]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: Create kvm_arch_vcpu_id() function
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static int lm_capable_kernel;
72
73 bool kvm_allows_irq0_override(void)
74 {
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 }
77
78 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
79 {
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
82
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
89 }
90 if (r < 0) {
91 if (r == -E2BIG) {
92 g_free(cpuid);
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
98 }
99 }
100 return cpuid;
101 }
102
103 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
105 */
106 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
107 {
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
112 }
113 return cpuid;
114 }
115
116 struct kvm_para_features {
117 int cap;
118 int feature;
119 } para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
124 { -1, -1 }
125 };
126
127 static int get_para_features(KVMState *s)
128 {
129 int i, features = 0;
130
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
132 if (kvm_check_extension(s, para_features[i].cap)) {
133 features |= (1 << para_features[i].feature);
134 }
135 }
136
137 return features;
138 }
139
140
141 /* Returns the value for a specific register on the cpuid entry
142 */
143 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
144 {
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
159 }
160 return ret;
161 }
162
163 /* Find matching entry for function/index on kvm_cpuid2 struct
164 */
165 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
168 {
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
174 }
175 }
176 /* not found: */
177 return NULL;
178 }
179
180 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
181 uint32_t index, int reg)
182 {
183 struct kvm_cpuid2 *cpuid;
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
186 bool found = false;
187
188 cpuid = get_supported_cpuid(s);
189
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
194 }
195
196 /* Fixups for the data returned by KVM, below */
197
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
204 */
205 ret |= CPUID_EXT_HYPERVISOR;
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
209 */
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 }
214
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
217 */
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
220 }
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
224 */
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
227 }
228
229 g_free(cpuid);
230
231 /* fallback for older kernels */
232 if ((function == KVM_CPUID_FEATURES) && !found) {
233 ret = get_para_features(s);
234 }
235
236 return ret;
237 }
238
239 typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242 } HWPoisonPage;
243
244 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
246
247 static void kvm_unpoison_all(void *param)
248 {
249 HWPoisonPage *page, *next_page;
250
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
254 g_free(page);
255 }
256 }
257
258 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
259 {
260 HWPoisonPage *page;
261
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
265 }
266 }
267 page = g_malloc(sizeof(HWPoisonPage));
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270 }
271
272 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
274 {
275 int r;
276
277 r = kvm_check_extension(s, KVM_CAP_MCE);
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
281 }
282 return -ENOSYS;
283 }
284
285 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
286 {
287 CPUX86State *env = &cpu->env;
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
291
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
298 }
299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
303 }
304
305 static void hardware_memory_error(void)
306 {
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
309 }
310
311 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
312 {
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
315 ram_addr_t ram_addr;
316 hwaddr paddr;
317
318 if ((env->mcg_cap & MCG_SER_P) && addr
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
329 }
330 }
331 kvm_hwpoison_page_add(ram_addr);
332 kvm_mce_inject(cpu, paddr, code);
333 } else {
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 int kvm_arch_on_sigbus(int code, void *addr)
346 {
347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
348 ram_addr_t ram_addr;
349 hwaddr paddr;
350
351 /* Hope we are lucky for AO MCE */
352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
358 }
359 kvm_hwpoison_page_add(ram_addr);
360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
361 } else {
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
368 }
369 }
370 return 0;
371 }
372
373 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
374 {
375 CPUX86State *env = &cpu->env;
376
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
380
381 env->exception_injected = -1;
382
383 /*
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
386 */
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
390 }
391 }
392 assert(bank < bank_num);
393
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
399
400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
401 }
402 return 0;
403 }
404
405 static void cpu_update_state(void *opaque, int running, RunState state)
406 {
407 CPUX86State *env = opaque;
408
409 if (running) {
410 env->tsc_valid = false;
411 }
412 }
413
414 unsigned long kvm_arch_vcpu_id(CPUState *cpu)
415 {
416 return cpu->cpu_index;
417 }
418
419 int kvm_arch_init_vcpu(CPUState *cs)
420 {
421 struct {
422 struct kvm_cpuid2 cpuid;
423 struct kvm_cpuid_entry2 entries[100];
424 } QEMU_PACKED cpuid_data;
425 X86CPU *cpu = X86_CPU(cs);
426 CPUX86State *env = &cpu->env;
427 uint32_t limit, i, j, cpuid_i;
428 uint32_t unused;
429 struct kvm_cpuid_entry2 *c;
430 uint32_t signature[3];
431 int r;
432
433 cpuid_i = 0;
434
435 /* Paravirtualization CPUIDs */
436 c = &cpuid_data.entries[cpuid_i++];
437 memset(c, 0, sizeof(*c));
438 c->function = KVM_CPUID_SIGNATURE;
439 if (!hyperv_enabled()) {
440 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
441 c->eax = 0;
442 } else {
443 memcpy(signature, "Microsoft Hv", 12);
444 c->eax = HYPERV_CPUID_MIN;
445 }
446 c->ebx = signature[0];
447 c->ecx = signature[1];
448 c->edx = signature[2];
449
450 c = &cpuid_data.entries[cpuid_i++];
451 memset(c, 0, sizeof(*c));
452 c->function = KVM_CPUID_FEATURES;
453 c->eax = env->cpuid_kvm_features;
454
455 if (hyperv_enabled()) {
456 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
457 c->eax = signature[0];
458
459 c = &cpuid_data.entries[cpuid_i++];
460 memset(c, 0, sizeof(*c));
461 c->function = HYPERV_CPUID_VERSION;
462 c->eax = 0x00001bbc;
463 c->ebx = 0x00060001;
464
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_FEATURES;
468 if (hyperv_relaxed_timing_enabled()) {
469 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
470 }
471 if (hyperv_vapic_recommended()) {
472 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
