]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: Drop smp_cpus argument from init functions
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21
22 #include "qemu-common.h"
23 #include "sysemu.h"
24 #include "kvm.h"
25 #include "cpu.h"
26 #include "gdbstub.h"
27 #include "host-utils.h"
28 #include "hw/pc.h"
29 #include "hw/apic.h"
30 #include "ioport.h"
31 #include "kvm_x86.h"
32
33 #ifdef CONFIG_KVM_PARA
34 #include <linux/kvm_para.h>
35 #endif
36 //
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 static bool has_msr_star;
58 static bool has_msr_hsave_pa;
59 static int lm_capable_kernel;
60
61 #ifdef KVM_CAP_EXT_CPUID
62
63 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
64 {
65 struct kvm_cpuid2 *cpuid;
66 int r, size;
67
68 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
69 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
70 cpuid->nent = max;
71 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
72 if (r == 0 && cpuid->nent >= max) {
73 r = -E2BIG;
74 }
75 if (r < 0) {
76 if (r == -E2BIG) {
77 qemu_free(cpuid);
78 return NULL;
79 } else {
80 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
81 strerror(-r));
82 exit(1);
83 }
84 }
85 return cpuid;
86 }
87
88 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
89 uint32_t index, int reg)
90 {
91 struct kvm_cpuid2 *cpuid;
92 int i, max;
93 uint32_t ret = 0;
94 uint32_t cpuid_1_edx;
95
96 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
97 return -1U;
98 }
99
100 max = 1;
101 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
102 max *= 2;
103 }
104
105 for (i = 0; i < cpuid->nent; ++i) {
106 if (cpuid->entries[i].function == function &&
107 cpuid->entries[i].index == index) {
108 switch (reg) {
109 case R_EAX:
110 ret = cpuid->entries[i].eax;
111 break;
112 case R_EBX:
113 ret = cpuid->entries[i].ebx;
114 break;
115 case R_ECX:
116 ret = cpuid->entries[i].ecx;
117 break;
118 case R_EDX:
119 ret = cpuid->entries[i].edx;
120 switch (function) {
121 case 1:
122 /* KVM before 2.6.30 misreports the following features */
123 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
124 break;
125 case 0x80000001:
126 /* On Intel, kvm returns cpuid according to the Intel spec,
127 * so add missing bits according to the AMD spec:
128 */
129 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
130 ret |= cpuid_1_edx & 0x183f7ff;
131 break;
132 }
133 break;
134 }
135 }
136 }
137
138 qemu_free(cpuid);
139
140 return ret;
141 }
142
143 #else
144
145 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
146 uint32_t index, int reg)
147 {
148 return -1U;
149 }
150
151 #endif
152
153 #ifdef CONFIG_KVM_PARA
154 struct kvm_para_features {
155 int cap;
156 int feature;
157 } para_features[] = {
158 #ifdef KVM_CAP_CLOCKSOURCE
159 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
160 #endif
161 #ifdef KVM_CAP_NOP_IO_DELAY
162 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
163 #endif
164 #ifdef KVM_CAP_PV_MMU
165 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
166 #endif
167 #ifdef KVM_CAP_ASYNC_PF
168 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
169 #endif
170 { -1, -1 }
171 };
172
173 static int get_para_features(CPUState *env)
174 {
175 int i, features = 0;
176
177 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
178 if (kvm_check_extension(env->kvm_state, para_features[i].cap)) {
179 features |= (1 << para_features[i].feature);
180 }
181 }
182 return features;
183 }
184 #endif
185
186 #ifdef KVM_CAP_MCE
187 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
188 int *max_banks)
189 {
190 int r;
191
192 r = kvm_check_extension(s, KVM_CAP_MCE);
193 if (r > 0) {
194 *max_banks = r;
195 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
196 }
197 return -ENOSYS;
198 }
199
200 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
201 {
202 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
203 }
204
205 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
206 {
207 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
208 }
209
210 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
211 {
212 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
213 int r;
214
215 kmsrs->nmsrs = n;
216 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
217 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
218 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
219 free(kmsrs);
220 return r;
221 }
222
223 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
224 static int kvm_mce_in_progress(CPUState *env)
225 {
226 struct kvm_msr_entry msr_mcg_status = {
227 .index = MSR_MCG_STATUS,
228 };
229 int r;
230
231 r = kvm_get_msr(env, &msr_mcg_status, 1);
232 if (r == -1 || r == 0) {
233 fprintf(stderr, "Failed to get MCE status\n");
234 return 0;
235 }
236 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
237 }
238
239 struct kvm_x86_mce_data
240 {
241 CPUState *env;
242 struct kvm_x86_mce *mce;
243 int abort_on_error;
244 };
245
246 static void kvm_do_inject_x86_mce(void *_data)
247 {
248 struct kvm_x86_mce_data *data = _data;
249 int r;
250
251 /* If there is an MCE exception being processed, ignore this SRAO MCE */
252 if ((data->env->mcg_cap & MCG_SER_P) &&
253 !(data->mce->status & MCI_STATUS_AR)) {
254 if (kvm_mce_in_progress(data->env)) {
255 return;
256 }
257 }
258
259 r = kvm_set_mce(data->env, data->mce);
260 if (r < 0) {
261 perror("kvm_set_mce FAILED");
262 if (data->abort_on_error) {
263 abort();
264 }
265 }
266 }
267
268 static void kvm_inject_x86_mce_on(CPUState *env, struct kvm_x86_mce *mce,
269 int flag)
270 {
271 struct kvm_x86_mce_data data = {
272 .env = env,
273 .mce = mce,
274 .abort_on_error = (flag & ABORT_ON_ERROR),
275 };
276
277 if (!env->mcg_cap) {
278 fprintf(stderr, "MCE support is not enabled!\n");
279 return;
280 }
281
282 run_on_cpu(env, kvm_do_inject_x86_mce, &data);
283 }
284
285 static void kvm_mce_broadcast_rest(CPUState *env);
286 #endif
287
288 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
289 uint64_t mcg_status, uint64_t addr, uint64_t misc,
290 int flag)
291 {
292 #ifdef KVM_CAP_MCE
293 struct kvm_x86_mce mce = {
294 .bank = bank,
295 .status = status,
296 .mcg_status = mcg_status,
297 .addr = addr,
298 .misc = misc,
299 };
300
301 if (flag & MCE_BROADCAST) {
302 kvm_mce_broadcast_rest(cenv);
303 }
304
305 kvm_inject_x86_mce_on(cenv, &mce, flag);
306 #else
307 if (flag & ABORT_ON_ERROR) {
308 abort();
309 }
310 #endif
311 }
312
313 int kvm_arch_init_vcpu(CPUState *env)
314 {
315 struct {
316 struct kvm_cpuid2 cpuid;
