]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: x86: Fix DPL write back of segment registers
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 static int lm_capable_kernel;
58
59 #ifdef KVM_CAP_EXT_CPUID
60
61 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
62 {
63 struct kvm_cpuid2 *cpuid;
64 int r, size;
65
66 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
67 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
68 cpuid->nent = max;
69 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
70 if (r == 0 && cpuid->nent >= max) {
71 r = -E2BIG;
72 }
73 if (r < 0) {
74 if (r == -E2BIG) {
75 qemu_free(cpuid);
76 return NULL;
77 } else {
78 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
79 strerror(-r));
80 exit(1);
81 }
82 }
83 return cpuid;
84 }
85
86 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
87 uint32_t index, int reg)
88 {
89 struct kvm_cpuid2 *cpuid;
90 int i, max;
91 uint32_t ret = 0;
92 uint32_t cpuid_1_edx;
93
94 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
95 return -1U;
96 }
97
98 max = 1;
99 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
100 max *= 2;
101 }
102
103 for (i = 0; i < cpuid->nent; ++i) {
104 if (cpuid->entries[i].function == function &&
105 cpuid->entries[i].index == index) {
106 switch (reg) {
107 case R_EAX:
108 ret = cpuid->entries[i].eax;
109 break;
110 case R_EBX:
111 ret = cpuid->entries[i].ebx;
112 break;
113 case R_ECX:
114 ret = cpuid->entries[i].ecx;
115 break;
116 case R_EDX:
117 ret = cpuid->entries[i].edx;
118 switch (function) {
119 case 1:
120 /* KVM before 2.6.30 misreports the following features */
121 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
122 break;
123 case 0x80000001:
124 /* On Intel, kvm returns cpuid according to the Intel spec,
125 * so add missing bits according to the AMD spec:
126 */
127 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
128 ret |= cpuid_1_edx & 0x183f7ff;
129 break;
130 }
131 break;
132 }
133 }
134 }
135
136 qemu_free(cpuid);
137
138 return ret;
139 }
140
141 #else
142
143 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
144 uint32_t index, int reg)
145 {
146 return -1U;
147 }
148
149 #endif
150
151 #ifdef CONFIG_KVM_PARA
152 struct kvm_para_features {
153 int cap;
154 int feature;
155 } para_features[] = {
156 #ifdef KVM_CAP_CLOCKSOURCE
157 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
158 #endif
159 #ifdef KVM_CAP_NOP_IO_DELAY
160 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
161 #endif
162 #ifdef KVM_CAP_PV_MMU
163 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
164 #endif
165 #ifdef KVM_CAP_ASYNC_PF
166 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
167 #endif
168 { -1, -1 }
169 };
170
171 static int get_para_features(CPUState *env)
172 {
173 int i, features = 0;
174
175 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
176 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
177 features |= (1 << para_features[i].feature);
178 }
179
180 return features;
181 }
182 #endif
183
184 #ifdef KVM_CAP_MCE
185 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
186 int *max_banks)
187 {
188 int r;
189
190 r = kvm_check_extension(s, KVM_CAP_MCE);
191 if (r > 0) {
192 *max_banks = r;
193 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
194 }
195 return -ENOSYS;
196 }
197
198 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
199 {
200 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
201 }
202
203 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
204 {
205 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
206 }
207
208 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
209 {
210 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
211 int r;
212
213 kmsrs->nmsrs = n;
214 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
215 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
216 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
217 free(kmsrs);
218 return r;
219 }
220
221 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
222 static int kvm_mce_in_progress(CPUState *env)
223 {
224 struct kvm_msr_entry msr_mcg_status = {
225 .index = MSR_MCG_STATUS,
226 };
227 int r;
228
229 r = kvm_get_msr(env, &msr_mcg_status, 1);
230 if (r == -1 || r == 0) {
231 fprintf(stderr, "Failed to get MCE status\n");
232 return 0;
233 }
234 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
235 }
236
237 struct kvm_x86_mce_data
238 {
239 CPUState *env;
240 struct kvm_x86_mce *mce;
241 int abort_on_error;
242 };
243
244 static void kvm_do_inject_x86_mce(void *_data)
245 {
246 struct kvm_x86_mce_data *data = _data;
247 int r;
248
249 /* If there is an MCE exception being processed, ignore this SRAO MCE */
250 if ((data->env->mcg_cap & MCG_SER_P) &&
251 !(data->mce->status & MCI_STATUS_AR)) {
252 if (kvm_mce_in_progress(data->env)) {
253 return;
254 }
255 }
256
257 r = kvm_set_mce(data->env, data->mce);
258 if (r < 0) {
259 perror("kvm_set_mce FAILED");
260 if (data->abort_on_error) {
261 abort();
262 }
263 }
264 }
265
266 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
267 int flag)
268 {
269 struct kvm_x86_mce_data data = {
270 .env = env,
271 .mce = mce,
272 .abort_on_error = (flag & ABORT_ON_ERROR),
273 };
274
275 if (!env->mcg_cap) {
276 fprintf(stderr, "MCE support is not enabled!\n");
277 return;
278 }
279
280 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
281 }
282
283 static void kvm_mce_broadcast_rest(CPUState *env);
284 #endif
285
286 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
287 uint64_t mcg_status, uint64_t addr, uint64_t misc,
288 int flag)
289 {
290 #ifdef KVM_CAP_MCE
291 struct kvm_x86_mce mce = {
292 .bank = bank,
293 .status = status,
294 .mcg_status = mcg_status,
295 .addr = addr,
296 .misc = misc,
297 };
298
299 if (flag & MCE_BROADCAST) {
300 kvm_mce_broadcast_rest(cenv);
301 }
302
303 kvm_inject_x86_mce_on(cenv, &mce, flag);
304 #else
305 if (flag & ABORT_ON_ERROR) {
306 abort();
307 }
308 #endif
309 }
310
311 int kvm_arch_init_vcpu(CPUState *env)
312 {
313 struct {
314 struct kvm_cpuid2 cpuid;
315 struct kvm_cpuid_entry2 entries[100];
316 } __attribute__((packed)) cpuid_data;
317 uint32_t limit, i, j, cpuid_i;
318 uint32_t unused;
319 struct kvm_cpuid_entry2 *c;
320 #ifdef KVM_CPUID_SIGNATURE