473 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
474 }
475
476 c = &cpuid_data.entries[cpuid_i++];
477 memset(c, 0, sizeof(*c));
478 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
479 if (hyperv_relaxed_timing_enabled()) {
480 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
481 }
482 if (hyperv_vapic_recommended()) {
483 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
484 }
485 c->ebx = hyperv_get_spinlock_retries();
486
487 c = &cpuid_data.entries[cpuid_i++];
488 memset(c, 0, sizeof(*c));
489 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
490 c->eax = 0x40;
491 c->ebx = 0x40;
492
493 c = &cpuid_data.entries[cpuid_i++];
494 memset(c, 0, sizeof(*c));
495 c->function = KVM_CPUID_SIGNATURE_NEXT;
496 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
497 c->eax = 0;
498 c->ebx = signature[0];
499 c->ecx = signature[1];
500 c->edx = signature[2];
501 }
502
503 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
504
505 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
506
507 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
508
509 for (i = 0; i <= limit; i++) {
510 c = &cpuid_data.entries[cpuid_i++];
511
512 switch (i) {
513 case 2: {
514 /* Keep reading function 2 till all the input is received */
515 int times;
516
517 c->function = i;
518 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
519 KVM_CPUID_FLAG_STATE_READ_NEXT;
520 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
521 times = c->eax & 0xff;
522
523 for (j = 1; j < times; ++j) {
524 c = &cpuid_data.entries[cpuid_i++];
525 c->function = i;
526 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
527 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
528 }
529 break;
530 }
531 case 4:
532 case 0xb:
533 case 0xd:
534 for (j = 0; ; j++) {
535 if (i == 0xd && j == 64) {
536 break;
537 }
538 c->function = i;
539 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
540 c->index = j;
541 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
542
543 if (i == 4 && c->eax == 0) {
544 break;
545 }
546 if (i == 0xb && !(c->ecx & 0xff00)) {
547 break;
548 }
549 if (i == 0xd && c->eax == 0) {
550 continue;
551 }
552 c = &cpuid_data.entries[cpuid_i++];
553 }
554 break;
555 default:
556 c->function = i;
557 c->flags = 0;
558 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
559 break;
560 }
561 }
562 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
563
564 for (i = 0x80000000; i <= limit; i++) {
565 c = &cpuid_data.entries[cpuid_i++];
566
567 c->function = i;
568 c->flags = 0;
569 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
570 }
571
572 /* Call Centaur's CPUID instructions they are supported. */
573 if (env->cpuid_xlevel2 > 0) {
574 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
575
576 for (i = 0xC0000000; i <= limit; i++) {
577 c = &cpuid_data.entries[cpuid_i++];
578
579 c->function = i;
580 c->flags = 0;
581 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
582 }
583 }
584
585 cpuid_data.cpuid.nent = cpuid_i;
586
587 if (((env->cpuid_version >> 8)&0xF) >= 6
588 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
589 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
590 uint64_t mcg_cap;
591 int banks;
592 int ret;
593
594 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
595 if (ret < 0) {
596 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
597 return ret;
598 }
599
600 if (banks > MCE_BANKS_DEF) {
601 banks = MCE_BANKS_DEF;
602 }
603 mcg_cap &= MCE_CAP_DEF;
604 mcg_cap |= banks;
605 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
606 if (ret < 0) {
607 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
608 return ret;
609 }
610
611 env->mcg_cap = mcg_cap;
612 }
613
614 qemu_add_vm_change_state_handler(cpu_update_state, env);
615
616 cpuid_data.cpuid.padding = 0;
617 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
618 if (r) {
619 return r;
620 }
621
622 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
623 if (r && env->tsc_khz) {
624 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
625 if (r < 0) {
626 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
627 return r;
628 }
629 }
630
631 if (kvm_has_xsave()) {
632 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
633 }
634
635 return 0;
636 }
637
638 void kvm_arch_reset_vcpu(CPUState *cs)
639 {
640 X86CPU *cpu = X86_CPU(cs);
641 CPUX86State *env = &cpu->env;
642
643 env->exception_injected = -1;
644 env->interrupt_injected = -1;
645 env->xcr0 = 1;
646 if (kvm_irqchip_in_kernel()) {
647 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
648 KVM_MP_STATE_UNINITIALIZED;
649 } else {
650 env->mp_state = KVM_MP_STATE_RUNNABLE;
651 }
652 }
653
654 static int kvm_get_supported_msrs(KVMState *s)
655 {
656 static int kvm_supported_msrs;
657 int ret = 0;
658
659 /* first time */
660 if (kvm_supported_msrs == 0) {
661 struct kvm_msr_list msr_list, *kvm_msr_list;
662
663 kvm_supported_msrs = -1;
664
665 /* Obtain MSR list from KVM. These are the MSRs that we must
666 * save/restore */
667 msr_list.nmsrs = 0;
668 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
669 if (ret < 0 && ret != -E2BIG) {
670 return ret;
671 }
672 /* Old kernel modules had a bug and could write beyond the provided
673 memory. Allocate at least a safe amount of 1K. */
674 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
675 msr_list.nmsrs *
676 sizeof(msr_list.indices[0])));
677
678 kvm_msr_list->nmsrs = msr_list.nmsrs;
679 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
680 if (ret >= 0) {
681 int i;
682
683 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
684 if (kvm_msr_list->indices[i] == MSR_STAR) {
685 has_msr_star = true;
686 continue;
687 }
688 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
689 has_msr_hsave_pa = true;
690 continue;
691 }
692 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
693 has_msr_tsc_adjust = true;
694 continue;
695 }
696 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
697 has_msr_tsc_deadline = true;
698 continue;
699 }
700 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
701 has_msr_misc_enable = true;
702 continue;
703 }
704 }
705 }
706
707 g_free(kvm_msr_list);
708 }
709
710 return ret;
711 }
712
713 int kvm_arch_init(KVMState *s)
714 {
715 QemuOptsList *list = qemu_find_opts("machine");
716 uint64_t identity_base = 0xfffbc000;
717 uint64_t shadow_mem;
718 int ret;
719 struct utsname utsname;
720
721 ret = kvm_get_supported_msrs(s);
722 if (ret < 0) {
723 return ret;
724 }
725
726 uname(&utsname);
727 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
728
729 /*
730 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
731 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
732 * Since these must be part of guest physical memory, we need to allocate
733 * them, both by setting their start addresses in the kernel and by
734 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
735 *
736 * Older KVM versions may not support setting the identity map base. In
737 * that case we need to stick with the default, i.e. a 256K maximum BIOS
738 * size.