317 struct kvm_cpuid_entry2 entries[100];
318 } __attribute__((packed)) cpuid_data;
319 uint32_t limit, i, j, cpuid_i;
320 uint32_t unused;
321 struct kvm_cpuid_entry2 *c;
322 #ifdef CONFIG_KVM_PARA
323 uint32_t signature[3];
324 #endif
325
326 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
327
328 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
329 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
330 env->cpuid_ext_features |= i;
331
332 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
333 0, R_EDX);
334 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
335 0, R_ECX);
336 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
337 0, R_EDX);
338
339
340 cpuid_i = 0;
341
342 #ifdef CONFIG_KVM_PARA
343 /* Paravirtualization CPUIDs */
344 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
345 c = &cpuid_data.entries[cpuid_i++];
346 memset(c, 0, sizeof(*c));
347 c->function = KVM_CPUID_SIGNATURE;
348 c->eax = 0;
349 c->ebx = signature[0];
350 c->ecx = signature[1];
351 c->edx = signature[2];
352
353 c = &cpuid_data.entries[cpuid_i++];
354 memset(c, 0, sizeof(*c));
355 c->function = KVM_CPUID_FEATURES;
356 c->eax = env->cpuid_kvm_features & get_para_features(env);
357 #endif
358
359 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
360
361 for (i = 0; i <= limit; i++) {
362 c = &cpuid_data.entries[cpuid_i++];
363
364 switch (i) {
365 case 2: {
366 /* Keep reading function 2 till all the input is received */
367 int times;
368
369 c->function = i;
370 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
371 KVM_CPUID_FLAG_STATE_READ_NEXT;
372 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
373 times = c->eax & 0xff;
374
375 for (j = 1; j < times; ++j) {
376 c = &cpuid_data.entries[cpuid_i++];
377 c->function = i;
378 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
379 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
380 }
381 break;
382 }
383 case 4:
384 case 0xb:
385 case 0xd:
386 for (j = 0; ; j++) {
387 c->function = i;
388 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
389 c->index = j;
390 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
391
392 if (i == 4 && c->eax == 0) {
393 break;
394 }
395 if (i == 0xb && !(c->ecx & 0xff00)) {
396 break;
397 }
398 if (i == 0xd && c->eax == 0) {
399 break;
400 }
401 c = &cpuid_data.entries[cpuid_i++];
402 }
403 break;
404 default:
405 c->function = i;
406 c->flags = 0;
407 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
408 break;
409 }
410 }
411 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
412
413 for (i = 0x80000000; i <= limit; i++) {
414 c = &cpuid_data.entries[cpuid_i++];
415
416 c->function = i;
417 c->flags = 0;
418 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
419 }
420
421 cpuid_data.cpuid.nent = cpuid_i;
422
423 #ifdef KVM_CAP_MCE
424 if (((env->cpuid_version >> 8)&0xF) >= 6
425 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
426 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
427 uint64_t mcg_cap;
428 int banks;
429
430 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks)) {
431 perror("kvm_get_mce_cap_supported FAILED");
432 } else {
433 if (banks > MCE_BANKS_DEF)
434 banks = MCE_BANKS_DEF;
435 mcg_cap &= MCE_CAP_DEF;
436 mcg_cap |= banks;
437 if (kvm_setup_mce(env, &mcg_cap)) {
438 perror("kvm_setup_mce FAILED");
439 } else {
440 env->mcg_cap = mcg_cap;
441 }
442 }
443 }
444 #endif
445
446 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
447 }
448
449 void kvm_arch_reset_vcpu(CPUState *env)
450 {
451 env->exception_injected = -1;
452 env->interrupt_injected = -1;
453 env->nmi_injected = 0;
454 env->nmi_pending = 0;
455 env->xcr0 = 1;
456 if (kvm_irqchip_in_kernel()) {
457 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
458 KVM_MP_STATE_UNINITIALIZED;
459 } else {
460 env->mp_state = KVM_MP_STATE_RUNNABLE;
461 }
462 }
463
464 static int kvm_get_supported_msrs(KVMState *s)
465 {
466 static int kvm_supported_msrs;
467 int ret = 0;
468
469 /* first time */
470 if (kvm_supported_msrs == 0) {
471 struct kvm_msr_list msr_list, *kvm_msr_list;
472
473 kvm_supported_msrs = -1;
474
475 /* Obtain MSR list from KVM. These are the MSRs that we must
476 * save/restore */
477 msr_list.nmsrs = 0;
478 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
479 if (ret < 0 && ret != -E2BIG) {
480 return ret;
481 }
482 /* Old kernel modules had a bug and could write beyond the provided
483 memory. Allocate at least a safe amount of 1K. */
484 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
485 msr_list.nmsrs *
486 sizeof(msr_list.indices[0])));
487
488 kvm_msr_list->nmsrs = msr_list.nmsrs;
489 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
490 if (ret >= 0) {
491 int i;
492
493 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
494 if (kvm_msr_list->indices[i] == MSR_STAR) {
495 has_msr_star = true;
496 continue;
497 }
498 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
499 has_msr_hsave_pa = true;
500 continue;
501 }
502 }
503 }
504
505 free(kvm_msr_list);
506 }
507
508 return ret;
509 }
510
511 static int kvm_init_identity_map_page(KVMState *s)
512 {
513 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
514 int ret;
515 uint64_t addr = 0xfffbc000;
516
517 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
518 return 0;
519 }
520
521 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
522 if (ret < 0) {
523 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
524 return ret;
525 }
526 #endif
527 return 0;
528 }
529
530 int kvm_arch_init(KVMState *s)
531 {
532 int ret;
533 struct utsname utsname;
534
535 ret = kvm_get_supported_msrs(s);
536 if (ret < 0) {
537 return ret;
538 }
539
540 uname(&utsname);
541 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
542
543 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
544 * directly. In order to use vm86 mode, a TSS is needed. Since this
545 * must be part of guest physical memory, we need to allocate it. Older
546 * versions of KVM just assumed that it would be at the end of physical
547 * memory but that doesn't work with more than 4GB of memory. We simply
548 * refuse to work with those older versions of KVM. */
549 ret = kvm_check_extension(s, KVM_CAP_SET_TSS_ADDR);
550 if (ret <= 0) {
551 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
552 return ret;
553 }
554
555 /* this address is 3 pages before the bios, and the bios should present
556 * as unavaible memory. FIXME, need to ensure the e820 map deals with
557 * this?
