]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'kwolf/for-anthony' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34
35 //#define DEBUG_KVM
36
37 #ifdef DEBUG_KVM
38 #define DPRINTF(fmt, ...) \
39 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
40 #else
41 #define DPRINTF(fmt, ...) \
42 do { } while (0)
43 #endif
44
45 #define MSR_KVM_WALL_CLOCK 0x11
46 #define MSR_KVM_SYSTEM_TIME 0x12
47
48 #ifndef BUS_MCEERR_AR
49 #define BUS_MCEERR_AR 4
50 #endif
51 #ifndef BUS_MCEERR_AO
52 #define BUS_MCEERR_AO 5
53 #endif
54
55 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
56 KVM_CAP_INFO(SET_TSS_ADDR),
57 KVM_CAP_INFO(EXT_CPUID),
58 KVM_CAP_INFO(MP_STATE),
59 KVM_CAP_LAST_INFO
60 };
61
62 static bool has_msr_star;
63 static bool has_msr_hsave_pa;
64 static bool has_msr_tsc_deadline;
65 static bool has_msr_async_pf_en;
66 static bool has_msr_pv_eoi_en;
67 static bool has_msr_misc_enable;
68 static int lm_capable_kernel;
69
70 bool kvm_allows_irq0_override(void)
71 {
72 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
73 }
74
75 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
76 {
77 struct kvm_cpuid2 *cpuid;
78 int r, size;
79
80 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
81 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
82 cpuid->nent = max;
83 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
84 if (r == 0 && cpuid->nent >= max) {
85 r = -E2BIG;
86 }
87 if (r < 0) {
88 if (r == -E2BIG) {
89 g_free(cpuid);
90 return NULL;
91 } else {
92 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
93 strerror(-r));
94 exit(1);
95 }
96 }
97 return cpuid;
98 }
99
100 struct kvm_para_features {
101 int cap;
102 int feature;
103 } para_features[] = {
104 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
105 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
106 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
107 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
108 { -1, -1 }
109 };
110
111 static int get_para_features(KVMState *s)
112 {
113 int i, features = 0;
114
115 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
116 if (kvm_check_extension(s, para_features[i].cap)) {
117 features |= (1 << para_features[i].feature);
118 }
119 }
120
121 return features;
122 }
123
124
125 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
126 uint32_t index, int reg)
127 {
128 struct kvm_cpuid2 *cpuid;
129 int i, max;
130 uint32_t ret = 0;
131 uint32_t cpuid_1_edx;
132 int has_kvm_features = 0;
133
134 max = 1;
135 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
136 max *= 2;
137 }
138
139 for (i = 0; i < cpuid->nent; ++i) {
140 if (cpuid->entries[i].function == function &&
141 cpuid->entries[i].index == index) {
142 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
143 has_kvm_features = 1;
144 }
145 switch (reg) {
146 case R_EAX:
147 ret = cpuid->entries[i].eax;
148 break;
149 case R_EBX:
150 ret = cpuid->entries[i].ebx;
151 break;
152 case R_ECX:
153 ret = cpuid->entries[i].ecx;
154 break;
155 case R_EDX:
156 ret = cpuid->entries[i].edx;
157 switch (function) {
158 case 1:
159 /* KVM before 2.6.30 misreports the following features */
160 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
161 break;
162 case 0x80000001:
163 /* On Intel, kvm returns cpuid according to the Intel spec,
164 * so add missing bits according to the AMD spec:
165 */
166 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
167 ret |= cpuid_1_edx & 0x183f7ff;
168 break;
169 }
170 break;
171 }
172 }
173 }
174
175 g_free(cpuid);
176
177 /* fallback for older kernels */
178 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
179 ret = get_para_features(s);
180 }
181
182 return ret;
183 }
184
185 typedef struct HWPoisonPage {
186 ram_addr_t ram_addr;
187 QLIST_ENTRY(HWPoisonPage) list;
188 } HWPoisonPage;
189
190 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
191 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
192
193 static void kvm_unpoison_all(void *param)
194 {
195 HWPoisonPage *page, *next_page;
196
197 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
198 QLIST_REMOVE(page, list);
199 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
200 g_free(page);
201 }
202 }
203
204 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
205 {
206 HWPoisonPage *page;
207
208 QLIST_FOREACH(page, &hwpoison_page_list, list) {
209 if (page->ram_addr == ram_addr) {
210 return;
211 }
212 }
213 page = g_malloc(sizeof(HWPoisonPage));
214 page->ram_addr = ram_addr;
215 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
216 }
217
218 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
219 int *max_banks)
220 {
221 int r;
222
223 r = kvm_check_extension(s, KVM_CAP_MCE);
224 if (r > 0) {
225 *max_banks = r;
226 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
227 }
228 return -ENOSYS;
229 }
230
231 static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
232 {
233 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
234 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
235 uint64_t mcg_status = MCG_STATUS_MCIP;
236
237 if (code == BUS_MCEERR_AR) {
238 status |= MCI_STATUS_AR | 0x134;
239 mcg_status |= MCG_STATUS_EIPV;
240 } else {
241 status |= 0xc0;
242 mcg_status |= MCG_STATUS_RIPV;
243 }
244 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
245 (MCM_ADDR_PHYS << 6) | 0xc,
246 cpu_x86_support_mca_broadcast(env) ?
