]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: kvm_arch_get_supported_cpuid: replace if+switch with single 'if'
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105 {
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112 }
113
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
123 };
124
125 static int get_para_features(KVMState *s)
126 {
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136 }
137
138
139 /* Returns the value for a specific register on the cpuid entry
140 */
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142 {
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159 }
160
161 /* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166 {
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176 }
177
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
180 {
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
185
186 cpuid = get_supported_cpuid(s);
187
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
192 }
193
194 /* Fixups for the data returned by KVM, below */
195
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 0x80000001 && reg == R_EDX) {
200 /* On Intel, kvm returns cpuid according to the Intel spec,
201 * so add missing bits according to the AMD spec:
202 */
203 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
204 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
205 }
206
207 g_free(cpuid);
208
209 /* fallback for older kernels */
210 if ((function == KVM_CPUID_FEATURES) && !found) {
211 ret = get_para_features(s);
212 }
213
214 return ret;
215 }
216
217 typedef struct HWPoisonPage {
218 ram_addr_t ram_addr;
219 QLIST_ENTRY(HWPoisonPage) list;
220 } HWPoisonPage;
221
222 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
223 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
224
225 static void kvm_unpoison_all(void *param)
226 {
227 HWPoisonPage *page, *next_page;
228
229 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
230 QLIST_REMOVE(page, list);
231 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
232 g_free(page);
233 }
234 }
235
236 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
237 {
238 HWPoisonPage *page;
239
240 QLIST_FOREACH(page, &hwpoison_page_list, list) {
241 if (page->ram_addr == ram_addr) {
242 return;
243 }
244 }
245 page = g_malloc(sizeof(HWPoisonPage));
246 page->ram_addr = ram_addr;
247 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
248 }
249
250 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
251 int *max_banks)
252 {
253 int r;
254
255 r = kvm_check_extension(s, KVM_CAP_MCE);
256 if (r > 0) {
257 *max_banks = r;
258 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
259 }
260 return -ENOSYS;
261 }
262
263 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
264 {
265 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
266 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
267 uint64_t mcg_status = MCG_STATUS_MCIP;
268
269 if (code == BUS_MCEERR_AR) {
270 status |= MCI_STATUS_AR | 0x134;
271 mcg_status |= MCG_STATUS_EIPV;
272 } else {
273 status |= 0xc0;
274 mcg_status |= MCG_STATUS_RIPV;
275 }
276 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
277 (MCM_ADDR_PHYS << 6) | 0xc,
278 cpu_x86_support_mca_broadcast(env) ?
279 MCE_INJECT_BROADCAST : 0);
280 }
281
282 static void hardware_memory_error(void)
283 {
284 fprintf(stderr, "Hardware memory error!\n");
285 exit(1);
286 }
287
288 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
289 {
290 ram_addr_t ram_addr;
291 hwaddr paddr;
292
293 if ((env->mcg_cap & MCG_SER_P) && addr
294 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
295 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
296 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
297 fprintf(stderr, "Hardware memory error for memory used by "
298 "QEMU itself instead of guest system!\n");
299 /* Hope we are lucky for AO MCE */
300 if (code == BUS_MCEERR_AO) {
301 return 0;
302 } else {
303 hardware_memory_error();
304 }
305 }
306 kvm_hwpoison_page_add(ram_addr);
307 kvm_mce_inject(env, paddr, code);
308 } else {
309 if (code == BUS_MCEERR_AO) {
310 return 0;
311 } else if (code == BUS_MCEERR_AR) {
312 hardware_memory_error();
313 } else {
314 return 1;
315 }
316 }
317 return 0;
318 }
319
320 int kvm_arch_on_sigbus(int code, void *addr)
321 {
322 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
323 ram_addr_t ram_addr;
324 hwaddr paddr;
325
326 /* Hope we are lucky for AO MCE */
327 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
328 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
329 &paddr)) {
330 fprintf(stderr, "Hardware memory error for memory used by "
331 "QEMU itself instead of guest system!: %p\n", addr);
332 return 0;
333 }
334 kvm_hwpoison_page_add(ram_addr);
335 kvm_mce_inject(first_cpu, paddr, code);
336 } else {
337 if (code == BUS_MCEERR_AO) {
338 return 0;
339 } else if (code == BUS_MCEERR_AR) {
340 hardware_memory_error();
341 } else {
342 return 1;
343 }
344 }
345 return 0;
346 }
347
348 static int kvm_inject_mce_oldstyle(CPUX86State *env)
349 {
350 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
351 unsigned int bank, bank_num = env->mcg_cap & 0xff;
352 struct kvm_x86_mce mce;
353
354 env->exception_injected = -1;
355
356 /*
357 * There must be at least one bank in use if an MCE is pending.
358 * Find it and use its values for the event injection.
359 */
360 for (bank = 0; bank < bank_num; bank++) {
361 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
362 break;
363 }
364 }
365 assert(bank < bank_num);
366
367 mce.bank = bank;
368 mce.status = env->mce_banks[bank * 4 + 1];
369 mce.mcg_status = env->mcg_status;
370 mce.addr = env->mce_banks[bank * 4 + 2];
371 mce.misc = env->mce_banks[bank * 4 + 3];
372
373 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
374 }
375 return 0;
376 }
377
378 static void cpu_update_state(void *opaque, int running, RunState state)
379 {
380 CPUX86State *env = opaque;
381
382 if (running) {
383 env->tsc_valid = false;
384 }
385 }
386
387 int kvm_arch_init_vcpu(CPUX86State *env)
388 {
389 struct {
390 struct kvm_cpuid2 cpuid;
391 struct kvm_cpuid_entry2 entries[100];
392 } QEMU_PACKED cpuid_data;
393 KVMState *s = env->kvm_state;
394 uint32_t limit, i, j, cpuid_i;
395 uint32_t unused;
396 struct kvm_cpuid_entry2 *c;
397 uint32_t signature[3];
398 int r;
399
400 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
401
402 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
403 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
404 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
405 env->cpuid_ext_features |= i;
406 if (j && kvm_irqchip_in_kernel() &&
407 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
408 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
409 }
410
411 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
412 0, R_EDX);
413 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
414 0, R_ECX);
415 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
416 0, R_EDX);
417
418 cpuid_i = 0;
419
420 /* Paravirtualization CPUIDs */
421 c = &cpuid_data.entries[cpuid_i++];
422 memset(c, 0, sizeof(*c));
423 c->function = KVM_CPUID_SIGNATURE;
424 if (!hyperv_enabled()) {
425 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
426 c->eax = 0;
427 } else {
428 memcpy(signature, "Microsoft Hv", 12);
429 c->eax = HYPERV_CPUID_MIN;
430 }
431 c->ebx = signature[0];
432 c->ecx = signature[1];
433 c->edx = signature[2];
434
435 c = &cpuid_data.entries[cpuid_i++];
436 memset(c, 0, sizeof(*c));
437 c->function = KVM_CPUID_FEATURES;
438 c->eax = env->cpuid_kvm_features &
439 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