558 */
559 /*
560 * Tell fw_cfg to notify the BIOS to reserve the range.
561 */
562 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
563 perror("e820_add_entry() table is full");
564 exit(1);
565 }
566 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
567 if (ret < 0) {
568 return ret;
569 }
570
571 return kvm_init_identity_map_page(s);
572 }
573
574 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
575 {
576 lhs->selector = rhs->selector;
577 lhs->base = rhs->base;
578 lhs->limit = rhs->limit;
579 lhs->type = 3;
580 lhs->present = 1;
581 lhs->dpl = 3;
582 lhs->db = 0;
583 lhs->s = 1;
584 lhs->l = 0;
585 lhs->g = 0;
586 lhs->avl = 0;
587 lhs->unusable = 0;
588 }
589
590 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
591 {
592 unsigned flags = rhs->flags;
593 lhs->selector = rhs->selector;
594 lhs->base = rhs->base;
595 lhs->limit = rhs->limit;
596 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
597 lhs->present = (flags & DESC_P_MASK) != 0;
598 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
599 lhs->db = (flags >> DESC_B_SHIFT) & 1;
600 lhs->s = (flags & DESC_S_MASK) != 0;
601 lhs->l = (flags >> DESC_L_SHIFT) & 1;
602 lhs->g = (flags & DESC_G_MASK) != 0;
603 lhs->avl = (flags & DESC_AVL_MASK) != 0;
604 lhs->unusable = 0;
605 }
606
607 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
608 {
609 lhs->selector = rhs->selector;
610 lhs->base = rhs->base;
611 lhs->limit = rhs->limit;
612 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
613 (rhs->present * DESC_P_MASK) |
614 (rhs->dpl << DESC_DPL_SHIFT) |
615 (rhs->db << DESC_B_SHIFT) |
616 (rhs->s * DESC_S_MASK) |
617 (rhs->l << DESC_L_SHIFT) |
618 (rhs->g * DESC_G_MASK) |
619 (rhs->avl * DESC_AVL_MASK);
620 }
621
622 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
623 {
624 if (set) {
625 *kvm_reg = *qemu_reg;
626 } else {
627 *qemu_reg = *kvm_reg;
628 }
629 }
630
631 static int kvm_getput_regs(CPUState *env, int set)
632 {
633 struct kvm_regs regs;
634 int ret = 0;
635
636 if (!set) {
637 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
638 if (ret < 0) {
639 return ret;
640 }
641 }
642
643 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
644 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
645 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
646 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
647 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
648 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
649 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
650 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
651 #ifdef TARGET_X86_64
652 kvm_getput_reg(&regs.r8, &env->regs[8], set);
653 kvm_getput_reg(&regs.r9, &env->regs[9], set);
654 kvm_getput_reg(&regs.r10, &env->regs[10], set);
655 kvm_getput_reg(&regs.r11, &env->regs[11], set);
656 kvm_getput_reg(&regs.r12, &env->regs[12], set);
657 kvm_getput_reg(&regs.r13, &env->regs[13], set);
658 kvm_getput_reg(&regs.r14, &env->regs[14], set);
659 kvm_getput_reg(&regs.r15, &env->regs[15], set);
660 #endif
661
662 kvm_getput_reg(&regs.rflags, &env->eflags, set);
663 kvm_getput_reg(&regs.rip, &env->eip, set);
664
665 if (set) {
666 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
667 }
668
669 return ret;
670 }
671
672 static int kvm_put_fpu(CPUState *env)
673 {
674 struct kvm_fpu fpu;
675 int i;
676
677 memset(&fpu, 0, sizeof fpu);
678 fpu.fsw = env->fpus & ~(7 << 11);
679 fpu.fsw |= (env->fpstt & 7) << 11;
680 fpu.fcw = env->fpuc;
681 for (i = 0; i < 8; ++i) {
682 fpu.ftwx |= (!env->fptags[i]) << i;
683 }
684 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
685 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
686 fpu.mxcsr = env->mxcsr;
687
688 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
689 }
690
691 #ifdef KVM_CAP_XSAVE
692 #define XSAVE_CWD_RIP 2
693 #define XSAVE_CWD_RDP 4
694 #define XSAVE_MXCSR 6
695 #define XSAVE_ST_SPACE 8
696 #define XSAVE_XMM_SPACE 40
697 #define XSAVE_XSTATE_BV 128
698 #define XSAVE_YMMH_SPACE 144
699 #endif
700
701 static int kvm_put_xsave(CPUState *env)
702 {
703 #ifdef KVM_CAP_XSAVE
704 int i, r;
705 struct kvm_xsave* xsave;
706 uint16_t cwd, swd, twd, fop;
707
708 if (!kvm_has_xsave()) {
709 return kvm_put_fpu(env);
710 }
711
712 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
713 memset(xsave, 0, sizeof(struct kvm_xsave));
714 cwd = swd = twd = fop = 0;
715 swd = env->fpus & ~(7 << 11);
716 swd |= (env->fpstt & 7) << 11;
717 cwd = env->fpuc;
718 for (i = 0; i < 8; ++i) {
719 twd |= (!env->fptags[i]) << i;
720 }
721 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
722 xsave->region[1] = (uint32_t)(fop << 16) + twd;
723 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
724 sizeof env->fpregs);
725 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
726 sizeof env->xmm_regs);
727 xsave->region[XSAVE_MXCSR] = env->mxcsr;
728 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
729 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
730 sizeof env->ymmh_regs);
731 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
732 qemu_free(xsave);
733 return r;
734 #else
735 return kvm_put_fpu(env);
736 #endif
737 }
738
739 static int kvm_put_xcrs(CPUState *env)
740 {
741 #ifdef KVM_CAP_XCRS
742 struct kvm_xcrs xcrs;
743
744 if (!kvm_has_xcrs()) {
745 return 0;
746 }
747
748 xcrs.nr_xcrs = 1;
749 xcrs.flags = 0;
750 xcrs.xcrs[0].xcr = 0;
751 xcrs.xcrs[0].value = env->xcr0;
752 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
753 #else
754 return 0;
755 #endif
756 }
757
758 static int kvm_put_sregs(CPUState *env)
759 {
760 struct kvm_sregs sregs;
761
762 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
763 if (env->interrupt_injected >= 0) {
764 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
765 (uint64_t)1 << (env->interrupt_injected % 64);
766 }
767
768 if ((env->eflags & VM_MASK)) {
769 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
770 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
771 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
772 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
773 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
774 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