247 MCE_INJECT_BROADCAST : 0);
248 }
249
250 static void hardware_memory_error(void)
251 {
252 fprintf(stderr, "Hardware memory error!\n");
253 exit(1);
254 }
255
256 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
257 {
258 ram_addr_t ram_addr;
259 target_phys_addr_t paddr;
260
261 if ((env->mcg_cap & MCG_SER_P) && addr
262 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
263 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
264 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
265 fprintf(stderr, "Hardware memory error for memory used by "
266 "QEMU itself instead of guest system!\n");
267 /* Hope we are lucky for AO MCE */
268 if (code == BUS_MCEERR_AO) {
269 return 0;
270 } else {
271 hardware_memory_error();
272 }
273 }
274 kvm_hwpoison_page_add(ram_addr);
275 kvm_mce_inject(env, paddr, code);
276 } else {
277 if (code == BUS_MCEERR_AO) {
278 return 0;
279 } else if (code == BUS_MCEERR_AR) {
280 hardware_memory_error();
281 } else {
282 return 1;
283 }
284 }
285 return 0;
286 }
287
288 int kvm_arch_on_sigbus(int code, void *addr)
289 {
290 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
291 ram_addr_t ram_addr;
292 target_phys_addr_t paddr;
293
294 /* Hope we are lucky for AO MCE */
295 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
296 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
297 &paddr)) {
298 fprintf(stderr, "Hardware memory error for memory used by "
299 "QEMU itself instead of guest system!: %p\n", addr);
300 return 0;
301 }
302 kvm_hwpoison_page_add(ram_addr);
303 kvm_mce_inject(first_cpu, paddr, code);
304 } else {
305 if (code == BUS_MCEERR_AO) {
306 return 0;
307 } else if (code == BUS_MCEERR_AR) {
308 hardware_memory_error();
309 } else {
310 return 1;
311 }
312 }
313 return 0;
314 }
315
316 static int kvm_inject_mce_oldstyle(CPUX86State *env)
317 {
318 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
319 unsigned int bank, bank_num = env->mcg_cap & 0xff;
320 struct kvm_x86_mce mce;
321
322 env->exception_injected = -1;
323
324 /*
325 * There must be at least one bank in use if an MCE is pending.
326 * Find it and use its values for the event injection.
327 */
328 for (bank = 0; bank < bank_num; bank++) {
329 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
330 break;
331 }
332 }
333 assert(bank < bank_num);
334
335 mce.bank = bank;
336 mce.status = env->mce_banks[bank * 4 + 1];
337 mce.mcg_status = env->mcg_status;
338 mce.addr = env->mce_banks[bank * 4 + 2];
339 mce.misc = env->mce_banks[bank * 4 + 3];
340
341 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
342 }
343 return 0;
344 }
345
346 static void cpu_update_state(void *opaque, int running, RunState state)
347 {
348 CPUX86State *env = opaque;
349
350 if (running) {
351 env->tsc_valid = false;
352 }
353 }
354
355 int kvm_arch_init_vcpu(CPUX86State *env)
356 {
357 struct {
358 struct kvm_cpuid2 cpuid;
359 struct kvm_cpuid_entry2 entries[100];
360 } QEMU_PACKED cpuid_data;
361 KVMState *s = env->kvm_state;
362 uint32_t limit, i, j, cpuid_i;
363 uint32_t unused;
364 struct kvm_cpuid_entry2 *c;
365 uint32_t signature[3];
366 int r;
367
368 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
369
370 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
371 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
372 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
373 env->cpuid_ext_features |= i;
374 if (j && kvm_irqchip_in_kernel() &&
375 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
376 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
377 }
378
379 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
380 0, R_EDX);
381 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
382 0, R_ECX);
383 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
384 0, R_EDX);
385
386 cpuid_i = 0;
387
388 /* Paravirtualization CPUIDs */
389 c = &cpuid_data.entries[cpuid_i++];
390 memset(c, 0, sizeof(*c));
391 c->function = KVM_CPUID_SIGNATURE;
392 if (!hyperv_enabled()) {
393 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
394 c->eax = 0;
395 } else {
396 memcpy(signature, "Microsoft Hv", 12);
397 c->eax = HYPERV_CPUID_MIN;
398 }
399 c->ebx = signature[0];
400 c->ecx = signature[1];
401 c->edx = signature[2];
402
403 c = &cpuid_data.entries[cpuid_i++];
404 memset(c, 0, sizeof(*c));
405 c->function = KVM_CPUID_FEATURES;
406 c->eax = env->cpuid_kvm_features &
407 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
408
409 if (hyperv_enabled()) {
410 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
411 c->eax = signature[0];
412
413 c = &cpuid_data.entries[cpuid_i++];
414 memset(c, 0, sizeof(*c));
415 c->function = HYPERV_CPUID_VERSION;