440
441 if (hyperv_enabled()) {
442 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
443 c->eax = signature[0];
444
445 c = &cpuid_data.entries[cpuid_i++];
446 memset(c, 0, sizeof(*c));
447 c->function = HYPERV_CPUID_VERSION;
448 c->eax = 0x00001bbc;
449 c->ebx = 0x00060001;
450
451 c = &cpuid_data.entries[cpuid_i++];
452 memset(c, 0, sizeof(*c));
453 c->function = HYPERV_CPUID_FEATURES;
454 if (hyperv_relaxed_timing_enabled()) {
455 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
456 }
457 if (hyperv_vapic_recommended()) {
458 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
459 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
460 }
461
462 c = &cpuid_data.entries[cpuid_i++];
463 memset(c, 0, sizeof(*c));
464 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
465 if (hyperv_relaxed_timing_enabled()) {
466 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
467 }
468 if (hyperv_vapic_recommended()) {
469 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
470 }
471 c->ebx = hyperv_get_spinlock_retries();
472
473 c = &cpuid_data.entries[cpuid_i++];
474 memset(c, 0, sizeof(*c));
475 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
476 c->eax = 0x40;
477 c->ebx = 0x40;
478
479 c = &cpuid_data.entries[cpuid_i++];
480 memset(c, 0, sizeof(*c));
481 c->function = KVM_CPUID_SIGNATURE_NEXT;
482 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
483 c->eax = 0;
484 c->ebx = signature[0];
485 c->ecx = signature[1];
486 c->edx = signature[2];
487 }
488
489 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
490
491 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
492
493 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
494
495 for (i = 0; i <= limit; i++) {
496 c = &cpuid_data.entries[cpuid_i++];
497
498 switch (i) {
499 case 2: {
500 /* Keep reading function 2 till all the input is received */
501 int times;
502
503 c->function = i;
504 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
505 KVM_CPUID_FLAG_STATE_READ_NEXT;
506 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
507 times = c->eax & 0xff;
508
509 for (j = 1; j < times; ++j) {
510 c = &cpuid_data.entries[cpuid_i++];
511 c->function = i;
512 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
513 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
514 }
515 break;
516 }
517 case 4:
518 case 0xb:
519 case 0xd:
520 for (j = 0; ; j++) {
521 if (i == 0xd && j == 64) {
522 break;
523 }
524 c->function = i;
525 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
526 c->index = j;
527 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
528
529 if (i == 4 && c->eax == 0) {
530 break;
531 }
532 if (i == 0xb && !(c->ecx & 0xff00)) {
533 break;
534 }
535 if (i == 0xd && c->eax == 0) {
536 continue;
537 }
538 c = &cpuid_data.entries[cpuid_i++];
539 }
540 break;
541 default:
542 c->function = i;
543 c->flags = 0;
544 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
545 break;
546 }
547 }
548 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
549
550 for (i = 0x80000000; i <= limit; i++) {
551 c = &cpuid_data.entries[cpuid_i++];
552
553 c->function = i;
554 c->flags = 0;
555 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
556 }
557
558 /* Call Centaur's CPUID instructions they are supported. */
559 if (env->cpuid_xlevel2 > 0) {
560 env->cpuid_ext4_features &=
561 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
562 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
563
564 for (i = 0xC0000000; i <= limit; i++) {
565 c = &cpuid_data.entries[cpuid_i++];
566
567 c->function = i;
568 c->flags = 0;
569 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
570 }
571 }
572
573 cpuid_data.cpuid.nent = cpuid_i;
574
575 if (((env->cpuid_version >> 8)&0xF) >= 6
576 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
577 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
578 uint64_t mcg_cap;
579 int banks;
580 int ret;
581
582 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
583 if (ret < 0) {
584 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
585 return ret;
586 }
587
588 if (banks > MCE_BANKS_DEF) {
589 banks = MCE_BANKS_DEF;
590 }
591 mcg_cap &= MCE_CAP_DEF;
592 mcg_cap |= banks;
593 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
594 if (ret < 0) {
595 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
596 return ret;
597 }
598
599 env->mcg_cap = mcg_cap;
600 }
601
602 qemu_add_vm_change_state_handler(cpu_update_state, env);
603
604 cpuid_data.cpuid.padding = 0;
605 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
606 if (r) {
607 return r;
608 }
609
610 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
611 if (r && env->tsc_khz) {
612 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
613 if (r < 0) {
614 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
615 return r;
616 }
617 }
618
619 if (kvm_has_xsave()) {
620 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
621 }
622
623 return 0;
624 }
625
626 void kvm_arch_reset_vcpu(CPUX86State *env)
627 {
628 X86CPU *cpu = x86_env_get_cpu(env);
629
630 env->exception_injected = -1;
631 env->interrupt_injected = -1;
632 env->xcr0 = 1;
633 if (kvm_irqchip_in_kernel()) {
634 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
635 KVM_MP_STATE_UNINITIALIZED;
636 } else {
637 env->mp_state = KVM_MP_STATE_RUNNABLE;
638 }
639 }
640
641 static int kvm_get_supported_msrs(KVMState *s)
642 {
643 static int kvm_supported_msrs;
644 int ret = 0;
645
646 /* first time */
647 if (kvm_supported_msrs == 0) {
648 struct kvm_msr_list msr_list, *kvm_msr_list;
649
650 kvm_supported_msrs = -1;
651
652 /* Obtain MSR list from KVM. These are the MSRs that we must
653 * save/restore */
654 msr_list.nmsrs = 0;
655 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
656 if (ret < 0 && ret != -E2BIG) {
657 return ret;
658 }
659 /* Old kernel modules had a bug and could write beyond the provided
660 memory. Allocate at least a safe amount of 1K. */
661 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
662 msr_list.nmsrs *
663 sizeof(msr_list.indices[0])));
664
665 kvm_msr_list->nmsrs = msr_list.nmsrs;
666 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
667 if (ret >= 0) {
668 int i;
669
670 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
671 if (kvm_msr_list->indices[i] == MSR_STAR) {
672 has_msr_star = true;
673 continue;
674 }
675 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
676 has_msr_hsave_pa = true;
677 continue;
678 }
679 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
680 has_msr_tsc_deadline = true;
681 continue;
682 }
683 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
684 has_msr_misc_enable = true;
685 continue;
686 }
687 }
688 }
689
690 g_free(kvm_msr_list);
691 }
692
693 return ret;
694 }
695
696 int kvm_arch_init(KVMState *s)
697 {
698 QemuOptsList *list = qemu_find_opts("machine");
699 uint64_t identity_base = 0xfffbc000;
700 uint64_t shadow_mem;
701 int ret;
702 struct utsname utsname;
703
704 ret = kvm_get_supported_msrs(s);
705 if (ret < 0) {
706 return ret;
707 }
708
709 uname(&utsname);
710 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
711
712 /*
713 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
714 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
715 * Since these must be part of guest physical memory, we need to allocate
716 * them, both by setting their start addresses in the kernel and by
717 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
718 *
719 * Older KVM versions may not support setting the identity map base. In
720 * that case we need to stick with the default, i.e. a 256K maximum BIOS
721 * size.