775 } else {
776 set_seg(&sregs.cs, &env->segs[R_CS]);
777 set_seg(&sregs.ds, &env->segs[R_DS]);
778 set_seg(&sregs.es, &env->segs[R_ES]);
779 set_seg(&sregs.fs, &env->segs[R_FS]);
780 set_seg(&sregs.gs, &env->segs[R_GS]);
781 set_seg(&sregs.ss, &env->segs[R_SS]);
782 }
783
784 set_seg(&sregs.tr, &env->tr);
785 set_seg(&sregs.ldt, &env->ldt);
786
787 sregs.idt.limit = env->idt.limit;
788 sregs.idt.base = env->idt.base;
789 sregs.gdt.limit = env->gdt.limit;
790 sregs.gdt.base = env->gdt.base;
791
792 sregs.cr0 = env->cr[0];
793 sregs.cr2 = env->cr[2];
794 sregs.cr3 = env->cr[3];
795 sregs.cr4 = env->cr[4];
796
797 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
798 sregs.apic_base = cpu_get_apic_base(env->apic_state);
799
800 sregs.efer = env->efer;
801
802 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
803 }
804
805 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
806 uint32_t index, uint64_t value)
807 {
808 entry->index = index;
809 entry->data = value;
810 }
811
812 static int kvm_put_msrs(CPUState *env, int level)
813 {
814 struct {
815 struct kvm_msrs info;
816 struct kvm_msr_entry entries[100];
817 } msr_data;
818 struct kvm_msr_entry *msrs = msr_data.entries;
819 int n = 0;
820
821 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
822 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
823 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
824 if (has_msr_star) {
825 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
826 }
827 if (has_msr_hsave_pa) {
828 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
829 }
830 #ifdef TARGET_X86_64
831 if (lm_capable_kernel) {
832 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
833 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
834 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
835 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
836 }
837 #endif
838 if (level == KVM_PUT_FULL_STATE) {
839 /*
840 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
841 * writeback. Until this is fixed, we only write the offset to SMP
842 * guests after migration, desynchronizing the VCPUs, but avoiding
843 * huge jump-backs that would occur without any writeback at all.
844 */
845 if (smp_cpus == 1 || env->tsc != 0) {
846 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
847 }
848 }
849 /*
850 * The following paravirtual MSRs have side effects on the guest or are
851 * too heavy for normal writeback. Limit them to reset or full state
852 * updates.
853 */
854 if (level >= KVM_PUT_RESET_STATE) {
855 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
856 env->system_time_msr);
857 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
858 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
859 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN, env->async_pf_en_msr);
860 #endif
861 }
862 #ifdef KVM_CAP_MCE
863 if (env->mcg_cap) {
864 int i;
865
866 if (level == KVM_PUT_RESET_STATE) {
867 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
868 } else if (level == KVM_PUT_FULL_STATE) {
869 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
870 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
871 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
872 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
873 }
874 }
875 }
876 #endif
877
878 msr_data.info.nmsrs = n;
879
880 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
881
882 }
883
884
885 static int kvm_get_fpu(CPUState *env)
886 {
887 struct kvm_fpu fpu;
888 int i, ret;
889
890 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
891 if (ret < 0) {
892 return ret;
893 }
894
895 env->fpstt = (fpu.fsw >> 11) & 7;
896 env->fpus = fpu.fsw;
897 env->fpuc = fpu.fcw;
898 for (i = 0; i < 8; ++i) {
899 env->fptags[i] = !((fpu.ftwx >> i) & 1);
900 }
901 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
902 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
903 env->mxcsr = fpu.mxcsr;
904
905 return 0;
906 }
907
908 static int kvm_get_xsave(CPUState *env)
909 {
910 #ifdef KVM_CAP_XSAVE
911 struct kvm_xsave* xsave;
912 int ret, i;
913 uint16_t cwd, swd, twd, fop;
914
915 if (!kvm_has_xsave()) {
916 return kvm_get_fpu(env);
917 }
918
919 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
920 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
921 if (ret < 0) {
922 qemu_free(xsave);
923 return ret;
924 }
925
926 cwd = (uint16_t)xsave->region[0];
927 swd = (uint16_t)(xsave->region[0] >> 16);
928 twd = (uint16_t)xsave->region[1];
929 fop = (uint16_t)(xsave->region[1] >> 16);
930 env->fpstt = (swd >> 11) & 7;
931 env->fpus = swd;
932 env->fpuc = cwd;
933 for (i = 0; i < 8; ++i) {
934 env->fptags[i] = !((twd >> i) & 1);
935 }
936 env->mxcsr = xsave->region[XSAVE_MXCSR];
937 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
938 sizeof env->fpregs);
939 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
940 sizeof env->xmm_regs);
941 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
942 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
943 sizeof env->ymmh_regs);
944 qemu_free(xsave);
945 return 0;
946 #else
947 return kvm_get_fpu(env);
948 #endif
949 }
950
951 static int kvm_get_xcrs(CPUState *env)
952 {
953 #ifdef KVM_CAP_XCRS
954 int i, ret;
955 struct kvm_xcrs xcrs;
956
957 if (!kvm_has_xcrs()) {
958 return 0;
959 }
960
961 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
962 if (ret < 0) {
963 return ret;
964 }
965
966 for (i = 0; i < xcrs.nr_xcrs; i++) {
967 /* Only support xcr0 now */
968 if (xcrs.xcrs[0].xcr == 0) {
969 env->xcr0 = xcrs.xcrs[0].value;
970 break;
971 }
972 }
973 return 0;
974 #else
975 return 0;
976 #endif
977 }
978
979 static int kvm_get_sregs(CPUState *env)
980 {
981 struct kvm_sregs sregs;
982 uint32_t hflags;
983 int bit, i, ret;
984
985 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
986 if (ret < 0) {
987 return ret;
988 }
989
990 /* There can only be one pending IRQ set in the bitmap at a time, so try
991 to find it and save its number instead (-1 for none). */
992 env->interrupt_injected = -1;
993 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
994 if (sregs.interrupt_bitmap[i]) {
995 bit = ctz64(sregs.interrupt_bitmap[i]);
996 env->interrupt_injected = i * 64 + bit;