739 */
740 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
741 /* Allows up to 16M BIOSes. */
742 identity_base = 0xfeffc000;
743
744 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
745 if (ret < 0) {
746 return ret;
747 }
748 }
749
750 /* Set TSS base one page after EPT identity map. */
751 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
752 if (ret < 0) {
753 return ret;
754 }
755
756 /* Tell fw_cfg to notify the BIOS to reserve the range. */
757 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
758 if (ret < 0) {
759 fprintf(stderr, "e820_add_entry() table is full\n");
760 return ret;
761 }
762 qemu_register_reset(kvm_unpoison_all, NULL);
763
764 if (!QTAILQ_EMPTY(&list->head)) {
765 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
766 "kvm_shadow_mem", -1);
767 if (shadow_mem != -1) {
768 shadow_mem /= 4096;
769 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
770 if (ret < 0) {
771 return ret;
772 }
773 }
774 }
775 return 0;
776 }
777
778 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
779 {
780 lhs->selector = rhs->selector;
781 lhs->base = rhs->base;
782 lhs->limit = rhs->limit;
783 lhs->type = 3;
784 lhs->present = 1;
785 lhs->dpl = 3;
786 lhs->db = 0;
787 lhs->s = 1;
788 lhs->l = 0;
789 lhs->g = 0;
790 lhs->avl = 0;
791 lhs->unusable = 0;
792 }
793
794 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
795 {
796 unsigned flags = rhs->flags;
797 lhs->selector = rhs->selector;
798 lhs->base = rhs->base;
799 lhs->limit = rhs->limit;
800 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
801 lhs->present = (flags & DESC_P_MASK) != 0;
802 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
803 lhs->db = (flags >> DESC_B_SHIFT) & 1;
804 lhs->s = (flags & DESC_S_MASK) != 0;
805 lhs->l = (flags >> DESC_L_SHIFT) & 1;
806 lhs->g = (flags & DESC_G_MASK) != 0;
807 lhs->avl = (flags & DESC_AVL_MASK) != 0;
808 lhs->unusable = 0;
809 lhs->padding = 0;
810 }
811
812 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
813 {
814 lhs->selector = rhs->selector;
815 lhs->base = rhs->base;
816 lhs->limit = rhs->limit;
817 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
818 (rhs->present * DESC_P_MASK) |
819 (rhs->dpl << DESC_DPL_SHIFT) |
820 (rhs->db << DESC_B_SHIFT) |
821 (rhs->s * DESC_S_MASK) |
822 (rhs->l << DESC_L_SHIFT) |
823 (rhs->g * DESC_G_MASK) |
824 (rhs->avl * DESC_AVL_MASK);
825 }
826
827 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
828 {
829 if (set) {
830 *kvm_reg = *qemu_reg;
831 } else {
832 *qemu_reg = *kvm_reg;
833 }
834 }
835
836 static int kvm_getput_regs(X86CPU *cpu, int set)
837 {
838 CPUX86State *env = &cpu->env;
839 struct kvm_regs regs;
840 int ret = 0;
841
842 if (!set) {
843 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
844 if (ret < 0) {
845 return ret;
846 }
847 }
848
849 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
850 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
851 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
852 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
853 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
854 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
855 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
856 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
857 #ifdef TARGET_X86_64
858 kvm_getput_reg(&regs.r8, &env->regs[8], set);
859 kvm_getput_reg(&regs.r9, &env->regs[9], set);
860 kvm_getput_reg(&regs.r10, &env->regs[10], set);
861 kvm_getput_reg(&regs.r11, &env->regs[11], set);
862 kvm_getput_reg(&regs.r12, &env->regs[12], set);
863 kvm_getput_reg(&regs.r13, &env->regs[13], set);
864 kvm_getput_reg(&regs.r14, &env->regs[14], set);
865 kvm_getput_reg(&regs.r15, &env->regs[15], set);
866 #endif
867
868 kvm_getput_reg(&regs.rflags, &env->eflags, set);
869 kvm_getput_reg(&regs.rip, &env->eip, set);
870
871 if (set) {
872 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
873 }
874
875 return ret;
876 }
877
878 static int kvm_put_fpu(X86CPU *cpu)
879 {
880 CPUX86State *env = &cpu->env;
881 struct kvm_fpu fpu;
882 int i;
883
884 memset(&fpu, 0, sizeof fpu);
885 fpu.fsw = env->fpus & ~(7 << 11);
886 fpu.fsw |= (env->fpstt & 7) << 11;
887 fpu.fcw = env->fpuc;
888 fpu.last_opcode = env->fpop;
889 fpu.last_ip = env->fpip;
890 fpu.last_dp = env->fpdp;
891 for (i = 0; i < 8; ++i) {
892 fpu.ftwx |= (!env->fptags[i]) << i;
893 }
894 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
895 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
896 fpu.mxcsr = env->mxcsr;
897
898 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
899 }
900
901 #define XSAVE_FCW_FSW 0
902 #define XSAVE_FTW_FOP 1
903 #define XSAVE_CWD_RIP 2
904 #define XSAVE_CWD_RDP 4
905 #define XSAVE_MXCSR 6
906 #define XSAVE_ST_SPACE 8
907 #define XSAVE_XMM_SPACE 40
908 #define XSAVE_XSTATE_BV 128
909 #define XSAVE_YMMH_SPACE 144
910
911 static int kvm_put_xsave(X86CPU *cpu)
912 {
913 CPUX86State *env = &cpu->env;
914 struct kvm_xsave* xsave = env->kvm_xsave_buf;
915 uint16_t cwd, swd, twd;
916 int i, r;
917
918 if (!kvm_has_xsave()) {
919 return kvm_put_fpu(cpu);
920 }
921
922 memset(xsave, 0, sizeof(struct kvm_xsave));
923 twd = 0;
924 swd = env->fpus & ~(7 << 11);
925 swd |= (env->fpstt & 7) << 11;
926 cwd = env->fpuc;
927 for (i = 0; i < 8; ++i) {
928 twd |= (!env->fptags[i]) << i;
929 }
930 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
931 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
932 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
933 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
934 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
935 sizeof env->fpregs);
936 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
937 sizeof env->xmm_regs);
938 xsave->region[XSAVE_MXCSR] = env->mxcsr;
939 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
940 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
941 sizeof env->ymmh_regs);
942 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
943 return r;
944 }
945
946 static int kvm_put_xcrs(X86CPU *cpu)
947 {
948 CPUX86State *env = &cpu->env;
949 struct kvm_xcrs xcrs;
950
951 if (!kvm_has_xcrs()) {
952 return 0;
953 }
954
955 xcrs.nr_xcrs = 1;
956 xcrs.flags = 0;
957 xcrs.xcrs[0].xcr = 0;
958 xcrs.xcrs[0].value = env->xcr0;
959 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
960 }
961
962 static int kvm_put_sregs(X86CPU *cpu)
963 {
964 CPUX86State *env = &cpu->env;
965 struct kvm_sregs sregs;
966
967 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
968 if (env->interrupt_injected >= 0) {
969 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
970 (uint64_t)1 << (env->interrupt_injected % 64);
971 }
972
973 if ((env->eflags & VM_MASK)) {
974 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
975 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
976 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
977 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
978 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
979 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
980 } else {
981 set_seg(&sregs.cs, &env->segs[R_CS]);
982 set_seg(&sregs.ds, &env->segs[R_DS]);
983 set_seg(&sregs.es, &env->segs[R_ES]);
984 set_seg(&sregs.fs, &env->segs[R_FS]);
985 set_seg(&sregs.gs, &env->segs[R_GS]);
986 set_seg(&sregs.ss, &env->segs[R_SS]);
987 }
988
989 set_seg(&sregs.tr, &env->tr);
990 set_seg(&sregs.ldt, &env->ldt);
991
992 sregs.idt.limit = env->idt.limit;
993 sregs.idt.base = env->idt.base;
994 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
995 sregs.gdt.limit = env->gdt.limit;
996 sregs.gdt.base = env->gdt.base;
997 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
998
999 sregs.cr0 = env->cr[0];
1000 sregs.cr2 = env->cr[2];
1001 sregs.cr3 = env->cr[3];
1002 sregs.cr4 = env->cr[4];
1003
1004 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1005 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1006
1007 sregs.efer = env->efer;
1008
1009 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1010 }
1011
1012 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1013 uint32_t index, uint64_t value)
1014 {
1015 entry->index = index;
1016 entry->data = value;
1017 }
1018
1019 static int kvm_put_msrs(X86CPU *cpu, int level)
1020 {
1021 CPUX86State *env = &cpu->env;
1022 struct {
1023 struct kvm_msrs info;
1024 struct kvm_msr_entry entries[100];
1025 } msr_data;
1026 struct kvm_msr_entry *msrs = msr_data.entries;
1027 int n = 0;
1028
1029 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1030 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1031 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1032 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1033 if (has_msr_star) {
1034 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1035 }
1036 if (has_msr_hsave_pa) {
1037 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1038 }
1039 if (has_msr_tsc_adjust) {
1040 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1041 }
1042 if (has_msr_tsc_deadline) {
1043 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1044 }
1045 if (has_msr_misc_enable) {
1046 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1047 env->msr_ia32_misc_enable);
1048 }
1049 #ifdef TARGET_X86_64
1050 if (lm_capable_kernel) {
1051 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1052 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1053 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1054 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1055 }
1056 #endif
1057 if (level == KVM_PUT_FULL_STATE) {
1058 /*
1059 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1060 * writeback. Until this is fixed, we only write the offset to SMP
1061 * guests after migration, desynchronizing the VCPUs, but avoiding
1062 * huge jump-backs that would occur without any writeback at all.