321 uint32_t signature[3];
322 #endif
323
324 env->mp_state = KVM_MP_STATE_RUNNABLE;
325
326 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
327
328 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330 env->cpuid_ext_features |= i;
331
332 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_EDX);
334 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335 0, R_ECX);
336 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337 0, R_EDX);
338
339
340 cpuid_i = 0;
341
342 #ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_SIGNATURE;
348 c->eax = 0;
349 c->ebx = signature[0];
350 c->ecx = signature[1];
351 c->edx = signature[2];
352
353 c = &cpuid_data.entries[cpuid_i++];
354 memset(c, 0, sizeof(*c));
355 c->function = KVM_CPUID_FEATURES;
356 c->eax = env->cpuid_kvm_features & get_para_features(env);
357 #endif
358
359 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
360
361 for (i = 0; i <= limit; i++) {
362 c = &cpuid_data.entries[cpuid_i++];
363
364 switch (i) {
365 case 2: {
366 /* Keep reading function 2 till all the input is received */
367 int times;
368
369 c->function = i;
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371 KVM_CPUID_FLAG_STATE_READ_NEXT;
372 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 times = c->eax & 0xff;
374
375 for (j = 1; j < times; ++j) {
376 c = &cpuid_data.entries[cpuid_i++];
377 c->function = i;
378 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380 }
381 break;
382 }
383 case 4:
384 case 0xb:
385 case 0xd:
386 for (j = 0; ; j++) {
387 c->function = i;
388 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389 c->index = j;
390 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
391
392 if (i == 4 && c->eax == 0)
393 break;
394 if (i == 0xb && !(c->ecx & 0xff00))
395 break;
396 if (i == 0xd && c->eax == 0)
397 break;
398
399 c = &cpuid_data.entries[cpuid_i++];
400 }
401 break;
402 default:
403 c->function = i;
404 c->flags = 0;
405 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
406 break;
407 }
408 }
409 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
410
411 for (i = 0x80000000; i <= limit; i++) {
412 c = &cpuid_data.entries[cpuid_i++];
413
414 c->function = i;
415 c->flags = 0;
416 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
417 }
418
419 cpuid_data.cpuid.nent = cpuid_i;
420
421 #ifdef KVM_CAP_MCE
422 if (((env->cpuid_version >> 8)&0xF) >= 6
423 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
424 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
425 uint64_t mcg_cap;
426 int banks;
427
428 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
429 perror("kvm_get_mce_cap_supported FAILED");
430 else {
431 if (banks > MCE_BANKS_DEF)
432 banks = MCE_BANKS_DEF;
433 mcg_cap &= MCE_CAP_DEF;
434 mcg_cap |= banks;
435 if (kvm_setup_mce(env, &mcg_cap))
436 perror("kvm_setup_mce FAILED");
437 else
438 env->mcg_cap = mcg_cap;
439 }
440 }
441 #endif
442
443 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
444 }
445
446 void kvm_arch_reset_vcpu(CPUState *env)
447 {
448 env->exception_injected = -1;
449 env->interrupt_injected = -1;
450 env->nmi_injected = 0;
451 env->nmi_pending = 0;
452 if (kvm_irqchip_in_kernel()) {
453 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
454 KVM_MP_STATE_UNINITIALIZED;
455 } else {
456 env->mp_state = KVM_MP_STATE_RUNNABLE;
457 }
458 }
459
460 int has_msr_star;
461 int has_msr_hsave_pa;
462
463 static void kvm_supported_msrs(CPUState *env)
464 {
465 static int kvm_supported_msrs;
466 int ret;
467
468 /* first time */
469 if (kvm_supported_msrs == 0) {
470 struct kvm_msr_list msr_list, *kvm_msr_list;
471
472 kvm_supported_msrs = -1;
473
474 /* Obtain MSR list from KVM. These are the MSRs that we must
475 * save/restore */
476 msr_list.nmsrs = 0;
477 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
478 if (ret < 0 && ret != -E2BIG) {
479 return;
480 }
481 /* Old kernel modules had a bug and could write beyond the provided
482 memory. Allocate at least a safe amount of 1K. */
483 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
484 msr_list.nmsrs *
485 sizeof(msr_list.indices[0])));
486
487 kvm_msr_list->nmsrs = msr_list.nmsrs;
488 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
489 if (ret >= 0) {
490 int i;
491
492 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
493 if (kvm_msr_list->indices[i] == MSR_STAR) {
494 has_msr_star = 1;
495 continue;
496 }
497 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
498 has_msr_hsave_pa = 1;
499 continue;
500 }
501 }
502 }
503
504 free(kvm_msr_list);
505 }
506
507 return;
508 }
509
510 static int kvm_has_msr_hsave_pa(CPUState *env)
511 {
512 kvm_supported_msrs(env);
513 return has_msr_hsave_pa;
514 }
515
516 static int kvm_has_msr_star(CPUState *env)
517 {
518 kvm_supported_msrs(env);
519 return has_msr_star;
520 }
521
522 static int kvm_init_identity_map_page(KVMState *s)
523 {
524 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
525 int ret;
526 uint64_t addr = 0xfffbc000;
527
528 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
529 return 0;
530 }
531
532 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
533 if (ret < 0) {
534 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
535 return ret;
536 }
537 #endif
538 return 0;
539 }
540
541 int kvm_arch_init(KVMState *s, int smp_cpus)
542 {
543 int ret;
544
545 struct utsname utsname;
546
547 uname(&utsname);
548 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
549
550 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
551 * directly. In order to use vm86 mode, a TSS is needed. Since this
552 * must be part of guest physical memory, we need to allocate it. Older
553 * versions of KVM just assumed that it would be at the end of physical
554 * memory but that doesn't work with more than 4GB of memory. We simply
555 * refuse to work with those older versions of KVM. */
556 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
557 if (ret <= 0) {
558 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
559 return ret;
560 }
561
562 /* this address is 3 pages before the bios, and the bios should present
563 * as unavaible memory. FIXME, need to ensure the e820 map deals with
564 * this?
565 */
566 /*
567 * Tell fw_cfg to notify the BIOS to reserve the range.
