]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: x86: Only read/write MSR_KVM_ASYNC_PF_EN if supported
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
67 static bool has_msr_async_pf_en;
68 #endif
69 static int lm_capable_kernel;
70
71 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
72 {
73 struct kvm_cpuid2 *cpuid;
74 int r, size;
75
76 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
77 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
78 cpuid->nent = max;
79 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
80 if (r == 0 && cpuid->nent >= max) {
81 r = -E2BIG;
82 }
83 if (r < 0) {
84 if (r == -E2BIG) {
85 qemu_free(cpuid);
86 return NULL;
87 } else {
88 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
89 strerror(-r));
90 exit(1);
91 }
92 }
93 return cpuid;
94 }
95
96 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
97 uint32_t index, int reg)
98 {
99 struct kvm_cpuid2 *cpuid;
100 int i, max;
101 uint32_t ret = 0;
102 uint32_t cpuid_1_edx;
103
104 max = 1;
105 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
106 max *= 2;
107 }
108
109 for (i = 0; i < cpuid->nent; ++i) {
110 if (cpuid->entries[i].function == function &&
111 cpuid->entries[i].index == index) {
112 switch (reg) {
113 case R_EAX:
114 ret = cpuid->entries[i].eax;
115 break;
116 case R_EBX:
117 ret = cpuid->entries[i].ebx;
118 break;
119 case R_ECX:
120 ret = cpuid->entries[i].ecx;
121 break;
122 case R_EDX:
123 ret = cpuid->entries[i].edx;
124 switch (function) {
125 case 1:
126 /* KVM before 2.6.30 misreports the following features */
127 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
128 break;
129 case 0x80000001:
130 /* On Intel, kvm returns cpuid according to the Intel spec,
131 * so add missing bits according to the AMD spec:
132 */
133 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
134 ret |= cpuid_1_edx & 0x183f7ff;
135 break;
136 }
137 break;
138 }
139 }
140 }
141
142 qemu_free(cpuid);
143
144 return ret;
145 }
146
147 #ifdef CONFIG_KVM_PARA
148 struct kvm_para_features {
149 int cap;
150 int feature;
151 } para_features[] = {
152 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
153 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
154 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
155 #ifdef KVM_CAP_ASYNC_PF
156 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
157 #endif
158 { -1, -1 }
159 };
160
161 static int get_para_features(CPUState *env)
162 {
163 int i, features = 0;
164
165 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
166 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
167 features |= (1 << para_features[i].feature);
168 }
169 }
170 has_msr_async_pf_en = features & (1 << KVM_FEATURE_ASYNC_PF);
171 return features;
172 }
173 #endif
174
175 #ifdef KVM_CAP_MCE
176 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
177 int *max_banks)
178 {
179 int r;
180
181 r = kvm_check_extension(s, KVM_CAP_MCE);
182 if (r > 0) {
183 *max_banks = r;
184 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
185 }
186 return -ENOSYS;
187 }
188
189 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
190 {
191 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
192 }
193
194 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
195 {
196 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
197 }
198
199 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
200 {
201 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
202 int r;
203
204 kmsrs->nmsrs = n;
205 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
206 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
207 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
208 free(kmsrs);
209 return r;
210 }
211
212 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
213 static int kvm_mce_in_progress(CPUState *env)
214 {
215 struct kvm_msr_entry msr_mcg_status = {
216 .index = MSR_MCG_STATUS,
217 };
218 int r;
219
220 r = kvm_get_msr(env, &msr_mcg_status, 1);
221 if (r == -1 || r == 0) {
222 fprintf(stderr, "Failed to get MCE status\n");
223 return 0;
224 }
225 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
226 }
227
228 struct kvm_x86_mce_data
229 {
230 CPUState *env;
231 struct kvm_x86_mce *mce;
232 int abort_on_error;
233 };
234
235 static void kvm_do_inject_x86_mce(void *_data)
236 {
237 struct kvm_x86_mce_data *data = _data;
238 int r;
239
240 /* If there is an MCE exception being processed, ignore this SRAO MCE */
241 if ((data->env->mcg_cap & MCG_SER_P) &&
242 !(data->mce->status & MCI_STATUS_AR)) {
243 if (kvm_mce_in_progress(data->env)) {
244 return;
245 }
246 }
247
248 r = kvm_set_mce(data->env, data->mce);
249 if (r < 0) {
250 perror("kvm_set_mce FAILED");
251 if (data->abort_on_error) {
252 abort();
253 }
254 }
255 }
256
257 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
258 int flag)
259 {
260 struct kvm_x86_mce_data data = {
261 .env = env,
262 .mce = mce,
263 .abort_on_error = (flag & ABORT_ON_ERROR),
264 };
265
266 if (!env->mcg_cap) {
267 fprintf(stderr, "MCE support is not enabled!\n");
268 return;
269 }
270
271 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
272 }
273
274 static void kvm_mce_broadcast_rest(CPUState *env);
275 #endif
276
277 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
278 uint64_t mcg_status, uint64_t addr, uint64_t misc,
279 int flag)
280 {
281 #ifdef KVM_CAP_MCE
282 struct kvm_x86_mce mce = {
283 .bank = bank,
284 .status = status,
285 .mcg_status = mcg_status,
286 .addr = addr,
287 .misc = misc,
288 };
289
290 if (flag & MCE_BROADCAST) {
291 kvm_mce_broadcast_rest(cenv);
292 }
293
294 kvm_inject_x86_mce_on(cenv, &mce, flag);
295 #else
296 if (flag & ABORT_ON_ERROR) {
297 abort();
298 }
299 #endif
300 }
301
302 int kvm_arch_init_vcpu(CPUState *env)
303 {
304 struct {
305 struct kvm_cpuid2 cpuid;
