]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: mask cpuid_ext4_features bits earlier
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105 {
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112 }
113
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
123 };
124
125 static int get_para_features(KVMState *s)
126 {
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136 }
137
138
139 /* Returns the value for a specific register on the cpuid entry
140 */
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142 {
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159 }
160
161 /* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166 {
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176 }
177
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
180 {
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
185
186 cpuid = get_supported_cpuid(s);
187
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
192 }
193
194 /* Fixups for the data returned by KVM, below */
195
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
212
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
215 */
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
218 }
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
222 */
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
225 }
226
227 g_free(cpuid);
228
229 /* fallback for older kernels */
230 if ((function == KVM_CPUID_FEATURES) && !found) {
231 ret = get_para_features(s);
232 }
233
234 return ret;
235 }
236
237 typedef struct HWPoisonPage {
238 ram_addr_t ram_addr;
239 QLIST_ENTRY(HWPoisonPage) list;
240 } HWPoisonPage;
241
242 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
244
245 static void kvm_unpoison_all(void *param)
246 {
247 HWPoisonPage *page, *next_page;
248
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
252 g_free(page);
253 }
254 }
255
256 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
257 {
258 HWPoisonPage *page;
259
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
262 return;
263 }
264 }
265 page = g_malloc(sizeof(HWPoisonPage));
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
268 }
269
270 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
271 int *max_banks)
272 {
273 int r;
274
275 r = kvm_check_extension(s, KVM_CAP_MCE);
276 if (r > 0) {
277 *max_banks = r;
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
279 }
280 return -ENOSYS;
281 }
282
283 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
284 {
285 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
286 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
287 uint64_t mcg_status = MCG_STATUS_MCIP;
288
289 if (code == BUS_MCEERR_AR) {
290 status |= MCI_STATUS_AR | 0x134;
291 mcg_status |= MCG_STATUS_EIPV;
292 } else {
293 status |= 0xc0;
294 mcg_status |= MCG_STATUS_RIPV;
295 }
296 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
297 (MCM_ADDR_PHYS << 6) | 0xc,
298 cpu_x86_support_mca_broadcast(env) ?
299 MCE_INJECT_BROADCAST : 0);
300 }
301
302 static void hardware_memory_error(void)
303 {
304 fprintf(stderr, "Hardware memory error!\n");
305 exit(1);
306 }
307
308 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
309 {
310 ram_addr_t ram_addr;
311 hwaddr paddr;
312
313 if ((env->mcg_cap & MCG_SER_P) && addr
314 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
315 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
316 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
317 fprintf(stderr, "Hardware memory error for memory used by "
318 "QEMU itself instead of guest system!\n");
319 /* Hope we are lucky for AO MCE */
320 if (code == BUS_MCEERR_AO) {
321 return 0;
322 } else {
323 hardware_memory_error();
324 }
325 }
326 kvm_hwpoison_page_add(ram_addr);
327 kvm_mce_inject(env, paddr, code);
328 } else {
329 if (code == BUS_MCEERR_AO) {
330 return 0;
331 } else if (code == BUS_MCEERR_AR) {
332 hardware_memory_error();
333 } else {
334 return 1;
335 }
336 }
337 return 0;
338 }
339
340 int kvm_arch_on_sigbus(int code, void *addr)
341 {
342 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
343 ram_addr_t ram_addr;
344 hwaddr paddr;
345
346 /* Hope we are lucky for AO MCE */
347 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
348 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
349 &paddr)) {
350 fprintf(stderr, "Hardware memory error for memory used by "
351 "QEMU itself instead of guest system!: %p\n", addr);
352 return 0;
353 }
354 kvm_hwpoison_page_add(ram_addr);
355 kvm_mce_inject(first_cpu, paddr, code);
356 } else {
357 if (code == BUS_MCEERR_AO) {
358 return 0;
359 } else if (code == BUS_MCEERR_AR) {
360 hardware_memory_error();
361 } else {
362 return 1;
363 }
364 }
365 return 0;
366 }
367
368 static int kvm_inject_mce_oldstyle(CPUX86State *env)
369 {
370 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
371 unsigned int bank, bank_num = env->mcg_cap & 0xff;
372 struct kvm_x86_mce mce;
373
374 env->exception_injected = -1;
375
376 /*
377 * There must be at least one bank in use if an MCE is pending.
378 * Find it and use its values for the event injection.
379 */
380 for (bank = 0; bank < bank_num; bank++) {
381 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
382 break;
383 }
384 }
385 assert(bank < bank_num);
386
387 mce.bank = bank;
388 mce.status = env->mce_banks[bank * 4 + 1];
389 mce.mcg_status = env->mcg_status;
390 mce.addr = env->mce_banks[bank * 4 + 2];
391 mce.misc = env->mce_banks[bank * 4 + 3];
392
393 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
394 }
395 return 0;
396 }
397
398 static void cpu_update_state(void *opaque, int running, RunState state)
399 {
400 CPUX86State *env = opaque;
401
402 if (running) {
403 env->tsc_valid = false;
404 }
405 }
406
407 int kvm_arch_init_vcpu(CPUX86State *env)
408 {
409 struct {
410 struct kvm_cpuid2 cpuid;
411 struct kvm_cpuid_entry2 entries[100];
412 } QEMU_PACKED cpuid_data;
413 KVMState *s = env->kvm_state;
414 uint32_t limit, i, j, cpuid_i;
415 uint32_t unused;
416 struct kvm_cpuid_entry2 *c;
417 uint32_t signature[3];
418 int r;
419
420 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
421
422 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
423
424 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
425 0, R_EDX);
426 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
427 0, R_ECX);
428 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
429 0, R_EDX);
430
431 env->cpuid_kvm_features &=
432 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
433
434 env->cpuid_ext4_features &= kvm_arch_get_supported_cpuid(s, 0xC0000001,
435 0, R_EDX);
436
437 cpuid_i = 0;
438
439 /* Paravirtualization CPUIDs */
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = KVM_CPUID_SIGNATURE;
443 if (!hyperv_enabled()) {
444 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
445 c->eax = 0;
446 } else {
447 memcpy(signature, "Microsoft Hv", 12);
448 c->eax = HYPERV_CPUID_MIN;
449 }
450 c->ebx = signature[0];
451 c->ecx = signature[1];
452 c->edx = signature[2];
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = KVM_CPUID_FEATURES;
457 c->eax = env->cpuid_kvm_features;
458
459 if (hyperv_enabled()) {
460 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
461 c->eax = signature[0];
462
463 c = &cpuid_data.entries[cpuid_i++];
464 memset(c, 0, sizeof(*c));
465 c->function = HYPERV_CPUID_VERSION;