997 break;
998 }
999 }
1000
1001 get_seg(&env->segs[R_CS], &sregs.cs);
1002 get_seg(&env->segs[R_DS], &sregs.ds);
1003 get_seg(&env->segs[R_ES], &sregs.es);
1004 get_seg(&env->segs[R_FS], &sregs.fs);
1005 get_seg(&env->segs[R_GS], &sregs.gs);
1006 get_seg(&env->segs[R_SS], &sregs.ss);
1007
1008 get_seg(&env->tr, &sregs.tr);
1009 get_seg(&env->ldt, &sregs.ldt);
1010
1011 env->idt.limit = sregs.idt.limit;
1012 env->idt.base = sregs.idt.base;
1013 env->gdt.limit = sregs.gdt.limit;
1014 env->gdt.base = sregs.gdt.base;
1015
1016 env->cr[0] = sregs.cr0;
1017 env->cr[2] = sregs.cr2;
1018 env->cr[3] = sregs.cr3;
1019 env->cr[4] = sregs.cr4;
1020
1021 cpu_set_apic_base(env->apic_state, sregs.apic_base);
1022
1023 env->efer = sregs.efer;
1024 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
1025
1026 #define HFLAG_COPY_MASK \
1027 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1028 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1029 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1030 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1031
1032 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1033 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1034 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1035 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1036 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1037 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1038 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1039
1040 if (env->efer & MSR_EFER_LMA) {
1041 hflags |= HF_LMA_MASK;
1042 }
1043
1044 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1045 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1046 } else {
1047 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1048 (DESC_B_SHIFT - HF_CS32_SHIFT);
1049 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1050 (DESC_B_SHIFT - HF_SS32_SHIFT);
1051 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1052 !(hflags & HF_CS32_MASK)) {
1053 hflags |= HF_ADDSEG_MASK;
1054 } else {
1055 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1056 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1057 }
1058 }
1059 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1060
1061 return 0;
1062 }
1063
1064 static int kvm_get_msrs(CPUState *env)
1065 {
1066 struct {
1067 struct kvm_msrs info;
1068 struct kvm_msr_entry entries[100];
1069 } msr_data;
1070 struct kvm_msr_entry *msrs = msr_data.entries;
1071 int ret, i, n;
1072
1073 n = 0;
1074 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1075 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1076 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1077 if (has_msr_star) {
1078 msrs[n++].index = MSR_STAR;
1079 }
1080 if (has_msr_hsave_pa) {
1081 msrs[n++].index = MSR_VM_HSAVE_PA;
1082 }
1083 msrs[n++].index = MSR_IA32_TSC;
1084 #ifdef TARGET_X86_64
1085 if (lm_capable_kernel) {
1086 msrs[n++].index = MSR_CSTAR;
1087 msrs[n++].index = MSR_KERNELGSBASE;
1088 msrs[n++].index = MSR_FMASK;
1089 msrs[n++].index = MSR_LSTAR;
1090 }
1091 #endif
1092 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1093 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1094 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1095 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1096 #endif
1097
1098 #ifdef KVM_CAP_MCE
1099 if (env->mcg_cap) {
1100 msrs[n++].index = MSR_MCG_STATUS;
1101 msrs[n++].index = MSR_MCG_CTL;
1102 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1103 msrs[n++].index = MSR_MC0_CTL + i;
1104 }
1105 }
1106 #endif
1107
1108 msr_data.info.nmsrs = n;
1109 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1110 if (ret < 0) {
1111 return ret;
1112 }
1113
1114 for (i = 0; i < ret; i++) {
1115 switch (msrs[i].index) {
1116 case MSR_IA32_SYSENTER_CS:
1117 env->sysenter_cs = msrs[i].data;
1118 break;
1119 case MSR_IA32_SYSENTER_ESP:
1120 env->sysenter_esp = msrs[i].data;
1121 break;
1122 case MSR_IA32_SYSENTER_EIP:
1123 env->sysenter_eip = msrs[i].data;
1124 break;
1125 case MSR_STAR:
1126 env->star = msrs[i].data;
1127 break;
1128 #ifdef TARGET_X86_64
1129 case MSR_CSTAR:
1130 env->cstar = msrs[i].data;
1131 break;
1132 case MSR_KERNELGSBASE:
1133 env->kernelgsbase = msrs[i].data;
1134 break;
1135 case MSR_FMASK:
1136 env->fmask = msrs[i].data;
1137 break;
1138 case MSR_LSTAR:
1139 env->lstar = msrs[i].data;
1140 break;
1141 #endif
1142 case MSR_IA32_TSC:
1143 env->tsc = msrs[i].data;
1144 break;
1145 case MSR_VM_HSAVE_PA:
1146 env->vm_hsave = msrs[i].data;
1147 break;
1148 case MSR_KVM_SYSTEM_TIME:
1149 env->system_time_msr = msrs[i].data;
1150 break;
1151 case MSR_KVM_WALL_CLOCK:
1152 env->wall_clock_msr = msrs[i].data;
1153 break;
1154 #ifdef KVM_CAP_MCE
1155 case MSR_MCG_STATUS:
1156 env->mcg_status = msrs[i].data;
1157 break;
1158 case MSR_MCG_CTL:
1159 env->mcg_ctl = msrs[i].data;
1160 break;
1161 #endif
1162 default:
1163 #ifdef KVM_CAP_MCE
1164 if (msrs[i].index >= MSR_MC0_CTL &&
1165 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1166 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1167 }
1168 #endif
1169 break;
1170 #if defined(CONFIG_KVM_PARA) && defined(KVM_CAP_ASYNC_PF)
1171 case MSR_KVM_ASYNC_PF_EN:
1172 env->async_pf_en_msr = msrs[i].data;
1173 break;
1174 #endif
1175 }
1176 }
1177
1178 return 0;
1179 }
1180
1181 static int kvm_put_mp_state(CPUState *env)
1182 {
1183 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1184
1185 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1186 }
1187
1188 static int kvm_get_mp_state(CPUState *env)
1189 {
1190 struct kvm_mp_state mp_state;
1191 int ret;
1192
1193 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1194 if (ret < 0) {
1195 return ret;
1196 }
1197 env->mp_state = mp_state.mp_state;
1198 if (kvm_irqchip_in_kernel()) {
1199 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1200 }
1201 return 0;
1202 }
1203
1204 static int kvm_put_vcpu_events(CPUState *env, int level)
1205 {
1206 #ifdef KVM_CAP_VCPU_EVENTS
1207 struct kvm_vcpu_events events;
1208
1209 if (!kvm_has_vcpu_events()) {
1210 return 0;
1211 }
1212
1213 events.exception.injected = (env->exception_injected >= 0);
1214 events.exception.nr = env->exception_injected;