306 struct kvm_cpuid_entry2 entries[100];
307 } __attribute__((packed)) cpuid_data;
308 uint32_t limit, i, j, cpuid_i;
309 uint32_t unused;
310 struct kvm_cpuid_entry2 *c;
311 #ifdef CONFIG_KVM_PARA
312 uint32_t signature[3];
313 #endif
314
315 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
316
317 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
318 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
319 env->cpuid_ext_features |= i;
320
321 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
322 0, R_EDX);
323 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
324 0, R_ECX);
325 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
326 0, R_EDX);
327
328
329 cpuid_i = 0;
330
331 #ifdef CONFIG_KVM_PARA
332 /* Paravirtualization CPUIDs */
333 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
334 c = &cpuid_data.entries[cpuid_i++];
335 memset(c, 0, sizeof(*c));
336 c->function = KVM_CPUID_SIGNATURE;
337 c->eax = 0;
338 c->ebx = signature[0];
339 c->ecx = signature[1];
340 c->edx = signature[2];
341
342 c = &cpuid_data.entries[cpuid_i++];
343 memset(c, 0, sizeof(*c));
344 c->function = KVM_CPUID_FEATURES;
345 c->eax = env->cpuid_kvm_features & get_para_features(env);
346 #endif
347
348 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
349
350 for (i = 0; i <= limit; i++) {
351 c = &cpuid_data.entries[cpuid_i++];
352
353 switch (i) {
354 case 2: {
355 /* Keep reading function 2 till all the input is received */
356 int times;
357
358 c->function = i;
359 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
360 KVM_CPUID_FLAG_STATE_READ_NEXT;
361 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
362 times = c->eax & 0xff;
363
364 for (j = 1; j < times; ++j) {
365 c = &cpuid_data.entries[cpuid_i++];
366 c->function = i;
367 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
368 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
369 }
370 break;
371 }
372 case 4:
373 case 0xb:
374 case 0xd:
375 for (j = 0; ; j++) {
376 c->function = i;
377 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
378 c->index = j;
379 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
380
381 if (i == 4 && c->eax == 0) {
382 break;
383 }
384 if (i == 0xb && !(c->ecx & 0xff00)) {
385 break;
386 }
387 if (i == 0xd && c->eax == 0) {
388 break;
389 }
390 c = &cpuid_data.entries[cpuid_i++];
391 }
392 break;
393 default:
394 c->function = i;
395 c->flags = 0;
396 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
397 break;
398 }
399 }
400 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
401
402 for (i = 0x80000000; i <= limit; i++) {
403 c = &cpuid_data.entries[cpuid_i++];
404
405 c->function = i;
406 c->flags = 0;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 }
409
410 cpuid_data.cpuid.nent = cpuid_i;
411
412 #ifdef KVM_CAP_MCE
413 if (((env->cpuid_version >> 8)&0xF) >= 6
414 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
415 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
416 uint64_t mcg_cap;
417 int banks;
418
419 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
420 perror("kvm_get_mce_cap_supported FAILED");
421 } else {
422 if (banks > MCE_BANKS_DEF)
423 banks = MCE_BANKS_DEF;
424 mcg_cap &= MCE_CAP_DEF;
425 mcg_cap |= banks;
426 if (kvm_setup_mce(env, &mcg_cap)) {
427 perror("kvm_setup_mce FAILED");
428 } else {
429 env->mcg_cap = mcg_cap;
430 }
431 }
432 }
433 #endif
434
435 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
436 }
437
438 void kvm_arch_reset_vcpu(CPUState *env)
439 {
440 env->exception_injected = -1;
441 env->interrupt_injected = -1;
442 env->xcr0 = 1;
443 if (kvm_irqchip_in_kernel()) {
444 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
445 KVM_MP_STATE_UNINITIALIZED;
446 } else {
447 env->mp_state = KVM_MP_STATE_RUNNABLE;
448 }
449 }
450
451 static int kvm_get_supported_msrs(KVMState *s)
452 {
453 static int kvm_supported_msrs;
454 int ret = 0;
455
456 /* first time */
457 if (kvm_supported_msrs == 0) {
458 struct kvm_msr_list msr_list, *kvm_msr_list;
459
460 kvm_supported_msrs = -1;
461
462 /* Obtain MSR list from KVM. These are the MSRs that we must
463 * save/restore */
464 msr_list.nmsrs = 0;
465 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
466 if (ret < 0 && ret != -E2BIG) {
467 return ret;
468 }
469 /* Old kernel modules had a bug and could write beyond the provided
470 memory. Allocate at least a safe amount of 1K. */
471 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
472 msr_list.nmsrs *
473 sizeof(msr_list.indices[0])));
474
475 kvm_msr_list->nmsrs = msr_list.nmsrs;
476 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
477 if (ret >= 0) {
478 int i;
479
480 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
481 if (kvm_msr_list->indices[i] == MSR_STAR) {
482 has_msr_star = true;
483 continue;
484 }
485 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
486 has_msr_hsave_pa = true;
487 continue;
488 }
489 }
490 }
491
492 free(kvm_msr_list);
493 }
494
495 return ret;
496 }
497
498 int kvm_arch_init(KVMState *s)
499 {
500 uint64_t identity_base = 0xfffbc000;
501 int ret;
502 struct utsname utsname;
503
504 ret = kvm_get_supported_msrs(s);
505 if (ret < 0) {
506 return ret;
507 }
508
509 uname(&utsname);
510 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
511
512 /*
513 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
514 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
515 * Since these must be part of guest physical memory, we need to allocate
516 * them, both by setting their start addresses in the kernel and by
517 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
518 *
519 * Older KVM versions may not support setting the identity map base. In
520 * that case we need to stick with the default, i.e. a 256K maximum BIOS
521 * size.