722 */
723 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
724 /* Allows up to 16M BIOSes. */
725 identity_base = 0xfeffc000;
726
727 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
728 if (ret < 0) {
729 return ret;
730 }
731 }
732
733 /* Set TSS base one page after EPT identity map. */
734 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
735 if (ret < 0) {
736 return ret;
737 }
738
739 /* Tell fw_cfg to notify the BIOS to reserve the range. */
740 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
741 if (ret < 0) {
742 fprintf(stderr, "e820_add_entry() table is full\n");
743 return ret;
744 }
745 qemu_register_reset(kvm_unpoison_all, NULL);
746
747 if (!QTAILQ_EMPTY(&list->head)) {
748 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
749 "kvm_shadow_mem", -1);
750 if (shadow_mem != -1) {
751 shadow_mem /= 4096;
752 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
753 if (ret < 0) {
754 return ret;
755 }
756 }
757 }
758 return 0;
759 }
760
761 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
762 {
763 lhs->selector = rhs->selector;
764 lhs->base = rhs->base;
765 lhs->limit = rhs->limit;
766 lhs->type = 3;
767 lhs->present = 1;
768 lhs->dpl = 3;
769 lhs->db = 0;
770 lhs->s = 1;
771 lhs->l = 0;
772 lhs->g = 0;
773 lhs->avl = 0;
774 lhs->unusable = 0;
775 }
776
777 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
778 {
779 unsigned flags = rhs->flags;
780 lhs->selector = rhs->selector;
781 lhs->base = rhs->base;
782 lhs->limit = rhs->limit;
783 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
784 lhs->present = (flags & DESC_P_MASK) != 0;
785 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
786 lhs->db = (flags >> DESC_B_SHIFT) & 1;
787 lhs->s = (flags & DESC_S_MASK) != 0;
788 lhs->l = (flags >> DESC_L_SHIFT) & 1;
789 lhs->g = (flags & DESC_G_MASK) != 0;
790 lhs->avl = (flags & DESC_AVL_MASK) != 0;
791 lhs->unusable = 0;
792 lhs->padding = 0;
793 }
794
795 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
796 {
797 lhs->selector = rhs->selector;
798 lhs->base = rhs->base;
799 lhs->limit = rhs->limit;
800 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
801 (rhs->present * DESC_P_MASK) |
802 (rhs->dpl << DESC_DPL_SHIFT) |
803 (rhs->db << DESC_B_SHIFT) |
804 (rhs->s * DESC_S_MASK) |
805 (rhs->l << DESC_L_SHIFT) |
806 (rhs->g * DESC_G_MASK) |
807 (rhs->avl * DESC_AVL_MASK);
808 }
809
810 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
811 {
812 if (set) {
813 *kvm_reg = *qemu_reg;
814 } else {
815 *qemu_reg = *kvm_reg;
816 }
817 }
818
819 static int kvm_getput_regs(CPUX86State *env, int set)
820 {
821 struct kvm_regs regs;
822 int ret = 0;
823
824 if (!set) {
825 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
826 if (ret < 0) {
827 return ret;
828 }
829 }
830
831 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
832 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
833 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
834 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
835 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
836 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
837 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
838 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
839 #ifdef TARGET_X86_64
840 kvm_getput_reg(&regs.r8, &env->regs[8], set);
841 kvm_getput_reg(&regs.r9, &env->regs[9], set);
842 kvm_getput_reg(&regs.r10, &env->regs[10], set);
843 kvm_getput_reg(&regs.r11, &env->regs[11], set);
844 kvm_getput_reg(&regs.r12, &env->regs[12], set);
845 kvm_getput_reg(&regs.r13, &env->regs[13], set);
846 kvm_getput_reg(&regs.r14, &env->regs[14], set);
847 kvm_getput_reg(&regs.r15, &env->regs[15], set);
848 #endif
849
850 kvm_getput_reg(&regs.rflags, &env->eflags, set);
851 kvm_getput_reg(&regs.rip, &env->eip, set);
852
853 if (set) {
854 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
855 }
856
857 return ret;
858 }
859
860 static int kvm_put_fpu(CPUX86State *env)
861 {
862 struct kvm_fpu fpu;
863 int i;
864
865 memset(&fpu, 0, sizeof fpu);
866 fpu.fsw = env->fpus & ~(7 << 11);
867 fpu.fsw |= (env->fpstt & 7) << 11;
868 fpu.fcw = env->fpuc;
869 fpu.last_opcode = env->fpop;
870 fpu.last_ip = env->fpip;
871 fpu.last_dp = env->fpdp;
872 for (i = 0; i < 8; ++i) {
873 fpu.ftwx |= (!env->fptags[i]) << i;
874 }
875 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
876 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
877 fpu.mxcsr = env->mxcsr;
878
879 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
880 }
881
882 #define XSAVE_FCW_FSW 0
883 #define XSAVE_FTW_FOP 1
884 #define XSAVE_CWD_RIP 2
885 #define XSAVE_CWD_RDP 4
886 #define XSAVE_MXCSR 6
887 #define XSAVE_ST_SPACE 8
888 #define XSAVE_XMM_SPACE 40
889 #define XSAVE_XSTATE_BV 128
890 #define XSAVE_YMMH_SPACE 144
891
892 static int kvm_put_xsave(CPUX86State *env)
893 {
894 struct kvm_xsave* xsave = env->kvm_xsave_buf;
895 uint16_t cwd, swd, twd;
896 int i, r;
897
898 if (!kvm_has_xsave()) {
899 return kvm_put_fpu(env);
900 }
901
902 memset(xsave, 0, sizeof(struct kvm_xsave));
903 twd = 0;
904 swd = env->fpus & ~(7 << 11);
905 swd |= (env->fpstt & 7) << 11;
906 cwd = env->fpuc;
907 for (i = 0; i < 8; ++i) {
908 twd |= (!env->fptags[i]) << i;
909 }
910 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
911 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
912 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
913 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
914 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
915 sizeof env->fpregs);
916 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
917 sizeof env->xmm_regs);
918 xsave->region[XSAVE_MXCSR] = env->mxcsr;
919 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
920 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
921 sizeof env->ymmh_regs);
922 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
923 return r;
924 }
925
926 static int kvm_put_xcrs(CPUX86State *env)
927 {
928 struct kvm_xcrs xcrs;
929
930 if (!kvm_has_xcrs()) {
931 return 0;
932 }
933
934 xcrs.nr_xcrs = 1;
935 xcrs.flags = 0;
936 xcrs.xcrs[0].xcr = 0;
937 xcrs.xcrs[0].value = env->xcr0;
938 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
939 }
940
941 static int kvm_put_sregs(CPUX86State *env)
942 {
943 struct kvm_sregs sregs;
944
945 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
946 if (env->interrupt_injected >= 0) {
947 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
948 (uint64_t)1 << (env->interrupt_injected % 64);
949 }
950
951 if ((env->eflags & VM_MASK)) {
952 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
953 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
954 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
955 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
956 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
957 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
958 } else {
959 set_seg(&sregs.cs, &env->segs[R_CS]);
960 set_seg(&sregs.ds, &env->segs[R_DS]);
