]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: filter CPUID feature words earlier, on cpu.c
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105 {
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112 }
113
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
123 };
124
125 static int get_para_features(KVMState *s)
126 {
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136 }
137
138
139 /* Returns the value for a specific register on the cpuid entry
140 */
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142 {
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159 }
160
161 /* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166 {
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176 }
177
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
180 {
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
185
186 cpuid = get_supported_cpuid(s);
187
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
192 }
193
194 /* Fixups for the data returned by KVM, below */
195
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
212
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
215 */
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
218 }
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
222 */
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
225 }
226
227 g_free(cpuid);
228
229 /* fallback for older kernels */
230 if ((function == KVM_CPUID_FEATURES) && !found) {
231 ret = get_para_features(s);
232 }
233
234 return ret;
235 }
236
237 typedef struct HWPoisonPage {
238 ram_addr_t ram_addr;
239 QLIST_ENTRY(HWPoisonPage) list;
240 } HWPoisonPage;
241
242 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
244
245 static void kvm_unpoison_all(void *param)
246 {
247 HWPoisonPage *page, *next_page;
248
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
252 g_free(page);
253 }
254 }
255
256 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
257 {
258 HWPoisonPage *page;
259
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
262 return;
263 }
264 }
265 page = g_malloc(sizeof(HWPoisonPage));
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
268 }
269
270 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
271 int *max_banks)
272 {
273 int r;
274
275 r = kvm_check_extension(s, KVM_CAP_MCE);
276 if (r > 0) {
277 *max_banks = r;
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
279 }
280 return -ENOSYS;
281 }
282
283 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
284 {
285 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
286 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
287 uint64_t mcg_status = MCG_STATUS_MCIP;
288
289 if (code == BUS_MCEERR_AR) {
290 status |= MCI_STATUS_AR | 0x134;
291 mcg_status |= MCG_STATUS_EIPV;
292 } else {
293 status |= 0xc0;
294 mcg_status |= MCG_STATUS_RIPV;
295 }
296 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
297 (MCM_ADDR_PHYS << 6) | 0xc,
298 cpu_x86_support_mca_broadcast(env) ?
299 MCE_INJECT_BROADCAST : 0);
300 }
301
302 static void hardware_memory_error(void)
303 {
304 fprintf(stderr, "Hardware memory error!\n");
305 exit(1);
306 }
307
308 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
309 {
310 ram_addr_t ram_addr;
311 hwaddr paddr;
312
313 if ((env->mcg_cap & MCG_SER_P) && addr
314 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
315 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
316 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
317 fprintf(stderr, "Hardware memory error for memory used by "
318 "QEMU itself instead of guest system!\n");
319 /* Hope we are lucky for AO MCE */
320 if (code == BUS_MCEERR_AO) {
321 return 0;
322 } else {
323 hardware_memory_error();
324 }
325 }
326 kvm_hwpoison_page_add(ram_addr);
327 kvm_mce_inject(env, paddr, code);
328 } else {
329 if (code == BUS_MCEERR_AO) {
330 return 0;
331 } else if (code == BUS_MCEERR_AR) {
332 hardware_memory_error();
333 } else {
334 return 1;
335 }
336 }
337 return 0;
338 }
339
340 int kvm_arch_on_sigbus(int code, void *addr)
341 {
342 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
343 ram_addr_t ram_addr;
344 hwaddr paddr;
345
346 /* Hope we are lucky for AO MCE */
347 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
348 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
349 &paddr)) {
350 fprintf(stderr, "Hardware memory error for memory used by "
351 "QEMU itself instead of guest system!: %p\n", addr);
352 return 0;
353 }
354 kvm_hwpoison_page_add(ram_addr);
355 kvm_mce_inject(first_cpu, paddr, code);
356 } else {
357 if (code == BUS_MCEERR_AO) {
358 return 0;
359 } else if (code == BUS_MCEERR_AR) {
360 hardware_memory_error();
361 } else {
362 return 1;
363 }
364 }
365 return 0;
366 }
367
368 static int kvm_inject_mce_oldstyle(CPUX86State *env)
369 {
370 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
371 unsigned int bank, bank_num = env->mcg_cap & 0xff;
372 struct kvm_x86_mce mce;
373
374 env->exception_injected = -1;
375
376 /*
377 * There must be at least one bank in use if an MCE is pending.
378 * Find it and use its values for the event injection.
379 */
380 for (bank = 0; bank < bank_num; bank++) {
381 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
382 break;
383 }
384 }
385 assert(bank < bank_num);
386
387 mce.bank = bank;
388 mce.status = env->mce_banks[bank * 4 + 1];
389 mce.mcg_status = env->mcg_status;
390 mce.addr = env->mce_banks[bank * 4 + 2];
391 mce.misc = env->mce_banks[bank * 4 + 3];
392
393 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
394 }
395 return 0;
396 }
397
398 static void cpu_update_state(void *opaque, int running, RunState state)
399 {
400 CPUX86State *env = opaque;
401
402 if (running) {
403 env->tsc_valid = false;
404 }
405 }
406
407 int kvm_arch_init_vcpu(CPUX86State *env)
408 {
409 struct {
410 struct kvm_cpuid2 cpuid;
411 struct kvm_cpuid_entry2 entries[100];
412 } QEMU_PACKED cpuid_data;
413 uint32_t limit, i, j, cpuid_i;
414 uint32_t unused;
415 struct kvm_cpuid_entry2 *c;
416 uint32_t signature[3];
417 int r;
418
419 cpuid_i = 0;
420
421 /* Paravirtualization CPUIDs */
422 c = &cpuid_data.entries[cpuid_i++];
423 memset(c, 0, sizeof(*c));
424 c->function = KVM_CPUID_SIGNATURE;
425 if (!hyperv_enabled()) {
426 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
427 c->eax = 0;
428 } else {
429 memcpy(signature, "Microsoft Hv", 12);
430 c->eax = HYPERV_CPUID_MIN;
431 }
432 c->ebx = signature[0];
433 c->ecx = signature[1];
434 c->edx = signature[2];
435
436 c = &cpuid_data.entries[cpuid_i++];
437 memset(c, 0, sizeof(*c));
438 c->function = KVM_CPUID_FEATURES;
439 c->eax = env->cpuid_kvm_features;
440
441 if (hyperv_enabled()) {
442 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
443 c->eax = signature[0];
444
445 c = &cpuid_data.entries[cpuid_i++];
446 memset(c, 0, sizeof(*c));
447 c->function = HYPERV_CPUID_VERSION;
448 c->eax = 0x00001bbc;
449 c->ebx = 0x00060001;
450
451 c = &cpuid_data.entries[cpuid_i++];
452 memset(c, 0, sizeof(*c));
453 c->function = HYPERV_CPUID_FEATURES;
454 if (hyperv_relaxed_timing_enabled()) {