416 c->eax = 0x00001bbc;
417 c->ebx = 0x00060001;
418
419 c = &cpuid_data.entries[cpuid_i++];
420 memset(c, 0, sizeof(*c));
421 c->function = HYPERV_CPUID_FEATURES;
422 if (hyperv_relaxed_timing_enabled()) {
423 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
424 }
425 if (hyperv_vapic_recommended()) {
426 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
427 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
428 }
429
430 c = &cpuid_data.entries[cpuid_i++];
431 memset(c, 0, sizeof(*c));
432 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
433 if (hyperv_relaxed_timing_enabled()) {
434 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
435 }
436 if (hyperv_vapic_recommended()) {
437 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
438 }
439 c->ebx = hyperv_get_spinlock_retries();
440
441 c = &cpuid_data.entries[cpuid_i++];
442 memset(c, 0, sizeof(*c));
443 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
444 c->eax = 0x40;
445 c->ebx = 0x40;
446
447 c = &cpuid_data.entries[cpuid_i++];
448 memset(c, 0, sizeof(*c));
449 c->function = KVM_CPUID_SIGNATURE_NEXT;
450 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
451 c->eax = 0;
452 c->ebx = signature[0];
453 c->ecx = signature[1];
454 c->edx = signature[2];
455 }
456
457 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
458
459 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
460
461 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
462
463 for (i = 0; i <= limit; i++) {
464 c = &cpuid_data.entries[cpuid_i++];
465
466 switch (i) {
467 case 2: {
468 /* Keep reading function 2 till all the input is received */
469 int times;
470
471 c->function = i;
472 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
473 KVM_CPUID_FLAG_STATE_READ_NEXT;
474 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
475 times = c->eax & 0xff;
476
477 for (j = 1; j < times; ++j) {
478 c = &cpuid_data.entries[cpuid_i++];
479 c->function = i;
480 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
481 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
482 }
483 break;
484 }
485 case 4:
486 case 0xb:
487 case 0xd:
488 for (j = 0; ; j++) {
489 if (i == 0xd && j == 64) {
490 break;
491 }
492 c->function = i;
493 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
494 c->index = j;
495 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
496
497 if (i == 4 && c->eax == 0) {
498 break;
499 }
500 if (i == 0xb && !(c->ecx & 0xff00)) {
501 break;
502 }
503 if (i == 0xd && c->eax == 0) {
504 continue;
505 }
506 c = &cpuid_data.entries[cpuid_i++];
507 }
508 break;
509 default:
510 c->function = i;
511 c->flags = 0;
512 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
513 break;
514 }
515 }
516 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
517
518 for (i = 0x80000000; i <= limit; i++) {
519 c = &cpuid_data.entries[cpuid_i++];
520
521 c->function = i;
522 c->flags = 0;
523 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
524 }
525
526 /* Call Centaur's CPUID instructions they are supported. */
527 if (env->cpuid_xlevel2 > 0) {
528 env->cpuid_ext4_features &=
529 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
530 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
531
532 for (i = 0xC0000000; i <= limit; i++) {
533 c = &cpuid_data.entries[cpuid_i++];
534
535 c->function = i;
536 c->flags = 0;
537 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
538 }
539 }
540
541 cpuid_data.cpuid.nent = cpuid_i;
542
543 if (((env->cpuid_version >> 8)&0xF) >= 6
544 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
545 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
546 uint64_t mcg_cap;
547 int banks;
548 int ret;
549
550 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
551 if (ret < 0) {
552 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
553 return ret;
554 }
555
556 if (banks > MCE_BANKS_DEF) {
557 banks = MCE_BANKS_DEF;
558 }
559 mcg_cap &= MCE_CAP_DEF;
560 mcg_cap |= banks;
561 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
562 if (ret < 0) {
563 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
564 return ret;
565 }
566
567 env->mcg_cap = mcg_cap;
568 }
569
570 qemu_add_vm_change_state_handler(cpu_update_state, env);
571
572 cpuid_data.cpuid.padding = 0;
573 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
574 if (r) {
575 return r;
576 }
577
578 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
579 if (r && env->tsc_khz) {
580 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
581 if (r < 0) {
582 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
583 return r;
584 }
585 }
586
587 if (kvm_has_xsave()) {