1063 */
1064 if (smp_cpus == 1 || env->tsc != 0) {
1065 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1066 }
1067 }
1068 /*
1069 * The following paravirtual MSRs have side effects on the guest or are
1070 * too heavy for normal writeback. Limit them to reset or full state
1071 * updates.
1072 */
1073 if (level >= KVM_PUT_RESET_STATE) {
1074 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1075 env->system_time_msr);
1076 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1077 if (has_msr_async_pf_en) {
1078 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1079 env->async_pf_en_msr);
1080 }
1081 if (has_msr_pv_eoi_en) {
1082 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1083 env->pv_eoi_en_msr);
1084 }
1085 if (hyperv_hypercall_available()) {
1086 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1087 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1088 }
1089 if (hyperv_vapic_recommended()) {
1090 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1091 }
1092 }
1093 if (env->mcg_cap) {
1094 int i;
1095
1096 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1097 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1098 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1099 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1100 }
1101 }
1102
1103 msr_data.info.nmsrs = n;
1104
1105 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1106
1107 }
1108
1109
1110 static int kvm_get_fpu(X86CPU *cpu)
1111 {
1112 CPUX86State *env = &cpu->env;
1113 struct kvm_fpu fpu;
1114 int i, ret;
1115
1116 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1117 if (ret < 0) {
1118 return ret;
1119 }
1120
1121 env->fpstt = (fpu.fsw >> 11) & 7;
1122 env->fpus = fpu.fsw;
1123 env->fpuc = fpu.fcw;
1124 env->fpop = fpu.last_opcode;
1125 env->fpip = fpu.last_ip;
1126 env->fpdp = fpu.last_dp;
1127 for (i = 0; i < 8; ++i) {
1128 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1129 }
1130 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1131 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1132 env->mxcsr = fpu.mxcsr;
1133
1134 return 0;
1135 }
1136
1137 static int kvm_get_xsave(X86CPU *cpu)
1138 {
1139 CPUX86State *env = &cpu->env;
1140 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1141 int ret, i;
1142 uint16_t cwd, swd, twd;
1143
1144 if (!kvm_has_xsave()) {
1145 return kvm_get_fpu(cpu);
1146 }
1147
1148 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1149 if (ret < 0) {
1150 return ret;
1151 }
1152
1153 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1154 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1155 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1156 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1157 env->fpstt = (swd >> 11) & 7;
1158 env->fpus = swd;
1159 env->fpuc = cwd;
1160 for (i = 0; i < 8; ++i) {
1161 env->fptags[i] = !((twd >> i) & 1);
1162 }
1163 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1164 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1165 env->mxcsr = xsave->region[XSAVE_MXCSR];
1166 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1167 sizeof env->fpregs);
1168 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1169 sizeof env->xmm_regs);
1170 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1171 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1172 sizeof env->ymmh_regs);
1173 return 0;
1174 }
1175
1176 static int kvm_get_xcrs(X86CPU *cpu)
1177 {
1178 CPUX86State *env = &cpu->env;
1179 int i, ret;
1180 struct kvm_xcrs xcrs;
1181
1182 if (!kvm_has_xcrs()) {
1183 return 0;
1184 }
1185
1186 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1187 if (ret < 0) {
1188 return ret;
1189 }
1190
1191 for (i = 0; i < xcrs.nr_xcrs; i++) {
1192 /* Only support xcr0 now */
1193 if (xcrs.xcrs[0].xcr == 0) {
1194 env->xcr0 = xcrs.xcrs[0].value;
1195 break;
1196 }
1197 }
1198 return 0;
1199 }
1200
1201 static int kvm_get_sregs(X86CPU *cpu)
1202 {
1203 CPUX86State *env = &cpu->env;
1204 struct kvm_sregs sregs;
1205 uint32_t hflags;
1206 int bit, i, ret;
1207
1208 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1209 if (ret < 0) {
1210 return ret;
1211 }
1212
1213 /* There can only be one pending IRQ set in the bitmap at a time, so try
1214 to find it and save its number instead (-1 for none). */
1215 env->interrupt_injected = -1;
1216 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1217 if (sregs.interrupt_bitmap[i]) {
1218 bit = ctz64(sregs.interrupt_bitmap[i]);
1219 env->interrupt_injected = i * 64 + bit;
1220 break;
1221 }
1222 }
1223
1224 get_seg(&env->segs[R_CS], &sregs.cs);
1225 get_seg(&env->segs[R_DS], &sregs.ds);
1226 get_seg(&env->segs[R_ES], &sregs.es);
1227 get_seg(&env->segs[R_FS], &sregs.fs);
1228 get_seg(&env->segs[R_GS], &sregs.gs);
1229 get_seg(&env->segs[R_SS], &sregs.ss);
1230
1231 get_seg(&env->tr, &sregs.tr);
1232 get_seg(&env->ldt, &sregs.ldt);
1233
1234 env->idt.limit = sregs.idt.limit;
1235 env->idt.base = sregs.idt.base;
1236 env->gdt.limit = sregs.gdt.limit;
1237 env->gdt.base = sregs.gdt.base;
1238
1239 env->cr[0] = sregs.cr0;
1240 env->cr[2] = sregs.cr2;
1241 env->cr[3] = sregs.cr3;
1242 env->cr[4] = sregs.cr4;
1243
1244 env->efer = sregs.efer;
1245
1246 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1247
1248 #define HFLAG_COPY_MASK \
1249 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1250 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1251 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1252 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1253
1254 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1255 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1256 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1257 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1258 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1259 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1260 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1261
1262 if (env->efer & MSR_EFER_LMA) {
1263 hflags |= HF_LMA_MASK;
1264 }
1265
1266 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1267 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1268 } else {
1269 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1270 (DESC_B_SHIFT - HF_CS32_SHIFT);
1271 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1272 (DESC_B_SHIFT - HF_SS32_SHIFT);
1273 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1274 !(hflags & HF_CS32_MASK)) {
1275 hflags |= HF_ADDSEG_MASK;
1276 } else {
1277 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1278 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1279 }
1280 }
1281 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1282
1283 return 0;
1284 }
1285
1286 static int kvm_get_msrs(X86CPU *cpu)
1287 {
1288 CPUX86State *env = &cpu->env;
1289 struct {
1290 struct kvm_msrs info;
1291 struct kvm_msr_entry entries[100];
1292 } msr_data;
1293 struct kvm_msr_entry *msrs = msr_data.entries;
1294 int ret, i, n;
1295
1296 n = 0;
1297 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1298 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1299 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1300 msrs[n++].index = MSR_PAT;
1301 if (has_msr_star) {
1302 msrs[n++].index = MSR_STAR;
1303 }
1304 if (has_msr_hsave_pa) {