455 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
456 }
457 if (hyperv_vapic_recommended()) {
458 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
459 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
460 }
461
462 c = &cpuid_data.entries[cpuid_i++];
463 memset(c, 0, sizeof(*c));
464 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
465 if (hyperv_relaxed_timing_enabled()) {
466 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
467 }
468 if (hyperv_vapic_recommended()) {
469 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
470 }
471 c->ebx = hyperv_get_spinlock_retries();
472
473 c = &cpuid_data.entries[cpuid_i++];
474 memset(c, 0, sizeof(*c));
475 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
476 c->eax = 0x40;
477 c->ebx = 0x40;
478
479 c = &cpuid_data.entries[cpuid_i++];
480 memset(c, 0, sizeof(*c));
481 c->function = KVM_CPUID_SIGNATURE_NEXT;
482 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
483 c->eax = 0;
484 c->ebx = signature[0];
485 c->ecx = signature[1];
486 c->edx = signature[2];
487 }
488
489 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
490
491 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
492
493 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
494
495 for (i = 0; i <= limit; i++) {
496 c = &cpuid_data.entries[cpuid_i++];
497
498 switch (i) {
499 case 2: {
500 /* Keep reading function 2 till all the input is received */
501 int times;
502
503 c->function = i;
504 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
505 KVM_CPUID_FLAG_STATE_READ_NEXT;
506 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
507 times = c->eax & 0xff;
508
509 for (j = 1; j < times; ++j) {
510 c = &cpuid_data.entries[cpuid_i++];
511 c->function = i;
512 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
513 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
514 }
515 break;
516 }
517 case 4:
518 case 0xb:
519 case 0xd:
520 for (j = 0; ; j++) {
521 if (i == 0xd && j == 64) {
522 break;
523 }
524 c->function = i;
525 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 c->index = j;
527 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
528
529 if (i == 4 && c->eax == 0) {
530 break;
531 }
532 if (i == 0xb && !(c->ecx & 0xff00)) {
533 break;
534 }
535 if (i == 0xd && c->eax == 0) {
536 continue;
537 }
538 c = &cpuid_data.entries[cpuid_i++];
539 }
540 break;
541 default:
542 c->function = i;
543 c->flags = 0;
544 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
545 break;
546 }
547 }
548 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
549
550 for (i = 0x80000000; i <= limit; i++) {
551 c = &cpuid_data.entries[cpuid_i++];
552
553 c->function = i;
554 c->flags = 0;
555 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
556 }
557
558 /* Call Centaur's CPUID instructions they are supported. */
559 if (env->cpuid_xlevel2 > 0) {
560 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
561
562 for (i = 0xC0000000; i <= limit; i++) {
563 c = &cpuid_data.entries[cpuid_i++];
564
565 c->function = i;
566 c->flags = 0;
567 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
568 }
569 }
570
571 cpuid_data.cpuid.nent = cpuid_i;
572
573 if (((env->cpuid_version >> 8)&0xF) >= 6
574 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
575 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
576 uint64_t mcg_cap;
577 int banks;
578 int ret;
579
580 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
581 if (ret < 0) {
582 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
583 return ret;
584 }
585
586 if (banks > MCE_BANKS_DEF) {
587 banks = MCE_BANKS_DEF;
588 }
589 mcg_cap &= MCE_CAP_DEF;
590 mcg_cap |= banks;
591 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
592 if (ret < 0) {
593 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
594 return ret;
595 }
596
597 env->mcg_cap = mcg_cap;
598 }
599
600 qemu_add_vm_change_state_handler(cpu_update_state, env);
601
602 cpuid_data.cpuid.padding = 0;
603 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
604 if (r) {
605 return r;
606 }
607
608 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
609 if (r && env->tsc_khz) {
610 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
611 if (r < 0) {
612 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
613 return r;
614 }
615 }
616
617 if (kvm_has_xsave()) {
618 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
619 }
620
621 return 0;
622 }
623
624 void kvm_arch_reset_vcpu(CPUX86State *env)
625 {
626 X86CPU *cpu = x86_env_get_cpu(env);
627
628 env->exception_injected = -1;
629 env->interrupt_injected = -1;
630 env->xcr0 = 1;
631 if (kvm_irqchip_in_kernel()) {
632 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
633 KVM_MP_STATE_UNINITIALIZED;
634 } else {
635 env->mp_state = KVM_MP_STATE_RUNNABLE;
636 }
637 }
638
639 static int kvm_get_supported_msrs(KVMState *s)
640 {
641 static int kvm_supported_msrs;
642 int ret = 0;
643
644 /* first time */
645 if (kvm_supported_msrs == 0) {
646 struct kvm_msr_list msr_list, *kvm_msr_list;
647
648 kvm_supported_msrs = -1;
649
650 /* Obtain MSR list from KVM. These are the MSRs that we must
651 * save/restore */
652 msr_list.nmsrs = 0;
653 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
654 if (ret < 0 && ret != -E2BIG) {
655 return ret;
656 }
657 /* Old kernel modules had a bug and could write beyond the provided
658 memory. Allocate at least a safe amount of 1K. */
659 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
660 msr_list.nmsrs *
661 sizeof(msr_list.indices[0])));
662
663 kvm_msr_list->nmsrs = msr_list.nmsrs;
664 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
665 if (ret >= 0) {
666 int i;
667
668 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
669 if (kvm_msr_list->indices[i] == MSR_STAR) {
670 has_msr_star = true;
671 continue;
672 }
673 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
674 has_msr_hsave_pa = true;
675 continue;
676 }
677 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
678 has_msr_tsc_deadline = true;
679 continue;
680 }
681 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
682 has_msr_misc_enable = true;
683 continue;
684 }
685 }
686 }
687
688 g_free(kvm_msr_list);
689 }
690
691 return ret;
692 }
693
694 int kvm_arch_init(KVMState *s)
695 {
696 QemuOptsList *list = qemu_find_opts("machine");
697 uint64_t identity_base = 0xfffbc000;
698 uint64_t shadow_mem;
699 int ret;
700 struct utsname utsname;
701
702 ret = kvm_get_supported_msrs(s);
703 if (ret < 0) {
704 return ret;
705 }
706
707 uname(&utsname);
708 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
709
710 /*
711 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
712 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
713 * Since these must be part of guest physical memory, we need to allocate
714 * them, both by setting their start addresses in the kernel and by
715 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
716 *
717 * Older KVM versions may not support setting the identity map base. In
718 * that case we need to stick with the default, i.e. a 256K maximum BIOS
719 * size.