588 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
589 }
590
591 return 0;
592 }
593
594 void kvm_arch_reset_vcpu(CPUX86State *env)
595 {
596 X86CPU *cpu = x86_env_get_cpu(env);
597
598 env->exception_injected = -1;
599 env->interrupt_injected = -1;
600 env->xcr0 = 1;
601 if (kvm_irqchip_in_kernel()) {
602 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
603 KVM_MP_STATE_UNINITIALIZED;
604 } else {
605 env->mp_state = KVM_MP_STATE_RUNNABLE;
606 }
607 }
608
609 static int kvm_get_supported_msrs(KVMState *s)
610 {
611 static int kvm_supported_msrs;
612 int ret = 0;
613
614 /* first time */
615 if (kvm_supported_msrs == 0) {
616 struct kvm_msr_list msr_list, *kvm_msr_list;
617
618 kvm_supported_msrs = -1;
619
620 /* Obtain MSR list from KVM. These are the MSRs that we must
621 * save/restore */
622 msr_list.nmsrs = 0;
623 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
624 if (ret < 0 && ret != -E2BIG) {
625 return ret;
626 }
627 /* Old kernel modules had a bug and could write beyond the provided
628 memory. Allocate at least a safe amount of 1K. */
629 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
630 msr_list.nmsrs *
631 sizeof(msr_list.indices[0])));
632
633 kvm_msr_list->nmsrs = msr_list.nmsrs;
634 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
635 if (ret >= 0) {
636 int i;
637
638 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
639 if (kvm_msr_list->indices[i] == MSR_STAR) {
640 has_msr_star = true;
641 continue;
642 }
643 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
644 has_msr_hsave_pa = true;
645 continue;
646 }
647 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
648 has_msr_tsc_deadline = true;
649 continue;
650 }
651 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
652 has_msr_misc_enable = true;
653 continue;
654 }
655 }
656 }
657
658 g_free(kvm_msr_list);
659 }
660
661 return ret;
662 }
663
664 int kvm_arch_init(KVMState *s)
665 {
666 QemuOptsList *list = qemu_find_opts("machine");
667 uint64_t identity_base = 0xfffbc000;
668 uint64_t shadow_mem;
669 int ret;
670 struct utsname utsname;
671
672 ret = kvm_get_supported_msrs(s);
673 if (ret < 0) {
674 return ret;
675 }
676
677 uname(&utsname);
678 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
679
680 /*
681 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
682 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
683 * Since these must be part of guest physical memory, we need to allocate
684 * them, both by setting their start addresses in the kernel and by
685 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
686 *
687 * Older KVM versions may not support setting the identity map base. In
688 * that case we need to stick with the default, i.e. a 256K maximum BIOS
689 * size.
690 */
691 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
692 /* Allows up to 16M BIOSes. */
693 identity_base = 0xfeffc000;
694
695 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
696 if (ret < 0) {
697 return ret;
698 }
699 }
700
701 /* Set TSS base one page after EPT identity map. */
702 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
703 if (ret < 0) {
704 return ret;
705 }
706
707 /* Tell fw_cfg to notify the BIOS to reserve the range. */
708 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
709 if (ret < 0) {
710 fprintf(stderr, "e820_add_entry() table is full\n");
711 return ret;
712 }
713 qemu_register_reset(kvm_unpoison_all, NULL);
714
715 if (!QTAILQ_EMPTY(&list->head)) {
716 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
717 "kvm_shadow_mem", -1);
718 if (shadow_mem != -1) {
719 shadow_mem /= 4096;
720 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
721 if (ret < 0) {
722 return ret;
723 }
724 }
725 }
726 return 0;
727 }
728
729 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
730 {
731 lhs->selector = rhs->selector;
732 lhs->base = rhs->base;
733 lhs->limit = rhs->limit;
734 lhs->type = 3;
735 lhs->present = 1;
736 lhs->dpl = 3;
737 lhs->db = 0;
738 lhs->s = 1;
739 lhs->l = 0;
740 lhs->g = 0;
741 lhs->avl = 0;
742 lhs->unusable = 0;
743 }
744
745 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
746 {
747 unsigned flags = rhs->flags;
748 lhs->selector = rhs->selector;
749 lhs->base = rhs->base;
750 lhs->limit = rhs->limit;
751 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
752 lhs->present = (flags & DESC_P_MASK) != 0;
753 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
754 lhs->db = (flags >> DESC_B_SHIFT) & 1;
755 lhs->s = (flags & DESC_S_MASK) != 0;
756 lhs->l = (flags >> DESC_L_SHIFT) & 1;
757 lhs->g = (flags & DESC_G_MASK) != 0;
758 lhs->avl = (flags & DESC_AVL_MASK) != 0;