961 set_seg(&sregs.es, &env->segs[R_ES]);
962 set_seg(&sregs.fs, &env->segs[R_FS]);
963 set_seg(&sregs.gs, &env->segs[R_GS]);
964 set_seg(&sregs.ss, &env->segs[R_SS]);
965 }
966
967 set_seg(&sregs.tr, &env->tr);
968 set_seg(&sregs.ldt, &env->ldt);
969
970 sregs.idt.limit = env->idt.limit;
971 sregs.idt.base = env->idt.base;
972 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
973 sregs.gdt.limit = env->gdt.limit;
974 sregs.gdt.base = env->gdt.base;
975 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
976
977 sregs.cr0 = env->cr[0];
978 sregs.cr2 = env->cr[2];
979 sregs.cr3 = env->cr[3];
980 sregs.cr4 = env->cr[4];
981
982 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
983 sregs.apic_base = cpu_get_apic_base(env->apic_state);
984
985 sregs.efer = env->efer;
986
987 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
988 }
989
990 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
991 uint32_t index, uint64_t value)
992 {
993 entry->index = index;
994 entry->data = value;
995 }
996
997 static int kvm_put_msrs(CPUX86State *env, int level)
998 {
999 struct {
1000 struct kvm_msrs info;
1001 struct kvm_msr_entry entries[100];
1002 } msr_data;
1003 struct kvm_msr_entry *msrs = msr_data.entries;
1004 int n = 0;
1005
1006 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1007 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1008 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1009 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1010 if (has_msr_star) {
1011 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1012 }
1013 if (has_msr_hsave_pa) {
1014 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1015 }
1016 if (has_msr_tsc_deadline) {
1017 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1018 }
1019 if (has_msr_misc_enable) {
1020 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1021 env->msr_ia32_misc_enable);
1022 }
1023 #ifdef TARGET_X86_64
1024 if (lm_capable_kernel) {
1025 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1026 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1027 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1028 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1029 }
1030 #endif
1031 if (level == KVM_PUT_FULL_STATE) {
1032 /*
1033 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1034 * writeback. Until this is fixed, we only write the offset to SMP
1035 * guests after migration, desynchronizing the VCPUs, but avoiding
1036 * huge jump-backs that would occur without any writeback at all.
1037 */
1038 if (smp_cpus == 1 || env->tsc != 0) {
1039 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1040 }
1041 }
1042 /*
1043 * The following paravirtual MSRs have side effects on the guest or are
1044 * too heavy for normal writeback. Limit them to reset or full state
1045 * updates.
1046 */
1047 if (level >= KVM_PUT_RESET_STATE) {
1048 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1049 env->system_time_msr);
1050 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1051 if (has_msr_async_pf_en) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1053 env->async_pf_en_msr);
1054 }
1055 if (has_msr_pv_eoi_en) {
1056 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1057 env->pv_eoi_en_msr);
1058 }
1059 if (hyperv_hypercall_available()) {
1060 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1061 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1062 }
1063 if (hyperv_vapic_recommended()) {
1064 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1065 }
1066 }
1067 if (env->mcg_cap) {
1068 int i;
1069
1070 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1071 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1072 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1073 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1074 }
1075 }
1076
1077 msr_data.info.nmsrs = n;
1078
1079 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1080
1081 }
1082
1083
1084 static int kvm_get_fpu(CPUX86State *env)
1085 {
1086 struct kvm_fpu fpu;
1087 int i, ret;
1088
1089 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1090 if (ret < 0) {
1091 return ret;
1092 }
1093
1094 env->fpstt = (fpu.fsw >> 11) & 7;
1095 env->fpus = fpu.fsw;
1096 env->fpuc = fpu.fcw;
1097 env->fpop = fpu.last_opcode;
1098 env->fpip = fpu.last_ip;
1099 env->fpdp = fpu.last_dp;
1100 for (i = 0; i < 8; ++i) {
1101 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1102 }
1103 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1104 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1105 env->mxcsr = fpu.mxcsr;
1106
1107 return 0;
1108 }
1109
1110 static int kvm_get_xsave(CPUX86State *env)
1111 {
1112 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1113 int ret, i;
1114 uint16_t cwd, swd, twd;
1115
1116 if (!kvm_has_xsave()) {
1117 return kvm_get_fpu(env);
1118 }
1119
1120 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1121 if (ret < 0) {
1122 return ret;
1123 }
1124
1125 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1126 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1127 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1128 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1129 env->fpstt = (swd >> 11) & 7;
1130 env->fpus = swd;
1131 env->fpuc = cwd;
1132 for (i = 0; i < 8; ++i) {
1133 env->fptags[i] = !((twd >> i) & 1);
1134 }
1135 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1136 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1137 env->mxcsr = xsave->region[XSAVE_MXCSR];
1138 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1139 sizeof env->fpregs);
1140 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1141 sizeof env->xmm_regs);
1142 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1143 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1144 sizeof env->ymmh_regs);
1145 return 0;
1146 }
1147
1148 static int kvm_get_xcrs(CPUX86State *env)
1149 {
1150 int i, ret;
1151 struct kvm_xcrs xcrs;
1152
1153 if (!kvm_has_xcrs()) {
1154 return 0;
1155 }
1156
1157 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1158 if (ret < 0) {
1159 return ret;
1160 }
1161
1162 for (i = 0; i < xcrs.nr_xcrs; i++) {
1163 /* Only support xcr0 now */
1164 if (xcrs.xcrs[0].xcr == 0) {
1165 env->xcr0 = xcrs.xcrs[0].value;
1166 break;
1167 }
1168 }
1169 return 0;
1170 }
1171
1172 static int kvm_get_sregs(CPUX86State *env)
1173 {
1174 struct kvm_sregs sregs;
1175 uint32_t hflags;
1176 int bit, i, ret;
1177
1178 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1179 if (ret < 0) {
1180 return ret;
1181 }
1182
1183 /* There can only be one pending IRQ set in the bitmap at a time, so try
1184 to find it and save its number instead (-1 for none). */
1185 env->interrupt_injected = -1;
1186 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1187 if (sregs.interrupt_bitmap[i]) {
1188 bit = ctz64(sregs.interrupt_bitmap[i]);
1189 env->interrupt_injected = i * 64 + bit;
1190 break;
1191 }
1192 }
1193
1194 get_seg(&env->segs[R_CS], &sregs.cs);
