 break;
1336 case MSR_PAT:
1337 env->pat = msrs[i].data;
1338 break;
1339 case MSR_STAR:
1340 env->star = msrs[i].data;
1341 break;
1342 #ifdef TARGET_X86_64
1343 case MSR_CSTAR:
1344 env->cstar = msrs[i].data;
1345 break;
1346 case MSR_KERNELGSBASE:
1347 env->kernelgsbase = msrs[i].data;
1348 break;
1349 case MSR_FMASK:
1350 env->fmask = msrs[i].data;
1351 break;
1352 case MSR_LSTAR:
1353 env->lstar = msrs[i].data;
1354 break;
1355 #endif
1356 case MSR_IA32_TSC:
1357 env->tsc = msrs[i].data;
1358 break;
1359 case MSR_IA32_TSCDEADLINE:
1360 env->tsc_deadline = msrs[i].data;
1361 break;
1362 case MSR_VM_HSAVE_PA:
1363 env->vm_hsave = msrs[i].data;
1364 break;
1365 case MSR_KVM_SYSTEM_TIME:
1366 env->system_time_msr = msrs[i].data;
1367 break;
1368 case MSR_KVM_WALL_CLOCK:
1369 env->wall_clock_msr = msrs[i].data;
1370 break;
1371 case MSR_MCG_STATUS:
1372 env->mcg_status = msrs[i].data;
1373 break;
1374 case MSR_MCG_CTL:
1375 env->mcg_ctl = msrs[i].data;
1376 break;
1377 case MSR_IA32_MISC_ENABLE:
1378 env->msr_ia32_misc_enable = msrs[i].data;
1379 break;
1380 default:
1381 if (msrs[i].index >= MSR_MC0_CTL &&
1382 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1383 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1384 }
1385 break;
1386 case MSR_KVM_ASYNC_PF_EN:
1387 env->async_pf_en_msr = msrs[i].data;
1388 break;
1389 case MSR_KVM_PV_EOI_EN:
1390 env->pv_eoi_en_msr = msrs[i].data;
1391 break;
1392 }
1393 }
1394
1395 return 0;
1396 }
1397
1398 static int kvm_put_mp_state(CPUX86State *env)
1399 {
1400 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1401
1402 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1403 }
1404
1405 static int kvm_get_mp_state(CPUX86State *env)
1406 {
1407 struct kvm_mp_state mp_state;
1408 int ret;
1409
1410 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1411 if (ret < 0) {
1412 return ret;
1413 }
1414 env->mp_state = mp_state.mp_state;
1415 if (kvm_irqchip_in_kernel()) {
1416 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1417 }
1418 return 0;
1419 }
1420
1421 static int kvm_get_apic(CPUX86State *env)
1422 {
1423 DeviceState *apic = env->apic_state;
1424 struct kvm_lapic_state kapic;
1425 int ret;
1426
1427 if (apic && kvm_irqchip_in_kernel()) {
1428 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1429 if (ret < 0) {
1430 return ret;
1431 }
1432
1433 kvm_get_apic_state(apic, &kapic);
1434 }
1435 return 0;
1436 }
1437
1438 static int kvm_put_apic(CPUX86State *env)
1439 {
1440 DeviceState *apic = env->apic_state;
1441 struct kvm_lapic_state kapic;
1442
1443 if (apic && kvm_irqchip_in_kernel()) {
1444 kvm_put_apic_state(apic, &kapic);
1445
1446 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1447 }
1448 return 0;
1449 }
1450
1451 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1452 {
1453 struct kvm_vcpu_events events;
1454
1455 if (!kvm_has_vcpu_events()) {
1456 return 0;
1457 }
1458
1459 events.exception.injected = (env->exception_injected >= 0);
1460 events.exception.nr = env->exception_injected;
1461 events.exception.has_error_code = env->has_error_code;
1462 events.exception.error_code = env->error_code;
1463 events.exception.pad = 0;
1464
1465 events.interrupt.injected = (env->interrupt_injected >= 0);
1466 events.interrupt.nr = env->interrupt_injected;
1467 events.interrupt.soft = env->soft_interrupt;
1468
1469 events.nmi.injected = env->nmi_injected;
1470 events.nmi.pending = env->nmi_pending;
1471 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1472 events.nmi.pad = 0;
1473
1474 events.sipi_vector = env->sipi_vector;
1475
1476 events.flags = 0;
1477 if (level >= KVM_PUT_RESET_STATE) {
1478 events.flags |=
1479 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1480 }
1481