1305 msrs[n++].index = MSR_VM_HSAVE_PA;
1306 }
1307 if (has_msr_tsc_adjust) {
1308 msrs[n++].index = MSR_TSC_ADJUST;
1309 }
1310 if (has_msr_tsc_deadline) {
1311 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1312 }
1313 if (has_msr_misc_enable) {
1314 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1315 }
1316
1317 if (!env->tsc_valid) {
1318 msrs[n++].index = MSR_IA32_TSC;
1319 env->tsc_valid = !runstate_is_running();
1320 }
1321
1322 #ifdef TARGET_X86_64
1323 if (lm_capable_kernel) {
1324 msrs[n++].index = MSR_CSTAR;
1325 msrs[n++].index = MSR_KERNELGSBASE;
1326 msrs[n++].index = MSR_FMASK;
1327 msrs[n++].index = MSR_LSTAR;
1328 }
1329 #endif
1330 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1331 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1332 if (has_msr_async_pf_en) {
1333 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1334 }
1335 if (has_msr_pv_eoi_en) {
1336 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1337 }
1338
1339 if (env->mcg_cap) {
1340 msrs[n++].index = MSR_MCG_STATUS;
1341 msrs[n++].index = MSR_MCG_CTL;
1342 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1343 msrs[n++].index = MSR_MC0_CTL + i;
1344 }
1345 }
1346
1347 msr_data.info.nmsrs = n;
1348 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1349 if (ret < 0) {
1350 return ret;
1351 }
1352
1353 for (i = 0; i < ret; i++) {
1354 switch (msrs[i].index) {
1355 case MSR_IA32_SYSENTER_CS:
1356 env->sysenter_cs = msrs[i].data;
1357 break;
1358 case MSR_IA32_SYSENTER_ESP:
1359 env->sysenter_esp = msrs[i].data;
1360 break;
1361 case MSR_IA32_SYSENTER_EIP:
1362 env->sysenter_eip = msrs[i].data;
1363 break;
1364 case MSR_PAT:
1365 env->pat = msrs[i].data;
1366 break;
1367 case MSR_STAR:
1368 env->star = msrs[i].data;
1369 break;
1370 #ifdef TARGET_X86_64
1371 case MSR_CSTAR:
1372 env->cstar = msrs[i].data;
1373 break;
1374 case MSR_KERNELGSBASE:
1375 env->kernelgsbase = msrs[i].data;
1376 break;
1377 case MSR_FMASK:
1378 env->fmask = msrs[i].data;
1379 break;
1380 case MSR_LSTAR:
1381 env->lstar = msrs[i].data;
1382 break;
1383 #endif
1384 case MSR_IA32_TSC:
1385 env->tsc = msrs[i].data;
1386 break;
1387 case MSR_TSC_ADJUST:
1388 env->tsc_adjust = msrs[i].data;
1389 break;
1390 case MSR_IA32_TSCDEADLINE:
1391 env->tsc_deadline = msrs[i].data;
1392 break;
1393 case MSR_VM_HSAVE_PA:
1394 env->vm_hsave = msrs[i].data;
1395 break;
1396 case MSR_KVM_SYSTEM_TIME:
1397 env->system_time_msr = msrs[i].data;
1398 break;
1399 case MSR_KVM_WALL_CLOCK:
1400 env->wall_clock_msr = msrs[i].data;
1401 break;
1402 case MSR_MCG_STATUS:
1403 env->mcg_status = msrs[i].data;
1404 break;
1405 case MSR_MCG_CTL:
1406 env->mcg_ctl = msrs[i].data;
1407 break;
1408 case MSR_IA32_MISC_ENABLE:
1409 env->msr_ia32_misc_enable = msrs[i].data;
1410 break;
1411 default:
1412 if (msrs[i].index >= MSR_MC0_CTL &&
1413 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1414 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1415 }
1416 break;
1417 case MSR_KVM_ASYNC_PF_EN:
1418 env->async_pf_en_msr = msrs[i].data;
1419 break;
1420 case MSR_KVM_PV_EOI_EN:
1421 env->pv_eoi_en_msr = msrs[i].data;
1422 break;
1423 }
1424 }
1425
1426 return 0;
1427 }
1428
1429 static int kvm_put_mp_state(X86CPU *cpu)
1430 {
1431 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1432
1433 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1434 }
1435
1436 static int kvm_get_mp_state(X86CPU *cpu)
1437 {
1438 CPUX86State *env = &cpu->env;
1439 struct kvm_mp_state mp_state;
1440 int ret;
1441
1442 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1443 if (ret < 0) {
1444 return ret;
1445 }
1446 env->mp_state = mp_state.mp_state;
1447 if (kvm_irqchip_in_kernel()) {
1448 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1449 }
1450 return 0;
1451 }
1452
1453 static int kvm_get_apic(X86CPU *cpu)
1454 {
1455 CPUX86State *env = &cpu->env;
1456 DeviceState *apic = env->apic_state;
1457 struct kvm_lapic_state kapic;
1458 int ret;
1459
1460 if (apic && kvm_irqchip_in_kernel()) {
1461 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1462 if (ret < 0) {
1463 return ret;
1464 }
1465
1466 kvm_get_apic_state(apic, &kapic);
1467 }
1468 return 0;
1469 }
1470
1471 static int kvm_put_apic(X86CPU *cpu)
1472 {
1473 CPUX86State *env = &cpu->env;
1474 DeviceState *apic = env->apic_state;
1475 struct kvm_lapic_state kapic;
1476
1477 if (apic && kvm_irqchip_in_kernel()) {
1478 kvm_put_apic_state(apic, &kapic);
1479
1480 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1481 }
1482 return 0;
1483 }
1484
1485 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1486 {
1487 CPUX86State *env = &cpu->env;
1488 struct kvm_vcpu_events events;
1489
1490 if (!kvm_has_vcpu_events()) {
1491 return 0;
1492 }
1493
1494 events.exception.injected = (env->exception_injected >= 0);
1495 events.exception.nr = env->exception_injected;
1496 events.exception.has_error_code = env->has_error_code;
1497 events.exception.error_code = env->error_code;
1498 events.exception.pad = 0;
1499
1500 events.interrupt.injected = (env->interrupt_injected >= 0);
1501 events.interrupt.nr = env->interrupt_injected;
1502 events.interrupt.soft = env->soft_interrupt;
1503
1504 events.nmi.injected = env->nmi_injected;
1505 events.nmi.pending = env->nmi_pending;
1506 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1507 events.nmi.pad = 0;
1508
1509 events.sipi_vector = env->sipi_vector;
1510
1511 events.flags = 0;
1512 if (level >= KVM_PUT_RESET_STATE) {
1513 events.flags |=
1514 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1515 }
1516
1517 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1518 }
1519
1520 static int kvm_get_vcpu_events(X86CPU *cpu)
1521 {
1522 CPUX86State *env = &cpu->env;
1523 struct kvm_vcpu_events events;
1524 int ret;
1525
1526 if (!kvm_has_vcpu_events()) {
1527 return 0;
1528 }
1529
1530 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1531 if (ret < 0) {
1532 return ret;
1533 }
1534 env->exception_injected =
1535 events.exception.injected ? events.exception.nr : -1;
1536 env->has_error_code = events.exception.has_error_code;
1537 env->error_code = events.exception.error_code;
1538
1539 env->interrupt_injected =
1540 events.interrupt.injected ? events.interrupt.nr : -1;
1541 env->soft_interrupt = events.interrupt.soft;
1542
1543 env->nmi_injected = events.nmi.injected;
1544 env->nmi_pending = events.nmi.pending;
1545 if (events.nmi.masked) {
1546 env->hflags2 |= HF2_NMI_MASK;
1547 } else {
1548 env->hflags2 &= ~HF2_NMI_MASK;
1549 }
1550
1551 env->sipi_vector = events.sipi_vector;
1552
1553 return 0;
1554 }
1555
1556 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1557 {
1558 CPUX86State *env = &cpu->env;
1559 int ret = 0;
1560 unsigned long reinject_trap = 0;
1561
1562 if (!kvm_has_vcpu_events()) {
1563 if (env->exception_injected == 1) {
1564 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1565 } else if (env->exception_injected == 3) {
1566 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1567 }
1568 env->exception_injected = -1;
1569 }
1570
1571 /*
1572 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1573 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1574 * by updating the debug state once again if single-stepping is on.