759 lhs->unusable = 0;
760 lhs->padding = 0;
761 }
762
763 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
764 {
765 lhs->selector = rhs->selector;
766 lhs->base = rhs->base;
767 lhs->limit = rhs->limit;
768 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
769 (rhs->present * DESC_P_MASK) |
770 (rhs->dpl << DESC_DPL_SHIFT) |
771 (rhs->db << DESC_B_SHIFT) |
772 (rhs->s * DESC_S_MASK) |
773 (rhs->l << DESC_L_SHIFT) |
774 (rhs->g * DESC_G_MASK) |
775 (rhs->avl * DESC_AVL_MASK);
776 }
777
778 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
779 {
780 if (set) {
781 *kvm_reg = *qemu_reg;
782 } else {
783 *qemu_reg = *kvm_reg;
784 }
785 }
786
787 static int kvm_getput_regs(CPUX86State *env, int set)
788 {
789 struct kvm_regs regs;
790 int ret = 0;
791
792 if (!set) {
793 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
794 if (ret < 0) {
795 return ret;
796 }
797 }
798
799 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
800 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
801 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
802 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
803 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
804 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
805 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
806 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
807 #ifdef TARGET_X86_64
808 kvm_getput_reg(&regs.r8, &env->regs[8], set);
809 kvm_getput_reg(&regs.r9, &env->regs[9], set);
810 kvm_getput_reg(&regs.r10, &env->regs[10], set);
811 kvm_getput_reg(&regs.r11, &env->regs[11], set);
812 kvm_getput_reg(&regs.r12, &env->regs[12], set);
813 kvm_getput_reg(&regs.r13, &env->regs[13], set);
814 kvm_getput_reg(&regs.r14, &env->regs[14], set);
815 kvm_getput_reg(&regs.r15, &env->regs[15], set);
816 #endif
817
818 kvm_getput_reg(&regs.rflags, &env->eflags, set);
819 kvm_getput_reg(&regs.rip, &env->eip, set);
820
821 if (set) {
822 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
823 }
824
825 return ret;
826 }
827
828 static int kvm_put_fpu(CPUX86State *env)
829 {
830 struct kvm_fpu fpu;
831 int i;
832
833 memset(&fpu, 0, sizeof fpu);
834 fpu.fsw = env->fpus & ~(7 << 11);
835 fpu.fsw |= (env->fpstt & 7) << 11;
836 fpu.fcw = env->fpuc;
837 fpu.last_opcode = env->fpop;
838 fpu.last_ip = env->fpip;
839 fpu.last_dp = env->fpdp;
840 for (i = 0; i < 8; ++i) {
841 fpu.ftwx |= (!env->fptags[i]) << i;
842 }
843 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
844 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
845 fpu.mxcsr = env->mxcsr;
846
847 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
848 }
849
850 #define XSAVE_FCW_FSW 0
851 #define XSAVE_FTW_FOP 1
852 #define XSAVE_CWD_RIP 2
853 #define XSAVE_CWD_RDP 4
854 #define XSAVE_MXCSR 6
855 #define XSAVE_ST_SPACE 8
856 #define XSAVE_XMM_SPACE 40
857 #define XSAVE_XSTATE_BV 128
858 #define XSAVE_YMMH_SPACE 144
859
860 static int kvm_put_xsave(CPUX86State *env)
861 {
862 struct kvm_xsave* xsave = env->kvm_xsave_buf;
863 uint16_t cwd, swd, twd;
864 int i, r;
865
866 if (!kvm_has_xsave()) {
867 return kvm_put_fpu(env);
868 }
869
870 memset(xsave, 0, sizeof(struct kvm_xsave));
871 twd = 0;
872 swd = env->fpus & ~(7 << 11);
873 swd |= (env->fpstt & 7) << 11;
874 cwd = env->fpuc;
875 for (i = 0; i < 8; ++i) {
876 twd |= (!env->fptags[i]) << i;
877 }
878 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
879 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
880 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
881 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
882 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
883 sizeof env->fpregs);
884 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
885 sizeof env->xmm_regs);
886 xsave->region[XSAVE_MXCSR] = env->mxcsr;
887 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
888 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
889 sizeof env->ymmh_regs);
890 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
891 return r;
892 }
893
894 static int kvm_put_xcrs(CPUX86State *env)
895 {
896 struct kvm_xcrs xcrs;
897
898 if (!kvm_has_xcrs()) {
899 return 0;
900 }
901
902 xcrs.nr_xcrs = 1;
903 xcrs.flags = 0;
904 xcrs.xcrs[0].xcr = 0;
905 xcrs.xcrs[0].value = env->xcr0;
906 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
907 }
908
909 static int kvm_put_sregs(CPUX86State *env)
910 {
911 struct kvm_sregs sregs;
912
913 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
914 if (env->interrupt_injected >= 0) {
915 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
916 (uint64_t)1 << (env->interrupt_injected % 64);
917 }
918
919 if ((env->eflags & VM_MASK)) {