1482 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1483 }
1484
1485 static int kvm_get_vcpu_events(CPUX86State *env)
1486 {
1487 struct kvm_vcpu_events events;
1488 int ret;
1489
1490 if (!kvm_has_vcpu_events()) {
1491 return 0;
1492 }
1493
1494 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1495 if (ret < 0) {
1496 return ret;
1497 }
1498 env->exception_injected =
1499 events.exception.injected ? events.exception.nr : -1;
1500 env->has_error_code = events.exception.has_error_code;
1501 env->error_code = events.exception.error_code;
1502
1503 env->interrupt_injected =
1504 events.interrupt.injected ? events.interrupt.nr : -1;
1505 env->soft_interrupt = events.interrupt.soft;
1506
1507 env->nmi_injected = events.nmi.injected;
1508 env->nmi_pending = events.nmi.pending;
1509 if (events.nmi.masked) {
1510 env->hflags2 |= HF2_NMI_MASK;
1511 } else {
1512 env->hflags2 &= ~HF2_NMI_MASK;
1513 }
1514
1515 env->sipi_vector = events.sipi_vector;
1516
1517 return 0;
1518 }
1519
1520 static int kvm_guest_debug_workarounds(CPUX86State *env)
1521 {
1522 int ret = 0;
1523 unsigned long reinject_trap = 0;
1524
1525 if (!kvm_has_vcpu_events()) {
1526 if (env->exception_injected == 1) {
1527 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1528 } else if (env->exception_injected == 3) {
1529 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1530 }
1531 env->exception_injected = -1;
1532 }
1533
1534 /*
1535 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1536 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1537 * by updating the debug state once again if single-stepping is on.
1538 * Another reason to call kvm_update_guest_debug here is a pending debug
1539 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1540 * reinject them via SET_GUEST_DEBUG.
1541 */
1542 if (reinject_trap ||
1543 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1544 ret = kvm_update_guest_debug(env, reinject_trap);
1545 }
1546 return ret;
1547 }
1548
1549 static int kvm_put_debugregs(CPUX86State *env)
1550 {
1551 struct kvm_debugregs dbgregs;
1552 int i;
1553
1554 if (!kvm_has_debugregs()) {
1555 return 0;
1556 }
1557
1558 for (i = 0; i < 4; i++) {
1559 dbgregs.db[i] = env->dr[i];
1560 }
1561 dbgregs.dr6 = env->dr[6];
1562 dbgregs.dr7 = env->dr[7];
1563 dbgregs.flags = 0;
1564
1565 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1566 }
1567
1568 static int kvm_get_debugregs(CPUX86State *env)
1569 {
1570 struct kvm_debugregs dbgregs;
1571 int i, ret;
1572
1573 if (!kvm_has_debugregs()) {
1574 return 0;
1575 }
1576
1577 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1578 if (ret < 0) {
1579 return ret;
1580 }
1581 for (i = 0; i < 4; i++) {
1582 env->dr[i] = dbgregs.db[i];
1583 }
1584 env->dr[4] = env->dr[6] = dbgregs.dr6;
1585 env->dr[5] = env->dr[7] = dbgregs.dr7;
1586
1587 return 0;
1588 }
1589
1590 int kvm_arch_put_registers(CPUX86State *env, int level)
1591 {
1592 int ret;
1593
1594 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1595
1596 ret = kvm_getput_regs(env, 1);
1597 if (ret < 0) {
1598 return ret;
1599 }
1600 ret = kvm_put_xsave(env);
1601 if (ret < 0) {
1602 return ret;
1603 }
1604 ret = kvm_put_xcrs(env);
1605 if (ret < 0) {
1606 return ret;
1607 }
1608 ret = kvm_put_sregs(env);
1609 if (ret < 0) {
1610 return ret;
1611 }
1612 /* must be before kvm_put_msrs */
1613 ret = kvm_inject_mce_oldstyle(env);
1614 if (ret < 0) {
1615 return ret;
1616 }
1617 ret = kvm_put_msrs(env, level);
1618 if (ret < 0) {
1619 return ret;
1620 }
1621 if (level >= KVM_PUT_RESET_STATE) {
1622 ret = kvm_put_mp_state(env);
1623 if (ret < 0) {
1624 return ret;
1625 }
1626 ret = kvm_put_apic(env);
1627 if (ret < 0) {
1628 return ret;
1629 }
1630 }