1575 * Another reason to call kvm_update_guest_debug here is a pending debug
1576 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1577 * reinject them via SET_GUEST_DEBUG.
1578 */
1579 if (reinject_trap ||
1580 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1581 ret = kvm_update_guest_debug(env, reinject_trap);
1582 }
1583 return ret;
1584 }
1585
1586 static int kvm_put_debugregs(X86CPU *cpu)
1587 {
1588 CPUX86State *env = &cpu->env;
1589 struct kvm_debugregs dbgregs;
1590 int i;
1591
1592 if (!kvm_has_debugregs()) {
1593 return 0;
1594 }
1595
1596 for (i = 0; i < 4; i++) {
1597 dbgregs.db[i] = env->dr[i];
1598 }
1599 dbgregs.dr6 = env->dr[6];
1600 dbgregs.dr7 = env->dr[7];
1601 dbgregs.flags = 0;
1602
1603 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1604 }
1605
1606 static int kvm_get_debugregs(X86CPU *cpu)
1607 {
1608 CPUX86State *env = &cpu->env;
1609 struct kvm_debugregs dbgregs;
1610 int i, ret;
1611
1612 if (!kvm_has_debugregs()) {
1613 return 0;
1614 }
1615
1616 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1617 if (ret < 0) {
1618 return ret;
1619 }
1620 for (i = 0; i < 4; i++) {
1621 env->dr[i] = dbgregs.db[i];
1622 }
1623 env->dr[4] = env->dr[6] = dbgregs.dr6;
1624 env->dr[5] = env->dr[7] = dbgregs.dr7;
1625
1626 return 0;
1627 }
1628
1629 int kvm_arch_put_registers(CPUState *cpu, int level)
1630 {
1631 X86CPU *x86_cpu = X86_CPU(cpu);
1632 int ret;
1633
1634 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1635
1636 ret = kvm_getput_regs(x86_cpu, 1);
1637 if (ret < 0) {
1638 return ret;
1639 }
1640 ret = kvm_put_xsave(x86_cpu);
1641 if (ret < 0) {
1642 return ret;
1643 }
1644 ret = kvm_put_xcrs(x86_cpu);
1645 if (ret < 0) {
1646 return ret;
1647 }
1648 ret = kvm_put_sregs(x86_cpu);
1649 if (ret < 0) {
1650 return ret;
1651 }
1652 /* must be before kvm_put_msrs */
1653 ret = kvm_inject_mce_oldstyle(x86_cpu);
1654 if (ret < 0) {
1655 return ret;
1656 }
1657 ret = kvm_put_msrs(x86_cpu, level);
1658 if (ret < 0) {
1659 return ret;
1660 }
1661 if (level >= KVM_PUT_RESET_STATE) {
1662 ret = kvm_put_mp_state(x86_cpu);
1663 if (ret < 0) {
1664 return ret;
1665 }
1666 ret = kvm_put_apic(x86_cpu);
1667 if (ret < 0) {
1668 return ret;
1669 }
1670 }
1671 ret = kvm_put_vcpu_events(x86_cpu, level);
1672 if (ret < 0) {
1673 return ret;
1674 }
1675 ret = kvm_put_debugregs(x86_cpu);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 /* must be last */
1680 ret = kvm_guest_debug_workarounds(x86_cpu);
1681 if (ret < 0) {
1682 return ret;
1683 }
1684 return 0;
1685 }
1686
1687 int kvm_arch_get_registers(CPUState *cs)
1688 {
1689 X86CPU *cpu = X86_CPU(cs);
1690 int ret;
1691
1692 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1693
1694 ret = kvm_getput_regs(cpu, 0);
1695 if (ret < 0) {
1696 return ret;
1697 }
1698 ret = kvm_get_xsave(cpu);
1699 if (ret < 0) {
1700 return ret;
1701 }
1702 ret = kvm_get_xcrs(cpu);
1703 if (ret < 0) {
1704 return ret;
1705 }
1706 ret = kvm_get_sregs(cpu);
1707 if (ret < 0) {
1708 return ret;
1709 }
1710 ret = kvm_get_msrs(cpu);
1711 if (ret < 0) {
1712 return ret;
1713 }
1714 ret = kvm_get_mp_state(cpu);
1715 if (ret < 0) {
1716 return ret;
1717 }
1718 ret = kvm_get_apic(cpu);
1719 if (ret < 0) {
1720 return ret;
1721 }
1722 ret = kvm_get_vcpu_events(cpu);
1723 if (ret < 0) {
1724 return ret;
1725 }
1726 ret = kvm_get_debugregs(cpu);
1727 if (ret < 0) {
1728 return ret;
1729 }
1730 return 0;
1731 }
1732
1733 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1734 {
1735 X86CPU *x86_cpu = X86_CPU(cpu);
1736 CPUX86State *env = &x86_cpu->env;
1737 int ret;
1738
1739 /* Inject NMI */
1740 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1741 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1742 DPRINTF("injected NMI\n");
1743 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1744 if (ret < 0) {
1745 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1746 strerror(-ret));
1747 }
1748 }
1749
1750 if (!kvm_irqchip_in_kernel()) {
1751 /* Force the VCPU out of its inner loop to process any INIT requests
1752 * or pending TPR access reports. */
1753 if (env->interrupt_request &
1754 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1755 env->exit_request = 1;
1756 }
1757
1758 /* Try to inject an interrupt if the guest can accept it */
1759 if (run->ready_for_interrupt_injection &&
1760 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1761 (env->eflags & IF_MASK)) {
1762 int irq;
1763
1764 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1765 irq = cpu_get_pic_interrupt(env);
1766 if (irq >= 0) {
1767 struct kvm_interrupt intr;
1768
1769 intr.irq = irq;
1770 DPRINTF("injected interrupt %d\n", irq);
1771 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1772 if (ret < 0) {
1773 fprintf(stderr,
1774 "KVM: injection failed, interrupt lost (%s)\n",
1775 strerror(-ret));
1776 }
1777 }
1778 }
1779
1780 /* If we have an interrupt but the guest is not ready to receive an
1781 * interrupt, request an interrupt window exit. This will
1782 * cause a return to userspace as soon as the guest is ready to
1783 * receive interrupts. */
1784 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1785 run->request_interrupt_window = 1;
1786 } else {
1787 run->request_interrupt_window = 0;
1788 }
1789
1790 DPRINTF("setting tpr\n");
1791 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1792 }
1793 }
1794
1795 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1796 {
1797 X86CPU *x86_cpu = X86_CPU(cpu);
1798 CPUX86State *env = &x86_cpu->env;
1799
1800 if (run->if_flag) {
1801 env->eflags |= IF_MASK;
1802 } else {
1803 env->eflags &= ~IF_MASK;
1804 }
1805 cpu_set_apic_tpr(env->apic_state, run->cr8);
1806 cpu_set_apic_base(env->apic_state, run->apic_base);
1807 }
1808
1809 int kvm_arch_process_async_events(CPUState *cs)
1810 {
1811 X86CPU *cpu = X86_CPU(cs);
1812 CPUX86State *env = &cpu->env;
1813
1814 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1815 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1816 assert(env->mcg_cap);
1817
1818 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1819
1820 kvm_cpu_synchronize_state(env);
1821
1822 if (env->exception_injected == EXCP08_DBLE) {
1823 /* this means triple fault */
1824 qemu_system_reset_request();
1825 env->exit_request = 1;
1826 return 0;
1827 }
1828 env->exception_injected = EXCP12_MCHK;