568 */
569 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
570 perror("e820_add_entry() table is full");
571 exit(1);
572 }
573 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
574 if (ret < 0) {
575 return ret;
576 }
577
578 return kvm_init_identity_map_page(s);
579 }
580
581 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
582 {
583 lhs->selector = rhs->selector;
584 lhs->base = rhs->base;
585 lhs->limit = rhs->limit;
586 lhs->type = 3;
587 lhs->present = 1;
588 lhs->dpl = 3;
589 lhs->db = 0;
590 lhs->s = 1;
591 lhs->l = 0;
592 lhs->g = 0;
593 lhs->avl = 0;
594 lhs->unusable = 0;
595 }
596
597 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
598 {
599 unsigned flags = rhs->flags;
600 lhs->selector = rhs->selector;
601 lhs->base = rhs->base;
602 lhs->limit = rhs->limit;
603 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
604 lhs->present = (flags & DESC_P_MASK) != 0;
605 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
606 lhs->db = (flags >> DESC_B_SHIFT) & 1;
607 lhs->s = (flags & DESC_S_MASK) != 0;
608 lhs->l = (flags >> DESC_L_SHIFT) & 1;
609 lhs->g = (flags & DESC_G_MASK) != 0;
610 lhs->avl = (flags & DESC_AVL_MASK) != 0;
611 lhs->unusable = 0;
612 }
613
614 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
615 {
616 lhs->selector = rhs->selector;
617 lhs->base = rhs->base;
618 lhs->limit = rhs->limit;
619 lhs->flags =
620 (rhs->type << DESC_TYPE_SHIFT)
621 | (rhs->present * DESC_P_MASK)
622 | (rhs->dpl << DESC_DPL_SHIFT)
623 | (rhs->db << DESC_B_SHIFT)
624 | (rhs->s * DESC_S_MASK)
625 | (rhs->l << DESC_L_SHIFT)
626 | (rhs->g * DESC_G_MASK)
627 | (rhs->avl * DESC_AVL_MASK);
628 }
629
630 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
631 {
632 if (set)
633 *kvm_reg = *qemu_reg;
634 else
635 *qemu_reg = *kvm_reg;
636 }
637
638 static int kvm_getput_regs(CPUState *env, int set)
639 {
640 struct kvm_regs regs;
641 int ret = 0;
642
643 if (!set) {
644 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
645 if (ret < 0)
646 return ret;
647 }
648
649 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
650 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
651 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
652 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
653 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
654 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
655 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
656 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
657 #ifdef TARGET_X86_64
658 kvm_getput_reg(&regs.r8, &env->regs[8], set);
659 kvm_getput_reg(&regs.r9, &env->regs[9], set);
660 kvm_getput_reg(&regs.r10, &env->regs[10], set);
661 kvm_getput_reg(&regs.r11, &env->regs[11], set);
662 kvm_getput_reg(&regs.r12, &env->regs[12], set);
663 kvm_getput_reg(&regs.r13, &env->regs[13], set);
664 kvm_getput_reg(&regs.r14, &env->regs[14], set);
665 kvm_getput_reg(&regs.r15, &env->regs[15], set);
666 #endif
667
668 kvm_getput_reg(&regs.rflags, &env->eflags, set);
669 kvm_getput_reg(&regs.rip, &env->eip, set);
670
671 if (set)
672 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
673
674 return ret;
675 }
676
677 static int kvm_put_fpu(CPUState *env)
678 {
679 struct kvm_fpu fpu;
680 int i;
681
682 memset(&fpu, 0, sizeof fpu);
683 fpu.fsw = env->fpus & ~(7 << 11);
684 fpu.fsw |= (env->fpstt & 7) << 11;
685 fpu.fcw = env->fpuc;
686 for (i = 0; i < 8; ++i)
687 fpu.ftwx |= (!env->fptags[i]) << i;
688 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
689 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
690 fpu.mxcsr = env->mxcsr;
691
692 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
693 }
694
695 #ifdef KVM_CAP_XSAVE
696 #define XSAVE_CWD_RIP 2
697 #define XSAVE_CWD_RDP 4
698 #define XSAVE_MXCSR 6
699 #define XSAVE_ST_SPACE 8
700 #define XSAVE_XMM_SPACE 40
701 #define XSAVE_XSTATE_BV 128
702 #define XSAVE_YMMH_SPACE 144
703 #endif
704
705 static int kvm_put_xsave(CPUState *env)
706 {
707 #ifdef KVM_CAP_XSAVE
708 int i, r;
709 struct kvm_xsave* xsave;
710 uint16_t cwd, swd, twd, fop;
711
712 if (!kvm_has_xsave())
713 return kvm_put_fpu(env);
714
715 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
716 memset(xsave, 0, sizeof(struct kvm_xsave));
717 cwd = swd = twd = fop = 0;
718 swd = env->fpus & ~(7 << 11);
719 swd |= (env->fpstt & 7) << 11;
720 cwd = env->fpuc;
721 for (i = 0; i < 8; ++i)
722 twd |= (!env->fptags[i]) << i;
723 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
724 xsave->region[1] = (uint32_t)(fop << 16) + twd;
725 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
726 sizeof env->fpregs);
727 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
728 sizeof env->xmm_regs);
729 xsave->region[XSAVE_MXCSR] = env->mxcsr;
730 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
731 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
732 sizeof env->ymmh_regs);
733 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
734 qemu_free(xsave);
735 return r;
736 #else
737 return kvm_put_fpu(env);
738 #endif
739 }
740
741 static int kvm_put_xcrs(CPUState *env)
742 {
743 #ifdef KVM_CAP_XCRS
744 struct kvm_xcrs xcrs;
745
746 if (!kvm_has_xcrs())
747 return 0;
748
749 xcrs.nr_xcrs = 1;
750 xcrs.flags = 0;
751 xcrs.xcrs[0].xcr = 0;
752 xcrs.xcrs[0].value = env->xcr0;
753 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
754 #else
755 return 0;
756 #endif
757 }
758
759 static int kvm_put_sregs(CPUState *env)
760 {
761 struct kvm_sregs sregs;
762
763 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
764 if (env->interrupt_injected >= 0) {
765 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
766 (uint64_t)1 << (env->interrupt_injected % 64);
767 }
768
769 if ((env->eflags & VM_MASK)) {
770 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
771 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
772 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