1631 ret = kvm_put_vcpu_events(env, level);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 ret = kvm_put_debugregs(env);
1636 if (ret < 0) {
1637 return ret;
1638 }
1639 /* must be last */
1640 ret = kvm_guest_debug_workarounds(env);
1641 if (ret < 0) {
1642 return ret;
1643 }
1644 return 0;
1645 }
1646
1647 int kvm_arch_get_registers(CPUX86State *env)
1648 {
1649 int ret;
1650
1651 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1652
1653 ret = kvm_getput_regs(env, 0);
1654 if (ret < 0) {
1655 return ret;
1656 }
1657 ret = kvm_get_xsave(env);
1658 if (ret < 0) {
1659 return ret;
1660 }
1661 ret = kvm_get_xcrs(env);
1662 if (ret < 0) {
1663 return ret;
1664 }
1665 ret = kvm_get_sregs(env);
1666 if (ret < 0) {
1667 return ret;
1668 }
1669 ret = kvm_get_msrs(env);
1670 if (ret < 0) {
1671 return ret;
1672 }
1673 ret = kvm_get_mp_state(env);
1674 if (ret < 0) {
1675 return ret;
1676 }
1677 ret = kvm_get_apic(env);
1678 if (ret < 0) {
1679 return ret;
1680 }
1681 ret = kvm_get_vcpu_events(env);
1682 if (ret < 0) {
1683 return ret;
1684 }
1685 ret = kvm_get_debugregs(env);
1686 if (ret < 0) {
1687 return ret;
1688 }
1689 return 0;
1690 }
1691
1692 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1693 {
1694 int ret;
1695
1696 /* Inject NMI */
1697 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1698 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1699 DPRINTF("injected NMI\n");
1700 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1701 if (ret < 0) {
1702 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1703 strerror(-ret));
1704 }
1705 }
1706
1707 if (!kvm_irqchip_in_kernel()) {
1708 /* Force the VCPU out of its inner loop to process any INIT requests
1709 * or pending TPR access reports. */
1710 if (env->interrupt_request &
1711 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1712 env->exit_request = 1;
1713 }
1714
1715 /* Try to inject an interrupt if the guest can accept it */
1716 if (run->ready_for_interrupt_injection &&
1717 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1718 (env->eflags & IF_MASK)) {
1719 int irq;
1720
1721 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1722 irq = cpu_get_pic_interrupt(env);
1723 if (irq >= 0) {
1724 struct kvm_interrupt intr;
1725
1726 intr.irq = irq;
1727 DPRINTF("injected interrupt %d\n", irq);
1728 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1729 if (ret < 0) {
1730 fprintf(stderr,
1731 "KVM: injection failed, interrupt lost (%s)\n",
1732 strerror(-ret));
1733 }
1734 }
1735 }
1736
1737 /* If we have an interrupt but the guest is not ready to receive an
1738 * interrupt, request an interrupt window exit. This will
1739 * cause a return to userspace as soon as the guest is ready to
1740 * receive interrupts. */
1741 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1742 run->request_interrupt_window = 1;
1743 } else {
1744 run->request_interrupt_window = 0;
1745 }
1746
1747 DPRINTF("setting tpr\n");
1748 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1749 }
1750 }
1751
1752 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1753 {
1754 if (run->if_flag) {
1755 env->eflags |= IF_MASK;
1756 } else {
1757 env->eflags &= ~IF_MASK;
1758 }
1759 cpu_set_apic_tpr(env->apic_state, run->cr8);
1760 cpu_set_apic_base(env->apic_state, run->apic_base);
1761 }
1762
1763 int kvm_arch_process_async_events(CPUX86State *env)
1764 {
1765 X86CPU *cpu = x86_env_get_cpu(env);
1766
1767 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1768 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1769 assert(env->mcg_cap);
1770
1771 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1772
1773 kvm_cpu_synchronize_state(env);
1774
1775 if (env->exception_injected == EXCP08_DBLE) {
1776 /* this means triple fault */