466 c->eax = 0x00001bbc;
467 c->ebx = 0x00060001;
468
469 c = &cpuid_data.entries[cpuid_i++];
470 memset(c, 0, sizeof(*c));
471 c->function = HYPERV_CPUID_FEATURES;
472 if (hyperv_relaxed_timing_enabled()) {
473 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
474 }
475 if (hyperv_vapic_recommended()) {
476 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
477 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
478 }
479
480 c = &cpuid_data.entries[cpuid_i++];
481 memset(c, 0, sizeof(*c));
482 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
483 if (hyperv_relaxed_timing_enabled()) {
484 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
485 }
486 if (hyperv_vapic_recommended()) {
487 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
488 }
489 c->ebx = hyperv_get_spinlock_retries();
490
491 c = &cpuid_data.entries[cpuid_i++];
492 memset(c, 0, sizeof(*c));
493 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
494 c->eax = 0x40;
495 c->ebx = 0x40;
496
497 c = &cpuid_data.entries[cpuid_i++];
498 memset(c, 0, sizeof(*c));
499 c->function = KVM_CPUID_SIGNATURE_NEXT;
500 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
501 c->eax = 0;
502 c->ebx = signature[0];
503 c->ecx = signature[1];
504 c->edx = signature[2];
505 }
506
507 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
508
509 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
510
511 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
512
513 for (i = 0; i <= limit; i++) {
514 c = &cpuid_data.entries[cpuid_i++];
515
516 switch (i) {
517 case 2: {
518 /* Keep reading function 2 till all the input is received */
519 int times;
520
521 c->function = i;
522 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
523 KVM_CPUID_FLAG_STATE_READ_NEXT;
524 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
525 times = c->eax & 0xff;
526
527 for (j = 1; j < times; ++j) {
528 c = &cpuid_data.entries[cpuid_i++];
529 c->function = i;
530 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
531 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
532 }
533 break;
534 }
535 case 4:
536 case 0xb:
537 case 0xd:
538 for (j = 0; ; j++) {
539 if (i == 0xd && j == 64) {
540 break;
541 }
542 c->function = i;
543 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
544 c->index = j;
545 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
546
547 if (i == 4 && c->eax == 0) {
548 break;
549 }
550 if (i == 0xb && !(c->ecx & 0xff00)) {
551 break;
552 }
553 if (i == 0xd && c->eax == 0) {
554 continue;
555 }
556 c = &cpuid_data.entries[cpuid_i++];
557 }
558 break;
559 default:
560 c->function = i;
561 c->flags = 0;
562 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
563 break;
564 }
565 }
566 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
567
568 for (i = 0x80000000; i <= limit; i++) {
569 c = &cpuid_data.entries[cpuid_i++];
570
571 c->function = i;
572 c->flags = 0;
573 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
574 }
575
576 /* Call Centaur's CPUID instructions they are supported. */
577 if (env->cpuid_xlevel2 > 0) {
578 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
579
580 for (i = 0xC0000000; i <= limit; i++) {
581 c = &cpuid_data.entries[cpuid_i++];
582
583 c->function = i;
584 c->flags = 0;
585 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
586 }
587 }
588
589 cpuid_data.cpuid.nent = cpuid_i;
590
591 if (((env->cpuid_version >> 8)&0xF) >= 6
592 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
593 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
594 uint64_t mcg_cap;
595 int banks;
596 int ret;
597
598 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
599 if (ret < 0) {
600 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
601 return ret;
602 }
603
604 if (banks > MCE_BANKS_DEF) {
605 banks = MCE_BANKS_DEF;
606 }
607 mcg_cap &= MCE_CAP_DEF;
608 mcg_cap |= banks;
609 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
610 if (ret < 0) {
611 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
612 return ret;
613 }
614
615 env->mcg_cap = mcg_cap;
616 }
617
618 qemu_add_vm_change_state_handler(cpu_update_state, env);
619
620 cpuid_data.cpuid.padding = 0;
621 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
622 if (r) {
623 return r;
624 }
625
626 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
627 if (r && env->tsc_khz) {
628 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
629 if (r < 0) {
630 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
631 return r;
632 }
633 }
634
635 if (kvm_has_xsave()) {
636 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
637 }
638
639 return 0;
640 }
641
642 void kvm_arch_reset_vcpu(CPUX86State *env)
643 {
644 X86CPU *cpu = x86_env_get_cpu(env);
645
646 env->exception_injected = -1;
647 env->interrupt_injected = -1;
648 env->xcr0 = 1;
649 if (kvm_irqchip_in_kernel()) {
650 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
651 KVM_MP_STATE_UNINITIALIZED;
652 } else {
653 env->mp_state = KVM_MP_STATE_RUNNABLE;
654 }
655 }
656
657 static int kvm_get_supported_msrs(KVMState *s)
658 {
659 static int kvm_supported_msrs;
660 int ret = 0;
661
662 /* first time */
663 if (kvm_supported_msrs == 0) {
664 struct kvm_msr_list msr_list, *kvm_msr_list;
665
666 kvm_supported_msrs = -1;
667
668 /* Obtain MSR list from KVM. These are the MSRs that we must
669 * save/restore */
670 msr_list.nmsrs = 0;
671 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
672 if (ret < 0 && ret != -E2BIG) {
673 return ret;
674 }
675 /* Old kernel modules had a bug and could write beyond the provided
676 memory. Allocate at least a safe amount of 1K. */
677 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
678 msr_list.nmsrs *
679 sizeof(msr_list.indices[0])));
680
681 kvm_msr_list->nmsrs = msr_list.nmsrs;
682 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
683 if (ret >= 0) {
684 int i;
685
686 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
687 if (kvm_msr_list->indices[i] == MSR_STAR) {
688 has_msr_star = true;
689 continue;
690 }
691 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
692 has_msr_hsave_pa = true;
693 continue;
694 }
695 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
696 has_msr_tsc_deadline = true;
697 continue;
698 }
699 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
700 has_msr_misc_enable = true;
701 continue;
702 }
703 }
704 }
705
706 g_free(kvm_msr_list);
707 }
708
709 return ret;
710 }
711
712 int kvm_arch_init(KVMState *s)
713 {
714 QemuOptsList *list = qemu_find_opts("machine");
715 uint64_t identity_base = 0xfffbc000;
716 uint64_t shadow_mem;
717 int ret;
718 struct utsname utsname;
719
720 ret = kvm_get_supported_msrs(s);
721 if (ret < 0) {
722 return ret;
723 }
724
725 uname(&utsname);
726 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
727
728 /*
729 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
730 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
731 * Since these must be part of guest physical memory, we need to allocate
732 * them, both by setting their start addresses in the kernel and by
733 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
734 *
735 * Older KVM versions may not support setting the identity map base. In
736 * that case we need to stick with the default, i.e. a 256K maximum BIOS
737 * size.