720 */
721 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
722 /* Allows up to 16M BIOSes. */
723 identity_base = 0xfeffc000;
724
725 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
726 if (ret < 0) {
727 return ret;
728 }
729 }
730
731 /* Set TSS base one page after EPT identity map. */
732 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
733 if (ret < 0) {
734 return ret;
735 }
736
737 /* Tell fw_cfg to notify the BIOS to reserve the range. */
738 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
739 if (ret < 0) {
740 fprintf(stderr, "e820_add_entry() table is full\n");
741 return ret;
742 }
743 qemu_register_reset(kvm_unpoison_all, NULL);
744
745 if (!QTAILQ_EMPTY(&list->head)) {
746 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
747 "kvm_shadow_mem", -1);
748 if (shadow_mem != -1) {
749 shadow_mem /= 4096;
750 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
751 if (ret < 0) {
752 return ret;
753 }
754 }
755 }
756 return 0;
757 }
758
759 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
760 {
761 lhs->selector = rhs->selector;
762 lhs->base = rhs->base;
763 lhs->limit = rhs->limit;
764 lhs->type = 3;
765 lhs->present = 1;
766 lhs->dpl = 3;
767 lhs->db = 0;
768 lhs->s = 1;
769 lhs->l = 0;
770 lhs->g = 0;
771 lhs->avl = 0;
772 lhs->unusable = 0;
773 }
774
775 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
776 {
777 unsigned flags = rhs->flags;
778 lhs->selector = rhs->selector;
779 lhs->base = rhs->base;
780 lhs->limit = rhs->limit;
781 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
782 lhs->present = (flags & DESC_P_MASK) != 0;
783 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
784 lhs->db = (flags >> DESC_B_SHIFT) & 1;
785 lhs->s = (flags & DESC_S_MASK) != 0;
786 lhs->l = (flags >> DESC_L_SHIFT) & 1;
787 lhs->g = (flags & DESC_G_MASK) != 0;
788 lhs->avl = (flags & DESC_AVL_MASK) != 0;
789 lhs->unusable = 0;
790 lhs->padding = 0;
791 }
792
793 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
794 {
795 lhs->selector = rhs->selector;
796 lhs->base = rhs->base;
797 lhs->limit = rhs->limit;
798 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
799 (rhs->present * DESC_P_MASK) |
800 (rhs->dpl << DESC_DPL_SHIFT) |
801 (rhs->db << DESC_B_SHIFT) |
802 (rhs->s * DESC_S_MASK) |
803 (rhs->l << DESC_L_SHIFT) |
804 (rhs->g * DESC_G_MASK) |
805 (rhs->avl * DESC_AVL_MASK);
806 }
807
808 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
809 {
810 if (set) {
811 *kvm_reg = *qemu_reg;
812 } else {
813 *qemu_reg = *kvm_reg;
814 }
815 }
816
817 static int kvm_getput_regs(CPUX86State *env, int set)
818 {
819 struct kvm_regs regs;
820 int ret = 0;
821
822 if (!set) {
823 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
824 if (ret < 0) {
825 return ret;
826 }
827 }
828
829 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
830 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
831 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
832 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
833 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
834 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
835 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
836 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
837 #ifdef TARGET_X86_64
838 kvm_getput_reg(&regs.r8, &env->regs[8], set);
839 kvm_getput_reg(&regs.r9, &env->regs[9], set);
840 kvm_getput_reg(&regs.r10, &env->regs[10], set);
841 kvm_getput_reg(&regs.r11, &env->regs[11], set);
842 kvm_getput_reg(&regs.r12, &env->regs[12], set);
843 kvm_getput_reg(&regs.r13, &env->regs[13], set);
844 kvm_getput_reg(&regs.r14, &env->regs[14], set);
845 kvm_getput_reg(&regs.r15, &env->regs[15], set);
846 #endif
847
848 kvm_getput_reg(&regs.rflags, &env->eflags, set);
849 kvm_getput_reg(&regs.rip, &env->eip, set);
850
851 if (set) {
852 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
853 }
854
855 return ret;
856 }
857
858 static int kvm_put_fpu(CPUX86State *env)
859 {
860 struct kvm_fpu fpu;
861 int i;
862
863 memset(&fpu, 0, sizeof fpu);
864 fpu.fsw = env->fpus & ~(7 << 11);
865 fpu.fsw |= (env->fpstt & 7) << 11;
866 fpu.fcw = env->fpuc;
867 fpu.last_opcode = env->fpop;
868 fpu.last_ip = env->fpip;
869 fpu.last_dp = env->fpdp;
870 for (i = 0; i < 8; ++i) {
871 fpu.ftwx |= (!env->fptags[i]) << i;
872 }
873 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
874 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
875 fpu.mxcsr = env->mxcsr;
876
877 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
878 }
879
880 #define XSAVE_FCW_FSW 0
881 #define XSAVE_FTW_FOP 1
882 #define XSAVE_CWD_RIP 2
883 #define XSAVE_CWD_RDP 4
884 #define XSAVE_MXCSR 6
885 #define XSAVE_ST_SPACE 8
886 #define XSAVE_XMM_SPACE 40
887 #define XSAVE_XSTATE_BV 128
888 #define XSAVE_YMMH_SPACE 144
889
890 static int kvm_put_xsave(CPUX86State *env)
891 {
892 struct kvm_xsave* xsave = env->kvm_xsave_buf;
893 uint16_t cwd, swd, twd;
894 int i, r;
895
896 if (!kvm_has_xsave()) {
897 return kvm_put_fpu(env);
898 }
899
900 memset(xsave, 0, sizeof(struct kvm_xsave));
901 twd = 0;
902 swd = env->fpus & ~(7 << 11);
903 swd |= (env->fpstt & 7) << 11;
904 cwd = env->fpuc;
905 for (i = 0; i < 8; ++i) {
906 twd |= (!env->fptags[i]) << i;
907 }
908 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
909 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
910 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
911 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
912 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
913 sizeof env->fpregs);
914 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
915 sizeof env->xmm_regs);
916 xsave->region[XSAVE_MXCSR] = env->mxcsr;
917 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
918 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
919 sizeof env->ymmh_regs);
920 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
921 return r;
922 }
923
924 static int kvm_put_xcrs(CPUX86State *env)
925 {
926 struct kvm_xcrs xcrs;
927
928 if (!kvm_has_xcrs()) {
929 return 0;
930 }
931
932 xcrs.nr_xcrs = 1;
933 xcrs.flags = 0;
934 xcrs.xcrs[0].xcr = 0;
935 xcrs.xcrs[0].value = env->xcr0;
936 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
937 }
938
939 static int kvm_put_sregs(CPUX86State *env)
940 {
941 struct kvm_sregs sregs;
942
943 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
944 if (env->interrupt_injected >= 0) {
945 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
946 (uint64_t)1 << (env->interrupt_injected % 64);
947 }
948
949 if ((env->eflags & VM_MASK)) {
950 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
951 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
952 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
953 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
954 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
955 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
956 } else {
957 set_seg(&sregs.cs, &env->segs[R_CS]);
958 set_seg(&sregs.ds, &env->segs[R_DS]);
959 set_seg(&sregs.es, &env->segs[R_ES]);
960 set_seg(&sregs.fs, &env->segs[R_FS]);
961 set_seg(&sregs.gs, &env->segs[R_GS]);
962 set_seg(&sregs.ss, &env->segs[R_SS]);
963 }
964
965 set_seg(&sregs.tr, &env->tr);
966 set_seg(&sregs.ldt, &env->ldt);
967
968 sregs.idt.limit = env->idt.limit;
969 sregs.idt.base = env->idt.base;
970 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
971 sregs.gdt.limit = env->gdt.limit;
972 sregs.gdt.base = env->gdt.base;
973 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
974
975 sregs.cr0 = env->cr[0];
976 sregs.cr2 = env->cr[2];
977 sregs.cr3 = env->cr[3];
978 sregs.cr4 = env->cr[4];
979
980 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
981 sregs.apic_base = cpu_get_apic_base(env->apic_state);
982
983 sregs.efer = env->efer;
984
985 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
986 }
987
988 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
989 uint32_t index, uint64_t value)
990 {
991 entry->index = index;
992 entry->data = value;
993 }
994
995 static int kvm_put_msrs(CPUX86State *env, int level)
996 {
997 struct {
998 struct kvm_msrs info;
999 struct kvm_msr_entry entries[100];
1000 } msr_data;
1001 struct kvm_msr_entry *msrs = msr_data.entries;
1002 int n = 0;
1003
1004 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1005 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1006 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1007 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1008 if (has_msr_star) {
1009 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1010 }
1011 if (has_msr_hsave_pa) {
1012 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1013 }
1014 if (has_msr_tsc_deadline) {
1015 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1016 }
1017 if (has_msr_misc_enable) {
1018 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1019 env->msr_ia32_misc_enable);
1020 }
1021 #ifdef TARGET_X86_64
1022 if (lm_capable_kernel) {
1023 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1024 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1025 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1026 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1027 }
1028 #endif
1029 if (level == KVM_PUT_FULL_STATE) {
1030 /*
1031 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1032 * writeback. Until this is fixed, we only write the offset to SMP
1033 * guests after migration, desynchronizing the VCPUs, but avoiding
1034 * huge jump-backs that would occur without any writeback at all.