1215 events.exception.has_error_code = env->has_error_code;
1216 events.exception.error_code = env->error_code;
1217
1218 events.interrupt.injected = (env->interrupt_injected >= 0);
1219 events.interrupt.nr = env->interrupt_injected;
1220 events.interrupt.soft = env->soft_interrupt;
1221
1222 events.nmi.injected = env->nmi_injected;
1223 events.nmi.pending = env->nmi_pending;
1224 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1225
1226 events.sipi_vector = env->sipi_vector;
1227
1228 events.flags = 0;
1229 if (level >= KVM_PUT_RESET_STATE) {
1230 events.flags |=
1231 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1232 }
1233
1234 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1235 #else
1236 return 0;
1237 #endif
1238 }
1239
1240 static int kvm_get_vcpu_events(CPUState *env)
1241 {
1242 #ifdef KVM_CAP_VCPU_EVENTS
1243 struct kvm_vcpu_events events;
1244 int ret;
1245
1246 if (!kvm_has_vcpu_events()) {
1247 return 0;
1248 }
1249
1250 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1251 if (ret < 0) {
1252 return ret;
1253 }
1254 env->exception_injected =
1255 events.exception.injected ? events.exception.nr : -1;
1256 env->has_error_code = events.exception.has_error_code;
1257 env->error_code = events.exception.error_code;
1258
1259 env->interrupt_injected =
1260 events.interrupt.injected ? events.interrupt.nr : -1;
1261 env->soft_interrupt = events.interrupt.soft;
1262
1263 env->nmi_injected = events.nmi.injected;
1264 env->nmi_pending = events.nmi.pending;
1265 if (events.nmi.masked) {
1266 env->hflags2 |= HF2_NMI_MASK;
1267 } else {
1268 env->hflags2 &= ~HF2_NMI_MASK;
1269 }
1270
1271 env->sipi_vector = events.sipi_vector;
1272 #endif
1273
1274 return 0;
1275 }
1276
1277 static int kvm_guest_debug_workarounds(CPUState *env)
1278 {
1279 int ret = 0;
1280 #ifdef KVM_CAP_SET_GUEST_DEBUG
1281 unsigned long reinject_trap = 0;
1282
1283 if (!kvm_has_vcpu_events()) {
1284 if (env->exception_injected == 1) {
1285 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1286 } else if (env->exception_injected == 3) {
1287 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1288 }
1289 env->exception_injected = -1;
1290 }
1291
1292 /*
1293 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1294 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1295 * by updating the debug state once again if single-stepping is on.
1296 * Another reason to call kvm_update_guest_debug here is a pending debug
1297 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1298 * reinject them via SET_GUEST_DEBUG.
1299 */
1300 if (reinject_trap ||
1301 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1302 ret = kvm_update_guest_debug(env, reinject_trap);
1303 }
1304 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1305 return ret;
1306 }
1307
1308 static int kvm_put_debugregs(CPUState *env)
1309 {
1310 #ifdef KVM_CAP_DEBUGREGS
1311 struct kvm_debugregs dbgregs;
1312 int i;
1313
1314 if (!kvm_has_debugregs()) {
1315 return 0;
1316 }
1317
1318 for (i = 0; i < 4; i++) {
1319 dbgregs.db[i] = env->dr[i];
1320 }
1321 dbgregs.dr6 = env->dr[6];
1322 dbgregs.dr7 = env->dr[7];
1323 dbgregs.flags = 0;
1324
1325 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1326 #else
1327 return 0;
1328 #endif
1329 }
1330
1331 static int kvm_get_debugregs(CPUState *env)
1332 {
1333 #ifdef KVM_CAP_DEBUGREGS
1334 struct kvm_debugregs dbgregs;
1335 int i, ret;
1336
1337 if (!kvm_has_debugregs()) {
1338 return 0;
1339 }
1340
1341 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1342 if (ret < 0) {
1343 return ret;
1344 }
1345 for (i = 0; i < 4; i++) {
1346 env->dr[i] = dbgregs.db[i];
1347 }
1348 env->dr[4] = env->dr[6] = dbgregs.dr6;
1349 env->dr[5] = env->dr[7] = dbgregs.dr7;
1350 #endif
1351
1352 return 0;
1353 }
1354
1355 int kvm_arch_put_registers(CPUState *env, int level)
1356 {
1357 int ret;
1358
1359 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1360
1361 ret = kvm_getput_regs(env, 1);
1362 if (ret < 0) {
1363 return ret;
1364 }
1365 ret = kvm_put_xsave(env);
1366 if (ret < 0) {
1367 return ret;
1368 }
1369 ret = kvm_put_xcrs(env);
1370 if (ret < 0) {
1371 return ret;
1372 }
1373 ret = kvm_put_sregs(env);
1374 if (ret < 0) {
1375 return ret;
1376 }
1377 ret = kvm_put_msrs(env, level);
1378 if (ret < 0) {
1379 return ret;
1380 }
1381 if (level >= KVM_PUT_RESET_STATE) {
1382 ret = kvm_put_mp_state(env);
1383 if (ret < 0) {
1384 return ret;
1385 }
1386 }
1387 ret = kvm_put_vcpu_events(env, level);
1388 if (ret < 0) {
1389 return ret;
1390 }
1391 ret = kvm_put_debugregs(env);
1392 if (ret < 0) {
1393 return ret;
1394 }
1395 /* must be last */
1396 ret = kvm_guest_debug_workarounds(env);
1397 if (ret < 0) {
1398 return ret;
1399 }
1400 return 0;
1401 }
1402
1403 int kvm_arch_get_registers(CPUState *env)
1404 {
1405 int ret;
1406
1407 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1408
1409 ret = kvm_getput_regs(env, 0);
1410 if (ret < 0) {
1411 return ret;
1412 }
1413 ret = kvm_get_xsave(env);
1414 if (ret < 0) {
1415 return ret;
1416 }
1417 ret = kvm_get_xcrs(env);
1418 if (ret < 0) {
1419 return ret;
1420 }
1421 ret = kvm_get_sregs(env);
1422 if (ret < 0) {
1423 return ret;
1424 }
1425 ret = kvm_get_msrs(env);
1426 if (ret < 0) {
1427 return ret;
1428 }
1429 ret = kvm_get_mp_state(env);
1430 if (ret < 0) {
1431 return ret;
1432 }
1433 ret = kvm_get_vcpu_events(env);
1434 if (ret < 0) {
1435 return ret;
1436 }
1437 ret = kvm_get_debugregs(env);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 return 0;
1442 }
1443
1444 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1445 {
1446 /* Inject NMI */
1447 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1448 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1449 DPRINTF("injected NMI\n");
1450 kvm_vcpu_ioctl(env, KVM_NMI);
1451 }
1452
1453 /* Try to inject an interrupt if the guest can accept it */
1454 if (run->ready_for_interrupt_injection &&
1455 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1456 (env->eflags & IF_MASK)) {
1457 int irq;
1458
1459 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1460 irq = cpu_get_pic_interrupt(env);
1461 if (irq >= 0) {
1462 struct kvm_interrupt intr;
1463 intr.irq = irq;
1464 /* FIXME: errors */