738 */
739 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
740 /* Allows up to 16M BIOSes. */
741 identity_base = 0xfeffc000;
742
743 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
744 if (ret < 0) {
745 return ret;
746 }
747 }
748
749 /* Set TSS base one page after EPT identity map. */
750 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
751 if (ret < 0) {
752 return ret;
753 }
754
755 /* Tell fw_cfg to notify the BIOS to reserve the range. */
756 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
757 if (ret < 0) {
758 fprintf(stderr, "e820_add_entry() table is full\n");
759 return ret;
760 }
761 qemu_register_reset(kvm_unpoison_all, NULL);
762
763 if (!QTAILQ_EMPTY(&list->head)) {
764 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
765 "kvm_shadow_mem", -1);
766 if (shadow_mem != -1) {
767 shadow_mem /= 4096;
768 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
769 if (ret < 0) {
770 return ret;
771 }
772 }
773 }
774 return 0;
775 }
776
777 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
778 {
779 lhs->selector = rhs->selector;
780 lhs->base = rhs->base;
781 lhs->limit = rhs->limit;
782 lhs->type = 3;
783 lhs->present = 1;
784 lhs->dpl = 3;
785 lhs->db = 0;
786 lhs->s = 1;
787 lhs->l = 0;
788 lhs->g = 0;
789 lhs->avl = 0;
790 lhs->unusable = 0;
791 }
792
793 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
794 {
795 unsigned flags = rhs->flags;
796 lhs->selector = rhs->selector;
797 lhs->base = rhs->base;
798 lhs->limit = rhs->limit;
799 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
800 lhs->present = (flags & DESC_P_MASK) != 0;
801 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
802 lhs->db = (flags >> DESC_B_SHIFT) & 1;
803 lhs->s = (flags & DESC_S_MASK) != 0;
804 lhs->l = (flags >> DESC_L_SHIFT) & 1;
805 lhs->g = (flags & DESC_G_MASK) != 0;
806 lhs->avl = (flags & DESC_AVL_MASK) != 0;
807 lhs->unusable = 0;
808 lhs->padding = 0;
809 }
810
811 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
812 {
813 lhs->selector = rhs->selector;
814 lhs->base = rhs->base;
815 lhs->limit = rhs->limit;
816 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
817 (rhs->present * DESC_P_MASK) |
818 (rhs->dpl << DESC_DPL_SHIFT) |
819 (rhs->db << DESC_B_SHIFT) |
820 (rhs->s * DESC_S_MASK) |
821 (rhs->l << DESC_L_SHIFT) |
822 (rhs->g * DESC_G_MASK) |
823 (rhs->avl * DESC_AVL_MASK);
824 }
825
826 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
827 {
828 if (set) {
829 *kvm_reg = *qemu_reg;
830 } else {
831 *qemu_reg = *kvm_reg;
832 }
833 }
834
835 static int kvm_getput_regs(CPUX86State *env, int set)
836 {
837 struct kvm_regs regs;
838 int ret = 0;
839
840 if (!set) {
841 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
842 if (ret < 0) {
843 return ret;
844 }
845 }
846
847 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
848 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
849 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
850 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
851 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
852 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
853 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
854 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
855 #ifdef TARGET_X86_64
856 kvm_getput_reg(&regs.r8, &env->regs[8], set);
857 kvm_getput_reg(&regs.r9, &env->regs[9], set);
858 kvm_getput_reg(&regs.r10, &env->regs[10], set);
859 kvm_getput_reg(&regs.r11, &env->regs[11], set);
860 kvm_getput_reg(&regs.r12, &env->regs[12], set);
861 kvm_getput_reg(&regs.r13, &env->regs[13], set);
862 kvm_getput_reg(&regs.r14, &env->regs[14], set);
863 kvm_getput_reg(&regs.r15, &env->regs[15], set);
864 #endif
865
866 kvm_getput_reg(&regs.rflags, &env->eflags, set);
867 kvm_getput_reg(&regs.rip, &env->eip, set);
868
869 if (set) {
870 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
871 }
872
873 return ret;
874 }
875
876 static int kvm_put_fpu(CPUX86State *env)
877 {
878 struct kvm_fpu fpu;
879 int i;
880
881 memset(&fpu, 0, sizeof fpu);
882 fpu.fsw = env->fpus & ~(7 << 11);
883 fpu.fsw |= (env->fpstt & 7) << 11;
884 fpu.fcw = env->fpuc;
885 fpu.last_opcode = env->fpop;
886 fpu.last_ip = env->fpip;
887 fpu.last_dp = env->fpdp;
888 for (i = 0; i < 8; ++i) {
889 fpu.ftwx |= (!env->fptags[i]) << i;
890 }
891 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
892 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
893 fpu.mxcsr = env->mxcsr;
894
895 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
896 }
897
898 #define XSAVE_FCW_FSW 0
899 #define XSAVE_FTW_FOP 1
900 #define XSAVE_CWD_RIP 2
901 #define XSAVE_CWD_RDP 4
902 #define XSAVE_MXCSR 6
903 #define XSAVE_ST_SPACE 8
904 #define XSAVE_XMM_SPACE 40
905 #define XSAVE_XSTATE_BV 128
906 #define XSAVE_YMMH_SPACE 144
907
908 static int kvm_put_xsave(CPUX86State *env)
909 {
910 struct kvm_xsave* xsave = env->kvm_xsave_buf;
911 uint16_t cwd, swd, twd;
912 int i, r;
913
914 if (!kvm_has_xsave()) {
915 return kvm_put_fpu(env);
916 }
917
918 memset(xsave, 0, sizeof(struct kvm_xsave));
919 twd = 0;
920 swd = env->fpus & ~(7 << 11);
921 swd |= (env->fpstt & 7) << 11;
922 cwd = env->fpuc;
923 for (i = 0; i < 8; ++i) {
924 twd |= (!env->fptags[i]) << i;
925 }
926 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
927 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
928 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
929 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
930 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
931 sizeof env->fpregs);
932 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
933 sizeof env->xmm_regs);
934 xsave->region[XSAVE_MXCSR] = env->mxcsr;
935 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
936 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
937 sizeof env->ymmh_regs);
938 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
939 return r;
940 }
941
942 static int kvm_put_xcrs(CPUX86State *env)
943 {
944 struct kvm_xcrs xcrs;
945
946 if (!kvm_has_xcrs()) {
947 return 0;
948 }
949
950 xcrs.nr_xcrs = 1;
951 xcrs.flags = 0;
952 xcrs.xcrs[0].xcr = 0;
953 xcrs.xcrs[0].value = env->xcr0;
954 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
955 }
956
957 static int kvm_put_sregs(CPUX86State *env)
958 {
959 struct kvm_sregs sregs;
960
961 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
962 if (env->interrupt_injected >= 0) {
963 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
964 (uint64_t)1 << (env->interrupt_injected % 64);
965 }
966
967 if ((env->eflags & VM_MASK)) {
968 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
969 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
970 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
971 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
972 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
973 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
974 } else {
975 set_seg(&sregs.cs, &env->segs[R_CS]);
976 set_seg(&sregs.ds, &env->segs[R_DS]);
977 set_seg(&sregs.es, &env->segs[R_ES]);
978 set_seg(&sregs.fs, &env->segs[R_FS]);
979 set_seg(&sregs.gs, &env->segs[R_GS]);
980 set_seg(&sregs.ss, &env->segs[R_SS]);
981 }
982
983 set_seg(&sregs.tr, &env->tr);
984 set_seg(&sregs.ldt, &env->ldt);
985
986 sregs.idt.limit = env->idt.limit;
987 sregs.idt.base = env->idt.base;
988 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
989 sregs.gdt.limit = env->gdt.limit;
990 sregs.gdt.base = env->gdt.base;
991 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
992
993 sregs.cr0 = env->cr[0];
994 sregs.cr2 = env->cr[2];
995 sregs.cr3 = env->cr[3];
996 sregs.cr4 = env->cr[4];
997
998 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
999 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1000
1001 sregs.efer = env->efer;
1002
1003 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
1004 }
1005
1006 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1007 uint32_t index, uint64_t value)
1008 {
1009 entry->index = index;
1010 entry->data = value;
1011 }
1012
1013 static int kvm_put_msrs(CPUX86State *env, int level)
1014 {
1015 struct {
1016 struct kvm_msrs info;
1017 struct kvm_msr_entry entries[100];
1018 } msr_data;
1019 struct kvm_msr_entry *msrs = msr_data.entries;
1020 int n = 0;
1021
1022 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1023 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1024 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1025 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1026 if (has_msr_star) {
1027 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1028 }
1029 if (has_msr_hsave_pa) {
1030 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1031 }
1032 if (has_msr_tsc_deadline) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1034 }
1035 if (has_msr_misc_enable) {
1036 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1037 env->msr_ia32_misc_enable);
1038 }
1039 #ifdef TARGET_X86_64
1040 if (lm_capable_kernel) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1042 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1043 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1044 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1045 }
1046 #endif
1047 if (level == KVM_PUT_FULL_STATE) {
1048 /*
1049 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1050 * writeback. Until this is fixed, we only write the offset to SMP
1051 * guests after migration, desynchronizing the VCPUs, but avoiding
1052 * huge jump-backs that would occur without any writeback at all.