1777 qemu_system_reset_request();
1778 env->exit_request = 1;
1779 return 0;
1780 }
1781 env->exception_injected = EXCP12_MCHK;
1782 env->has_error_code = 0;
1783
1784 env->halted = 0;
1785 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1786 env->mp_state = KVM_MP_STATE_RUNNABLE;
1787 }
1788 }
1789
1790 if (kvm_irqchip_in_kernel()) {
1791 return 0;
1792 }
1793
1794 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1795 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1796 apic_poll_irq(env->apic_state);
1797 }
1798 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1799 (env->eflags & IF_MASK)) ||
1800 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1801 env->halted = 0;
1802 }
1803 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1804 kvm_cpu_synchronize_state(env);
1805 do_cpu_init(cpu);
1806 }
1807 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1808 kvm_cpu_synchronize_state(env);
1809 do_cpu_sipi(cpu);
1810 }
1811 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1812 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1813 kvm_cpu_synchronize_state(env);
1814 apic_handle_tpr_access_report(env->apic_state, env->eip,
1815 env->tpr_access_type);
1816 }
1817
1818 return env->halted;
1819 }
1820
1821 static int kvm_handle_halt(CPUX86State *env)
1822 {
1823 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1824 (env->eflags & IF_MASK)) &&
1825 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1826 env->halted = 1;
1827 return EXCP_HLT;
1828 }
1829
1830 return 0;
1831 }
1832
1833 static int kvm_handle_tpr_access(CPUX86State *env)
1834 {
1835 struct kvm_run *run = env->kvm_run;
1836
1837 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1838 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1839 : TPR_ACCESS_READ);
1840 return 1;
1841 }
1842
1843 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1844 {
1845 static const uint8_t int3 = 0xcc;
1846
1847 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1848 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1849 return -EINVAL;
1850 }
1851 return 0;
1852 }
1853
1854 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1855 {
1856 uint8_t int3;
1857
1858 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1859 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1860 return -EINVAL;
1861 }
1862 return 0;
1863 }
1864
1865 static struct {
1866 target_ulong addr;
1867 int len;
1868 int type;
1869 } hw_breakpoint[4];
1870
1871 static int nb_hw_breakpoint;
1872
1873 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1874 {
1875 int n;
1876
1877 for (n = 0; n < nb_hw_breakpoint; n++) {
1878 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1879 (hw_breakpoint[n].len == len || len == -1)) {
1880 return n;
1881 }
1882 }
1883 return -1;
1884 }
1885
1886 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1887 target_ulong len, int type)
1888 {
1889 switch (type) {
1890 case GDB_BREAKPOINT_HW:
1891 len = 1;
1892 break;
1893 case GDB_WATCHPOINT_WRITE:
1894 case GDB_WATCHPOINT_ACCESS:
1895 switch (len) {
1896 case 1:
1897 break;
1898 case 2:
1899 case 4:
1900 case 8:
1901 if (addr & (len - 1)) {
1902 return -EINVAL;
1903 }
1904 break;
1905 default:
1906 return -EINVAL;
1907 }
1908 break;
1909 default:
1910 return -ENOSYS;
1911 }
1912
1913 if (nb_hw_breakpoint == 4) {
1914 return -ENOBUFS;
1915 }
1916 if (find_hw_breakpoint(addr, len, type) >= 0) {
1917 return -EEXIST;
1918 }
1919 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1920 hw_breakpoint[nb_hw_breakpoint].len = len;
1921 hw_breakpoint[nb_hw_breakpoint].type = type;
1922 nb_hw_breakpoint++;
1923
1924 return 0;
1925 }
1926
1927 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1928 target_ulong len, int type)