1465 DPRINTF("injected interrupt %d\n", irq);
1466 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1467 }
1468 }
1469
1470 /* If we have an interrupt but the guest is not ready to receive an
1471 * interrupt, request an interrupt window exit. This will
1472 * cause a return to userspace as soon as the guest is ready to
1473 * receive interrupts. */
1474 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1475 run->request_interrupt_window = 1;
1476 } else {
1477 run->request_interrupt_window = 0;
1478 }
1479
1480 DPRINTF("setting tpr\n");
1481 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1482
1483 return 0;
1484 }
1485
1486 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1487 {
1488 if (run->if_flag) {
1489 env->eflags |= IF_MASK;
1490 } else {
1491 env->eflags &= ~IF_MASK;
1492 }
1493 cpu_set_apic_tpr(env->apic_state, run->cr8);
1494 cpu_set_apic_base(env->apic_state, run->apic_base);
1495
1496 return 0;
1497 }
1498
1499 int kvm_arch_process_irqchip_events(CPUState *env)
1500 {
1501 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1502 kvm_cpu_synchronize_state(env);
1503 do_cpu_init(env);
1504 env->exception_index = EXCP_HALTED;
1505 }
1506
1507 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1508 kvm_cpu_synchronize_state(env);
1509 do_cpu_sipi(env);
1510 }
1511
1512 return env->halted;
1513 }
1514
1515 static int kvm_handle_halt(CPUState *env)
1516 {
1517 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1518 (env->eflags & IF_MASK)) &&
1519 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1520 env->halted = 1;
1521 env->exception_index = EXCP_HLT;
1522 return 0;
1523 }
1524
1525 return 1;
1526 }
1527
1528 static bool host_supports_vmx(void)
1529 {
1530 uint32_t ecx, unused;
1531
1532 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1533 return ecx & CPUID_EXT_VMX;
1534 }
1535
1536 #define VMX_INVALID_GUEST_STATE 0x80000021
1537
1538 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1539 {
1540 uint64_t code;
1541 int ret = 0;
1542
1543 switch (run->exit_reason) {
1544 case KVM_EXIT_HLT:
1545 DPRINTF("handle_hlt\n");
1546 ret = kvm_handle_halt(env);
1547 break;
1548 case KVM_EXIT_SET_TPR:
1549 ret = 1;
1550 break;
1551 case KVM_EXIT_FAIL_ENTRY:
1552 code = run->fail_entry.hardware_entry_failure_reason;
1553 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1554 code);
1555 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1556 fprintf(stderr,
1557 "\nIf you're runnning a guest on an Intel machine without "
1558 "unrestricted mode\n"
1559 "support, the failure can be most likely due to the guest "
1560 "entering an invalid\n"
1561 "state for Intel VT. For example, the guest maybe running "
1562 "in big real mode\n"
1563 "which is not supported on less recent Intel processors."
1564 "\n\n");
1565 }
1566 ret = -1;
1567 break;
1568 case KVM_EXIT_EXCEPTION:
1569 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
1570 run->ex.exception, run->ex.error_code);
1571 ret = -1;
1572 break;
1573 default:
1574 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
1575 ret = -1;
1576 break;
1577 }
1578
1579 return ret;
1580 }
1581
1582 #ifdef KVM_CAP_SET_GUEST_DEBUG
1583 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1584 {
1585 static const uint8_t int3 = 0xcc;
1586
1587 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1588 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1589 return -EINVAL;
1590 }
1591 return 0;
1592 }
1593
1594 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1595 {
1596 uint8_t int3;
1597
1598 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1599 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1600 return -EINVAL;
1601 }
1602 return 0;
1603 }
1604
1605 static struct {
1606 target_ulong addr;
1607 int len;
1608 int type;
1609 } hw_breakpoint[4];
1610
1611 static int nb_hw_breakpoint;
1612
1613 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1614 {
1615 int n;
1616
1617 for (n = 0; n < nb_hw_breakpoint; n++) {
1618 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1619 (hw_breakpoint[n].len == len || len == -1)) {
1620 return n;
1621 }
1622 }
1623 return -1;
1624 }
1625
1626 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1627 target_ulong len, int type)
1628 {
1629 switch (type) {
1630 case GDB_BREAKPOINT_HW:
1631 len = 1;
1632 break;
1633 case GDB_WATCHPOINT_WRITE:
1634 case GDB_WATCHPOINT_ACCESS:
1635 switch (len) {
1636 case 1:
1637 break;
1638 case 2:
1639 case 4:
1640 case 8:
1641 if (addr & (len - 1)) {
1642 return -EINVAL;
1643 }
1644 break;
1645 default:
1646 return -EINVAL;
1647 }
1648 break;
1649 default:
1650 return -ENOSYS;
1651 }
1652
1653 if (nb_hw_breakpoint == 4) {
1654 return -ENOBUFS;
1655 }
1656 if (find_hw_breakpoint(addr, len, type) >= 0) {
1657 return -EEXIST;
1658 }
1659 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1660 hw_breakpoint[nb_hw_breakpoint].len = len;
1661 hw_breakpoint[nb_hw_breakpoint].type = type;
1662 nb_hw_breakpoint++;
1663
1664 return 0;
1665 }
1666
1667 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1668 target_ulong len, int type)
1669 {
1670 int n;
1671
1672 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1673 if (n < 0) {
1674 return -ENOENT;
1675 }
1676 nb_hw_breakpoint--;
1677 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1678
1679 return 0;
1680 }
1681
1682 void kvm_arch_remove_all_hw_breakpoints(void)
1683 {
1684 nb_hw_breakpoint = 0;
1685 }
1686
1687 static CPUWatchpoint hw_watchpoint;
1688
1689 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1690 {
1691 int handle = 0;
1692 int n;
1693
1694 if (arch_info->exception == 1) {
1695 if (arch_info->dr6 & (1 << 14)) {
1696 if (cpu_single_env->singlestep_enabled) {
1697 handle = 1;
1698 }
1699 } else {
1700 for (n = 0; n < 4; n++) {
1701 if (arch_info->dr6 & (1 << n)) {
1702 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1703 case 0x0:
1704 handle = 1;
1705 break;
1706 case 0x1:
1707 handle = 1;
1708 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1709 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1710 hw_watchpoint.flags = BP_MEM_WRITE;
1711 break;
1712 case 0x3:
1713 handle = 1;