522 */
523 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
524 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
525 /* Allows up to 16M BIOSes. */
526 identity_base = 0xfeffc000;
527
528 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
529 if (ret < 0) {
530 return ret;
531 }
532 }
533 #endif
534 /* Set TSS base one page after EPT identity map. */
535 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
536 if (ret < 0) {
537 return ret;
538 }
539
540 /* Tell fw_cfg to notify the BIOS to reserve the range. */
541 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
542 if (ret < 0) {
543 fprintf(stderr, "e820_add_entry() table is full\n");
544 return ret;
545 }
546
547 return 0;
548 }
549
550 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
551 {
552 lhs->selector = rhs->selector;
553 lhs->base = rhs->base;
554 lhs->limit = rhs->limit;
555 lhs->type = 3;
556 lhs->present = 1;
557 lhs->dpl = 3;
558 lhs->db = 0;
559 lhs->s = 1;
560 lhs->l = 0;
561 lhs->g = 0;
562 lhs->avl = 0;
563 lhs->unusable = 0;
564 }
565
566 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
567 {
568 unsigned flags = rhs->flags;
569 lhs->selector = rhs->selector;
570 lhs->base = rhs->base;
571 lhs->limit = rhs->limit;
572 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
573 lhs->present = (flags & DESC_P_MASK) != 0;
574 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
575 lhs->db = (flags >> DESC_B_SHIFT) & 1;
576 lhs->s = (flags & DESC_S_MASK) != 0;
577 lhs->l = (flags >> DESC_L_SHIFT) & 1;
578 lhs->g = (flags & DESC_G_MASK) != 0;
579 lhs->avl = (flags & DESC_AVL_MASK) != 0;
580 lhs->unusable = 0;
581 }
582
583 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
584 {
585 lhs->selector = rhs->selector;
586 lhs->base = rhs->base;
587 lhs->limit = rhs->limit;
588 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
589 (rhs->present * DESC_P_MASK) |
590 (rhs->dpl << DESC_DPL_SHIFT) |
591 (rhs->db << DESC_B_SHIFT) |
592 (rhs->s * DESC_S_MASK) |
593 (rhs->l << DESC_L_SHIFT) |
594 (rhs->g * DESC_G_MASK) |
595 (rhs->avl * DESC_AVL_MASK);
596 }
597
598 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
599 {
600 if (set) {
601 *kvm_reg = *qemu_reg;
602 } else {
603 *qemu_reg = *kvm_reg;
604 }
605 }
606
607 static int kvm_getput_regs(CPUState *env, int set)
608 {
609 struct kvm_regs regs;
610 int ret = 0;
611
612 if (!set) {
613 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
614 if (ret < 0) {
615 return ret;
616 }
617 }
618
619 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
620 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
621 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
622 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
623 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
624 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
625 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
626 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
627 #ifdef TARGET_X86_64
628 kvm_getput_reg(&regs.r8, &env->regs[8], set);
629 kvm_getput_reg(&regs.r9, &env->regs[9], set);
630 kvm_getput_reg(&regs.r10, &env->regs[10], set);
631 kvm_getput_reg(&regs.r11, &env->regs[11], set);
632 kvm_getput_reg(&regs.r12, &env->regs[12], set);
633 kvm_getput_reg(&regs.r13, &env->regs[13], set);
634 kvm_getput_reg(&regs.r14, &env->regs[14], set);
635 kvm_getput_reg(&regs.r15, &env->regs[15], set);
636 #endif
637
638 kvm_getput_reg(&regs.rflags, &env->eflags, set);
639 kvm_getput_reg(&regs.rip, &env->eip, set);
640
641 if (set) {
642 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
643 }
644
645 return ret;
646 }
647
648 static int kvm_put_fpu(CPUState *env)
649 {
650 struct kvm_fpu fpu;
651 int i;
652
653 memset(&fpu, 0, sizeof fpu);
654 fpu.fsw = env->fpus & ~(7 << 11);
655 fpu.fsw |= (env->fpstt & 7) << 11;
656 fpu.fcw = env->fpuc;
657 for (i = 0; i < 8; ++i) {
658 fpu.ftwx |= (!env->fptags[i]) << i;
659 }
660 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
661 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
662 fpu.mxcsr = env->mxcsr;
663
664 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
665 }
666
667 #ifdef KVM_CAP_XSAVE
668 #define XSAVE_CWD_RIP 2
669 #define XSAVE_CWD_RDP 4
670 #define XSAVE_MXCSR 6
671 #define XSAVE_ST_SPACE 8
672 #define XSAVE_XMM_SPACE 40
673 #define XSAVE_XSTATE_BV 128
674 #define XSAVE_YMMH_SPACE 144
675 #endif
676
677 static int kvm_put_xsave(CPUState *env)
678 {
679 #ifdef KVM_CAP_XSAVE
680 int i, r;
681 struct kvm_xsave* xsave;
682 uint16_t cwd, swd, twd, fop;
683
684 if (!kvm_has_xsave()) {
685 return kvm_put_fpu(env);
686 }
687
688 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
689 memset(xsave, 0, sizeof(struct kvm_xsave));
690 cwd = swd = twd = fop = 0;
691 swd = env->fpus & ~(7 << 11);
692 swd |= (env->fpstt & 7) << 11;
693 cwd = env->fpuc;
694 for (i = 0; i < 8; ++i) {
695 twd |= (!env->fptags[i]) << i;
696 }
697 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
698 xsave->region[1] = (uint32_t)(fop << 16) + twd;
699 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
700 sizeof env->fpregs);
701 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
702 sizeof env->xmm_regs);
703 xsave->region[XSAVE_MXCSR] = env->mxcsr;
704 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
705 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
706 sizeof env->ymmh_regs);
707 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
708 qemu_free(xsave);
709 return r;
710 #else
711 return kvm_put_fpu(env);
712 #endif
713 }
714
715 static int kvm_put_xcrs(CPUState *env)
716 {
717 #ifdef KVM_CAP_XCRS
718 struct kvm_xcrs xcrs;
719
720 if (!kvm_has_xcrs()) {
721 return 0;
722 }
723
724 xcrs.nr_xcrs = 1;
725 xcrs.flags = 0;
726 xcrs.xcrs[0].xcr = 0;
727 xcrs.xcrs[0].value = env->xcr0;
728 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
729 #else
730 return 0;
731 #endif
732 }
733
734 static int kvm_put_sregs(CPUState *env)
735 {
736 struct kvm_sregs sregs;
737
738 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
739 if (env->interrupt_injected >= 0) {
740 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
741 (uint64_t)1 << (env->interrupt_injected % 64);
742 }
743
744 if ((env->eflags & VM_MASK)) {
745 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
746 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
747 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
748 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
749 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
750 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
751 } else {
752 set_seg(&sregs.cs, &env->segs[R_CS]);
753 set_seg(&sregs.ds, &env->segs[R_DS]);
754 set_seg(&sregs.es, &env->segs[R_ES]);
755 set_seg(&sregs.fs, &env->segs[R_FS]);
756 set_seg(&sregs.gs, &env->segs[R_GS]);
757 set_seg(&sregs.ss, &env->segs[R_SS]);
758 }
759
760 set_seg(&sregs.tr, &env->tr);
761 set_seg(&sregs.ldt, &env->ldt);
762
763 sregs.idt.limit = env->idt.limit;
764 sregs.idt.base = env->idt.base;
765 sregs.gdt.limit = env->gdt.limit;
766 sregs.gdt.base = env->gdt.base;
767
768 sregs.cr0 = env->cr[0];
769 sregs.cr2 = env->cr[2];
770 sregs.cr3 = env->cr[3];
771 sregs.cr4 = env->cr[4];
772
773 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
774 sregs.apic_base = cpu_get_apic_base(env->apic_state);
775
776 sregs.efer = env->efer;
777
778 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
779 }
780
781 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
782 uint32_t index, uint64_t value)
783 {
784 entry->index = index;
785 entry->data = value;
786 }
787
788 static int kvm_put_msrs(CPUState *env, int level)
789 {
790 struct {
791 struct kvm_msrs info;
792 struct kvm_msr_entry entries[100];
793 } msr_data;
794 struct kvm_msr_entry *msrs = msr_data.entries;
795 int n = 0;
796
797 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
798 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
799 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
800 if (has_msr_star) {
801 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
802 }
803 if (has_msr_hsave_pa) {
804 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
805 }
806 #ifdef TARGET_X86_64
807 if (lm_capable_kernel) {
808 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
809 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
810 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
811 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
812 }
813 #endif
814 if (level == KVM_PUT_FULL_STATE) {
815 /*
816 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
817 * writeback. Until this is fixed, we only write the offset to SMP
818 * guests after migration, desynchronizing the VCPUs, but avoiding
819 * huge jump-backs that would occur without any writeback at all.