1929 {
1930 int n;
1931
1932 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1933 if (n < 0) {
1934 return -ENOENT;
1935 }
1936 nb_hw_breakpoint--;
1937 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1938
1939 return 0;
1940 }
1941
1942 void kvm_arch_remove_all_hw_breakpoints(void)
1943 {
1944 nb_hw_breakpoint = 0;
1945 }
1946
1947 static CPUWatchpoint hw_watchpoint;
1948
1949 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1950 {
1951 int ret = 0;
1952 int n;
1953
1954 if (arch_info->exception == 1) {
1955 if (arch_info->dr6 & (1 << 14)) {
1956 if (cpu_single_env->singlestep_enabled) {
1957 ret = EXCP_DEBUG;
1958 }
1959 } else {
1960 for (n = 0; n < 4; n++) {
1961 if (arch_info->dr6 & (1 << n)) {
1962 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1963 case 0x0:
1964 ret = EXCP_DEBUG;
1965 break;
1966 case 0x1:
1967 ret = EXCP_DEBUG;
1968 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1969 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1970 hw_watchpoint.flags = BP_MEM_WRITE;
1971 break;
1972 case 0x3:
1973 ret = EXCP_DEBUG;
1974 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1975 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1976 hw_watchpoint.flags = BP_MEM_ACCESS;
1977 break;
1978 }
1979 }
1980 }
1981 }
1982 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1983 ret = EXCP_DEBUG;
1984 }
1985 if (ret == 0) {
1986 cpu_synchronize_state(cpu_single_env);
1987 assert(cpu_single_env->exception_injected == -1);
1988
1989 /* pass to guest */
1990 cpu_single_env->exception_injected = arch_info->exception;
1991 cpu_single_env->has_error_code = 0;
1992 }
1993
1994 return ret;
1995 }
1996
1997 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1998 {
1999 const uint8_t type_code[] = {
2000 [GDB_BREAKPOINT_HW] = 0x0,
2001 [GDB_WATCHPOINT_WRITE] = 0x1,
2002 [GDB_WATCHPOINT_ACCESS] = 0x3
2003 };
2004 const uint8_t len_code[] = {
2005 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2006 };
2007 int n;
2008
2009 if (kvm_sw_breakpoints_active(env)) {
2010 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2011 }
2012 if (nb_hw_breakpoint > 0) {
2013 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2014 dbg->arch.debugreg[7] = 0x0600;
2015 for (n = 0; n < nb_hw_breakpoint; n++) {
2016 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2017 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2018 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2019 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2020 }
2021 }
2022 }
2023
2024 static bool host_supports_vmx(void)
2025 {
2026 uint32_t ecx, unused;
2027
2028 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2029 return ecx & CPUID_EXT_VMX;
2030 }
2031
2032 #define VMX_INVALID_GUEST_STATE 0x80000021
2033
2034 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2035 {
2036 uint64_t code;
2037 int ret;
2038
2039 switch (run->exit_reason) {
2040 case KVM_EXIT_HLT:
2041 DPRINTF("handle_hlt\n");
2042 ret = kvm_handle_halt(env);
2043 break;
2044 case KVM_EXIT_SET_TPR:
2045 ret = 0;
2046 break;
2047 case KVM_EXIT_TPR_ACCESS:
2048 ret = kvm_handle_tpr_access(env);
2049 break;
2050 case KVM_EXIT_FAIL_ENTRY:
2051 code = run->fail_entry.hardware_entry_failure_reason;
2052 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2053 code);
2054 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2055 fprintf(stderr,
2056 "\nIf you're running a guest on an Intel machine without "
2057 "unrestricted mode\n"
2058 "support, the failure can be most likely due to the guest "
2059 "entering an invalid\n"
2060 "state for Intel VT. For example, the guest maybe running "
2061 "in big real mode\n"
2062 "which is not supported on less recent Intel processors."