1035 */
1036 if (smp_cpus == 1 || env->tsc != 0) {
1037 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1038 }
1039 }
1040 /*
1041 * The following paravirtual MSRs have side effects on the guest or are
1042 * too heavy for normal writeback. Limit them to reset or full state
1043 * updates.
1044 */
1045 if (level >= KVM_PUT_RESET_STATE) {
1046 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1047 env->system_time_msr);
1048 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1049 if (has_msr_async_pf_en) {
1050 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1051 env->async_pf_en_msr);
1052 }
1053 if (has_msr_pv_eoi_en) {
1054 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1055 env->pv_eoi_en_msr);
1056 }
1057 if (hyperv_hypercall_available()) {
1058 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1059 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1060 }
1061 if (hyperv_vapic_recommended()) {
1062 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1063 }
1064 }
1065 if (env->mcg_cap) {
1066 int i;
1067
1068 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1069 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1070 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1072 }
1073 }
1074
1075 msr_data.info.nmsrs = n;
1076
1077 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1078
1079 }
1080
1081
1082 static int kvm_get_fpu(CPUX86State *env)
1083 {
1084 struct kvm_fpu fpu;
1085 int i, ret;
1086
1087 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1088 if (ret < 0) {
1089 return ret;
1090 }
1091
1092 env->fpstt = (fpu.fsw >> 11) & 7;
1093 env->fpus = fpu.fsw;
1094 env->fpuc = fpu.fcw;
1095 env->fpop = fpu.last_opcode;
1096 env->fpip = fpu.last_ip;
1097 env->fpdp = fpu.last_dp;
1098 for (i = 0; i < 8; ++i) {
1099 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1100 }
1101 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1102 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1103 env->mxcsr = fpu.mxcsr;
1104
1105 return 0;
1106 }
1107
1108 static int kvm_get_xsave(CPUX86State *env)
1109 {
1110 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1111 int ret, i;
1112 uint16_t cwd, swd, twd;
1113
1114 if (!kvm_has_xsave()) {
1115 return kvm_get_fpu(env);
1116 }
1117
1118 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1119 if (ret < 0) {
1120 return ret;
1121 }
1122
1123 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1124 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1125 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1126 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1127 env->fpstt = (swd >> 11) & 7;
1128 env->fpus = swd;
1129 env->fpuc = cwd;
1130 for (i = 0; i < 8; ++i) {
1131 env->fptags[i] = !((twd >> i) & 1);
1132 }
1133 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1134 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1135 env->mxcsr = xsave->region[XSAVE_MXCSR];
1136 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1137 sizeof env->fpregs);
1138 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1139 sizeof env->xmm_regs);
1140 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1141 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1142 sizeof env->ymmh_regs);
1143 return 0;
1144 }
1145
1146 static int kvm_get_xcrs(CPUX86State *env)
1147 {
1148 int i, ret;
1149 struct kvm_xcrs xcrs;
1150
1151 if (!kvm_has_xcrs()) {
1152 return 0;
1153 }
1154
1155 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1156 if (ret < 0) {
1157 return ret;
1158 }
1159
1160 for (i = 0; i < xcrs.nr_xcrs; i++) {
1161 /* Only support xcr0 now */
1162 if (xcrs.xcrs[0].xcr == 0) {
1163 env->xcr0 = xcrs.xcrs[0].value;
1164 break;
1165 }
1166 }
1167 return 0;
1168 }
1169
1170 static int kvm_get_sregs(CPUX86State *env)
1171 {
1172 struct kvm_sregs sregs;
1173 uint32_t hflags;
1174 int bit, i, ret;
1175
1176 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1177 if (ret < 0) {
1178 return ret;
1179 }
1180
1181 /* There can only be one pending IRQ set in the bitmap at a time, so try
1182 to find it and save its number instead (-1 for none). */
1183 env->interrupt_injected = -1;
1184 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1185 if (sregs.interrupt_bitmap[i]) {
1186 bit = ctz64(sregs.interrupt_bitmap[i]);
1187 env->interrupt_injected = i * 64 + bit;
1188 break;
1189 }
1190 }
1191
1192 get_seg(&env->segs[R_CS], &sregs.cs);
1193 get_seg(&env->segs[R_DS], &sregs.ds);
1194 get_seg(&env->segs[R_ES], &sregs.es);
1195 get_seg(&env->segs[R_FS], &sregs.fs);
1196 get_seg(&env->segs[R_GS], &sregs.gs);
1197 get_seg(&env->segs[R_SS], &sregs.ss);
1198
1199 get_seg(&env->tr, &sregs.tr);
1200 get_seg(&env->ldt, &sregs.ldt);
1201
1202 env->idt.limit = sregs.idt.limit;
1203 env->idt.base = sregs.idt.base;
1204 env->gdt.limit = sregs.gdt.limit;
1205 env->gdt.base = sregs.gdt.base;
1206
1207 env->cr[0] = sregs.cr0;
1208 env->cr[2] = sregs.cr2;
1209 env->cr[3] = sregs.cr3;
1210 env->cr[4] = sregs.cr4;
1211
1212 env->efer = sregs.efer;
1213
1214 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1215
1216 #define HFLAG_COPY_MASK \
1217 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1218 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1219 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1220 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1221
1222 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1223 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1224 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1225 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1226 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1227 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1228 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1229
1230 if (env->efer & MSR_EFER_LMA) {
1231 hflags |= HF_LMA_MASK;
1232 }
1233
1234 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1235 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1236 } else {
1237 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1238 (DESC_B_SHIFT - HF_CS32_SHIFT);
1239 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1240 (DESC_B_SHIFT - HF_SS32_SHIFT);
1241 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1242 !(hflags & HF_CS32_MASK)) {
1243 hflags |= HF_ADDSEG_MASK;
1244 } else {
1245 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1246 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1247 }
1248 }
1249 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1250