773 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
774 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
775 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
776 } else {
777 set_seg(&sregs.cs, &env->segs[R_CS]);
778 set_seg(&sregs.ds, &env->segs[R_DS]);
779 set_seg(&sregs.es, &env->segs[R_ES]);
780 set_seg(&sregs.fs, &env->segs[R_FS]);
781 set_seg(&sregs.gs, &env->segs[R_GS]);
782 set_seg(&sregs.ss, &env->segs[R_SS]);
783
784 if (env->cr[0] & CR0_PE_MASK) {
785 /* force ss cpl to cs cpl */
786 sregs.ss.selector = (sregs.ss.selector & ~3) |
787 (sregs.cs.selector & 3);
788 sregs.ss.dpl = sregs.ss.selector & 3;
789 }
790 }
791
792 set_seg(&sregs.tr, &env->tr);
793 set_seg(&sregs.ldt, &env->ldt);
794
795 sregs.idt.limit = env->idt.limit;
796 sregs.idt.base = env->idt.base;
797 sregs.gdt.limit = env->gdt.limit;
798 sregs.gdt.base = env->gdt.base;
799
800 sregs.cr0 = env->cr[0];
801 sregs.cr2 = env->cr[2];
802 sregs.cr3 = env->cr[3];
803 sregs.cr4 = env->cr[4];
804
805 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
806 sregs.apic_base = cpu_get_apic_base(env->apic_state);
807
808 sregs.efer = env->efer;
809
810 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
811 }
812
813 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
814 uint32_t index, uint64_t value)
815 {
816 entry->index = index;
817 entry->data = value;
818 }
819
820 static int kvm_put_msrs(CPUState *env, int level)
821 {
822 struct {
823 struct kvm_msrs info;
824 struct kvm_msr_entry entries[100];
825 } msr_data;
826 struct kvm_msr_entry *msrs = msr_data.entries;
827 int n = 0;
828
829 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
830 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
831 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
832 if (kvm_has_msr_star(env))
833 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
834 if (kvm_has_msr_hsave_pa(env))
835 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
836 #ifdef TARGET_X86_64
837 if (lm_capable_kernel) {
838 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
839 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
840 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
841 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
842 }
843 #endif
844 if (level == KVM_PUT_FULL_STATE) {
845 /*
846 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
847 * writeback. Until this is fixed, we only write the offset to SMP
848 * guests after migration, desynchronizing the VCPUs, but avoiding
849 * huge jump-backs that would occur without any writeback at all.
850 */
851 if (smp_cpus == 1 || env->tsc != 0) {
852 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
853 }
854 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
855 env->system_time_msr);
856 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
857 #ifdef KVM_CAP_ASYNC_PF
858 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
859 #endif
860 }
861 #ifdef KVM_CAP_MCE
862 if (env->mcg_cap) {
863 int i;
864 if (level == KVM_PUT_RESET_STATE)
865 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
866 else if (level == KVM_PUT_FULL_STATE) {
867 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
868 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
869 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
870 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
871 }
872 }
873 #endif
874
875 msr_data.info.nmsrs = n;
876
877 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
878
879 }
880
881
882 static int kvm_get_fpu(CPUState *env)
883 {
884 struct kvm_fpu fpu;
885 int i, ret;
886
887 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
888 if (ret < 0)
889 return ret;
890
891 env->fpstt = (fpu.fsw >> 11) & 7;
892 env->fpus = fpu.fsw;
893 env->fpuc = fpu.fcw;
894 for (i = 0; i < 8; ++i)
895 env->fptags[i] = !((fpu.ftwx >> i) & 1);
896 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
897 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
898 env->mxcsr = fpu.mxcsr;
899
900 return 0;
901 }
902
903 static int kvm_get_xsave(CPUState *env)
904 {
905 #ifdef KVM_CAP_XSAVE
906 struct kvm_xsave* xsave;
907 int ret, i;
908 uint16_t cwd, swd, twd, fop;
909
910 if (!kvm_has_xsave())
911 return kvm_get_fpu(env);
912
913 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
914 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
915 if (ret < 0) {
916 qemu_free(xsave);
917 return ret;
918 }
919
920 cwd = (uint16_t)xsave->region[0];
921 swd = (uint16_t)(xsave->region[0] >> 16);
922 twd = (uint16_t)xsave->region[1];
923 fop = (uint16_t)(xsave->region[1] >> 16);
924 env->fpstt = (swd >> 11) & 7;
925 env->fpus = swd;
926 env->fpuc = cwd;
927 for (i = 0; i < 8; ++i)
928 env->fptags[i] = !((twd >> i) & 1);
929 env->mxcsr = xsave->region[XSAVE_MXCSR];
930 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
931 sizeof env->fpregs);
932 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
933 sizeof env->xmm_regs);
934 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
935 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
936 sizeof env->ymmh_regs);
937 qemu_free(xsave);
938 return 0;
939 #else
940 return kvm_get_fpu(env);
941 #endif
942 }
943
944 static int kvm_get_xcrs(CPUState *env)
945 {
946 #ifdef KVM_CAP_XCRS
947 int i, ret;
948 struct kvm_xcrs xcrs;
949
950 if (!kvm_has_xcrs())
951 return 0;
952
953 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
954 if (ret < 0)
955 return ret;
956
957 for (i = 0; i < xcrs.nr_xcrs; i++)
958 /* Only support xcr0 now */
959 if (xcrs.xcrs[0].xcr == 0) {
960 env->xcr0 = xcrs.xcrs[0].value;
961 break;
962 }
963 return 0;
964 #else
965 return 0;
966 #endif
967 }
968
969 static int kvm_get_sregs(CPUState *env)
970 {
971 struct kvm_sregs sregs;
972 uint32_t hflags;
973 int bit, i, ret;
974
975 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
976 if (ret < 0)
977 return ret;
978