820 */
821 if (smp_cpus == 1 || env->tsc != 0) {
822 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
823 }
824 }
825 /*
826 * The following paravirtual MSRs have side effects on the guest or are
827 * too heavy for normal writeback. Limit them to reset or full state
828 * updates.
829 */
830 if (level >= KVM_PUT_RESET_STATE) {
831 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
832 env->system_time_msr);
833 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
834 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
835 if (has_msr_async_pf_en) {
836 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
837 env->async_pf_en_msr);
838 }
839 #endif
840 }
841 #ifdef KVM_CAP_MCE
842 if (env->mcg_cap) {
843 int i;
844
845 if (level == KVM_PUT_RESET_STATE) {
846 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
847 } else if (level == KVM_PUT_FULL_STATE) {
848 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
849 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
850 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
851 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
852 }
853 }
854 }
855 #endif
856
857 msr_data.info.nmsrs = n;
858
859 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
860
861 }
862
863
864 static int kvm_get_fpu(CPUState *env)
865 {
866 struct kvm_fpu fpu;
867 int i, ret;
868
869 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
870 if (ret < 0) {
871 return ret;
872 }
873
874 env->fpstt = (fpu.fsw >> 11) & 7;
875 env->fpus = fpu.fsw;
876 env->fpuc = fpu.fcw;
877 for (i = 0; i < 8; ++i) {
878 env->fptags[i] = !((fpu.ftwx >> i) & 1);
879 }
880 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
881 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
882 env->mxcsr = fpu.mxcsr;
883
884 return 0;
885 }
886
887 static int kvm_get_xsave(CPUState *env)
888 {
889 #ifdef KVM_CAP_XSAVE
890 struct kvm_xsave* xsave;
891 int ret, i;
892 uint16_t cwd, swd, twd, fop;
893
894 if (!kvm_has_xsave()) {
895 return kvm_get_fpu(env);
896 }
897
898 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
899 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
900 if (ret < 0) {
901 qemu_free(xsave);
902 return ret;
903 }
904
905 cwd = (uint16_t)xsave->region[0];
906 swd = (uint16_t)(xsave->region[0] >> 16);
907 twd = (uint16_t)xsave->region[1];
908 fop = (uint16_t)(xsave->region[1] >> 16);
909 env->fpstt = (swd >> 11) & 7;
910 env->fpus = swd;
911 env->fpuc = cwd;
912 for (i = 0; i < 8; ++i) {
913 env->fptags[i] = !((twd >> i) & 1);
914 }
915 env->mxcsr = xsave->region[XSAVE_MXCSR];
916 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
917 sizeof env->fpregs);
918 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
919 sizeof env->xmm_regs);
920 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
921 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
922 sizeof env->ymmh_regs);
923 qemu_free(xsave);
924 return 0;
925 #else
926 return kvm_get_fpu(env);
927 #endif
928 }
929
930 static int kvm_get_xcrs(CPUState *env)
931 {
932 #ifdef KVM_CAP_XCRS
933 int i, ret;
934 struct kvm_xcrs xcrs;
935
936 if (!kvm_has_xcrs()) {
937 return 0;
938 }
939
940 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
941 if (ret < 0) {
942 return ret;
943 }
944
945 for (i = 0; i < xcrs.nr_xcrs; i++) {
946 /* Only support xcr0 now */
947 if (xcrs.xcrs[0].xcr == 0) {
948 env->xcr0 = xcrs.xcrs[0].value;
949 break;
950 }
951 }
952 return 0;
953 #else
954 return 0;
955 #endif
956 }
957
958 static int kvm_get_sregs(CPUState *env)
959 {
960 struct kvm_sregs sregs;
961 uint32_t hflags;
962 int bit, i, ret;
963
964 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
965 if (ret < 0) {
966 return ret;
967 }
968
969 /* There can only be one pending IRQ set in the bitmap at a time, so try
970 to find it and save its number instead (-1 for none). */
971 env->interrupt_injected = -1;
972 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
973 if (sregs.interrupt_bitmap[i]) {
974 bit = ctz64(sregs.interrupt_bitmap[i]);
975 env->interrupt_injected = i * 64 + bit;
976 break;
977 }
978 }
979
980 get_seg(&env->segs[R_CS], &sregs.cs);
981 get_seg(&env->segs[R_DS], &sregs.ds);
982 get_seg(&env->segs[R_ES], &sregs.es);
983 get_seg(&env->segs[R_FS], &sregs.fs);
984 get_seg(&env->segs[R_GS], &sregs.gs);
985 get_seg(&env->segs[R_SS], &sregs.ss);
986
987 get_seg(&env->tr, &sregs.tr);
988 get_seg(&env->ldt, &sregs.ldt);
989
990 env->idt.limit = sregs.idt.limit;
991 env->idt.base = sregs.idt.base;
992 env->gdt.limit = sregs.gdt.limit;
993 env->gdt.base = sregs.gdt.base;
994
995 env->cr[0] = sregs.cr0;
996 env->cr[2] = sregs.cr2;
997 env->cr[3] = sregs.cr3;
998 env->cr[4] = sregs.cr4;
999
1000 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1001
1002 env->efer = sregs.efer;
1003 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1004
1005 #define HFLAG_COPY_MASK \
1006 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1007 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1008 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1009 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1010
1011 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1012 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1013 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1014 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1015 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1016 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1017 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1018
1019 if (env->efer & MSR_EFER_LMA) {
1020 hflags |= HF_LMA_MASK;
1021 }
1022
1023 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1024 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1025 } else {