1251 return 0;
1252 }
1253
1254 static int kvm_get_msrs(CPUX86State *env)
1255 {
1256 struct {
1257 struct kvm_msrs info;
1258 struct kvm_msr_entry entries[100];
1259 } msr_data;
1260 struct kvm_msr_entry *msrs = msr_data.entries;
1261 int ret, i, n;
1262
1263 n = 0;
1264 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1265 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1266 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1267 msrs[n++].index = MSR_PAT;
1268 if (has_msr_star) {
1269 msrs[n++].index = MSR_STAR;
1270 }
1271 if (has_msr_hsave_pa) {
1272 msrs[n++].index = MSR_VM_HSAVE_PA;
1273 }
1274 if (has_msr_tsc_deadline) {
1275 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1276 }
1277 if (has_msr_misc_enable) {
1278 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1279 }
1280
1281 if (!env->tsc_valid) {
1282 msrs[n++].index = MSR_IA32_TSC;
1283 env->tsc_valid = !runstate_is_running();
1284 }
1285
1286 #ifdef TARGET_X86_64
1287 if (lm_capable_kernel) {
1288 msrs[n++].index = MSR_CSTAR;
1289 msrs[n++].index = MSR_KERNELGSBASE;
1290 msrs[n++].index = MSR_FMASK;
1291 msrs[n++].index = MSR_LSTAR;
1292 }
1293 #endif
1294 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1295 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1296 if (has_msr_async_pf_en) {
1297 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1298 }
1299 if (has_msr_pv_eoi_en) {
1300 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1301 }
1302
1303 if (env->mcg_cap) {
1304 msrs[n++].index = MSR_MCG_STATUS;
1305 msrs[n++].index = MSR_MCG_CTL;
1306 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1307 msrs[n++].index = MSR_MC0_CTL + i;
1308 }
1309 }
1310
1311 msr_data.info.nmsrs = n;
1312 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1313 if (ret < 0) {
1314 return ret;
1315 }
1316
1317 for (i = 0; i < ret; i++) {
1318 switch (msrs[i].index) {
1319 case MSR_IA32_SYSENTER_CS:
1320 env->sysenter_cs = msrs[i].data;
1321 break;
1322 case MSR_IA32_SYSENTER_ESP:
1323 env->sysenter_esp = msrs[i].data;
1324 break;
1325 case MSR_IA32_SYSENTER_EIP:
1326 env->sysenter_eip = msrs[i].data;
1327 break;
1328 case MSR_PAT:
1329 env->pat = msrs[i].data;
1330 break;
1331 case MSR_STAR:
1332 env->star = msrs[i].data;
1333 break;
1334 #ifdef TARGET_X86_64
1335 case MSR_CSTAR:
1336 env->cstar = msrs[i].data;
1337 break;
1338 case MSR_KERNELGSBASE:
1339 env->kernelgsbase = msrs[i].data;
1340 break;
1341 case MSR_FMASK:
1342 env->fmask = msrs[i].data;
1343 break;
1344 case MSR_LSTAR:
1345 env->lstar = msrs[i].data;
1346 break;
1347 #endif
1348 case MSR_IA32_TSC:
1349 env->tsc = msrs[i].data;
1350 break;
1351 case MSR_IA32_TSCDEADLINE:
1352 env->tsc_deadline = msrs[i].data;
1353 break;
1354 case MSR_VM_HSAVE_PA:
1355 env->vm_hsave = msrs[i].data;
1356 break;
1357 case MSR_KVM_SYSTEM_TIME:
1358 env->system_time_msr = msrs[i].data;
1359 break;
1360 case MSR_KVM_WALL_CLOCK:
1361 env->wall_clock_msr = msrs[i].data;
1362 break;
1363 case MSR_MCG_STATUS:
1364 env->mcg_status = msrs[i].data;
1365 break;
1366 case MSR_MCG_CTL:
1367 env->mcg_ctl = msrs[i].data;
1368 break;
1369 case MSR_IA32_MISC_ENABLE:
1370 env->msr_ia32_misc_enable = msrs[i].data;
1371 break;
1372 default:
1373 if (msrs[i].index >= MSR_MC0_CTL &&
1374 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1375 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1376 }
1377 break;
1378 case MSR_KVM_ASYNC_PF_EN:
1379 env->async_pf_en_msr = msrs[i].data;
1380 break;
1381 case MSR_KVM_PV_EOI_EN:
1382 env->pv_eoi_en_msr = msrs[i].data;
1383 break;
1384 }
1385 }
1386
1387 return 0;
1388 }
1389
1390 static int kvm_put_mp_state(CPUX86State *env)
1391 {
1392 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1393
1394 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1395 }
1396
1397 static int kvm_get_mp_state(CPUX86State *env)
1398 {
1399 struct kvm_mp_state mp_state;
1400 int ret;
1401
1402 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1403 if (ret < 0) {
1404 return ret;
1405 }
1406 env->mp_state = mp_state.mp_state;
1407 if (kvm_irqchip_in_kernel()) {
1408 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1409 }
1410 return 0;
1411 }
1412
1413 static int kvm_get_apic(CPUX86State *env)
1414 {
1415 DeviceState *apic = env->apic_state;
1416 struct kvm_lapic_state kapic;
1417 int ret;
1418
1419 if (apic && kvm_irqchip_in_kernel()) {
1420 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1421 if (ret < 0) {
1422 return ret;
1423 }
1424
1425 kvm_get_apic_state(apic, &kapic);
1426 }
1427 return 0;
1428 }
1429
1430 static int kvm_put_apic(CPUX86State *env)
1431 {
1432 DeviceState *apic = env->apic_state;
1433 struct kvm_lapic_state kapic;
1434
1435 if (apic && kvm_irqchip_in_kernel()) {
1436 kvm_put_apic_state(apic, &kapic);
1437
1438 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1439 }
1440 return 0;
1441 }
1442
1443 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1444 {
1445 struct kvm_vcpu_events events;
1446
1447 if (!kvm_has_vcpu_events()) {
1448 return 0;
1449 }
1450
1451 events.exception.injected = (env->exception_injected >= 0);
1452 events.exception.nr = env->exception_injected;
1453 events.exception.has_error_code = env->has_error_code;
1454 events.exception.error_code = env->error_code;
1455 events.exception.pad = 0;
1456
1457 events.interrupt.injected = (env->interrupt_injected >= 0);
1458 events.interrupt.nr = env->interrupt_injected;
1459 events.interrupt.soft = env->soft_interrupt;
1460
1461 events.nmi.injected = env->nmi_injected;
1462 events.nmi.pending = env->nmi_pending;
1463 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1464 events.nmi.pad = 0;
1465
1466 events.sipi_vector = env->sipi_vector;
1467
1468 events.flags = 0;
1469 if (level >= KVM_PUT_RESET_STATE) {
1470 events.flags |=
1471 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1472 }
1473
1474 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1475 }
1476
1477 static int kvm_get_vcpu_events(CPUX86State *env)
1478 {
1479 struct kvm_vcpu_events events;
1480 int ret;
1481
1482 if (!kvm_has_vcpu_events()) {
1483 return 0;
1484 }
1485
1486 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1487 if (ret < 0) {
1488 return ret;
1489 }
1490 env->exception_injected =
1491 events.exception.injected ? events.exception.nr : -1;
1492 env->has_error_code = events.exception.has_error_code;
1493 env->error_code = events.exception.error_code;
1494
1495 env->interrupt_injected =