1053 */
1054 if (smp_cpus == 1 || env->tsc != 0) {
1055 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1056 }
1057 }
1058 /*
1059 * The following paravirtual MSRs have side effects on the guest or are
1060 * too heavy for normal writeback. Limit them to reset or full state
1061 * updates.
1062 */
1063 if (level >= KVM_PUT_RESET_STATE) {
1064 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1065 env->system_time_msr);
1066 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1067 if (has_msr_async_pf_en) {
1068 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1069 env->async_pf_en_msr);
1070 }
1071 if (has_msr_pv_eoi_en) {
1072 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1073 env->pv_eoi_en_msr);
1074 }
1075 if (hyperv_hypercall_available()) {
1076 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1077 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1078 }
1079 if (hyperv_vapic_recommended()) {
1080 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1081 }
1082 }
1083 if (env->mcg_cap) {
1084 int i;
1085
1086 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1087 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1088 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1089 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1090 }
1091 }
1092
1093 msr_data.info.nmsrs = n;
1094
1095 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1096
1097 }
1098
1099
1100 static int kvm_get_fpu(CPUX86State *env)
1101 {
1102 struct kvm_fpu fpu;
1103 int i, ret;
1104
1105 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1106 if (ret < 0) {
1107 return ret;
1108 }
1109
1110 env->fpstt = (fpu.fsw >> 11) & 7;
1111 env->fpus = fpu.fsw;
1112 env->fpuc = fpu.fcw;
1113 env->fpop = fpu.last_opcode;
1114 env->fpip = fpu.last_ip;
1115 env->fpdp = fpu.last_dp;
1116 for (i = 0; i < 8; ++i) {
1117 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1118 }
1119 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1120 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1121 env->mxcsr = fpu.mxcsr;
1122
1123 return 0;
1124 }
1125
1126 static int kvm_get_xsave(CPUX86State *env)
1127 {
1128 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1129 int ret, i;
1130 uint16_t cwd, swd, twd;
1131
1132 if (!kvm_has_xsave()) {
1133 return kvm_get_fpu(env);
1134 }
1135
1136 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1137 if (ret < 0) {
1138 return ret;
1139 }
1140
1141 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1142 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1143 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1144 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1145 env->fpstt = (swd >> 11) & 7;
1146 env->fpus = swd;
1147 env->fpuc = cwd;
1148 for (i = 0; i < 8; ++i) {
1149 env->fptags[i] = !((twd >> i) & 1);
1150 }
1151 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1152 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1153 env->mxcsr = xsave->region[XSAVE_MXCSR];
1154 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1155 sizeof env->fpregs);
1156 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1157 sizeof env->xmm_regs);
1158 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1159 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1160 sizeof env->ymmh_regs);
1161 return 0;
1162 }
1163
1164 static int kvm_get_xcrs(CPUX86State *env)
1165 {
1166 int i, ret;
1167 struct kvm_xcrs xcrs;
1168
1169 if (!kvm_has_xcrs()) {
1170 return 0;
1171 }
1172
1173 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1174 if (ret < 0) {
1175 return ret;
1176 }
1177
1178 for (i = 0; i < xcrs.nr_xcrs; i++) {
1179 /* Only support xcr0 now */
1180 if (xcrs.xcrs[0].xcr == 0) {
1181 env->xcr0 = xcrs.xcrs[0].value;
1182 break;
1183 }
1184 }
1185 return 0;
1186 }
1187
1188 static int kvm_get_sregs(CPUX86State *env)
1189 {
1190 struct kvm_sregs sregs;
1191 uint32_t hflags;
1192 int bit, i, ret;
1193
1194 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1195 if (ret < 0) {
1196 return ret;
1197 }
1198
1199 /* There can only be one pending IRQ set in the bitmap at a time, so try
1200 to find it and save its number instead (-1 for none). */
1201 env->interrupt_injected = -1;
1202 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1203 if (sregs.interrupt_bitmap[i]) {
1204 bit = ctz64(sregs.interrupt_bitmap[i]);
1205 env->interrupt_injected = i * 64 + bit;
1206 break;
1207 }
1208 }
1209
1210 get_seg(&env->segs[R_CS], &sregs.cs);
1211 get_seg(&env->segs[R_DS], &sregs.ds);
1212 get_seg(&env->segs[R_ES], &sregs.es);
1213 get_seg(&env->segs[R_FS], &sregs.fs);
1214 get_seg(&env->segs[R_GS], &sregs.gs);
1215 get_seg(&env->segs[R_SS], &sregs.ss);
1216
1217 get_seg(&env->tr, &sregs.tr);
1218 get_seg(&env->ldt, &sregs.ldt);
1219
1220 env->idt.limit = sregs.idt.limit;
1221 env->idt.base = sregs.idt.base;
1222 env->gdt.limit = sregs.gdt.limit;
1223 env->gdt.base = sregs.gdt.base;
1224
1225 env->cr[0] = sregs.cr0;
1226 env->cr[2] = sregs.cr2;
1227 env->cr[3] = sregs.cr3;
1228 env->cr[4] = sregs.cr4;
1229
1230 env->efer = sregs.efer;
1231
1232 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1233
1234 #define HFLAG_COPY_MASK \
1235 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1236 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1237 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1238 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1239
1240 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1241 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1242 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1243 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1244 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1245 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1246 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1247
1248 if (env->efer & MSR_EFER_LMA) {
1249 hflags |= HF_LMA_MASK;
1250 }
1251
1252 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1253 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1254 } else {
1255 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1256 (DESC_B_SHIFT - HF_CS32_SHIFT);
1257 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1258 (DESC_B_SHIFT - HF_SS32_SHIFT);
1259 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1260 !(hflags & HF_CS32_MASK)) {
1261 hflags |= HF_ADDSEG_MASK;
1262 } else {
1263 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1264 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1265 }
1266 }