1026 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1027 (DESC_B_SHIFT - HF_CS32_SHIFT);
1028 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1029 (DESC_B_SHIFT - HF_SS32_SHIFT);
1030 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1031 !(hflags & HF_CS32_MASK)) {
1032 hflags |= HF_ADDSEG_MASK;
1033 } else {
1034 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1035 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1036 }
1037 }
1038 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1039
1040 return 0;
1041 }
1042
1043 static int kvm_get_msrs(CPUState *env)
1044 {
1045 struct {
1046 struct kvm_msrs info;
1047 struct kvm_msr_entry entries[100];
1048 } msr_data;
1049 struct kvm_msr_entry *msrs = msr_data.entries;
1050 int ret, i, n;
1051
1052 n = 0;
1053 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1054 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1055 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1056 if (has_msr_star) {
1057 msrs[n++].index = MSR_STAR;
1058 }
1059 if (has_msr_hsave_pa) {
1060 msrs[n++].index = MSR_VM_HSAVE_PA;
1061 }
1062 msrs[n++].index = MSR_IA32_TSC;
1063 #ifdef TARGET_X86_64
1064 if (lm_capable_kernel) {
1065 msrs[n++].index = MSR_CSTAR;
1066 msrs[n++].index = MSR_KERNELGSBASE;
1067 msrs[n++].index = MSR_FMASK;
1068 msrs[n++].index = MSR_LSTAR;
1069 }
1070 #endif
1071 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1072 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1073 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1074 if (has_msr_async_pf_en) {
1075 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1076 }
1077 #endif
1078
1079 #ifdef KVM_CAP_MCE
1080 if (env->mcg_cap) {
1081 msrs[n++].index = MSR_MCG_STATUS;
1082 msrs[n++].index = MSR_MCG_CTL;
1083 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1084 msrs[n++].index = MSR_MC0_CTL + i;
1085 }
1086 }
1087 #endif
1088
1089 msr_data.info.nmsrs = n;
1090 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1091 if (ret < 0) {
1092 return ret;
1093 }
1094
1095 for (i = 0; i < ret; i++) {
1096 switch (msrs[i].index) {
1097 case MSR_IA32_SYSENTER_CS:
1098 env->sysenter_cs = msrs[i].data;
1099 break;
1100 case MSR_IA32_SYSENTER_ESP:
1101 env->sysenter_esp = msrs[i].data;
1102 break;
1103 case MSR_IA32_SYSENTER_EIP:
1104 env->sysenter_eip = msrs[i].data;
1105 break;
1106 case MSR_STAR:
1107 env->star = msrs[i].data;
1108 break;
1109 #ifdef TARGET_X86_64
1110 case MSR_CSTAR:
1111 env->cstar = msrs[i].data;
1112 break;
1113 case MSR_KERNELGSBASE:
1114 env->kernelgsbase = msrs[i].data;
1115 break;
1116 case MSR_FMASK:
1117 env->fmask = msrs[i].data;
1118 break;
1119 case MSR_LSTAR:
1120 env->lstar = msrs[i].data;
1121 break;
1122 #endif
1123 case MSR_IA32_TSC:
1124 env->tsc = msrs[i].data;
1125 break;
1126 case MSR_VM_HSAVE_PA:
1127 env->vm_hsave = msrs[i].data;
1128 break;
1129 case MSR_KVM_SYSTEM_TIME:
1130 env->system_time_msr = msrs[i].data;
1131 break;
1132 case MSR_KVM_WALL_CLOCK:
1133 env->wall_clock_msr = msrs[i].data;
1134 break;
1135 #ifdef KVM_CAP_MCE
1136 case MSR_MCG_STATUS:
1137 env->mcg_status = msrs[i].data;
1138 break;
1139 case MSR_MCG_CTL:
1140 env->mcg_ctl = msrs[i].data;
1141 break;
1142 #endif
1143 default:
1144 #ifdef KVM_CAP_MCE
1145 if (msrs[i].index >= MSR_MC0_CTL &&
1146 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1147 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1148 }
1149 #endif
1150 break;
1151 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1152 case MSR_KVM_ASYNC_PF_EN:
1153 env->async_pf_en_msr = msrs[i].data;
1154 break;
1155 #endif
1156 }
1157 }
1158
1159 return 0;
1160 }
1161
1162 static int kvm_put_mp_state(CPUState *env)
1163 {
1164 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1165
1166 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1167 }
1168
1169 static int kvm_get_mp_state(CPUState *env)
1170 {
1171 struct kvm_mp_state mp_state;
1172 int ret;
1173
1174 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1175 if (ret < 0) {
1176 return ret;
1177 }
1178 env->mp_state = mp_state.mp_state;
1179 if (kvm_irqchip_in_kernel()) {
1180 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1181 }
1182 return 0;
1183 }
1184
1185 static int kvm_put_vcpu_events(CPUState *env, int level)
1186 {
1187 #ifdef KVM_CAP_VCPU_EVENTS
1188 struct kvm_vcpu_events events;
1189
1190 if (!kvm_has_vcpu_events()) {
1191 return 0;
1192 }
1193
1194 events.exception.injected = (env->exception_injected >= 0);
1195 events.exception.nr = env->exception_injected;
1196 events.exception.has_error_code = env->has_error_code;
1197 events.exception.error_code = env->error_code;
1198
1199 events.interrupt.injected = (env->interrupt_injected >= 0);
1200 events.interrupt.nr = env->interrupt_injected;
1201 events.interrupt.soft = env->soft_interrupt;
1202
1203 events.nmi.injected = env->nmi_injected;
1204 events.nmi.pending = env->nmi_pending;
1205 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1206
1207 events.sipi_vector = env->sipi_vector;
1208
1209 events.flags = 0;
1210 if (level >= KVM_PUT_RESET_STATE) {
1211 events.flags |=
1212 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1213 }
1214
1215 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1216 #else
1217 return 0;
1218 #endif
1219 }
1220
1221 static int kvm_get_vcpu_events(CPUState *env)
1222 {
1223 #ifdef KVM_CAP_VCPU_EVENTS
1224 struct kvm_vcpu_events events;
1225 int ret;
1226
1227 if (!kvm_has_vcpu_events()) {
1228 return 0;
1229 }
1230
1231 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1232 if (ret < 0) {
1233 return ret;
1234 }
1235 env->exception_injected =
1236 events.exception.injected ? events.exception.nr : -1;
1237 env->has_error_code = events.exception.has_error_code;
1238 env->error_code = events.exception.error_code;
1239