1829 env->has_error_code = 0;
1830
1831 env->halted = 0;
1832 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1833 env->mp_state = KVM_MP_STATE_RUNNABLE;
1834 }
1835 }
1836
1837 if (kvm_irqchip_in_kernel()) {
1838 return 0;
1839 }
1840
1841 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1842 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1843 apic_poll_irq(env->apic_state);
1844 }
1845 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1846 (env->eflags & IF_MASK)) ||
1847 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1848 env->halted = 0;
1849 }
1850 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1851 kvm_cpu_synchronize_state(env);
1852 do_cpu_init(cpu);
1853 }
1854 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1855 kvm_cpu_synchronize_state(env);
1856 do_cpu_sipi(cpu);
1857 }
1858 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1859 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1860 kvm_cpu_synchronize_state(env);
1861 apic_handle_tpr_access_report(env->apic_state, env->eip,
1862 env->tpr_access_type);
1863 }
1864
1865 return env->halted;
1866 }
1867
1868 static int kvm_handle_halt(X86CPU *cpu)
1869 {
1870 CPUX86State *env = &cpu->env;
1871
1872 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1873 (env->eflags & IF_MASK)) &&
1874 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1875 env->halted = 1;
1876 return EXCP_HLT;
1877 }
1878
1879 return 0;
1880 }
1881
1882 static int kvm_handle_tpr_access(X86CPU *cpu)
1883 {
1884 CPUX86State *env = &cpu->env;
1885 CPUState *cs = CPU(cpu);
1886 struct kvm_run *run = cs->kvm_run;
1887
1888 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1889 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1890 : TPR_ACCESS_READ);
1891 return 1;
1892 }
1893
1894 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1895 {
1896 CPUX86State *env = &X86_CPU(cpu)->env;
1897 static const uint8_t int3 = 0xcc;
1898
1899 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1900 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1901 return -EINVAL;
1902 }
1903 return 0;
1904 }
1905
1906 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1907 {
1908 CPUX86State *env = &X86_CPU(cpu)->env;
1909 uint8_t int3;
1910
1911 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1912 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1913 return -EINVAL;
1914 }
1915 return 0;
1916 }
1917
1918 static struct {
1919 target_ulong addr;
1920 int len;
1921 int type;
1922 } hw_breakpoint[4];
1923
1924 static int nb_hw_breakpoint;
1925
1926 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1927 {
1928 int n;
1929
1930 for (n = 0; n < nb_hw_breakpoint; n++) {
1931 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1932 (hw_breakpoint[n].len == len || len == -1)) {
1933 return n;
1934 }
1935 }
1936 return -1;
1937 }
1938
1939 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1940 target_ulong len, int type)
1941 {
1942 switch (type) {
1943 case GDB_BREAKPOINT_HW:
1944 len = 1;
1945 break;
1946 case GDB_WATCHPOINT_WRITE:
1947 case GDB_WATCHPOINT_ACCESS:
1948 switch (len) {
1949 case 1:
1950 break;
1951 case 2:
1952 case 4:
1953 case 8:
1954 if (addr & (len - 1)) {
1955 return -EINVAL;
1956 }
1957 break;
1958 default:
1959 return -EINVAL;
1960 }
1961 break;
1962 default:
1963 return -ENOSYS;
1964 }
1965
1966 if (nb_hw_breakpoint == 4) {
1967 return -ENOBUFS;
1968 }
1969 if (find_hw_breakpoint(addr, len, type) >= 0) {
1970 return -EEXIST;
1971 }
1972 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1973 hw_breakpoint[nb_hw_breakpoint].len = len;
1974 hw_breakpoint[nb_hw_breakpoint].type = type;
1975 nb_hw_breakpoint++;
1976
1977 return 0;
1978 }
1979
1980 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1981 target_ulong len, int type)
1982 {
1983 int n;
1984
1985 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1986 if (n < 0) {
1987 return -ENOENT;
1988 }
1989 nb_hw_breakpoint--;
1990 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1991
1992 return 0;
1993 }
1994
1995 void kvm_arch_remove_all_hw_breakpoints(void)
1996 {
1997 nb_hw_breakpoint = 0;
1998 }
1999
2000 static CPUWatchpoint hw_watchpoint;
2001
2002 static int kvm_handle_debug(X86CPU *cpu,
2003 struct kvm_debug_exit_arch *arch_info)
2004 {
2005 CPUX86State *env = &cpu->env;
2006 int ret = 0;
2007 int n;
2008
2009 if (arch_info->exception == 1) {
2010 if (arch_info->dr6 & (1 << 14)) {
2011 if (env->singlestep_enabled) {
2012 ret = EXCP_DEBUG;
2013 }
2014 } else {
2015 for (n = 0; n < 4; n++) {
2016 if (arch_info->dr6 & (1 << n)) {
2017 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2018 case 0x0:
2019 ret = EXCP_DEBUG;
2020 break;
2021 case 0x1:
2022 ret = EXCP_DEBUG;
2023 env->watchpoint_hit = &hw_watchpoint;
2024 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2025 hw_watchpoint.flags = BP_MEM_WRITE;
2026 break;
2027 case 0x3:
2028 ret = EXCP_DEBUG;
2029 env->watchpoint_hit = &hw_watchpoint;
2030 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2031 hw_watchpoint.flags = BP_MEM_ACCESS;
2032 break;
2033 }
2034 }
2035 }
2036 }
2037 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2038 ret = EXCP_DEBUG;
2039 }
2040 if (ret == 0) {
2041 cpu_synchronize_state(env);
2042 assert(env->exception_injected == -1);
2043
2044 /* pass to guest */
2045 env->exception_injected = arch_info->exception;
2046 env->has_error_code = 0;
2047 }
2048
2049 return ret;
2050 }
2051
2052 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2053 {
2054 const uint8_t type_code[] = {
2055 [GDB_BREAKPOINT_HW] = 0x0,
2056 [GDB_WATCHPOINT_WRITE] = 0x1,
2057 [GDB_WATCHPOINT_ACCESS] = 0x3
2058 };
2059 const uint8_t len_code[] = {
2060 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2061 };
2062 int n;
2063
2064 if (kvm_sw_breakpoints_active(cpu)) {
2065 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2066 }
2067 if (nb_hw_breakpoint > 0) {
2068 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2069 dbg->arch.debugreg[7] = 0x0600;
2070 for (n = 0; n < nb_hw_breakpoint; n++) {
2071 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2072 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2073 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2074 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2075 }
2076 }
2077 }
2078
2079 static bool host_supports_vmx(void)
2080 {