1267 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1268
1269 return 0;
1270 }
1271
1272 static int kvm_get_msrs(CPUX86State *env)
1273 {
1274 struct {
1275 struct kvm_msrs info;
1276 struct kvm_msr_entry entries[100];
1277 } msr_data;
1278 struct kvm_msr_entry *msrs = msr_data.entries;
1279 int ret, i, n;
1280
1281 n = 0;
1282 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1283 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1284 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1285 msrs[n++].index = MSR_PAT;
1286 if (has_msr_star) {
1287 msrs[n++].index = MSR_STAR;
1288 }
1289 if (has_msr_hsave_pa) {
1290 msrs[n++].index = MSR_VM_HSAVE_PA;
1291 }
1292 if (has_msr_tsc_deadline) {
1293 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1294 }
1295 if (has_msr_misc_enable) {
1296 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1297 }
1298
1299 if (!env->tsc_valid) {
1300 msrs[n++].index = MSR_IA32_TSC;
1301 env->tsc_valid = !runstate_is_running();
1302 }
1303
1304 #ifdef TARGET_X86_64
1305 if (lm_capable_kernel) {
1306 msrs[n++].index = MSR_CSTAR;
1307 msrs[n++].index = MSR_KERNELGSBASE;
1308 msrs[n++].index = MSR_FMASK;
1309 msrs[n++].index = MSR_LSTAR;
1310 }
1311 #endif
1312 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1313 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1314 if (has_msr_async_pf_en) {
1315 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1316 }
1317 if (has_msr_pv_eoi_en) {
1318 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1319 }
1320
1321 if (env->mcg_cap) {
1322 msrs[n++].index = MSR_MCG_STATUS;
1323 msrs[n++].index = MSR_MCG_CTL;
1324 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1325 msrs[n++].index = MSR_MC0_CTL + i;
1326 }
1327 }
1328
1329 msr_data.info.nmsrs = n;
1330 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1331 if (ret < 0) {
1332 return ret;
1333 }
1334
1335 for (i = 0; i < ret; i++) {
1336 switch (msrs[i].index) {
1337 case MSR_IA32_SYSENTER_CS:
1338 env->sysenter_cs = msrs[i].data;
1339 break;
1340 case MSR_IA32_SYSENTER_ESP:
1341 env->sysenter_esp = msrs[i].data;
1342 break;
1343 case MSR_IA32_SYSENTER_EIP:
1344 env->sysenter_eip = msrs[i].data;
1345 break;
1346 case MSR_PAT:
1347 env->pat = msrs[i].data;
1348 break;
1349 case MSR_STAR:
1350 env->star = msrs[i].data;
1351 break;
1352 #ifdef TARGET_X86_64
1353 case MSR_CSTAR:
1354 env->cstar = msrs[i].data;
1355 break;
1356 case MSR_KERNELGSBASE:
1357 env->kernelgsbase = msrs[i].data;
1358 break;
1359 case MSR_FMASK:
1360 env->fmask = msrs[i].data;
1361 break;
1362 case MSR_LSTAR:
1363 env->lstar = msrs[i].data;
1364 break;
1365 #endif
1366 case MSR_IA32_TSC:
1367 env->tsc = msrs[i].data;
1368 break;
1369 case MSR_IA32_TSCDEADLINE:
1370 env->tsc_deadline = msrs[i].data;
1371 break;
1372 case MSR_VM_HSAVE_PA:
1373 env->vm_hsave = msrs[i].data;
1374 break;
1375 case MSR_KVM_SYSTEM_TIME:
1376 env->system_time_msr = msrs[i].data;
1377 break;
1378 case MSR_KVM_WALL_CLOCK:
1379 env->wall_clock_msr = msrs[i].data;
1380 break;
1381 case MSR_MCG_STATUS:
1382 env->mcg_status = msrs[i].data;
1383 break;
1384 case MSR_MCG_CTL:
1385 env->mcg_ctl = msrs[i].data;
1386 break;
1387 case MSR_IA32_MISC_ENABLE:
1388 env->msr_ia32_misc_enable = msrs[i].data;
1389 break;
1390 default:
1391 if (msrs[i].index >= MSR_MC0_CTL &&
1392 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1393 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1394 }
1395 break;
1396 case MSR_KVM_ASYNC_PF_EN:
1397 env->async_pf_en_msr = msrs[i].data;
1398 break;
1399 case MSR_KVM_PV_EOI_EN:
1400 env->pv_eoi_en_msr = msrs[i].data;
1401 break;
1402 }
1403 }
1404
1405 return 0;
1406 }
1407
1408 static int kvm_put_mp_state(CPUX86State *env)
1409 {
1410 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1411
1412 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1413 }
1414
1415 static int kvm_get_mp_state(CPUX86State *env)
1416 {
1417 struct kvm_mp_state mp_state;
1418 int ret;
1419
1420 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1421 if (ret < 0) {
1422 return ret;
1423 }
1424 env->mp_state = mp_state.mp_state;
1425 if (kvm_irqchip_in_kernel()) {
1426 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1427 }
1428 return 0;
1429 }
1430
1431 static int kvm_get_apic(CPUX86State *env)
1432 {
1433 DeviceState *apic = env->apic_state;
1434 struct kvm_lapic_state kapic;
1435 int ret;
1436
1437 if (apic && kvm_irqchip_in_kernel()) {
1438 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1439 if (ret < 0) {
1440 return ret;
1441 }
1442
1443 kvm_get_apic_state(apic, &kapic);
1444 }
1445 return 0;
1446 }
1447
1448 static int kvm_put_apic(CPUX86State *env)
1449 {
1450 DeviceState *apic = env->apic_state;
1451 struct kvm_lapic_state kapic;
1452
1453 if (apic && kvm_irqchip_in_kernel()) {
1454 kvm_put_apic_state(apic, &kapic);
1455
1456 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1457 }
1458 return 0;
1459 }
1460
1461 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1462 {
1463 struct kvm_vcpu_events events;
1464
1465 if (!kvm_has_vcpu_events()) {
1466 return 0;
1467 }
1468
1469 events.exception.injected = (env->exception_injected >= 0);
1470 events.exception.nr = env->exception_injected;
1471 events.exception.has_error_code = env->has_error_code;
1472 events.exception.error_code = env->error_code;
1473 events.exception.pad = 0;
1474
1475 events.interrupt.injected = (env->interrupt_injected >= 0);
1476 events.interrupt.nr = env->interrupt_injected;
1477 events.interrupt.soft = env->soft_interrupt;
1478
1479 events.nmi.injected = env->nmi_injected;
1480 events.nmi.pending = env->nmi_pending;
1481 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1482 events.nmi.pad = 0;
1483
1484 events.sipi_vector = env->sipi_vector;
1485
1486 events.flags = 0;
1487 if (level >= KVM_PUT_RESET_STATE) {
1488 events.flags |=
1489 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1490 }
1491
1492 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1493 }
1494
1495 static int kvm_get_vcpu_events(CPUX86State *env)
1496 {
1497 struct kvm_vcpu_events events;
1498 int ret;
1499
1500 if (!kvm_has_vcpu_events()) {
1501 return 0;
1502 }
1503
1504 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1505 if (ret < 0) {
1506 return ret;
1507 }
1508 env->exception_injected =
1509 events.exception.injected ? events.exception.nr : -1;
1510 env->has_error_code = events.exception.has_error_code;
1511 env->error_code = events.exception.error_code;
1512
1513 env->interrupt_injected =