979 /* There can only be one pending IRQ set in the bitmap at a time, so try
980 to find it and save its number instead (-1 for none). */
981 env->interrupt_injected = -1;
982 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
983 if (sregs.interrupt_bitmap[i]) {
984 bit = ctz64(sregs.interrupt_bitmap[i]);
985 env->interrupt_injected = i * 64 + bit;
986 break;
987 }
988 }
989
990 get_seg(&env->segs[R_CS], &sregs.cs);
991 get_seg(&env->segs[R_DS], &sregs.ds);
992 get_seg(&env->segs[R_ES], &sregs.es);
993 get_seg(&env->segs[R_FS], &sregs.fs);
994 get_seg(&env->segs[R_GS], &sregs.gs);
995 get_seg(&env->segs[R_SS], &sregs.ss);
996
997 get_seg(&env->tr, &sregs.tr);
998 get_seg(&env->ldt, &sregs.ldt);
999
1000 env->idt.limit = sregs.idt.limit;
1001 env->idt.base = sregs.idt.base;
1002 env->gdt.limit = sregs.gdt.limit;
1003 env->gdt.base = sregs.gdt.base;
1004
1005 env->cr[0] = sregs.cr0;
1006 env->cr[2] = sregs.cr2;
1007 env->cr[3] = sregs.cr3;
1008 env->cr[4] = sregs.cr4;
1009
1010 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1011
1012 env->efer = sregs.efer;
1013 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1014
1015 #define HFLAG_COPY_MASK ~( \
1016 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1017 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1018 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1019 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1020
1021
1022
1023 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1024 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1025 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1026 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1027 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1028 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1029 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1030
1031 if (env->efer & MSR_EFER_LMA) {
1032 hflags |= HF_LMA_MASK;
1033 }
1034
1035 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1036 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1037 } else {
1038 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1039 (DESC_B_SHIFT - HF_CS32_SHIFT);
1040 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1041 (DESC_B_SHIFT - HF_SS32_SHIFT);
1042 if (!(env->cr[0] & CR0_PE_MASK) ||
1043 (env->eflags & VM_MASK) ||
1044 !(hflags & HF_CS32_MASK)) {
1045 hflags |= HF_ADDSEG_MASK;
1046 } else {
1047 hflags |= ((env->segs[R_DS].base |
1048 env->segs[R_ES].base |
1049 env->segs[R_SS].base) != 0) <<
1050 HF_ADDSEG_SHIFT;
1051 }
1052 }
1053 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1054
1055 return 0;
1056 }
1057
1058 static int kvm_get_msrs(CPUState *env)
1059 {
1060 struct {
1061 struct kvm_msrs info;
1062 struct kvm_msr_entry entries[100];
1063 } msr_data;
1064 struct kvm_msr_entry *msrs = msr_data.entries;
1065 int ret, i, n;
1066
1067 n = 0;
1068 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1069 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1070 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1071 if (kvm_has_msr_star(env))
1072 msrs[n++].index = MSR_STAR;
1073 if (kvm_has_msr_hsave_pa(env))
1074 msrs[n++].index = MSR_VM_HSAVE_PA;
1075 msrs[n++].index = MSR_IA32_TSC;
1076 #ifdef TARGET_X86_64
1077 if (lm_capable_kernel) {
1078 msrs[n++].index = MSR_CSTAR;
1079 msrs[n++].index = MSR_KERNELGSBASE;
1080 msrs[n++].index = MSR_FMASK;
1081 msrs[n++].index = MSR_LSTAR;
1082 }
1083 #endif
1084 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1085 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1086 #ifdef KVM_CAP_ASYNC_PF
1087 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1088 #endif
1089
1090 #ifdef KVM_CAP_MCE
1091 if (env->mcg_cap) {
1092 msrs[n++].index = MSR_MCG_STATUS;
1093 msrs[n++].index = MSR_MCG_CTL;
1094 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1095 msrs[n++].index = MSR_MC0_CTL + i;
1096 }
1097 #endif
1098
1099 msr_data.info.nmsrs = n;
1100 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1101 if (ret < 0)
1102 return ret;
1103
1104 for (i = 0; i < ret; i++) {
1105 switch (msrs[i].index) {
1106 case MSR_IA32_SYSENTER_CS:
1107 env->sysenter_cs = msrs[i].data;
1108 break;
1109 case MSR_IA32_SYSENTER_ESP:
1110 env->sysenter_esp = msrs[i].data;
1111 break;
1112 case MSR_IA32_SYSENTER_EIP:
1113 env->sysenter_eip = msrs[i].data;
1114 break;
1115 case MSR_STAR:
1116 env->star = msrs[i].data;
1117 break;
1118 #ifdef TARGET_X86_64
1119 case MSR_CSTAR:
1120 env->cstar = msrs[i].data;
1121 break;
1122 case MSR_KERNELGSBASE:
1123 env->kernelgsbase = msrs[i].data;
1124 break;
1125 case MSR_FMASK:
1126 env->fmask = msrs[i].data;
1127 break;
1128 case MSR_LSTAR:
1129 env->lstar = msrs[i].data;
1130 break;
1131 #endif
1132 case MSR_IA32_TSC:
1133 env->tsc = msrs[i].data;
1134 break;
1135 case MSR_VM_HSAVE_PA:
1136 env->vm_hsave = msrs[i].data;
1137 break;
1138 case MSR_KVM_SYSTEM_TIME:
1139 env->system_time_msr = msrs[i].data;
1140 break;
1141 case MSR_KVM_WALL_CLOCK:
1142 env->wall_clock_msr = msrs[i].data;
1143 break;
1144 #ifdef KVM_CAP_MCE
1145 case MSR_MCG_STATUS:
1146 env->mcg_status = msrs[i].data;
1147 break;
1148 case MSR_MCG_CTL:
1149 env->mcg_ctl = msrs[i].data;
1150 break;
1151 #endif
1152 default:
1153 #ifdef KVM_CAP_MCE
1154 if (msrs[i].index >= MSR_MC0_CTL &&
1155 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1156 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1157 }
1158 #endif
1159 break;
1160 #ifdef KVM_CAP_ASYNC_PF
1161 case MSR_KVM_ASYNC_PF_EN:
1162 env->async_pf_en_msr = msrs[i].data;
1163 break;
1164 #endif
1165 }
1166 }
1167
1168 return 0;
1169 }
1170
1171 static int kvm_put_mp_state(CPUState *env)
1172 {
1173 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1174
1175 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1176 }
1177
1178 static int kvm_get_mp_state(CPUState *env)
1179 {
1180 struct kvm_mp_state mp_state;
1181 int ret;
1182
1183 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1184 if (ret < 0) {