1195 get_seg(&env->segs[R_DS], &sregs.ds);
1196 get_seg(&env->segs[R_ES], &sregs.es);
1197 get_seg(&env->segs[R_FS], &sregs.fs);
1198 get_seg(&env->segs[R_GS], &sregs.gs);
1199 get_seg(&env->segs[R_SS], &sregs.ss);
1200
1201 get_seg(&env->tr, &sregs.tr);
1202 get_seg(&env->ldt, &sregs.ldt);
1203
1204 env->idt.limit = sregs.idt.limit;
1205 env->idt.base = sregs.idt.base;
1206 env->gdt.limit = sregs.gdt.limit;
1207 env->gdt.base = sregs.gdt.base;
1208
1209 env->cr[0] = sregs.cr0;
1210 env->cr[2] = sregs.cr2;
1211 env->cr[3] = sregs.cr3;
1212 env->cr[4] = sregs.cr4;
1213
1214 env->efer = sregs.efer;
1215
1216 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1217
1218 #define HFLAG_COPY_MASK \
1219 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1220 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1221 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1222 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1223
1224 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1225 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1226 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1227 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1228 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1229 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1230 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1231
1232 if (env->efer & MSR_EFER_LMA) {
1233 hflags |= HF_LMA_MASK;
1234 }
1235
1236 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1237 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1238 } else {
1239 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1240 (DESC_B_SHIFT - HF_CS32_SHIFT);
1241 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1242 (DESC_B_SHIFT - HF_SS32_SHIFT);
1243 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1244 !(hflags & HF_CS32_MASK)) {
1245 hflags |= HF_ADDSEG_MASK;
1246 } else {
1247 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1248 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1249 }
1250 }
1251 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1252
1253 return 0;
1254 }
1255
1256 static int kvm_get_msrs(CPUX86State *env)
1257 {
1258 struct {
1259 struct kvm_msrs info;
1260 struct kvm_msr_entry entries[100];
1261 } msr_data;
1262 struct kvm_msr_entry *msrs = msr_data.entries;
1263 int ret, i, n;
1264
1265 n = 0;
1266 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1267 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1268 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1269 msrs[n++].index = MSR_PAT;
1270 if (has_msr_star) {
1271 msrs[n++].index = MSR_STAR;
1272 }
1273 if (has_msr_hsave_pa) {
1274 msrs[n++].index = MSR_VM_HSAVE_PA;
1275 }
1276 if (has_msr_tsc_deadline) {
1277 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1278 }
1279 if (has_msr_misc_enable) {
1280 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1281 }
1282
1283 if (!env->tsc_valid) {
1284 msrs[n++].index = MSR_IA32_TSC;
1285 env->tsc_valid = !runstate_is_running();
1286 }
1287
1288 #ifdef TARGET_X86_64
1289 if (lm_capable_kernel) {
1290 msrs[n++].index = MSR_CSTAR;
1291 msrs[n++].index = MSR_KERNELGSBASE;
1292 msrs[n++].index = MSR_FMASK;
1293 msrs[n++].index = MSR_LSTAR;
1294 }
1295 #endif
1296 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1297 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1298 if (has_msr_async_pf_en) {
1299 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1300 }
1301 if (has_msr_pv_eoi_en) {
1302 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1303 }
1304
1305 if (env->mcg_cap) {
1306 msrs[n++].index = MSR_MCG_STATUS;
1307 msrs[n++].index = MSR_MCG_CTL;
1308 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1309 msrs[n++].index = MSR_MC0_CTL + i;
1310 }
1311 }
1312
1313 msr_data.info.nmsrs = n;
1314 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1315 if (ret < 0) {
1316 return ret;
1317 }
1318
1319 for (i = 0; i < ret; i++) {
1320 switch (msrs[i].index) {
1321 case MSR_IA32_SYSENTER_CS:
1322 env->sysenter_cs = msrs[i].data;
1323 break;
1324 case MSR_IA32_SYSENTER_ESP:
1325 env->sysenter_esp = msrs[i].data;
1326 break;
1327 case MSR_IA32_SYSENTER_EIP:
1328 env->sysenter_eip = msrs[i].data;
1329 break;
1330 case MSR_PAT:
1331 env->pat = msrs[i].data;
1332 break;
1333 case MSR_STAR:
1334 env->star = msrs[i].data;
1335 break;
1336 #ifdef TARGET_X86_64
1337 case MSR_CSTAR:
1338 env->cstar = msrs[i].data;
1339 break;
1340 case MSR_KERNELGSBASE:
1341 env->kernelgsbase = msrs[i].data;
1342 break;
1343 case MSR_FMASK:
1344 env->fmask = msrs[i].data;
1345 break;
1346 case MSR_LSTAR:
1347 env->lstar = msrs[i].data;
1348 break;
1349 #endif
1350 case MSR_IA32_TSC:
1351 env->tsc = msrs[i].data;
1352 break;
1353 case MSR_IA32_TSCDEADLINE:
1354 env->tsc_deadline = msrs[i].data;
1355 break;
1356 case MSR_VM_HSAVE_PA:
1357 env->vm_hsave = msrs[i].data;
1358 break;
1359 case MSR_KVM_SYSTEM_TIME:
1360 env->system_time_msr = msrs[i].data;
1361 break;
1362 case MSR_KVM_WALL_CLOCK:
1363 env->wall_clock_msr = msrs[i].data;
1364 break;
1365 case MSR_MCG_STATUS:
1366 env->mcg_status = msrs[i].data;
1367 break;
1368 case MSR_MCG_CTL:
1369 env->mcg_ctl = msrs[i].data;
1370 break;
1371 case MSR_IA32_MISC_ENABLE:
1372 env->msr_ia32_misc_enable = msrs[i].data;
1373 break;
1374 default:
1375 if (msrs[i].index >= MSR_MC0_CTL &&
1376 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1377 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1378 }
1379 break;
1380 case MSR_KVM_ASYNC_PF_EN:
1381 env->async_pf_en_msr = msrs[i].data;
1382 break;
1383 case MSR_KVM_PV_EOI_EN:
1384 env->pv_eoi_en_msr = msrs[i].data;
1385 break;
1386 }
1387 }
1388
1389 return 0;
1390 }
1391
1392 static int kvm_put_mp_state(CPUX86State *env)
1393 {
1394 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1395
1396 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1397 }
1398
1399 static int kvm_get_mp_state(CPUX86State *env)
1400 {
1401 struct kvm_mp_state mp_state;
1402 int ret;
1403
1404 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1405 if (ret < 0) {
1406 return ret;
1407 }
1408 env->mp_state = mp_state.mp_state;
1409 if (kvm_irqchip_in_kernel()) {
1410 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1411 }
1412 return 0;
1413 }
1414
1415 static int kvm_get_apic(CPUX86State *env)
1416 {
1417 DeviceState *apic = env->apic_state;
1418 struct kvm_lapic_state kapic;
1419 int ret;
1420
1421 if (apic && kvm_irqchip_in_kernel()) {
1422 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1423 if (ret < 0) {
1424 return ret;
1425 }
1426
1427 kvm_get_apic_state(apic, &kapic);
1428 }
1429 return 0;
1430 }
1431
1432 static int kvm_put_apic(CPUX86State *env)
1433 {
1434 DeviceState *apic = env->apic_state;
1435 struct kvm_lapic_state kapic;
1436
1437 if (apic && kvm_irqchip_in_kernel()) {
1438 kvm_put_apic_state(apic, &kapic);
1439
1440 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1441 }
1442 return 0;
1443 }
1444
1445 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1446 {