1714 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1715 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1716 hw_watchpoint.flags = BP_MEM_ACCESS;
1717 break;
1718 }
1719 }
1720 }
1721 }
1722 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1723 handle = 1;
1724 }
1725 if (!handle) {
1726 cpu_synchronize_state(cpu_single_env);
1727 assert(cpu_single_env->exception_injected == -1);
1728
1729 cpu_single_env->exception_injected = arch_info->exception;
1730 cpu_single_env->has_error_code = 0;
1731 }
1732
1733 return handle;
1734 }
1735
1736 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1737 {
1738 const uint8_t type_code[] = {
1739 [GDB_BREAKPOINT_HW] = 0x0,
1740 [GDB_WATCHPOINT_WRITE] = 0x1,
1741 [GDB_WATCHPOINT_ACCESS] = 0x3
1742 };
1743 const uint8_t len_code[] = {
1744 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1745 };
1746 int n;
1747
1748 if (kvm_sw_breakpoints_active(env)) {
1749 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1750 }
1751 if (nb_hw_breakpoint > 0) {
1752 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1753 dbg->arch.debugreg[7] = 0x0600;
1754 for (n = 0; n < nb_hw_breakpoint; n++) {
1755 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1756 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1757 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1758 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1759 }
1760 }
1761 }
1762 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1763
1764 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1765 {
1766 return !(env->cr[0] & CR0_PE_MASK) ||
1767 ((env->segs[R_CS].selector & 3) != 3);
1768 }
1769
1770 static void hardware_memory_error(void)
1771 {
1772 fprintf(stderr, "Hardware memory error!\n");
1773 exit(1);
1774 }
1775
1776 #ifdef KVM_CAP_MCE
1777 static void kvm_mce_broadcast_rest(CPUState *env)
1778 {
1779 struct kvm_x86_mce mce = {
1780 .bank = 1,
1781 .status = MCI_STATUS_VAL | MCI_STATUS_UC,
1782 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1783 .addr = 0,
1784 .misc = 0,
1785 };
1786 CPUState *cenv;
1787
1788 /* Broadcast MCA signal for processor version 06H_EH and above */
1789 if (cpu_x86_support_mca_broadcast(env)) {
1790 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1791 if (cenv == env) {
1792 continue;
1793 }
1794 kvm_inject_x86_mce_on(cenv, &mce, ABORT_ON_ERROR);
1795 }
1796 }
1797 }
1798
1799 static void kvm_mce_inj_srar_dataload(CPUState *env, target_phys_addr_t paddr)
1800 {
1801 struct kvm_x86_mce mce = {
1802 .bank = 9,
1803 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1804 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1805 | MCI_STATUS_AR | 0x134,
1806 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV,
1807 .addr = paddr,
1808 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1809 };
1810 int r;
1811
1812 r = kvm_set_mce(env, &mce);
1813 if (r < 0) {
1814 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1815 abort();
1816 }
1817 kvm_mce_broadcast_rest(env);
1818 }
1819
1820 static void kvm_mce_inj_srao_memscrub(CPUState *env, target_phys_addr_t paddr)
1821 {
1822 struct kvm_x86_mce mce = {
1823 .bank = 9,
1824 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1825 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1826 | 0xc0,
1827 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1828 .addr = paddr,
1829 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1830 };
1831 int r;
1832
1833 r = kvm_set_mce(env, &mce);
1834 if (r < 0) {
1835 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1836 abort();
1837 }
1838 kvm_mce_broadcast_rest(env);
1839 }
1840
1841 static void kvm_mce_inj_srao_memscrub2(CPUState *env, target_phys_addr_t paddr)
1842 {
1843 struct kvm_x86_mce mce = {
1844 .bank = 9,
1845 .status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1846 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1847 | 0xc0,
1848 .mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV,
1849 .addr = paddr,
1850 .misc = (MCM_ADDR_PHYS << 6) | 0xc,
1851 };
1852
1853 kvm_inject_x86_mce_on(env, &mce, ABORT_ON_ERROR);
1854 kvm_mce_broadcast_rest(env);
1855 }
1856
1857 #endif
1858
1859 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1860 {
1861 #if defined(KVM_CAP_MCE)
1862 void *vaddr;
1863 ram_addr_t ram_addr;
1864 target_phys_addr_t paddr;
1865
1866 if ((env->mcg_cap & MCG_SER_P) && addr
1867 && (code == BUS_MCEERR_AR
1868 || code == BUS_MCEERR_AO)) {
1869 vaddr = (void *)addr;
1870 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1871 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1872 fprintf(stderr, "Hardware memory error for memory used by "
1873 "QEMU itself instead of guest system!\n");
1874 /* Hope we are lucky for AO MCE */
1875 if (code == BUS_MCEERR_AO) {
1876 return 0;
1877 } else {
1878 hardware_memory_error();
1879 }
1880 }
1881
1882 if (code == BUS_MCEERR_AR) {
1883 /* Fake an Intel architectural Data Load SRAR UCR */
1884 kvm_mce_inj_srar_dataload(env, paddr);
1885 } else {
1886 /*
1887 * If there is an MCE excpetion being processed, ignore
1888 * this SRAO MCE
1889 */
1890 if (!kvm_mce_in_progress(env)) {
1891 /* Fake an Intel architectural Memory scrubbing UCR */
1892 kvm_mce_inj_srao_memscrub(env, paddr);
1893 }
1894 }
1895 } else
1896 #endif
1897 {
1898 if (code == BUS_MCEERR_AO) {
1899 return 0;
1900 } else if (code == BUS_MCEERR_AR) {
1901 hardware_memory_error();
1902 } else {
1903 return 1;
1904 }
1905 }
1906 return 0;
1907 }
1908
1909 int kvm_on_sigbus(int code, void *addr)
1910 {
1911 #if defined(KVM_CAP_MCE)
1912 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1913 void *vaddr;
1914 ram_addr_t ram_addr;
1915 target_phys_addr_t paddr;
1916
1917 /* Hope we are lucky for AO MCE */
1918 vaddr = addr;
1919 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1920 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1921 fprintf(stderr, "Hardware memory error for memory used by "
1922 "QEMU itself instead of guest system!: %p\n", addr);
1923 return 0;
1924 }
1925 kvm_mce_inj_srao_memscrub2(first_cpu, paddr);
1926 } else
1927 #endif
1928 {
1929 if (code == BUS_MCEERR_AO) {
1930 return 0;
1931 } else if (code == BUS_MCEERR_AR) {
1932 hardware_memory_error();
1933 } else {
1934 return 1;
1935 }
1936 }
1937 return 0;
1938 }