1185 return ret;
1186 }
1187 env->mp_state = mp_state.mp_state;
1188 return 0;
1189 }
1190
1191 static int kvm_put_vcpu_events(CPUState *env, int level)
1192 {
1193 #ifdef KVM_CAP_VCPU_EVENTS
1194 struct kvm_vcpu_events events;
1195
1196 if (!kvm_has_vcpu_events()) {
1197 return 0;
1198 }
1199
1200 events.exception.injected = (env->exception_injected >= 0);
1201 events.exception.nr = env->exception_injected;
1202 events.exception.has_error_code = env->has_error_code;
1203 events.exception.error_code = env->error_code;
1204
1205 events.interrupt.injected = (env->interrupt_injected >= 0);
1206 events.interrupt.nr = env->interrupt_injected;
1207 events.interrupt.soft = env->soft_interrupt;
1208
1209 events.nmi.injected = env->nmi_injected;
1210 events.nmi.pending = env->nmi_pending;
1211 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1212
1213 events.sipi_vector = env->sipi_vector;
1214
1215 events.flags = 0;
1216 if (level >= KVM_PUT_RESET_STATE) {
1217 events.flags |=
1218 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1219 }
1220
1221 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1222 #else
1223 return 0;
1224 #endif
1225 }
1226
1227 static int kvm_get_vcpu_events(CPUState *env)
1228 {
1229 #ifdef KVM_CAP_VCPU_EVENTS
1230 struct kvm_vcpu_events events;
1231 int ret;
1232
1233 if (!kvm_has_vcpu_events()) {
1234 return 0;
1235 }
1236
1237 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1238 if (ret < 0) {
1239 return ret;
1240 }
1241 env->exception_injected =
1242 events.exception.injected ? events.exception.nr : -1;
1243 env->has_error_code = events.exception.has_error_code;
1244 env->error_code = events.exception.error_code;
1245
1246 env->interrupt_injected =
1247 events.interrupt.injected ? events.interrupt.nr : -1;
1248 env->soft_interrupt = events.interrupt.soft;
1249
1250 env->nmi_injected = events.nmi.injected;
1251 env->nmi_pending = events.nmi.pending;
1252 if (events.nmi.masked) {
1253 env->hflags2 |= HF2_NMI_MASK;
1254 } else {
1255 env->hflags2 &= ~HF2_NMI_MASK;
1256 }
1257
1258 env->sipi_vector = events.sipi_vector;
1259 #endif
1260
1261 return 0;
1262 }
1263
1264 static int kvm_guest_debug_workarounds(CPUState *env)
1265 {
1266 int ret = 0;
1267 #ifdef KVM_CAP_SET_GUEST_DEBUG
1268 unsigned long reinject_trap = 0;
1269
1270 if (!kvm_has_vcpu_events()) {
1271 if (env->exception_injected == 1) {
1272 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1273 } else if (env->exception_injected == 3) {
1274 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1275 }
1276 env->exception_injected = -1;
1277 }
1278
1279 /*
1280 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1281 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1282 * by updating the debug state once again if single-stepping is on.
1283 * Another reason to call kvm_update_guest_debug here is a pending debug
1284 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1285 * reinject them via SET_GUEST_DEBUG.
1286 */
1287 if (reinject_trap ||
1288 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1289 ret = kvm_update_guest_debug(env, reinject_trap);
1290 }
1291 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1292 return ret;
1293 }
1294
1295 static int kvm_put_debugregs(CPUState *env)
1296 {
1297 #ifdef KVM_CAP_DEBUGREGS
1298 struct kvm_debugregs dbgregs;
1299 int i;
1300
1301 if (!kvm_has_debugregs()) {
1302 return 0;
1303 }
1304
1305 for (i = 0; i < 4; i++) {
1306 dbgregs.db[i] = env->dr[i];
1307 }
1308 dbgregs.dr6 = env->dr[6];
1309 dbgregs.dr7 = env->dr[7];
1310 dbgregs.flags = 0;
1311
1312 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1313 #else
1314 return 0;
1315 #endif
1316 }
1317
1318 static int kvm_get_debugregs(CPUState *env)
1319 {
1320 #ifdef KVM_CAP_DEBUGREGS
1321 struct kvm_debugregs dbgregs;
1322 int i, ret;
1323
1324 if (!kvm_has_debugregs()) {
1325 return 0;
1326 }
1327
1328 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1329 if (ret < 0) {
1330 return ret;
1331 }
1332 for (i = 0; i < 4; i++) {
1333 env->dr[i] = dbgregs.db[i];
1334 }
1335 env->dr[4] = env->dr[6] = dbgregs.dr6;
1336 env->dr[5] = env->dr[7] = dbgregs.dr7;
1337 #endif
1338
1339 return 0;
1340 }
1341
1342 int kvm_arch_put_registers(CPUState *env, int level)
1343 {
1344 int ret;
1345
1346 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1347
1348 ret = kvm_getput_regs(env, 1);
1349 if (ret < 0)
1350 return ret;
1351
1352 ret = kvm_put_xsave(env);
1353 if (ret < 0)
1354 return ret;
1355
1356 ret = kvm_put_xcrs(env);
1357 if (ret < 0)
1358 return ret;
1359
1360 ret = kvm_put_sregs(env);
1361 if (ret < 0)
1362 return ret;
1363
1364 ret = kvm_put_msrs(env, level);
1365 if (ret < 0)
1366 return ret;
1367
1368 if (level >= KVM_PUT_RESET_STATE) {
1369 ret = kvm_put_mp_state(env);
1370 if (ret < 0)
1371 return ret;
1372 }
1373
1374 ret = kvm_put_vcpu_events(env, level);
1375 if (ret < 0)
1376 return ret;
1377
1378 /* must be last */
1379 ret = kvm_guest_debug_workarounds(env);
1380 if (ret < 0)
1381 return ret;
1382
1383 ret = kvm_put_debugregs(env);
1384 if (ret < 0)
1385 return ret;
1386
1387 return 0;
1388 }
1389
1390 int kvm_arch_get_registers(CPUState *env)
1391 {
1392 int ret;
1393
1394 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1395
1396 ret = kvm_getput_regs(env, 0);
1397 if (ret < 0)
1398 return ret;
1399
1400 ret = kvm_get_xsave(env);
1401 if (ret < 0)
1402 return ret;
1403
1404 ret = kvm_get_xcrs(env);
1405 if (ret < 0)
1406 return ret;
1407
1408 ret = kvm_get_sregs(env);
1409 if (ret < 0)
1410 return ret;
1411
1412 ret = kvm_get_msrs(env);
1413 if (ret < 0)
1414 return ret;
1415
1416 ret = kvm_get_mp_state(env);
1417 if (ret < 0)
1418 return ret;
1419
1420 ret = kvm_get_vcpu_events(env);
1421 if (ret < 0)
1422 return ret;
1423
1424 ret = kvm_get_debugregs(env);
1425 if (ret < 0)
1426 return ret;
1427
1428 return 0;
1429 }
1430