920 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
921 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
922 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
923 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
924 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
925 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
926 } else {
927 set_seg(&sregs.cs, &env->segs[R_CS]);
928 set_seg(&sregs.ds, &env->segs[R_DS]);
929 set_seg(&sregs.es, &env->segs[R_ES]);
930 set_seg(&sregs.fs, &env->segs[R_FS]);
931 set_seg(&sregs.gs, &env->segs[R_GS]);
932 set_seg(&sregs.ss, &env->segs[R_SS]);
933 }
934
935 set_seg(&sregs.tr, &env->tr);
936 set_seg(&sregs.ldt, &env->ldt);
937
938 sregs.idt.limit = env->idt.limit;
939 sregs.idt.base = env->idt.base;
940 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
941 sregs.gdt.limit = env->gdt.limit;
942 sregs.gdt.base = env->gdt.base;
943 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
944
945 sregs.cr0 = env->cr[0];
946 sregs.cr2 = env->cr[2];
947 sregs.cr3 = env->cr[3];
948 sregs.cr4 = env->cr[4];
949
950 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
951 sregs.apic_base = cpu_get_apic_base(env->apic_state);
952
953 sregs.efer = env->efer;
954
955 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
956 }
957
958 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
959 uint32_t index, uint64_t value)
960 {
961 entry->index = index;
962 entry->data = value;
963 }
964
965 static int kvm_put_msrs(CPUX86State *env, int level)
966 {
967 struct {
968 struct kvm_msrs info;
969 struct kvm_msr_entry entries[100];
970 } msr_data;
971 struct kvm_msr_entry *msrs = msr_data.entries;
972 int n = 0;
973
974 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
975 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
977 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
978 if (has_msr_star) {
979 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
980 }
981 if (has_msr_hsave_pa) {
982 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
983 }
984 if (has_msr_tsc_deadline) {
985 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
986 }
987 if (has_msr_misc_enable) {
988 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
989 env->msr_ia32_misc_enable);
990 }
991 #ifdef TARGET_X86_64
992 if (lm_capable_kernel) {
993 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
994 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
995 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
996 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
997 }
998 #endif
999 if (level == KVM_PUT_FULL_STATE) {
1000 /*
1001 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1002 * writeback. Until this is fixed, we only write the offset to SMP
1003 * guests after migration, desynchronizing the VCPUs, but avoiding
1004 * huge jump-backs that would occur without any writeback at all.
1005 */
1006 if (smp_cpus == 1 || env->tsc != 0) {
1007 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1008 }
1009 }
1010 /*
1011 * The following paravirtual MSRs have side effects on the guest or are
1012 * too heavy for normal writeback. Limit them to reset or full state
1013 * updates.
1014 */
1015 if (level >= KVM_PUT_RESET_STATE) {
1016 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1017 env->system_time_msr);
1018 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1019 if (has_msr_async_pf_en) {
1020 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1021 env->async_pf_en_msr);
1022 }
1023 if (has_msr_pv_eoi_en) {
1024 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1025 env->pv_eoi_en_msr);
1026 }
1027 if (hyperv_hypercall_available()) {
1028 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1029 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1030 }
1031 if (hyperv_vapic_recommended()) {
1032 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1033 }
1034 }
1035 if (env->mcg_cap) {
1036 int i;
1037
1038 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1039 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1040 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1042 }
1043 }
1044
1045 msr_data.info.nmsrs = n;
1046
1047 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1048
1049 }
1050
1051
1052 static int kvm_get_fpu(CPUX86State *env)
1053 {
1054 struct kvm_fpu fpu;
1055 int i, ret;
1056
1057 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1058 if (ret < 0) {
1059 return ret;
1060 }
1061
1062 env->fpstt = (fpu.fsw >> 11) & 7;
1063 env->fpus = fpu.fsw;
1064 env->fpuc = fpu.fcw;
1065 env->fpop = fpu.last_opcode;
1066 env->fpip = fpu.last_ip;
1067 env->fpdp = fpu.last_dp;