1447 struct kvm_vcpu_events events;
1448
1449 if (!kvm_has_vcpu_events()) {
1450 return 0;
1451 }
1452
1453 events.exception.injected = (env->exception_injected >= 0);
1454 events.exception.nr = env->exception_injected;
1455 events.exception.has_error_code = env->has_error_code;
1456 events.exception.error_code = env->error_code;
1457 events.exception.pad = 0;
1458
1459 events.interrupt.injected = (env->interrupt_injected >= 0);
1460 events.interrupt.nr = env->interrupt_injected;
1461 events.interrupt.soft = env->soft_interrupt;
1462
1463 events.nmi.injected = env->nmi_injected;
1464 events.nmi.pending = env->nmi_pending;
1465 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1466 events.nmi.pad = 0;
1467
1468 events.sipi_vector = env->sipi_vector;
1469
1470 events.flags = 0;
1471 if (level >= KVM_PUT_RESET_STATE) {
1472 events.flags |=
1473 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1474 }
1475
1476 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1477 }
1478
1479 static int kvm_get_vcpu_events(CPUX86State *env)
1480 {
1481 struct kvm_vcpu_events events;
1482 int ret;
1483
1484 if (!kvm_has_vcpu_events()) {
1485 return 0;
1486 }
1487
1488 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1489 if (ret < 0) {
1490 return ret;
1491 }
1492 env->exception_injected =
1493 events.exception.injected ? events.exception.nr : -1;
1494 env->has_error_code = events.exception.has_error_code;
1495 env->error_code = events.exception.error_code;
1496
1497 env->interrupt_injected =
1498 events.interrupt.injected ? events.interrupt.nr : -1;
1499 env->soft_interrupt = events.interrupt.soft;
1500
1501 env->nmi_injected = events.nmi.injected;
1502 env->nmi_pending = events.nmi.pending;
1503 if (events.nmi.masked) {
1504 env->hflags2 |= HF2_NMI_MASK;
1505 } else {
1506 env->hflags2 &= ~HF2_NMI_MASK;
1507 }
1508
1509 env->sipi_vector = events.sipi_vector;
1510
1511 return 0;
1512 }
1513
1514 static int kvm_guest_debug_workarounds(CPUX86State *env)
1515 {
1516 int ret = 0;
1517 unsigned long reinject_trap = 0;
1518
1519 if (!kvm_has_vcpu_events()) {
1520 if (env->exception_injected == 1) {
1521 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1522 } else if (env->exception_injected == 3) {
1523 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1524 }
1525 env->exception_injected = -1;
1526 }
1527
1528 /*
1529 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1530 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1531 * by updating the debug state once again if single-stepping is on.
1532 * Another reason to call kvm_update_guest_debug here is a pending debug
1533 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1534 * reinject them via SET_GUEST_DEBUG.
1535 */
1536 if (reinject_trap ||
1537 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1538 ret = kvm_update_guest_debug(env, reinject_trap);
1539 }
1540 return ret;
1541 }
1542
1543 static int kvm_put_debugregs(CPUX86State *env)
1544 {
1545 struct kvm_debugregs dbgregs;
1546 int i;
1547
1548 if (!kvm_has_debugregs()) {
1549 return 0;
1550 }
1551
1552 for (i = 0; i < 4; i++) {
1553 dbgregs.db[i] = env->dr[i];
1554 }
1555 dbgregs.dr6 = env->dr[6];
1556 dbgregs.dr7 = env->dr[7];
1557 dbgregs.flags = 0;
1558
1559 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1560 }
1561
1562 static int kvm_get_debugregs(CPUX86State *env)
1563 {
1564 struct kvm_debugregs dbgregs;
1565 int i, ret;
1566
1567 if (!kvm_has_debugregs()) {
1568 return 0;
1569 }
1570
1571 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1572 if (ret < 0) {
1573 return ret;
1574 }
1575 for (i = 0; i < 4; i++) {
1576 env->dr[i] = dbgregs.db[i];
1577 }
1578 env->dr[4] = env->dr[6] = dbgregs.dr6;
1579 env->dr[5] = env->dr[7] = dbgregs.dr7;
1580
1581 return 0;
1582 }
1583
1584 int kvm_arch_put_registers(CPUX86State *env, int level)
1585 {
1586 int ret;
1587
1588 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1589
1590 ret = kvm_getput_regs(env, 1);
1591 if (ret < 0) {
1592 return ret;
1593 }
1594 ret = kvm_put_xsave(env);
1595 if (ret < 0) {
1596 return ret;
1597 }
1598 ret = kvm_put_xcrs(env);
1599 if (ret < 0) {
1600 return ret;
1601 }
1602 ret = kvm_put_sregs(env);
1603 if (ret < 0) {
1604 return ret;
1605 }
1606 /* must be before kvm_put_msrs */
1607 ret = kvm_inject_mce_oldstyle(env);
1608 if (ret < 0) {
1609 return ret;
1610 }
1611 ret = kvm_put_msrs(env, level);
1612 if (ret < 0) {
1613 return ret;
1614 }
1615 if (level >= KVM_PUT_RESET_STATE) {
1616 ret = kvm_put_mp_state(env);
1617 if (ret < 0) {
1618 return ret;
1619 }
1620 ret = kvm_put_apic(env);
1621 if (ret < 0) {
1622 return ret;
1623 }
1624 }
1625 ret = kvm_put_vcpu_events(env, level);
1626 if (ret < 0) {
1627 return ret;
1628 }
1629 ret = kvm_put_debugregs(env);
1630 if (ret < 0) {
1631 return ret;
1632 }
1633 /* must be last */
1634 ret = kvm_guest_debug_workarounds(env);
1635 if (ret < 0) {
1636 return ret;
1637 }
1638 return 0;
1639 }
1640
1641 int kvm_arch_get_registers(CPUX86State *env)
1642 {
1643 int ret;
1644
1645 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1646
1647 ret = kvm_getput_regs(env, 0);
1648 if (ret < 0) {
1649 return ret;
1650 }
1651 ret = kvm_get_xsave(env);
1652 if (ret < 0) {
1653 return ret;
1654 }
1655 ret = kvm_get_xcrs(env);
1656 if (ret < 0) {
1657 return ret;
1658 }
1659 ret = kvm_get_sregs(env);
1660 if (ret < 0) {
1661 return ret;
1662 }
1663 ret = kvm_get_msrs(env);
1664 if (ret < 0) {
1665 return ret;
1666 }
1667 ret = kvm_get_mp_state(env);
1668 if (ret < 0) {
1669 return ret;
1670 }
1671 ret = kvm_get_apic(env);
1672 if (ret < 0) {
1673 return ret;
1674 }
1675 ret = kvm_get_vcpu_events(env);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 ret = kvm_get_debugregs(env);
1680 if (ret < 0) {
1681 return ret;
1682 }
1683 return 0;
1684 }
1685
1686 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1687 {
1688 int ret;
1689
1690 /* Inject NMI */
1691 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1692 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1693 DPRINTF("injected NMI\n");
1694 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1695 if (ret < 0) {
1696 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1697 strerror(-ret));
1698 }
1699 }
1700
1701 if (!kvm_irqchip_in_kernel()) {
1702 /* Force the VCPU out of its inner loop to process any INIT requests
1703 * or pending TPR access reports. */
1704 if (env->interrupt_request &
1705 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1706 env->exit_request = 1;
1707 }
1708
1709 /* Try to inject an interrupt if the guest can accept it */
1710 if (run->ready_for_interrupt_injection &&
1711 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1712 (env->eflags & IF_MASK)) {
1713 int irq;
1714
1715 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1716 irq = cpu_get_pic_interrupt(env);
1717 if (irq >= 0) {
1718 struct kvm_interrupt intr;
1719
1720 intr.irq = irq;
1721 DPRINTF("injected interrupt %d\n", irq);