1431 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1432 {
1433 /* Inject NMI */
1434 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1435 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1436 DPRINTF("injected NMI\n");
1437 kvm_vcpu_ioctl(env, KVM_NMI);
1438 }
1439
1440 /* Try to inject an interrupt if the guest can accept it */
1441 if (run->ready_for_interrupt_injection &&
1442 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1443 (env->eflags & IF_MASK)) {
1444 int irq;
1445
1446 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1447 irq = cpu_get_pic_interrupt(env);
1448 if (irq >= 0) {
1449 struct kvm_interrupt intr;
1450 intr.irq = irq;
1451 /* FIXME: errors */
1452 DPRINTF("injected interrupt %d\n", irq);
1453 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1454 }
1455 }
1456
1457 /* If we have an interrupt but the guest is not ready to receive an
1458 * interrupt, request an interrupt window exit. This will
1459 * cause a return to userspace as soon as the guest is ready to
1460 * receive interrupts. */
1461 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1462 run->request_interrupt_window = 1;
1463 else
1464 run->request_interrupt_window = 0;
1465
1466 DPRINTF("setting tpr\n");
1467 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1468
1469 return 0;
1470 }
1471
1472 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1473 {
1474 if (run->if_flag)
1475 env->eflags |= IF_MASK;
1476 else
1477 env->eflags &= ~IF_MASK;
1478
1479 cpu_set_apic_tpr(env->apic_state, run->cr8);
1480 cpu_set_apic_base(env->apic_state, run->apic_base);
1481
1482 return 0;
1483 }
1484
1485 int kvm_arch_process_irqchip_events(CPUState *env)
1486 {
1487 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1488 kvm_cpu_synchronize_state(env);
1489 do_cpu_init(env);
1490 env->exception_index = EXCP_HALTED;
1491 }
1492
1493 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1494 kvm_cpu_synchronize_state(env);
1495 do_cpu_sipi(env);
1496 }
1497
1498 return env->halted;
1499 }
1500
1501 static int kvm_handle_halt(CPUState *env)
1502 {
1503 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1504 (env->eflags & IF_MASK)) &&
1505 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1506 env->halted = 1;
1507 env->exception_index = EXCP_HLT;
1508 return 0;
1509 }
1510
1511 return 1;
1512 }
1513
1514 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1515 {
1516 int ret = 0;
1517
1518 switch (run->exit_reason) {
1519 case KVM_EXIT_HLT:
1520 DPRINTF("handle_hlt\n");
1521 ret = kvm_handle_halt(env);
1522 break;
1523 }
1524
1525 return ret;
1526 }
1527
1528 #ifdef KVM_CAP_SET_GUEST_DEBUG
1529 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1530 {
1531 static const uint8_t int3 = 0xcc;
1532
1533 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1534 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1535 return -EINVAL;
1536 return 0;
1537 }
1538
1539 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1540 {
1541 uint8_t int3;
1542
1543 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1544 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1545 return -EINVAL;
1546 return 0;
1547 }
1548
1549 static struct {
1550 target_ulong addr;
1551 int len;
1552 int type;
1553 } hw_breakpoint[4];
1554
1555 static int nb_hw_breakpoint;
1556
1557 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1558 {
1559 int n;
1560
1561 for (n = 0; n < nb_hw_breakpoint; n++)
1562 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1563 (hw_breakpoint[n].len == len || len == -1))
1564 return n;
1565 return -1;
1566 }
1567
1568 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1569 target_ulong len, int type)
1570 {
1571 switch (type) {
1572 case GDB_BREAKPOINT_HW:
1573 len = 1;
1574 break;
1575 case GDB_WATCHPOINT_WRITE:
1576 case GDB_WATCHPOINT_ACCESS:
1577 switch (len) {
1578 case 1:
1579 break;
1580 case 2:
1581 case 4:
1582 case 8:
1583 if (addr & (len - 1))
1584 return -EINVAL;
1585 break;
1586 default:
1587 return -EINVAL;
1588 }
1589 break;
1590 default:
1591 return -ENOSYS;
1592 }
1593
1594 if (nb_hw_breakpoint == 4)
1595 return -ENOBUFS;
1596
1597 if (find_hw_breakpoint(addr, len, type) >= 0)
1598 return -EEXIST;
1599
1600 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1601 hw_breakpoint[nb_hw_breakpoint].len = len;
1602 hw_breakpoint[nb_hw_breakpoint].type = type;
1603 nb_hw_breakpoint++;
1604
1605 return 0;
1606 }
1607
1608 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1609 target_ulong len, int type)
1610 {
1611 int n;
1612
1613 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1614 if (n < 0)
1615 return -ENOENT;
1616
1617 nb_hw_breakpoint--;
1618 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1619
1620 return 0;
1621 }
1622
1623 void kvm_arch_remove_all_hw_breakpoints(void)
1624 {
1625 nb_hw_breakpoint = 0;
1626 }
1627
1628 static CPUWatchpoint hw_watchpoint;
1629
1630 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1631 {
1632 int handle = 0;
1633 int n;
1634
1635 if (arch_info->exception == 1) {
1636 if (arch_info->dr6 & (1 << 14)) {
1637 if (cpu_single_env->singlestep_enabled)
1638 handle = 1;
1639 } else {
1640 for (n = 0; n < 4; n++)
1641 if (arch_info->dr6 & (1 << n))
1642 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1643 case 0x0:
1644 handle = 1;
1645 break;
1646 case 0x1:
1647 handle = 1;
1648 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1649 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1650 hw_watchpoint.flags = BP_MEM_WRITE;
1651 break;
1652 case 0x3:
1653 handle = 1;
1654 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1655 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1656 hw_watchpoint.flags = BP_MEM_ACCESS;
1657 break;
1658 }
1659 }
1660 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1661 handle = 1;
1662
1663 if (!handle) {
1664 cpu_synchronize_state(cpu_single_env);