1240 env->interrupt_injected =
1241 events.interrupt.injected ? events.interrupt.nr : -1;
1242 env->soft_interrupt = events.interrupt.soft;
1243
1244 env->nmi_injected = events.nmi.injected;
1245 env->nmi_pending = events.nmi.pending;
1246 if (events.nmi.masked) {
1247 env->hflags2 |= HF2_NMI_MASK;
1248 } else {
1249 env->hflags2 &= ~HF2_NMI_MASK;
1250 }
1251
1252 env->sipi_vector = events.sipi_vector;
1253 #endif
1254
1255 return 0;
1256 }
1257
1258 static int kvm_guest_debug_workarounds(CPUState *env)
1259 {
1260 int ret = 0;
1261 #ifdef KVM_CAP_SET_GUEST_DEBUG
1262 unsigned long reinject_trap = 0;
1263
1264 if (!kvm_has_vcpu_events()) {
1265 if (env->exception_injected == 1) {
1266 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1267 } else if (env->exception_injected == 3) {
1268 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1269 }
1270 env->exception_injected = -1;
1271 }
1272
1273 /*
1274 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1275 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1276 * by updating the debug state once again if single-stepping is on.
1277 * Another reason to call kvm_update_guest_debug here is a pending debug
1278 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1279 * reinject them via SET_GUEST_DEBUG.
1280 */
1281 if (reinject_trap ||
1282 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1283 ret = kvm_update_guest_debug(env, reinject_trap);
1284 }
1285 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1286 return ret;
1287 }
1288
1289 static int kvm_put_debugregs(CPUState *env)
1290 {
1291 #ifdef KVM_CAP_DEBUGREGS
1292 struct kvm_debugregs dbgregs;
1293 int i;
1294
1295 if (!kvm_has_debugregs()) {
1296 return 0;
1297 }
1298
1299 for (i = 0; i < 4; i++) {
1300 dbgregs.db[i] = env->dr[i];
1301 }
1302 dbgregs.dr6 = env->dr[6];
1303 dbgregs.dr7 = env->dr[7];
1304 dbgregs.flags = 0;
1305
1306 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1307 #else
1308 return 0;
1309 #endif
1310 }
1311
1312 static int kvm_get_debugregs(CPUState *env)
1313 {
1314 #ifdef KVM_CAP_DEBUGREGS
1315 struct kvm_debugregs dbgregs;
1316 int i, ret;
1317
1318 if (!kvm_has_debugregs()) {
1319 return 0;
1320 }
1321
1322 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1323 if (ret < 0) {
1324 return ret;
1325 }
1326 for (i = 0; i < 4; i++) {
1327 env->dr[i] = dbgregs.db[i];
1328 }
1329 env->dr[4] = env->dr[6] = dbgregs.dr6;
1330 env->dr[5] = env->dr[7] = dbgregs.dr7;
1331 #endif
1332
1333 return 0;
1334 }
1335
1336 int kvm_arch_put_registers(CPUState *env, int level)
1337 {
1338 int ret;
1339
1340 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1341
1342 ret = kvm_getput_regs(env, 1);
1343 if (ret < 0) {
1344 return ret;
1345 }
1346 ret = kvm_put_xsave(env);
1347 if (ret < 0) {
1348 return ret;
1349 }
1350 ret = kvm_put_xcrs(env);
1351 if (ret < 0) {
1352 return ret;
1353 }
1354 ret = kvm_put_sregs(env);
1355 if (ret < 0) {
1356 return ret;
1357 }
1358 ret = kvm_put_msrs(env, level);
1359 if (ret < 0) {
1360 return ret;
1361 }
1362 if (level >= KVM_PUT_RESET_STATE) {
1363 ret = kvm_put_mp_state(env);
1364 if (ret < 0) {
1365 return ret;
1366 }
1367 }
1368 ret = kvm_put_vcpu_events(env, level);
1369 if (ret < 0) {
1370 return ret;
1371 }
1372 ret = kvm_put_debugregs(env);
1373 if (ret < 0) {
1374 return ret;
1375 }
1376 /* must be last */
1377 ret = kvm_guest_debug_workarounds(env);
1378 if (ret < 0) {
1379 return ret;
1380 }
1381 return 0;
1382 }
1383
1384 int kvm_arch_get_registers(CPUState *env)
1385 {
1386 int ret;
1387
1388 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1389
1390 ret = kvm_getput_regs(env, 0);
1391 if (ret < 0) {
1392 return ret;
1393 }
1394 ret = kvm_get_xsave(env);
1395 if (ret < 0) {
1396 return ret;
1397 }
1398 ret = kvm_get_xcrs(env);
1399 if (ret < 0) {
1400 return ret;
1401 }
1402 ret = kvm_get_sregs(env);
1403 if (ret < 0) {
1404 return ret;
1405 }
1406 ret = kvm_get_msrs(env);
1407 if (ret < 0) {
1408 return ret;
1409 }
1410 ret = kvm_get_mp_state(env);
1411 if (ret < 0) {
1412 return ret;
1413 }
1414 ret = kvm_get_vcpu_events(env);
1415 if (ret < 0) {
1416 return ret;
1417 }
1418 ret = kvm_get_debugregs(env);
1419 if (ret < 0) {
1420 return ret;
1421 }
1422 return 0;
1423 }
1424
1425 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1426 {
1427 /* Inject NMI */
1428 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1429 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1430 DPRINTF("injected NMI\n");
1431 kvm_vcpu_ioctl(env, KVM_NMI);
1432 }
1433
1434 /* Try to inject an interrupt if the guest can accept it */
1435 if (run->ready_for_interrupt_injection &&
1436 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1437 (env->eflags & IF_MASK)) {
1438 int irq;
1439
1440 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1441 irq = cpu_get_pic_interrupt(env);
1442 if (irq >= 0) {
1443 struct kvm_interrupt intr;
1444 intr.irq = irq;
1445 /* FIXME: errors */
1446 DPRINTF("injected interrupt %d\n", irq);
1447 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1448 }
1449 }
1450
1451 /* If we have an interrupt but the guest is not ready to receive an
1452 * interrupt, request an interrupt window exit. This will
1453 * cause a return to userspace as soon as the guest is ready to
1454 * receive interrupts. */
1455 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1456 run->request_interrupt_window = 1;
1457 } else {
1458 run->request_interrupt_window = 0;
1459 }
1460
1461 DPRINTF("setting tpr\n");
1462 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1463
1464 return 0;
1465 }
1466
1467 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1468 {
1469 if (run->if_flag) {
1470 env->eflags |= IF_MASK;
1471 } else {
1472 env->eflags &= ~IF_MASK;
1473 }