1514 events.interrupt.injected ? events.interrupt.nr : -1;
1515 env->soft_interrupt = events.interrupt.soft;
1516
1517 env->nmi_injected = events.nmi.injected;
1518 env->nmi_pending = events.nmi.pending;
1519 if (events.nmi.masked) {
1520 env->hflags2 |= HF2_NMI_MASK;
1521 } else {
1522 env->hflags2 &= ~HF2_NMI_MASK;
1523 }
1524
1525 env->sipi_vector = events.sipi_vector;
1526
1527 return 0;
1528 }
1529
1530 static int kvm_guest_debug_workarounds(CPUX86State *env)
1531 {
1532 int ret = 0;
1533 unsigned long reinject_trap = 0;
1534
1535 if (!kvm_has_vcpu_events()) {
1536 if (env->exception_injected == 1) {
1537 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1538 } else if (env->exception_injected == 3) {
1539 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1540 }
1541 env->exception_injected = -1;
1542 }
1543
1544 /*
1545 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1546 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1547 * by updating the debug state once again if single-stepping is on.
1548 * Another reason to call kvm_update_guest_debug here is a pending debug
1549 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1550 * reinject them via SET_GUEST_DEBUG.
1551 */
1552 if (reinject_trap ||
1553 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1554 ret = kvm_update_guest_debug(env, reinject_trap);
1555 }
1556 return ret;
1557 }
1558
1559 static int kvm_put_debugregs(CPUX86State *env)
1560 {
1561 struct kvm_debugregs dbgregs;
1562 int i;
1563
1564 if (!kvm_has_debugregs()) {
1565 return 0;
1566 }
1567
1568 for (i = 0; i < 4; i++) {
1569 dbgregs.db[i] = env->dr[i];
1570 }
1571 dbgregs.dr6 = env->dr[6];
1572 dbgregs.dr7 = env->dr[7];
1573 dbgregs.flags = 0;
1574
1575 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1576 }
1577
1578 static int kvm_get_debugregs(CPUX86State *env)
1579 {
1580 struct kvm_debugregs dbgregs;
1581 int i, ret;
1582
1583 if (!kvm_has_debugregs()) {
1584 return 0;
1585 }
1586
1587 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1588 if (ret < 0) {
1589 return ret;
1590 }
1591 for (i = 0; i < 4; i++) {
1592 env->dr[i] = dbgregs.db[i];
1593 }
1594 env->dr[4] = env->dr[6] = dbgregs.dr6;
1595 env->dr[5] = env->dr[7] = dbgregs.dr7;
1596
1597 return 0;
1598 }
1599
1600 int kvm_arch_put_registers(CPUX86State *env, int level)
1601 {
1602 int ret;
1603
1604 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1605
1606 ret = kvm_getput_regs(env, 1);
1607 if (ret < 0) {
1608 return ret;
1609 }
1610 ret = kvm_put_xsave(env);
1611 if (ret < 0) {
1612 return ret;
1613 }
1614 ret = kvm_put_xcrs(env);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 ret = kvm_put_sregs(env);
1619 if (ret < 0) {
1620 return ret;
1621 }
1622 /* must be before kvm_put_msrs */
1623 ret = kvm_inject_mce_oldstyle(env);
1624 if (ret < 0) {
1625 return ret;
1626 }
1627 ret = kvm_put_msrs(env, level);
1628 if (ret < 0) {
1629 return ret;
1630 }
1631 if (level >= KVM_PUT_RESET_STATE) {
1632 ret = kvm_put_mp_state(env);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636 ret = kvm_put_apic(env);
1637 if (ret < 0) {
1638 return ret;
1639 }
1640 }
1641 ret = kvm_put_vcpu_events(env, level);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645 ret = kvm_put_debugregs(env);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649 /* must be last */
1650 ret = kvm_guest_debug_workarounds(env);
1651 if (ret < 0) {
1652 return ret;
1653 }
1654 return 0;
1655 }
1656
1657 int kvm_arch_get_registers(CPUX86State *env)
1658 {
1659 int ret;
1660
1661 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1662
1663 ret = kvm_getput_regs(env, 0);
1664 if (ret < 0) {
1665 return ret;
1666 }
1667 ret = kvm_get_xsave(env);
1668 if (ret < 0) {
1669 return ret;
1670 }
1671 ret = kvm_get_xcrs(env);
1672 if (ret < 0) {
1673 return ret;
1674 }
1675 ret = kvm_get_sregs(env);
1676 if (ret < 0) {
1677 return ret;
1678 }
1679 ret = kvm_get_msrs(env);
1680 if (ret < 0) {
1681 return ret;
1682 }
1683 ret = kvm_get_mp_state(env);
1684 if (ret < 0) {
1685 return ret;
1686 }
1687 ret = kvm_get_apic(env);
1688 if (ret < 0) {
1689 return ret;
1690 }
1691 ret = kvm_get_vcpu_events(env);
1692 if (ret < 0) {
1693 return ret;
1694 }
1695 ret = kvm_get_debugregs(env);
1696 if (ret < 0) {
1697 return ret;
1698 }
1699 return 0;
1700 }
1701
1702 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1703 {
1704 int ret;
1705
1706 /* Inject NMI */
1707 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1708 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1709 DPRINTF("injected NMI\n");
1710 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1711 if (ret < 0) {
1712 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1713 strerror(-ret));
1714 }
1715 }
1716
1717 if (!kvm_irqchip_in_kernel()) {
1718 /* Force the VCPU out of its inner loop to process any INIT requests
1719 * or pending TPR access reports. */
1720 if (env->interrupt_request &
1721 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1722 env->exit_request = 1;
1723 }
1724
1725 /* Try to inject an interrupt if the guest can accept it */
1726 if (run->ready_for_interrupt_injection &&
1727 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1728 (env->eflags & IF_MASK)) {
1729 int irq;
1730
1731 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1732 irq = cpu_get_pic_interrupt(env);
1733 if (irq >= 0) {
1734 struct kvm_interrupt intr;
1735
1736 intr.irq = irq;
1737 DPRINTF("injected interrupt %d\n", irq);
1738 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1739 if (ret < 0) {
1740 fprintf(stderr,
1741 "KVM: injection failed, interrupt lost (%s)\n",
1742 strerror(-ret));
1743 }
1744 }
1745 }
1746
1747 /* If we have an interrupt but the guest is not ready to receive an
1748 * interrupt, request an interrupt window exit. This will
1749 * cause a return to userspace as soon as the guest is ready to
1750 * receive interrupts. */
1751 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1752 run->request_interrupt_window = 1;
1753 } else {
1754 run->request_interrupt_window = 0;
1755 }
1756
1757 DPRINTF("setting tpr\n");
1758 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1759 }
1760 }
1761
1762 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1763 {
1764 if (run->if_flag) {
1765 env->eflags |= IF_MASK;
1766 } else {
1767 env->eflags &= ~IF_MASK;
1768 }
1769 cpu_set_apic_tpr(env->apic_state, run->cr8);
1770 cpu_set_apic_base(env->apic_state, run->apic_base);
1771 }
1772