1665 assert(cpu_single_env->exception_injected == -1);
1666
1667 cpu_single_env->exception_injected = arch_info->exception;
1668 cpu_single_env->has_error_code = 0;
1669 }
1670
1671 return handle;
1672 }
1673
1674 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1675 {
1676 const uint8_t type_code[] = {
1677 [GDB_BREAKPOINT_HW] = 0x0,
1678 [GDB_WATCHPOINT_WRITE] = 0x1,
1679 [GDB_WATCHPOINT_ACCESS] = 0x3
1680 };
1681 const uint8_t len_code[] = {
1682 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1683 };
1684 int n;
1685
1686 if (kvm_sw_breakpoints_active(env))
1687 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1688
1689 if (nb_hw_breakpoint > 0) {
1690 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1691 dbg->arch.debugreg[7] = 0x0600;
1692 for (n = 0; n < nb_hw_breakpoint; n++) {
1693 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1694 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1695 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1696 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1697 }
1698 }
1699 /* Legal xcr0 for loading */
1700 env->xcr0 = 1;
1701 }
1702 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1703
1704 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1705 {
1706 return !(env->cr[0] & CR0_PE_MASK) ||
1707 ((env->segs[R_CS].selector & 3) != 3);
1708 }
1709
1710 static void hardware_memory_error(void)
1711 {
1712 fprintf(stderr, "Hardware memory error!\n");
1713 exit(1);
1714 }
1715
1716 #ifdef KVM_CAP_MCE
1717 static void kvm_mce_broadcast_rest(CPUState *env)
1718 {
1719 struct kvm_x86_mce mce = {
1720 .bank = 1,
1721 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1722 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1723 .addr = 0,
1724 .misc = 0,
1725 };
1726 CPUState *cenv;
1727
1728 /* Broadcast MCA signal for processor version 06H_EH and above */
1729 if (cpu_x86_support_mca_broadcast(env)) {
1730 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1731 if (cenv == env) {
1732 continue;
1733 }
1734 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1735 }
1736 }
1737 }
1738
1739 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1740 {
1741 struct kvm_x86_mce mce = {
1742 .bank = 9,
1743 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1744 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1745 | MCI_STATUS_AR | 0x134,
1746 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1747 .addr = paddr,
1748 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1749 };
1750 int r;
1751
1752 r = kvm_set_mce(env, &mce);
1753 if (r < 0) {
1754 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1755 abort();
1756 }
1757 kvm_mce_broadcast_rest(env);
1758 }
1759
1760 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1761 {
1762 struct kvm_x86_mce mce = {
1763 .bank = 9,
1764 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1765 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1766 | 0xc0,
1767 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1768 .addr = paddr,
1769 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1770 };
1771 int r;
1772
1773 r = kvm_set_mce(env, &mce);
1774 if (r < 0) {
1775 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1776 abort();
1777 }
1778 kvm_mce_broadcast_rest(env);
1779 }
1780
1781 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1782 {
1783 struct kvm_x86_mce mce = {
1784 .bank = 9,
1785 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1786 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1787 | 0xc0,
1788 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1789 .addr = paddr,
1790 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1791 };
1792
1793 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1794 kvm_mce_broadcast_rest(env);
1795 }
1796
1797 #endif
1798
1799 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1800 {
1801 #if defined(KVM_CAP_MCE)
1802 void *vaddr;
1803 ram_addr_t ram_addr;
1804 target_phys_addr_t paddr;
1805
1806 if ((env->mcg_cap & MCG_SER_P) && addr
1807 && (code == BUS_MCEERR_AR
1808 || code == BUS_MCEERR_AO)) {
1809 vaddr = (void *)addr;
1810 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1811 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1812 fprintf(stderr, "Hardware memory error for memory used by "
1813 "QEMU itself instead of guest system!\n");
1814 /* Hope we are lucky for AO MCE */
1815 if (code == BUS_MCEERR_AO) {
1816 return 0;
1817 } else {
1818 hardware_memory_error();
1819 }
1820 }
1821
1822 if (code == BUS_MCEERR_AR) {
1823 /* Fake an Intel architectural Data Load SRAR UCR */
1824 kvm_mce_inj_srar_dataload(env, paddr);
1825 } else {
1826 /*
1827 * If there is an MCE excpetion being processed, ignore
1828 * this SRAO MCE
1829 */
1830 if (!kvm_mce_in_progress(env)) {
1831 /* Fake an Intel architectural Memory scrubbing UCR */
1832 kvm_mce_inj_srao_memscrub(env, paddr);
1833 }
1834 }
1835 } else
1836 #endif
1837 {
1838 if (code == BUS_MCEERR_AO) {
1839 return 0;
1840 } else if (code == BUS_MCEERR_AR) {
1841 hardware_memory_error();
1842 } else {
1843 return 1;
1844 }
1845 }
1846 return 0;
1847 }
1848
1849 int kvm_on_sigbus(int code, void *addr)
1850 {
1851 #if defined(KVM_CAP_MCE)
1852 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1853 void *vaddr;
1854 ram_addr_t ram_addr;
1855 target_phys_addr_t paddr;
1856
1857 /* Hope we are lucky for AO MCE */
1858 vaddr = addr;
1859 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1860 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1861 fprintf(stderr, "Hardware memory error for memory used by "
1862 "QEMU itself instead of guest system!: %p\n", addr);
1863 return 0;
1864 }
1865 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1866 } else
1867 #endif
1868 {
1869 if (code == BUS_MCEERR_AO) {
1870 return 0;
1871 } else if (code == BUS_MCEERR_AR) {
1872 hardware_memory_error();
1873 } else {
1874 return 1;
1875 }
1876 }
1877 return 0;
1878 }