1722 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1723 if (ret < 0) {
1724 fprintf(stderr,
1725 "KVM: injection failed, interrupt lost (%s)\n",
1726 strerror(-ret));
1727 }
1728 }
1729 }
1730
1731 /* If we have an interrupt but the guest is not ready to receive an
1732 * interrupt, request an interrupt window exit. This will
1733 * cause a return to userspace as soon as the guest is ready to
1734 * receive interrupts. */
1735 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1736 run->request_interrupt_window = 1;
1737 } else {
1738 run->request_interrupt_window = 0;
1739 }
1740
1741 DPRINTF("setting tpr\n");
1742 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1743 }
1744 }
1745
1746 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1747 {
1748 if (run->if_flag) {
1749 env->eflags |= IF_MASK;
1750 } else {
1751 env->eflags &= ~IF_MASK;
1752 }
1753 cpu_set_apic_tpr(env->apic_state, run->cr8);
1754 cpu_set_apic_base(env->apic_state, run->apic_base);
1755 }
1756
1757 int kvm_arch_process_async_events(CPUX86State *env)
1758 {
1759 X86CPU *cpu = x86_env_get_cpu(env);
1760
1761 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1762 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1763 assert(env->mcg_cap);
1764
1765 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1766
1767 kvm_cpu_synchronize_state(env);
1768
1769 if (env->exception_injected == EXCP08_DBLE) {
1770 /* this means triple fault */
1771 qemu_system_reset_request();
1772 env->exit_request = 1;
1773 return 0;
1774 }
1775 env->exception_injected = EXCP12_MCHK;
1776 env->has_error_code = 0;
1777
1778 env->halted = 0;
1779 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1780 env->mp_state = KVM_MP_STATE_RUNNABLE;
1781 }
1782 }
1783
1784 if (kvm_irqchip_in_kernel()) {
1785 return 0;
1786 }
1787
1788 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1789 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1790 apic_poll_irq(env->apic_state);
1791 }
1792 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1793 (env->eflags & IF_MASK)) ||
1794 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1795 env->halted = 0;
1796 }
1797 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1798 kvm_cpu_synchronize_state(env);
1799 do_cpu_init(cpu);
1800 }
1801 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1802 kvm_cpu_synchronize_state(env);
1803 do_cpu_sipi(cpu);
1804 }
1805 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1806 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1807 kvm_cpu_synchronize_state(env);
1808 apic_handle_tpr_access_report(env->apic_state, env->eip,
1809 env->tpr_access_type);
1810 }
1811
1812 return env->halted;
1813 }
1814
1815 static int kvm_handle_halt(CPUX86State *env)
1816 {
1817 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1818 (env->eflags & IF_MASK)) &&
1819 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1820 env->halted = 1;
1821 return EXCP_HLT;
1822 }
1823
1824 return 0;
1825 }
1826
1827 static int kvm_handle_tpr_access(CPUX86State *env)
1828 {
1829 struct kvm_run *run = env->kvm_run;
1830
1831 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1832 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1833 : TPR_ACCESS_READ);
1834 return 1;
1835 }
1836
1837 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1838 {
1839 static const uint8_t int3 = 0xcc;
1840
1841 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1842 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1843 return -EINVAL;
1844 }
1845 return 0;
1846 }
1847
1848 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1849 {
1850 uint8_t int3;
1851
1852 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1853 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1854 return -EINVAL;
1855 }
1856 return 0;
1857 }
1858
1859 static struct {
1860 target_ulong addr;
1861 int len;
1862 int type;
1863 } hw_breakpoint[4];
1864
1865 static int nb_hw_breakpoint;
1866
1867 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1868 {
1869 int n;
1870
1871 for (n = 0; n < nb_hw_breakpoint; n++) {
1872 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1873 (hw_breakpoint[n].len == len || len == -1)) {
1874 return n;
1875 }
1876 }
1877 return -1;
1878 }
1879
1880 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1881 target_ulong len, int type)
1882 {
1883 switch (type) {
1884 case GDB_BREAKPOINT_HW:
1885 len = 1;
1886 break;
1887 case GDB_WATCHPOINT_WRITE:
1888 case GDB_WATCHPOINT_ACCESS:
1889 switch (len) {
1890 case 1:
1891 break;
1892 case 2:
1893 case 4:
1894 case 8:
1895 if (addr & (len - 1)) {
1896 return -EINVAL;
1897 }
1898 break;
1899 default:
1900 return -EINVAL;
1901 }
1902 break;
1903 default:
1904 return -ENOSYS;
1905 }
1906
1907 if (nb_hw_breakpoint == 4) {
1908 return -ENOBUFS;
1909 }
1910 if (find_hw_breakpoint(addr, len, type) >= 0) {
1911 return -EEXIST;
1912 }
1913 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1914 hw_breakpoint[nb_hw_breakpoint].len = len;
1915 hw_breakpoint[nb_hw_breakpoint].type = type;
1916 nb_hw_breakpoint++;
1917
1918 return 0;
1919 }
1920
1921 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1922 target_ulong len, int type)
1923 {
1924 int n;
1925
1926 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1927 if (n < 0) {
1928 return -ENOENT;
1929 }
1930 nb_hw_breakpoint--;
1931 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1932
1933 return 0;
1934 }
1935
1936 void kvm_arch_remove_all_hw_breakpoints(void)
1937 {
1938 nb_hw_breakpoint = 0;
1939 }
1940
1941 static CPUWatchpoint hw_watchpoint;
1942
1943 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1944 {
1945 int ret = 0;
1946 int n;
1947
1948 if (arch_info->exception == 1) {
1949 if (arch_info->dr6 & (1 << 14)) {
1950 if (cpu_single_env->singlestep_enabled) {
1951 ret = EXCP_DEBUG;
1952 }
1953 } else {
1954 for (n = 0; n < 4; n++) {
1955 if (arch_info->dr6 & (1 << n)) {
1956 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1957 case 0x0:
1958 ret = EXCP_DEBUG;
1959 break;
1960 case 0x1:
1961 ret = EXCP_DEBUG;
1962 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1963 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1964 hw_watchpoint.flags = BP_MEM_WRITE;
1965 break;
1966 case 0x3:
1967 ret = EXCP_DEBUG;
1968 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1969 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1970 hw_watchpoint.flags = BP_MEM_ACCESS;
1971 break;
1972 }
1973 }
1974 }
1975 }
1976 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1977 ret = EXCP_DEBUG;
1978 }
1979 if (ret == 0) {
1980 cpu_synchronize_state(cpu_single_env);
1981 assert(cpu_single_env->exception_injected == -1);
1982
1983 /* pass to guest */
1984 cpu_single_env->exception_injected = arch_info->exception;
1985 cpu_single_env->has_error_code = 0;
1986 }
1987
1988 return ret;
1989 }
1990
1991 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1992 {
1993 const uint8_t type_code[] = {
1994 [GDB_BREAKPOINT_HW] = 0x0,
1995 [GDB_WATCHPOINT_WRITE] = 0x1,