1474 cpu_set_apic_tpr(env->apic_state, run->cr8);
1475 cpu_set_apic_base(env->apic_state, run->apic_base);
1476
1477 return 0;
1478 }
1479
1480 int kvm_arch_process_irqchip_events(CPUState *env)
1481 {
1482 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1483 kvm_cpu_synchronize_state(env);
1484 do_cpu_init(env);
1485 env->exception_index = EXCP_HALTED;
1486 }
1487
1488 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1489 kvm_cpu_synchronize_state(env);
1490 do_cpu_sipi(env);
1491 }
1492
1493 return env->halted;
1494 }
1495
1496 static int kvm_handle_halt(CPUState *env)
1497 {
1498 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1499 (env->eflags & IF_MASK)) &&
1500 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1501 env->halted = 1;
1502 env->exception_index = EXCP_HLT;
1503 return 0;
1504 }
1505
1506 return 1;
1507 }
1508
1509 static bool host_supports_vmx(void)
1510 {
1511 uint32_t ecx, unused;
1512
1513 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1514 return ecx & CPUID_EXT_VMX;
1515 }
1516
1517 #define VMX_INVALID_GUEST_STATE 0x80000021
1518
1519 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1520 {
1521 uint64_t code;
1522 int ret = 0;
1523
1524 switch (run->exit_reason) {
1525 case KVM_EXIT_HLT:
1526 DPRINTF("handle_hlt\n");
1527 ret = kvm_handle_halt(env);
1528 break;
1529 case KVM_EXIT_SET_TPR:
1530 ret = 1;
1531 break;
1532 case KVM_EXIT_FAIL_ENTRY:
1533 code = run->fail_entry.hardware_entry_failure_reason;
1534 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1535 code);
1536 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1537 fprintf(stderr,
1538 "\nIf you're runnning a guest on an Intel machine without "
1539 "unrestricted mode\n"
1540 "support, the failure can be most likely due to the guest "
1541 "entering an invalid\n"
1542 "state for Intel VT. For example, the guest maybe running "
1543 "in big real mode\n"
1544 "which is not supported on less recent Intel processors."
1545 "\n\n");
1546 }
1547 ret = -1;
1548 break;
1549 case KVM_EXIT_EXCEPTION:
1550 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1551 run->ex.exception, run->ex.error_code);
1552 ret = -1;
1553 break;
1554 default:
1555 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1556 ret = -1;
1557 break;
1558 }
1559
1560 return ret;
1561 }
1562
1563 #ifdef KVM_CAP_SET_GUEST_DEBUG
1564 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1565 {
1566 static const uint8_t int3 = 0xcc;
1567
1568 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1569 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1570 return -EINVAL;
1571 }
1572 return 0;
1573 }
1574
1575 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1576 {
1577 uint8_t int3;
1578
1579 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1580 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1581 return -EINVAL;
1582 }
1583 return 0;
1584 }
1585
1586 static struct {
1587 target_ulong addr;
1588 int len;
1589 int type;
1590 } hw_breakpoint[4];
1591
1592 static int nb_hw_breakpoint;
1593
1594 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1595 {
1596 int n;
1597
1598 for (n = 0; n < nb_hw_breakpoint; n++) {
1599 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1600 (hw_breakpoint[n].len == len || len == -1)) {
1601 return n;
1602 }
1603 }
1604 return -1;
1605 }
1606
1607 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1608 target_ulong len, int type)
1609 {
1610 switch (type) {
1611 case GDB_BREAKPOINT_HW:
1612 len = 1;
1613 break;
1614 case GDB_WATCHPOINT_WRITE:
1615 case GDB_WATCHPOINT_ACCESS:
1616 switch (len) {
1617 case 1:
1618 break;
1619 case 2:
1620 case 4:
1621 case 8:
1622 if (addr & (len - 1)) {
1623 return -EINVAL;
1624 }
1625 break;
1626 default:
1627 return -EINVAL;
1628 }
1629 break;
1630 default:
1631 return -ENOSYS;
1632 }
1633
1634 if (nb_hw_breakpoint == 4) {
1635 return -ENOBUFS;
1636 }
1637 if (find_hw_breakpoint(addr, len, type) >= 0) {
1638 return -EEXIST;
1639 }
1640 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1641 hw_breakpoint[nb_hw_breakpoint].len = len;
1642 hw_breakpoint[nb_hw_breakpoint].type = type;
1643 nb_hw_breakpoint++;
1644
1645 return 0;
1646 }
1647
1648 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1649 target_ulong len, int type)
1650 {
1651 int n;
1652
1653 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1654 if (n < 0) {
1655 return -ENOENT;
1656 }
1657 nb_hw_breakpoint--;
1658 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1659
1660 return 0;
1661 }
1662
1663 void kvm_arch_remove_all_hw_breakpoints(void)
1664 {
1665 nb_hw_breakpoint = 0;
1666 }
1667
1668 static CPUWatchpoint hw_watchpoint;
1669
1670 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1671 {
1672 int handle = 0;
1673 int n;
1674
1675 if (arch_info->exception == 1) {
1676 if (arch_info->dr6 & (1 << 14)) {
1677 if (cpu_single_env->singlestep_enabled) {
1678 handle = 1;
1679 }
1680 } else {
1681 for (n = 0; n < 4; n++) {
1682 if (arch_info->dr6 & (1 << n)) {
1683 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1684 case 0x0:
1685 handle = 1;
1686 break;
1687 case 0x1:
1688 handle = 1;
1689 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1690 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1691 hw_watchpoint.flags = BP_MEM_WRITE;
1692 break;
1693 case 0x3:
1694 handle = 1;
1695 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1696 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1697 hw_watchpoint.flags = BP_MEM_ACCESS;
1698 break;
1699 }
1700 }
1701 }
1702 }
1703 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1704 handle = 1;
1705 }
1706 if (!handle) {
1707 cpu_synchronize_state(cpu_single_env);
1708 assert(cpu_single_env->exception_injected == -1);
1709
1710 cpu_single_env->exception_injected = arch_info->exception;