1496 events.interrupt.injected ? events.interrupt.nr : -1;
1497 env->soft_interrupt = events.interrupt.soft;
1498
1499 env->nmi_injected = events.nmi.injected;
1500 env->nmi_pending = events.nmi.pending;
1501 if (events.nmi.masked) {
1502 env->hflags2 |= HF2_NMI_MASK;
1503 } else {
1504 env->hflags2 &= ~HF2_NMI_MASK;
1505 }
1506
1507 env->sipi_vector = events.sipi_vector;
1508
1509 return 0;
1510 }
1511
1512 static int kvm_guest_debug_workarounds(CPUX86State *env)
1513 {
1514 int ret = 0;
1515 unsigned long reinject_trap = 0;
1516
1517 if (!kvm_has_vcpu_events()) {
1518 if (env->exception_injected == 1) {
1519 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1520 } else if (env->exception_injected == 3) {
1521 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1522 }
1523 env->exception_injected = -1;
1524 }
1525
1526 /*
1527 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1528 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1529 * by updating the debug state once again if single-stepping is on.
1530 * Another reason to call kvm_update_guest_debug here is a pending debug
1531 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1532 * reinject them via SET_GUEST_DEBUG.
1533 */
1534 if (reinject_trap ||
1535 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1536 ret = kvm_update_guest_debug(env, reinject_trap);
1537 }
1538 return ret;
1539 }
1540
1541 static int kvm_put_debugregs(CPUX86State *env)
1542 {
1543 struct kvm_debugregs dbgregs;
1544 int i;
1545
1546 if (!kvm_has_debugregs()) {
1547 return 0;
1548 }
1549
1550 for (i = 0; i < 4; i++) {
1551 dbgregs.db[i] = env->dr[i];
1552 }
1553 dbgregs.dr6 = env->dr[6];
1554 dbgregs.dr7 = env->dr[7];
1555 dbgregs.flags = 0;
1556
1557 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1558 }
1559
1560 static int kvm_get_debugregs(CPUX86State *env)
1561 {
1562 struct kvm_debugregs dbgregs;
1563 int i, ret;
1564
1565 if (!kvm_has_debugregs()) {
1566 return 0;
1567 }
1568
1569 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1570 if (ret < 0) {
1571 return ret;
1572 }
1573 for (i = 0; i < 4; i++) {
1574 env->dr[i] = dbgregs.db[i];
1575 }
1576 env->dr[4] = env->dr[6] = dbgregs.dr6;
1577 env->dr[5] = env->dr[7] = dbgregs.dr7;
1578
1579 return 0;
1580 }
1581
1582 int kvm_arch_put_registers(CPUX86State *env, int level)
1583 {
1584 int ret;
1585
1586 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1587
1588 ret = kvm_getput_regs(env, 1);
1589 if (ret < 0) {
1590 return ret;
1591 }
1592 ret = kvm_put_xsave(env);
1593 if (ret < 0) {
1594 return ret;
1595 }
1596 ret = kvm_put_xcrs(env);
1597 if (ret < 0) {
1598 return ret;
1599 }
1600 ret = kvm_put_sregs(env);
1601 if (ret < 0) {
1602 return ret;
1603 }
1604 /* must be before kvm_put_msrs */
1605 ret = kvm_inject_mce_oldstyle(env);
1606 if (ret < 0) {
1607 return ret;
1608 }
1609 ret = kvm_put_msrs(env, level);
1610 if (ret < 0) {
1611 return ret;
1612 }
1613 if (level >= KVM_PUT_RESET_STATE) {
1614 ret = kvm_put_mp_state(env);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 ret = kvm_put_apic(env);
1619 if (ret < 0) {
1620 return ret;
1621 }
1622 }
1623 ret = kvm_put_vcpu_events(env, level);
1624 if (ret < 0) {
1625 return ret;
1626 }
1627 ret = kvm_put_debugregs(env);
1628 if (ret < 0) {
1629 return ret;
1630 }
1631 /* must be last */
1632 ret = kvm_guest_debug_workarounds(env);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636 return 0;
1637 }
1638
1639 int kvm_arch_get_registers(CPUX86State *env)
1640 {
1641 int ret;
1642
1643 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1644
1645 ret = kvm_getput_regs(env, 0);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649 ret = kvm_get_xsave(env);
1650 if (ret < 0) {
1651 return ret;
1652 }
1653 ret = kvm_get_xcrs(env);
1654 if (ret < 0) {
1655 return ret;
1656 }
1657 ret = kvm_get_sregs(env);
1658 if (ret < 0) {
1659 return ret;
1660 }
1661 ret = kvm_get_msrs(env);
1662 if (ret < 0) {
1663 return ret;
1664 }
1665 ret = kvm_get_mp_state(env);
1666 if (ret < 0) {
1667 return ret;
1668 }
1669 ret = kvm_get_apic(env);
1670 if (ret < 0) {
1671 return ret;
1672 }
1673 ret = kvm_get_vcpu_events(env);
1674 if (ret < 0) {
1675 return ret;
1676 }
1677 ret = kvm_get_debugregs(env);
1678 if (ret < 0) {
1679 return ret;
1680 }
1681 return 0;
1682 }
1683
1684 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1685 {
1686 int ret;
1687
1688 /* Inject NMI */
1689 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1690 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1691 DPRINTF("injected NMI\n");
1692 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1693 if (ret < 0) {
1694 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1695 strerror(-ret));
1696 }
1697 }
1698
1699 if (!kvm_irqchip_in_kernel()) {
1700 /* Force the VCPU out of its inner loop to process any INIT requests
1701 * or pending TPR access reports. */
1702 if (env->interrupt_request &
1703 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1704 env->exit_request = 1;
1705 }
1706
1707 /* Try to inject an interrupt if the guest can accept it */
1708 if (run->ready_for_interrupt_injection &&
1709 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1710 (env->eflags & IF_MASK)) {
1711 int irq;
1712
1713 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1714 irq = cpu_get_pic_interrupt(env);
1715 if (irq >= 0) {
1716 struct kvm_interrupt intr;
1717
1718 intr.irq = irq;
1719 DPRINTF("injected interrupt %d\n", irq);
1720 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1721 if (ret < 0) {
1722 fprintf(stderr,
1723 "KVM: injection failed, interrupt lost (%s)\n",
1724 strerror(-ret));
1725 }
1726 }
1727 }
1728
1729 /* If we have an interrupt but the guest is not ready to receive an
1730 * interrupt, request an interrupt window exit. This will
1731 * cause a return to userspace as soon as the guest is ready to
1732 * receive interrupts. */
1733 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1734 run->request_interrupt_window = 1;
1735 } else {
1736 run->request_interrupt_window = 0;
1737 }
1738
1739 DPRINTF("setting tpr\n");
1740 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1741 }
1742 }
1743
1744 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1745 {
1746 if (run->if_flag) {
1747 env->eflags |= IF_MASK;
1748 } else {
1749 env->eflags &= ~IF_MASK;
1750 }
1751 cpu_set_apic_tpr(env->apic_state, run->cr8);
1752 cpu_set_apic_base(env->apic_state, run->apic_base);
1753 }
1754
1755 int kvm_arch_process_async_events(CPUX86State *env)