1068 for (i = 0; i < 8; ++i) {
1069 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1070 }
1071 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1072 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1073 env->mxcsr = fpu.mxcsr;
1074
1075 return 0;
1076 }
1077
1078 static int kvm_get_xsave(CPUX86State *env)
1079 {
1080 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1081 int ret, i;
1082 uint16_t cwd, swd, twd;
1083
1084 if (!kvm_has_xsave()) {
1085 return kvm_get_fpu(env);
1086 }
1087
1088 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1089 if (ret < 0) {
1090 return ret;
1091 }
1092
1093 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1094 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1095 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1096 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1097 env->fpstt = (swd >> 11) & 7;
1098 env->fpus = swd;
1099 env->fpuc = cwd;
1100 for (i = 0; i < 8; ++i) {
1101 env->fptags[i] = !((twd >> i) & 1);
1102 }
1103 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1104 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1105 env->mxcsr = xsave->region[XSAVE_MXCSR];
1106 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1107 sizeof env->fpregs);
1108 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1109 sizeof env->xmm_regs);
1110 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1111 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1112 sizeof env->ymmh_regs);
1113 return 0;
1114 }
1115
1116 static int kvm_get_xcrs(CPUX86State *env)
1117 {
1118 int i, ret;
1119 struct kvm_xcrs xcrs;
1120
1121 if (!kvm_has_xcrs()) {
1122 return 0;
1123 }
1124
1125 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1126 if (ret < 0) {
1127 return ret;
1128 }
1129
1130 for (i = 0; i < xcrs.nr_xcrs; i++) {
1131 /* Only support xcr0 now */
1132 if (xcrs.xcrs[0].xcr == 0) {
1133 env->xcr0 = xcrs.xcrs[0].value;
1134 break;
1135 }
1136 }
1137 return 0;
1138 }
1139
1140 static int kvm_get_sregs(CPUX86State *env)
1141 {
1142 struct kvm_sregs sregs;
1143 uint32_t hflags;
1144 int bit, i, ret;
1145
1146 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1147 if (ret < 0) {
1148 return ret;
1149 }
1150
1151 /* There can only be one pending IRQ set in the bitmap at a time, so try
1152 to find it and save its number instead (-1 for none). */
1153 env->interrupt_injected = -1;
1154 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1155 if (sregs.interrupt_bitmap[i]) {
1156 bit = ctz64(sregs.interrupt_bitmap[i]);
1157 env->interrupt_injected = i * 64 + bit;
1158 break;
1159 }
1160 }
1161
1162 get_seg(&env->segs[R_CS], &sregs.cs);
1163 get_seg(&env->segs[R_DS], &sregs.ds);
1164 get_seg(&env->segs[R_ES], &sregs.es);
1165 get_seg(&env->segs[R_FS], &sregs.fs);
1166 get_seg(&env->segs[R_GS], &sregs.gs);
1167 get_seg(&env->segs[R_SS], &sregs.ss);
1168
1169 get_seg(&env->tr, &sregs.tr);
1170 get_seg(&env->ldt, &sregs.ldt);
1171
1172 env->idt.limit = sregs.idt.limit;
1173 env->idt.base = sregs.idt.base;
1174 env->gdt.limit = sregs.gdt.limit;
1175 env->gdt.base = sregs.gdt.base;
1176
1177 env->cr[0] = sregs.cr0;
1178 env->cr[2] = sregs.cr2;
1179 env->cr[3] = sregs.cr3;
1180 env->cr[4] = sregs.cr4;
1181
1182 env->efer = sregs.efer;
1183
1184 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1185
1186 #define HFLAG_COPY_MASK \
1187 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1188 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1189 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1190 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1191
1192 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1193 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1194 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1195 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1196 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1197 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1198 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1199
1200 if (env->efer & MSR_EFER_LMA) {
1201 hflags |= HF_LMA_MASK;
1202 }
1203
1204 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1205 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1206 } else {
1207 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1208 (DESC_B_SHIFT - HF_CS32_SHIFT);
1209 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1210 (DESC_B_SHIFT - HF_SS32_SHIFT);
1211 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1212 !(hflags & HF_CS32_MASK)) {
1213 hflags |= HF_ADDSEG_MASK;
1214 } else {
1215 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1216 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1217 }