2063 "\n\n");
2064 }
2065 ret = -1;
2066 break;
2067 case KVM_EXIT_EXCEPTION:
2068 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2069 run->ex.exception, run->ex.error_code);
2070 ret = -1;
2071 break;
2072 case KVM_EXIT_DEBUG:
2073 DPRINTF("kvm_exit_debug\n");
2074 ret = kvm_handle_debug(&run->debug.arch);
2075 break;
2076 default:
2077 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2078 ret = -1;
2079 break;
2080 }
2081
2082 return ret;
2083 }
2084
2085 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2086 {
2087 kvm_cpu_synchronize_state(env);
2088 return !(env->cr[0] & CR0_PE_MASK) ||
2089 ((env->segs[R_CS].selector & 3) != 3);
2090 }
2091
2092 void kvm_arch_init_irq_routing(KVMState *s)
2093 {
2094 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2095 /* If kernel can't do irq routing, interrupt source
2096 * override 0->2 cannot be set up as required by HPET.
2097 * So we have to disable it.
2098 */
2099 no_hpet = 1;
2100 }
2101 /* We know at this point that we're using the in-kernel
2102 * irqchip, so we can use irqfds, and on x86 we know
2103 * we can use msi via irqfd and GSI routing.
2104 */
2105 kvm_irqfds_allowed = true;
2106 kvm_msi_via_irqfd_allowed = true;
2107 kvm_gsi_routing_allowed = true;
2108 }
2109
2110 /* Classic KVM device assignment interface. Will remain x86 only. */
2111 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2112 uint32_t flags, uint32_t *dev_id)
2113 {
2114 struct kvm_assigned_pci_dev dev_data = {
2115 .segnr = dev_addr->domain,
2116 .busnr = dev_addr->bus,
2117 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2118 .flags = flags,
2119 };
2120 int ret;
2121
2122 dev_data.assigned_dev_id =
2123 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2124
2125 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2126 if (ret < 0) {
2127 return ret;
2128 }
2129
2130 *dev_id = dev_data.assigned_dev_id;
2131
2132 return 0;
2133 }
2134
2135 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2136 {
2137 struct kvm_assigned_pci_dev dev_data = {
2138 .assigned_dev_id = dev_id,
2139 };
2140
2141 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2142 }
2143
2144 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2145 uint32_t irq_type, uint32_t guest_irq)
2146 {
2147 struct kvm_assigned_irq assigned_irq = {
2148 .assigned_dev_id = dev_id,
2149 .guest_irq = guest_irq,
2150 .flags = irq_type,
2151 };
2152
2153 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2154 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2155 } else {
2156 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2157 }
2158 }
2159
2160 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2161 uint32_t guest_irq)
2162 {
2163 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2164 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2165
2166 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2167 }
2168
2169 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2170 {
2171 struct kvm_assigned_pci_dev dev_data = {
2172 .assigned_dev_id = dev_id,
2173 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2174 };
2175
2176 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2177 }
2178
2179 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2180 uint32_t type)
2181 {
2182 struct kvm_assigned_irq assigned_irq = {
2183 .assigned_dev_id = dev_id,
2184 .flags = type,
2185 };
2186
2187 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2188 }
2189
2190 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2191 {
2192 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2193 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2194 }
2195
2196 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2197 {
2198 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2199 KVM_DEV_IRQ_GUEST_MSI, virq);
2200 }
2201
2202 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2203 {
2204 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2205 KVM_DEV_IRQ_HOST_MSI);
2206 }
2207
2208 bool kvm_device_msix_supported(KVMState *s)
2209 {
2210 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2211 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2212 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2213 }
2214
2215 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2216 uint32_t nr_vectors)
2217 {
2218 struct kvm_assigned_msix_nr msix_nr = {
2219 .assigned_dev_id = dev_id,
2220 .entry_nr = nr_vectors,
2221 };
2222
2223 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2224 }
2225
2226 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2227 int virq)
2228 {
2229 struct kvm_assigned_msix_entry msix_entry = {
2230 .assigned_dev_id = dev_id,
2231 .gsi = virq,
2232 .entry = vector,
2233 };
2234
2235 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2236 }
2237
2238 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2239 {
2240 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2241 KVM_DEV_IRQ_GUEST_MSIX, 0);
2242 }
2243
2244 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2245 {
2246 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2247 KVM_DEV_IRQ_HOST_MSIX);
2248 }