1756 {
1757 X86CPU *cpu = x86_env_get_cpu(env);
1758
1759 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1760 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1761 assert(env->mcg_cap);
1762
1763 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1764
1765 kvm_cpu_synchronize_state(env);
1766
1767 if (env->exception_injected == EXCP08_DBLE) {
1768 /* this means triple fault */
1769 qemu_system_reset_request();
1770 env->exit_request = 1;
1771 return 0;
1772 }
1773 env->exception_injected = EXCP12_MCHK;
1774 env->has_error_code = 0;
1775
1776 env->halted = 0;
1777 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1778 env->mp_state = KVM_MP_STATE_RUNNABLE;
1779 }
1780 }
1781
1782 if (kvm_irqchip_in_kernel()) {
1783 return 0;
1784 }
1785
1786 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1787 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1788 apic_poll_irq(env->apic_state);
1789 }
1790 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1791 (env->eflags & IF_MASK)) ||
1792 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1793 env->halted = 0;
1794 }
1795 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1796 kvm_cpu_synchronize_state(env);
1797 do_cpu_init(cpu);
1798 }
1799 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1800 kvm_cpu_synchronize_state(env);
1801 do_cpu_sipi(cpu);
1802 }
1803 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1804 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1805 kvm_cpu_synchronize_state(env);
1806 apic_handle_tpr_access_report(env->apic_state, env->eip,
1807 env->tpr_access_type);
1808 }
1809
1810 return env->halted;
1811 }
1812
1813 static int kvm_handle_halt(CPUX86State *env)
1814 {
1815 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1816 (env->eflags & IF_MASK)) &&
1817 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1818 env->halted = 1;
1819 return EXCP_HLT;
1820 }
1821
1822 return 0;
1823 }
1824
1825 static int kvm_handle_tpr_access(CPUX86State *env)
1826 {
1827 struct kvm_run *run = env->kvm_run;
1828
1829 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1830 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1831 : TPR_ACCESS_READ);
1832 return 1;
1833 }
1834
1835 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1836 {
1837 static const uint8_t int3 = 0xcc;
1838
1839 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1840 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1841 return -EINVAL;
1842 }
1843 return 0;
1844 }
1845
1846 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1847 {
1848 uint8_t int3;
1849
1850 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1851 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1852 return -EINVAL;
1853 }
1854 return 0;
1855 }
1856
1857 static struct {
1858 target_ulong addr;
1859 int len;
1860 int type;
1861 } hw_breakpoint[4];
1862
1863 static int nb_hw_breakpoint;
1864
1865 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1866 {
1867 int n;
1868
1869 for (n = 0; n < nb_hw_breakpoint; n++) {
1870 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1871 (hw_breakpoint[n].len == len || len == -1)) {
1872 return n;
1873 }
1874 }
1875 return -1;
1876 }
1877
1878 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1879 target_ulong len, int type)
1880 {
1881 switch (type) {
1882 case GDB_BREAKPOINT_HW:
1883 len = 1;
1884 break;
1885 case GDB_WATCHPOINT_WRITE:
1886 case GDB_WATCHPOINT_ACCESS:
1887 switch (len) {
1888 case 1:
1889 break;
1890 case 2:
1891 case 4:
1892 case 8:
1893 if (addr & (len - 1)) {
1894 return -EINVAL;
1895 }
1896 break;
1897 default:
1898 return -EINVAL;
1899 }
1900 break;
1901 default:
1902 return -ENOSYS;
1903 }
1904
1905 if (nb_hw_breakpoint == 4) {
1906 return -ENOBUFS;
1907 }
1908 if (find_hw_breakpoint(addr, len, type) >= 0) {
1909 return -EEXIST;
1910 }
1911 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1912 hw_breakpoint[nb_hw_breakpoint].len = len;
1913 hw_breakpoint[nb_hw_breakpoint].type = type;
1914 nb_hw_breakpoint++;
1915
1916 return 0;
1917 }
1918
1919 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1920 target_ulong len, int type)
1921 {
1922 int n;
1923
1924 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1925 if (n < 0) {
1926 return -ENOENT;
1927 }
1928 nb_hw_breakpoint--;
1929 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1930
1931 return 0;
1932 }
1933
1934 void kvm_arch_remove_all_hw_breakpoints(void)
1935 {
1936 nb_hw_breakpoint = 0;
1937 }
1938
1939 static CPUWatchpoint hw_watchpoint;
1940
1941 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1942 {
1943 int ret = 0;
1944 int n;
1945
1946 if (arch_info->exception == 1) {
1947 if (arch_info->dr6 & (1 << 14)) {
1948 if (cpu_single_env->singlestep_enabled) {
1949 ret = EXCP_DEBUG;
1950 }
1951 } else {
1952 for (n = 0; n < 4; n++) {
1953 if (arch_info->dr6 & (1 << n)) {
1954 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1955 case 0x0:
1956 ret = EXCP_DEBUG;
1957 break;
1958 case 0x1:
1959 ret = EXCP_DEBUG;
1960 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1961 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1962 hw_watchpoint.flags = BP_MEM_WRITE;
1963 break;
1964 case 0x3:
1965 ret = EXCP_DEBUG;
1966 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1967 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1968 hw_watchpoint.flags = BP_MEM_ACCESS;
1969 break;
1970 }
1971 }
1972 }
1973 }
1974 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1975 ret = EXCP_DEBUG;
1976 }
1977 if (ret == 0) {
1978 cpu_synchronize_state(cpu_single_env);
1979 assert(cpu_single_env->exception_injected == -1);
1980
1981 /* pass to guest */
1982 cpu_single_env->exception_injected = arch_info->exception;
1983 cpu_single_env->has_error_code = 0;
1984 }
1985
1986 return ret;
1987 }
1988
1989 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1990 {
1991 const uint8_t type_code[] = {
1992 [GDB_BREAKPOINT_HW] = 0x0,
1993 [GDB_WATCHPOINT_WRITE] = 0x1,
1994 [GDB_WATCHPOINT_ACCESS] = 0x3
1995 };
1996 const uint8_t len_code[] = {
1997 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1998 };
1999 int n;
2000
2001 if (kvm_sw_breakpoints_active(env)) {
2002 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2003 }
2004 if (nb_hw_breakpoint > 0) {
2005 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2006 dbg->arch.debugreg[7] = 0x0600;
2007 for (n = 0; n < nb_hw_breakpoint; n++) {