1773 int kvm_arch_process_async_events(CPUX86State *env)
1774 {
1775 X86CPU *cpu = x86_env_get_cpu(env);
1776
1777 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1778 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1779 assert(env->mcg_cap);
1780
1781 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1782
1783 kvm_cpu_synchronize_state(env);
1784
1785 if (env->exception_injected == EXCP08_DBLE) {
1786 /* this means triple fault */
1787 qemu_system_reset_request();
1788 env->exit_request = 1;
1789 return 0;
1790 }
1791 env->exception_injected = EXCP12_MCHK;
1792 env->has_error_code = 0;
1793
1794 env->halted = 0;
1795 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1796 env->mp_state = KVM_MP_STATE_RUNNABLE;
1797 }
1798 }
1799
1800 if (kvm_irqchip_in_kernel()) {
1801 return 0;
1802 }
1803
1804 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1805 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1806 apic_poll_irq(env->apic_state);
1807 }
1808 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1809 (env->eflags & IF_MASK)) ||
1810 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1811 env->halted = 0;
1812 }
1813 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1814 kvm_cpu_synchronize_state(env);
1815 do_cpu_init(cpu);
1816 }
1817 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1818 kvm_cpu_synchronize_state(env);
1819 do_cpu_sipi(cpu);
1820 }
1821 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1822 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1823 kvm_cpu_synchronize_state(env);
1824 apic_handle_tpr_access_report(env->apic_state, env->eip,
1825 env->tpr_access_type);
1826 }
1827
1828 return env->halted;
1829 }
1830
1831 static int kvm_handle_halt(CPUX86State *env)
1832 {
1833 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1834 (env->eflags & IF_MASK)) &&
1835 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1836 env->halted = 1;
1837 return EXCP_HLT;
1838 }
1839
1840 return 0;
1841 }
1842
1843 static int kvm_handle_tpr_access(CPUX86State *env)
1844 {
1845 struct kvm_run *run = env->kvm_run;
1846
1847 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1848 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1849 : TPR_ACCESS_READ);
1850 return 1;
1851 }
1852
1853 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1854 {
1855 static const uint8_t int3 = 0xcc;
1856
1857 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1858 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1859 return -EINVAL;
1860 }
1861 return 0;
1862 }
1863
1864 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1865 {
1866 uint8_t int3;
1867
1868 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1869 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1870 return -EINVAL;
1871 }
1872 return 0;
1873 }
1874
1875 static struct {
1876 target_ulong addr;
1877 int len;
1878 int type;
1879 } hw_breakpoint[4];
1880
1881 static int nb_hw_breakpoint;
1882
1883 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1884 {
1885 int n;
1886
1887 for (n = 0; n < nb_hw_breakpoint; n++) {
1888 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1889 (hw_breakpoint[n].len == len || len == -1)) {
1890 return n;
1891 }
1892 }
1893 return -1;
1894 }
1895
1896 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1897 target_ulong len, int type)
1898 {
1899 switch (type) {
1900 case GDB_BREAKPOINT_HW:
1901 len = 1;
1902 break;
1903 case GDB_WATCHPOINT_WRITE:
1904 case GDB_WATCHPOINT_ACCESS:
1905 switch (len) {
1906 case 1:
1907 break;
1908 case 2:
1909 case 4:
1910 case 8:
1911 if (addr & (len - 1)) {
1912 return -EINVAL;
1913 }
1914 break;
1915 default:
1916 return -EINVAL;
1917 }
1918 break;
1919 default:
1920 return -ENOSYS;
1921 }
1922
1923 if (nb_hw_breakpoint == 4) {
1924 return -ENOBUFS;
1925 }
1926 if (find_hw_breakpoint(addr, len, type) >= 0) {
1927 return -EEXIST;
1928 }
1929 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1930 hw_breakpoint[nb_hw_breakpoint].len = len;
1931 hw_breakpoint[nb_hw_breakpoint].type = type;
1932 nb_hw_breakpoint++;
1933
1934 return 0;
1935 }
1936
1937 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1938 target_ulong len, int type)
1939 {
1940 int n;
1941
1942 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1943 if (n < 0) {
1944 return -ENOENT;
1945 }
1946 nb_hw_breakpoint--;
1947 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1948
1949 return 0;
1950 }
1951
1952 void kvm_arch_remove_all_hw_breakpoints(void)
1953 {
1954 nb_hw_breakpoint = 0;
1955 }
1956
1957 static CPUWatchpoint hw_watchpoint;
1958
1959 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1960 {
1961 int ret = 0;
1962 int n;
1963
1964 if (arch_info->exception == 1) {
1965 if (arch_info->dr6 & (1 << 14)) {
1966 if (cpu_single_env->singlestep_enabled) {
1967 ret = EXCP_DEBUG;
1968 }
1969 } else {
1970 for (n = 0; n < 4; n++) {
1971 if (arch_info->dr6 & (1 << n)) {
1972 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1973 case 0x0:
1974 ret = EXCP_DEBUG;
1975 break;
1976 case 0x1:
1977 ret = EXCP_DEBUG;
1978 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1979 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1980 hw_watchpoint.flags = BP_MEM_WRITE;
1981 break;
1982 case 0x3:
1983 ret = EXCP_DEBUG;
1984 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1985 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1986 hw_watchpoint.flags = BP_MEM_ACCESS;
1987 break;
1988 }
1989 }
1990 }
1991 }
1992 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1993 ret = EXCP_DEBUG;
1994 }
1995 if (ret == 0) {
1996 cpu_synchronize_state(cpu_single_env);
1997 assert(cpu_single_env->exception_injected == -1);
1998
1999 /* pass to guest */
2000 cpu_single_env->exception_injected = arch_info->exception;
2001 cpu_single_env->has_error_code = 0;
2002 }
2003
2004 return ret;
2005 }
2006
2007 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
2008 {
2009 const uint8_t type_code[] = {
2010 [GDB_BREAKPOINT_HW] = 0x0,
2011 [GDB_WATCHPOINT_WRITE] = 0x1,
2012 [GDB_WATCHPOINT_ACCESS] = 0x3
2013 };
2014 const uint8_t len_code[] = {
2015 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2016 };
2017 int n;
2018
2019 if (kvm_sw_breakpoints_active(env)) {
2020 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2021 }
2022 if (nb_hw_breakpoint > 0) {
2023 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2024 dbg->arch.debugreg[7] = 0x0600;
2025 for (n = 0; n < nb_hw_breakpoint; n++) {