2081 uint32_t ecx, unused;
2082
2083 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2084 return ecx & CPUID_EXT_VMX;
2085 }
2086
2087 #define VMX_INVALID_GUEST_STATE 0x80000021
2088
2089 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2090 {
2091 X86CPU *cpu = X86_CPU(cs);
2092 uint64_t code;
2093 int ret;
2094
2095 switch (run->exit_reason) {
2096 case KVM_EXIT_HLT:
2097 DPRINTF("handle_hlt\n");
2098 ret = kvm_handle_halt(cpu);
2099 break;
2100 case KVM_EXIT_SET_TPR:
2101 ret = 0;
2102 break;
2103 case KVM_EXIT_TPR_ACCESS:
2104 ret = kvm_handle_tpr_access(cpu);
2105 break;
2106 case KVM_EXIT_FAIL_ENTRY:
2107 code = run->fail_entry.hardware_entry_failure_reason;
2108 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2109 code);
2110 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2111 fprintf(stderr,
2112 "\nIf you're running a guest on an Intel machine without "
2113 "unrestricted mode\n"
2114 "support, the failure can be most likely due to the guest "
2115 "entering an invalid\n"
2116 "state for Intel VT. For example, the guest maybe running "
2117 "in big real mode\n"
2118 "which is not supported on less recent Intel processors."
2119 "\n\n");
2120 }
2121 ret = -1;
2122 break;
2123 case KVM_EXIT_EXCEPTION:
2124 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2125 run->ex.exception, run->ex.error_code);
2126 ret = -1;
2127 break;
2128 case KVM_EXIT_DEBUG:
2129 DPRINTF("kvm_exit_debug\n");
2130 ret = kvm_handle_debug(cpu, &run->debug.arch);
2131 break;
2132 default:
2133 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2134 ret = -1;
2135 break;
2136 }
2137
2138 return ret;
2139 }
2140
2141 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2142 {
2143 X86CPU *cpu = X86_CPU(cs);
2144 CPUX86State *env = &cpu->env;
2145
2146 kvm_cpu_synchronize_state(env);
2147 return !(env->cr[0] & CR0_PE_MASK) ||
2148 ((env->segs[R_CS].selector & 3) != 3);
2149 }
2150
2151 void kvm_arch_init_irq_routing(KVMState *s)
2152 {
2153 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2154 /* If kernel can't do irq routing, interrupt source
2155 * override 0->2 cannot be set up as required by HPET.
2156 * So we have to disable it.
2157 */
2158 no_hpet = 1;
2159 }
2160 /* We know at this point that we're using the in-kernel
2161 * irqchip, so we can use irqfds, and on x86 we know
2162 * we can use msi via irqfd and GSI routing.
2163 */
2164 kvm_irqfds_allowed = true;
2165 kvm_msi_via_irqfd_allowed = true;
2166 kvm_gsi_routing_allowed = true;
2167 }
2168
2169 /* Classic KVM device assignment interface. Will remain x86 only. */
2170 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2171 uint32_t flags, uint32_t *dev_id)
2172 {
2173 struct kvm_assigned_pci_dev dev_data = {
2174 .segnr = dev_addr->domain,
2175 .busnr = dev_addr->bus,
2176 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2177 .flags = flags,
2178 };
2179 int ret;
2180
2181 dev_data.assigned_dev_id =
2182 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2183
2184 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2185 if (ret < 0) {
2186 return ret;
2187 }
2188
2189 *dev_id = dev_data.assigned_dev_id;
2190
2191 return 0;
2192 }
2193
2194 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2195 {
2196 struct kvm_assigned_pci_dev dev_data = {
2197 .assigned_dev_id = dev_id,
2198 };
2199
2200 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2201 }
2202
2203 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2204 uint32_t irq_type, uint32_t guest_irq)
2205 {
2206 struct kvm_assigned_irq assigned_irq = {
2207 .assigned_dev_id = dev_id,
2208 .guest_irq = guest_irq,
2209 .flags = irq_type,
2210 };
2211
2212 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2213 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2214 } else {
2215 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2216 }
2217 }
2218
2219 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2220 uint32_t guest_irq)
2221 {
2222 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2223 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2224
2225 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2226 }
2227
2228 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2229 {
2230 struct kvm_assigned_pci_dev dev_data = {
2231 .assigned_dev_id = dev_id,
2232 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2233 };
2234
2235 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2236 }
2237
2238 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2239 uint32_t type)
2240 {
2241 struct kvm_assigned_irq assigned_irq = {
2242 .assigned_dev_id = dev_id,
2243 .flags = type,
2244 };
2245
2246 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2247 }
2248
2249 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2250 {
2251 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2252 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2253 }
2254
2255 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2256 {
2257 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2258 KVM_DEV_IRQ_GUEST_MSI, virq);
2259 }
2260
2261 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2262 {
2263 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2264 KVM_DEV_IRQ_HOST_MSI);
2265 }
2266
2267 bool kvm_device_msix_supported(KVMState *s)
2268 {
2269 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2270 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2271 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2272 }
2273
2274 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2275 uint32_t nr_vectors)
2276 {
2277 struct kvm_assigned_msix_nr msix_nr = {
2278 .assigned_dev_id = dev_id,
2279 .entry_nr = nr_vectors,
2280 };
2281
2282 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2283 }
2284
2285 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2286 int virq)
2287 {
2288 struct kvm_assigned_msix_entry msix_entry = {
2289 .assigned_dev_id = dev_id,
2290 .gsi = virq,
2291 .entry = vector,
2292 };
2293
2294 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2295 }
2296
2297 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2298 {
2299 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2300 KVM_DEV_IRQ_GUEST_MSIX, 0);
2301 }
2302
2303 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2304 {
2305 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2306 KVM_DEV_IRQ_HOST_MSIX);
2307 }