2008 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2009 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2010 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2011 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2012 }
2013 }
2014 }
2015
2016 static bool host_supports_vmx(void)
2017 {
2018 uint32_t ecx, unused;
2019
2020 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2021 return ecx & CPUID_EXT_VMX;
2022 }
2023
2024 #define VMX_INVALID_GUEST_STATE 0x80000021
2025
2026 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2027 {
2028 uint64_t code;
2029 int ret;
2030
2031 switch (run->exit_reason) {
2032 case KVM_EXIT_HLT:
2033 DPRINTF("handle_hlt\n");
2034 ret = kvm_handle_halt(env);
2035 break;
2036 case KVM_EXIT_SET_TPR:
2037 ret = 0;
2038 break;
2039 case KVM_EXIT_TPR_ACCESS:
2040 ret = kvm_handle_tpr_access(env);
2041 break;
2042 case KVM_EXIT_FAIL_ENTRY:
2043 code = run->fail_entry.hardware_entry_failure_reason;
2044 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2045 code);
2046 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2047 fprintf(stderr,
2048 "\nIf you're running a guest on an Intel machine without "
2049 "unrestricted mode\n"
2050 "support, the failure can be most likely due to the guest "
2051 "entering an invalid\n"
2052 "state for Intel VT. For example, the guest maybe running "
2053 "in big real mode\n"
2054 "which is not supported on less recent Intel processors."
2055 "\n\n");
2056 }
2057 ret = -1;
2058 break;
2059 case KVM_EXIT_EXCEPTION:
2060 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2061 run->ex.exception, run->ex.error_code);
2062 ret = -1;
2063 break;
2064 case KVM_EXIT_DEBUG:
2065 DPRINTF("kvm_exit_debug\n");
2066 ret = kvm_handle_debug(&run->debug.arch);
2067 break;
2068 default:
2069 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2070 ret = -1;
2071 break;
2072 }
2073
2074 return ret;
2075 }
2076
2077 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2078 {
2079 kvm_cpu_synchronize_state(env);
2080 return !(env->cr[0] & CR0_PE_MASK) ||
2081 ((env->segs[R_CS].selector & 3) != 3);
2082 }
2083
2084 void kvm_arch_init_irq_routing(KVMState *s)
2085 {
2086 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2087 /* If kernel can't do irq routing, interrupt source
2088 * override 0->2 cannot be set up as required by HPET.
2089 * So we have to disable it.
2090 */
2091 no_hpet = 1;
2092 }
2093 /* We know at this point that we're using the in-kernel
2094 * irqchip, so we can use irqfds, and on x86 we know
2095 * we can use msi via irqfd and GSI routing.
2096 */
2097 kvm_irqfds_allowed = true;
2098 kvm_msi_via_irqfd_allowed = true;
2099 kvm_gsi_routing_allowed = true;
2100 }
2101
2102 /* Classic KVM device assignment interface. Will remain x86 only. */
2103 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2104 uint32_t flags, uint32_t *dev_id)
2105 {
2106 struct kvm_assigned_pci_dev dev_data = {
2107 .segnr = dev_addr->domain,
2108 .busnr = dev_addr->bus,
2109 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2110 .flags = flags,
2111 };
2112 int ret;
2113
2114 dev_data.assigned_dev_id =
2115 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2116
2117 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2118 if (ret < 0) {
2119 return ret;
2120 }
2121
2122 *dev_id = dev_data.assigned_dev_id;
2123
2124 return 0;
2125 }
2126
2127 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2128 {
2129 struct kvm_assigned_pci_dev dev_data = {
2130 .assigned_dev_id = dev_id,
2131 };
2132
2133 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2134 }
2135
2136 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2137 uint32_t irq_type, uint32_t guest_irq)
2138 {
2139 struct kvm_assigned_irq assigned_irq = {
2140 .assigned_dev_id = dev_id,
2141 .guest_irq = guest_irq,
2142 .flags = irq_type,
2143 };
2144
2145 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2146 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2147 } else {
2148 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2149 }
2150 }
2151
2152 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2153 uint32_t guest_irq)
2154 {
2155 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2156 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2157
2158 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2159 }
2160
2161 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2162 {
2163 struct kvm_assigned_pci_dev dev_data = {
2164 .assigned_dev_id = dev_id,
2165 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2166 };
2167
2168 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2169 }
2170
2171 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2172 uint32_t type)
2173 {
2174 struct kvm_assigned_irq assigned_irq = {
2175 .assigned_dev_id = dev_id,
2176 .flags = type,
2177 };
2178
2179 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2180 }
2181
2182 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2183 {
2184 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2185 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2186 }
2187
2188 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2189 {
2190 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2191 KVM_DEV_IRQ_GUEST_MSI, virq);
2192 }
2193
2194 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2195 {
2196 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2197 KVM_DEV_IRQ_HOST_MSI);
2198 }
2199
2200 bool kvm_device_msix_supported(KVMState *s)
2201 {
2202 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2203 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2204 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2205 }
2206
2207 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2208 uint32_t nr_vectors)
2209 {
2210 struct kvm_assigned_msix_nr msix_nr = {
2211 .assigned_dev_id = dev_id,
2212 .entry_nr = nr_vectors,
2213 };
2214
2215 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2216 }
2217
2218 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2219 int virq)
2220 {
2221 struct kvm_assigned_msix_entry msix_entry = {
2222 .assigned_dev_id = dev_id,
2223 .gsi = virq,
2224 .entry = vector,
2225 };
2226
2227 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2228 }
2229
2230 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2231 {
2232 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2233 KVM_DEV_IRQ_GUEST_MSIX, 0);
2234 }
2235
2236 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2237 {
2238 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2239 KVM_DEV_IRQ_HOST_MSIX);
2240 }