2026 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2027 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2028 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2029 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2030 }
2031 }
2032 }
2033
2034 static bool host_supports_vmx(void)
2035 {
2036 uint32_t ecx, unused;
2037
2038 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2039 return ecx & CPUID_EXT_VMX;
2040 }
2041
2042 #define VMX_INVALID_GUEST_STATE 0x80000021
2043
2044 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2045 {
2046 uint64_t code;
2047 int ret;
2048
2049 switch (run->exit_reason) {
2050 case KVM_EXIT_HLT:
2051 DPRINTF("handle_hlt\n");
2052 ret = kvm_handle_halt(env);
2053 break;
2054 case KVM_EXIT_SET_TPR:
2055 ret = 0;
2056 break;
2057 case KVM_EXIT_TPR_ACCESS:
2058 ret = kvm_handle_tpr_access(env);
2059 break;
2060 case KVM_EXIT_FAIL_ENTRY:
2061 code = run->fail_entry.hardware_entry_failure_reason;
2062 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2063 code);
2064 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2065 fprintf(stderr,
2066 "\nIf you're running a guest on an Intel machine without "
2067 "unrestricted mode\n"
2068 "support, the failure can be most likely due to the guest "
2069 "entering an invalid\n"
2070 "state for Intel VT. For example, the guest maybe running "
2071 "in big real mode\n"
2072 "which is not supported on less recent Intel processors."
2073 "\n\n");
2074 }
2075 ret = -1;
2076 break;
2077 case KVM_EXIT_EXCEPTION:
2078 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2079 run->ex.exception, run->ex.error_code);
2080 ret = -1;
2081 break;
2082 case KVM_EXIT_DEBUG:
2083 DPRINTF("kvm_exit_debug\n");
2084 ret = kvm_handle_debug(&run->debug.arch);
2085 break;
2086 default:
2087 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2088 ret = -1;
2089 break;
2090 }
2091
2092 return ret;
2093 }
2094
2095 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2096 {
2097 kvm_cpu_synchronize_state(env);
2098 return !(env->cr[0] & CR0_PE_MASK) ||
2099 ((env->segs[R_CS].selector & 3) != 3);
2100 }
2101
2102 void kvm_arch_init_irq_routing(KVMState *s)
2103 {
2104 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2105 /* If kernel can't do irq routing, interrupt source
2106 * override 0->2 cannot be set up as required by HPET.
2107 * So we have to disable it.
2108 */
2109 no_hpet = 1;
2110 }
2111 /* We know at this point that we're using the in-kernel
2112 * irqchip, so we can use irqfds, and on x86 we know
2113 * we can use msi via irqfd and GSI routing.
2114 */
2115 kvm_irqfds_allowed = true;
2116 kvm_msi_via_irqfd_allowed = true;
2117 kvm_gsi_routing_allowed = true;
2118 }
2119
2120 /* Classic KVM device assignment interface. Will remain x86 only. */
2121 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2122 uint32_t flags, uint32_t *dev_id)
2123 {
2124 struct kvm_assigned_pci_dev dev_data = {
2125 .segnr = dev_addr->domain,
2126 .busnr = dev_addr->bus,
2127 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2128 .flags = flags,
2129 };
2130 int ret;
2131
2132 dev_data.assigned_dev_id =
2133 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2134
2135 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2136 if (ret < 0) {
2137 return ret;
2138 }
2139
2140 *dev_id = dev_data.assigned_dev_id;
2141
2142 return 0;
2143 }
2144
2145 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2146 {
2147 struct kvm_assigned_pci_dev dev_data = {
2148 .assigned_dev_id = dev_id,
2149 };
2150
2151 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2152 }
2153
2154 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2155 uint32_t irq_type, uint32_t guest_irq)
2156 {
2157 struct kvm_assigned_irq assigned_irq = {
2158 .assigned_dev_id = dev_id,
2159 .guest_irq = guest_irq,
2160 .flags = irq_type,
2161 };
2162
2163 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2164 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2165 } else {
2166 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2167 }
2168 }
2169
2170 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2171 uint32_t guest_irq)
2172 {
2173 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2174 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2175
2176 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2177 }
2178
2179 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2180 {
2181 struct kvm_assigned_pci_dev dev_data = {
2182 .assigned_dev_id = dev_id,
2183 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2184 };
2185
2186 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2187 }
2188
2189 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2190 uint32_t type)
2191 {
2192 struct kvm_assigned_irq assigned_irq = {
2193 .assigned_dev_id = dev_id,
2194 .flags = type,
2195 };
2196
2197 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2198 }
2199
2200 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2201 {
2202 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2203 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2204 }
2205
2206 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2207 {
2208 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2209 KVM_DEV_IRQ_GUEST_MSI, virq);
2210 }
2211
2212 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2213 {
2214 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2215 KVM_DEV_IRQ_HOST_MSI);
2216 }
2217
2218 bool kvm_device_msix_supported(KVMState *s)
2219 {
2220 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2221 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2222 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2223 }
2224
2225 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2226 uint32_t nr_vectors)
2227 {
2228 struct kvm_assigned_msix_nr msix_nr = {
2229 .assigned_dev_id = dev_id,
2230 .entry_nr = nr_vectors,
2231 };
2232
2233 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2234 }
2235
2236 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2237 int virq)
2238 {
2239 struct kvm_assigned_msix_entry msix_entry = {
2240 .assigned_dev_id = dev_id,
2241 .gsi = virq,
2242 .entry = vector,
2243 };
2244
2245 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2246 }
2247
2248 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2249 {
2250 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2251 KVM_DEV_IRQ_GUEST_MSIX, 0);
2252 }
2253
2254 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2255 {
2256 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2257 KVM_DEV_IRQ_HOST_MSIX);
2258 }