1996 [GDB_WATCHPOINT_ACCESS] = 0x3
1997 };
1998 const uint8_t len_code[] = {
1999 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2000 };
2001 int n;
2002
2003 if (kvm_sw_breakpoints_active(env)) {
2004 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2005 }
2006 if (nb_hw_breakpoint > 0) {
2007 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2008 dbg->arch.debugreg[7] = 0x0600;
2009 for (n = 0; n < nb_hw_breakpoint; n++) {
2010 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2011 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2012 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2013 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2014 }
2015 }
2016 }
2017
2018 static bool host_supports_vmx(void)
2019 {
2020 uint32_t ecx, unused;
2021
2022 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2023 return ecx & CPUID_EXT_VMX;
2024 }
2025
2026 #define VMX_INVALID_GUEST_STATE 0x80000021
2027
2028 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2029 {
2030 uint64_t code;
2031 int ret;
2032
2033 switch (run->exit_reason) {
2034 case KVM_EXIT_HLT:
2035 DPRINTF("handle_hlt\n");
2036 ret = kvm_handle_halt(env);
2037 break;
2038 case KVM_EXIT_SET_TPR:
2039 ret = 0;
2040 break;
2041 case KVM_EXIT_TPR_ACCESS:
2042 ret = kvm_handle_tpr_access(env);
2043 break;
2044 case KVM_EXIT_FAIL_ENTRY:
2045 code = run->fail_entry.hardware_entry_failure_reason;
2046 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2047 code);
2048 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2049 fprintf(stderr,
2050 "\nIf you're running a guest on an Intel machine without "
2051 "unrestricted mode\n"
2052 "support, the failure can be most likely due to the guest "
2053 "entering an invalid\n"
2054 "state for Intel VT. For example, the guest maybe running "
2055 "in big real mode\n"
2056 "which is not supported on less recent Intel processors."
2057 "\n\n");
2058 }
2059 ret = -1;
2060 break;
2061 case KVM_EXIT_EXCEPTION:
2062 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2063 run->ex.exception, run->ex.error_code);
2064 ret = -1;
2065 break;
2066 case KVM_EXIT_DEBUG:
2067 DPRINTF("kvm_exit_debug\n");
2068 ret = kvm_handle_debug(&run->debug.arch);
2069 break;
2070 default:
2071 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2072 ret = -1;
2073 break;
2074 }
2075
2076 return ret;
2077 }
2078
2079 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2080 {
2081 kvm_cpu_synchronize_state(env);
2082 return !(env->cr[0] & CR0_PE_MASK) ||
2083 ((env->segs[R_CS].selector & 3) != 3);
2084 }
2085
2086 void kvm_arch_init_irq_routing(KVMState *s)
2087 {
2088 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2089 /* If kernel can't do irq routing, interrupt source
2090 * override 0->2 cannot be set up as required by HPET.
2091 * So we have to disable it.
2092 */
2093 no_hpet = 1;
2094 }
2095 /* We know at this point that we're using the in-kernel
2096 * irqchip, so we can use irqfds, and on x86 we know
2097 * we can use msi via irqfd and GSI routing.
2098 */
2099 kvm_irqfds_allowed = true;
2100 kvm_msi_via_irqfd_allowed = true;
2101 kvm_gsi_routing_allowed = true;
2102 }
2103
2104 /* Classic KVM device assignment interface. Will remain x86 only. */
2105 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2106 uint32_t flags, uint32_t *dev_id)
2107 {
2108 struct kvm_assigned_pci_dev dev_data = {
2109 .segnr = dev_addr->domain,
2110 .busnr = dev_addr->bus,
2111 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2112 .flags = flags,
2113 };
2114 int ret;
2115
2116 dev_data.assigned_dev_id =
2117 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2118
2119 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2120 if (ret < 0) {
2121 return ret;
2122 }
2123
2124 *dev_id = dev_data.assigned_dev_id;
2125
2126 return 0;
2127 }
2128
2129 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2130 {
2131 struct kvm_assigned_pci_dev dev_data = {
2132 .assigned_dev_id = dev_id,
2133 };
2134
2135 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2136 }
2137
2138 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2139 uint32_t irq_type, uint32_t guest_irq)
2140 {
2141 struct kvm_assigned_irq assigned_irq = {
2142 .assigned_dev_id = dev_id,
2143 .guest_irq = guest_irq,
2144 .flags = irq_type,
2145 };
2146
2147 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2148 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2149 } else {
2150 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2151 }
2152 }
2153
2154 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2155 uint32_t guest_irq)
2156 {
2157 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2158 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2159
2160 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2161 }
2162
2163 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2164 {
2165 struct kvm_assigned_pci_dev dev_data = {
2166 .assigned_dev_id = dev_id,
2167 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2168 };
2169
2170 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2171 }
2172
2173 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2174 uint32_t type)
2175 {
2176 struct kvm_assigned_irq assigned_irq = {
2177 .assigned_dev_id = dev_id,
2178 .flags = type,
2179 };
2180
2181 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2182 }
2183
2184 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2185 {
2186 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2187 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2188 }
2189
2190 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2191 {
2192 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2193 KVM_DEV_IRQ_GUEST_MSI, virq);
2194 }
2195
2196 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2197 {
2198 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2199 KVM_DEV_IRQ_HOST_MSI);
2200 }
2201
2202 bool kvm_device_msix_supported(KVMState *s)
2203 {
2204 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2205 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2206 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2207 }
2208
2209 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2210 uint32_t nr_vectors)
2211 {
2212 struct kvm_assigned_msix_nr msix_nr = {
2213 .assigned_dev_id = dev_id,
2214 .entry_nr = nr_vectors,
2215 };
2216
2217 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2218 }
2219
2220 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2221 int virq)
2222 {
2223 struct kvm_assigned_msix_entry msix_entry = {
2224 .assigned_dev_id = dev_id,
2225 .gsi = virq,
2226 .entry = vector,
2227 };
2228
2229 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2230 }
2231
2232 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2233 {
2234 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2235 KVM_DEV_IRQ_GUEST_MSIX, 0);
2236 }
2237
2238 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2239 {
2240 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2241 KVM_DEV_IRQ_HOST_MSIX);
2242 }