1711 cpu_single_env->has_error_code = 0;
1712 }
1713
1714 return handle;
1715 }
1716
1717 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1718 {
1719 const uint8_t type_code[] = {
1720 [GDB_BREAKPOINT_HW] = 0x0,
1721 [GDB_WATCHPOINT_WRITE] = 0x1,
1722 [GDB_WATCHPOINT_ACCESS] = 0x3
1723 };
1724 const uint8_t len_code[] = {
1725 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1726 };
1727 int n;
1728
1729 if (kvm_sw_breakpoints_active(env)) {
1730 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1731 }
1732 if (nb_hw_breakpoint > 0) {
1733 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1734 dbg->arch.debugreg[7] = 0x0600;
1735 for (n = 0; n < nb_hw_breakpoint; n++) {
1736 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1737 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1738 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1739 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1740 }
1741 }
1742 }
1743 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1744
1745 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1746 {
1747 return !(env->cr[0] & CR0_PE_MASK) ||
1748 ((env->segs[R_CS].selector & 3) != 3);
1749 }
1750
1751 static void hardware_memory_error(void)
1752 {
1753 fprintf(stderr, "Hardware memory error!\n");
1754 exit(1);
1755 }
1756
1757 #ifdef KVM_CAP_MCE
1758 static void kvm_mce_broadcast_rest(CPUState *env)
1759 {
1760 struct kvm_x86_mce mce = {
1761 .bank = 1,
1762 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1763 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1764 .addr = 0,
1765 .misc = 0,
1766 };
1767 CPUState *cenv;
1768
1769 /* Broadcast MCA signal for processor version 06H_EH and above */
1770 if (cpu_x86_support_mca_broadcast(env)) {
1771 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1772 if (cenv == env) {
1773 continue;
1774 }
1775 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1776 }
1777 }
1778 }
1779
1780 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1781 {
1782 struct kvm_x86_mce mce = {
1783 .bank = 9,
1784 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1785 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1786 | MCI_STATUS_AR | 0x134,
1787 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1788 .addr = paddr,
1789 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1790 };
1791 int r;
1792
1793 r = kvm_set_mce(env, &mce);
1794 if (r < 0) {
1795 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1796 abort();
1797 }
1798 kvm_mce_broadcast_rest(env);
1799 }
1800
1801 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1802 {
1803 struct kvm_x86_mce mce = {
1804 .bank = 9,
1805 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1806 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1807 | 0xc0,
1808 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1809 .addr = paddr,
1810 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1811 };
1812 int r;
1813
1814 r = kvm_set_mce(env, &mce);
1815 if (r < 0) {
1816 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1817 abort();
1818 }
1819 kvm_mce_broadcast_rest(env);
1820 }
1821
1822 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1823 {
1824 struct kvm_x86_mce mce = {
1825 .bank = 9,
1826 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1827 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1828 | 0xc0,
1829 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1830 .addr = paddr,
1831 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1832 };
1833
1834 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1835 kvm_mce_broadcast_rest(env);
1836 }
1837
1838 #endif
1839
1840 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1841 {
1842 #if defined(KVM_CAP_MCE)
1843 void *vaddr;
1844 ram_addr_t ram_addr;
1845 target_phys_addr_t paddr;
1846
1847 if ((env->mcg_cap & MCG_SER_P) && addr
1848 && (code == BUS_MCEERR_AR
1849 || code == BUS_MCEERR_AO)) {
1850 vaddr = (void *)addr;
1851 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1852 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1853 fprintf(stderr, "Hardware memory error for memory used by "
1854 "QEMU itself instead of guest system!\n");
1855 /* Hope we are lucky for AO MCE */
1856 if (code == BUS_MCEERR_AO) {
1857 return 0;
1858 } else {
1859 hardware_memory_error();
1860 }
1861 }
1862
1863 if (code == BUS_MCEERR_AR) {
1864 /* Fake an Intel architectural Data Load SRAR UCR */
1865 kvm_mce_inj_srar_dataload(env, paddr);
1866 } else {
1867 /*
1868 * If there is an MCE excpetion being processed, ignore
1869 * this SRAO MCE
1870 */
1871 if (!kvm_mce_in_progress(env)) {
1872 /* Fake an Intel architectural Memory scrubbing UCR */
1873 kvm_mce_inj_srao_memscrub(env, paddr);
1874 }
1875 }
1876 } else
1877 #endif
1878 {
1879 if (code == BUS_MCEERR_AO) {
1880 return 0;
1881 } else if (code == BUS_MCEERR_AR) {
1882 hardware_memory_error();
1883 } else {
1884 return 1;
1885 }
1886 }
1887 return 0;
1888 }
1889
1890 int kvm_on_sigbus(int code, void *addr)
1891 {
1892 #if defined(KVM_CAP_MCE)
1893 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1894 void *vaddr;
1895 ram_addr_t ram_addr;
1896 target_phys_addr_t paddr;
1897
1898 /* Hope we are lucky for AO MCE */
1899 vaddr = addr;
1900 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1901 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1902 fprintf(stderr, "Hardware memory error for memory used by "
1903 "QEMU itself instead of guest system!: %p\n", addr);
1904 return 0;
1905 }
1906 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1907 } else
1908 #endif
1909 {
1910 if (code == BUS_MCEERR_AO) {
1911 return 0;
1912 } else if (code == BUS_MCEERR_AR) {
1913 hardware_memory_error();
1914 } else {
1915 return 1;
1916 }
1917 }
1918 return 0;
1919 }