1218 }
1219 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1220
1221 return 0;
1222 }
1223
1224 static int kvm_get_msrs(CPUX86State *env)
1225 {
1226 struct {
1227 struct kvm_msrs info;
1228 struct kvm_msr_entry entries[100];
1229 } msr_data;
1230 struct kvm_msr_entry *msrs = msr_data.entries;
1231 int ret, i, n;
1232
1233 n = 0;
1234 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1235 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1236 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1237 msrs[n++].index = MSR_PAT;
1238 if (has_msr_star) {
1239 msrs[n++].index = MSR_STAR;
1240 }
1241 if (has_msr_hsave_pa) {
1242 msrs[n++].index = MSR_VM_HSAVE_PA;
1243 }
1244 if (has_msr_tsc_deadline) {
1245 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1246 }
1247 if (has_msr_misc_enable) {
1248 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1249 }
1250
1251 if (!env->tsc_valid) {
1252 msrs[n++].index = MSR_IA32_TSC;
1253 env->tsc_valid = !runstate_is_running();
1254 }
1255
1256 #ifdef TARGET_X86_64
1257 if (lm_capable_kernel) {
1258 msrs[n++].index = MSR_CSTAR;
1259 msrs[n++].index = MSR_KERNELGSBASE;
1260 msrs[n++].index = MSR_FMASK;
1261 msrs[n++].index = MSR_LSTAR;
1262 }
1263 #endif
1264 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1265 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1266 if (has_msr_async_pf_en) {
1267 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1268 }
1269 if (has_msr_pv_eoi_en) {
1270 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1271 }
1272
1273 if (env->mcg_cap) {
1274 msrs[n++].index = MSR_MCG_STATUS;
1275 msrs[n++].index = MSR_MCG_CTL;
1276 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1277 msrs[n++].index = MSR_MC0_CTL + i;
1278 }
1279 }
1280
1281 msr_data.info.nmsrs = n;
1282 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1283 if (ret < 0) {
1284 return ret;
1285 }
1286
1287 for (i = 0; i < ret; i++) {
1288 switch (msrs[i].index) {
1289 case MSR_IA32_SYSENTER_CS:
1290 env->sysenter_cs = msrs[i].data;
1291 break;
1292 case MSR_IA32_SYSENTER_ESP:
1293 env->sysenter_esp = msrs[i].data;
1294 break;
1295 case MSR_IA32_SYSENTER_EIP:
1296 env->sysenter_eip = msrs[i].data;
1297 break;
1298 case MSR_PAT:
1299 env->pat = msrs[i].data;
1300 break;
1301 case MSR_STAR:
1302 env->star = msrs[i].data;
1303 break;
1304 #ifdef TARGET_X86_64
1305 case MSR_CSTAR:
1306 env->cstar = msrs[i].data;
1307 break;
1308 case MSR_KERNELGSBASE:
1309 env->kernelgsbase = msrs[i].data;
1310 break;
1311 case MSR_FMASK:
1312 env->fmask = msrs[i].data;
1313 break;
1314 case MSR_LSTAR:
1315 env->lstar = msrs[i].data;
1316 break;
1317 #endif
1318 case MSR_IA32_TSC:
1319 env->tsc = msrs[i].data;
1320 break;
1321 case MSR_IA32_TSCDEADLINE:
1322 env->tsc_deadline = msrs[i].data;
1323 break;
1324 case MSR_VM_HSAVE_PA:
1325 env->vm_hsave = msrs[i].data;
1326 break;
1327 case MSR_KVM_SYSTEM_TIME:
1328 env->system_time_msr = msrs[i].data;
1329 break;
1330 case MSR_KVM_WALL_CLOCK:
1331 env->wall_clock_msr = msrs[i].data;
1332 break;
1333 case MSR_MCG_STATUS:
1334 env->mcg_status = msrs[i].data;
1335 break;
1336 case MSR_MCG_CTL:
1337 env->mcg_ctl = msrs[i].data;
1338 break;
1339 case MSR_IA32_MISC_ENABLE:
1340 env->msr_ia32_misc_enable = msrs[i].data;
1341 break;
1342 default:
1343 if (msrs[i].index >= MSR_MC0_CTL &&
1344 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1345 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1346 }
1347 break;
1348 case MSR_KVM_ASYNC_PF_EN:
1349 env->async_pf_en_msr = msrs[i].data;
1350 break;
1351 case MSR_KVM_PV_EOI_EN:
1352 env->pv_eoi_en_msr = msrs[i].data;
1353 break;
1354 }
1355 }
1356
1357 return 0;
1358 }
1359
1360 static int kvm_put_mp_state(CPUX86State *env)
1361 {
1362 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1363
1364 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1365 }
1366
1367 static int kvm_get_mp_state(CPUX86State *env)
1368 {
1369 struct kvm_mp_state mp_state;
1370 int ret;
1371
1372 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1373 if (ret < 0) {
1374 return ret;
1375 }
1376 env->mp_state = mp_state.mp_state;
1377 if (kvm_irqchip_in_kernel()) {
1378 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1379 }
1380 return 0;
1381 }
1382
1383 static int kvm_get_apic(CPUX86State *env)
1384 {
1385 DeviceState *apic = env->apic_state;
1386 struct kvm_lapic_state kapic;
1387 int ret;
1388
1389 if (apic && kvm_irqchip_in_kernel()) {
1390 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1391 if (ret < 0) {
1392 return ret;
1393 }
1394
1395 kvm_get_apic_state(apic, &kapic);
1396 }
1397 return 0;
1398 }
1399
1400 static int kvm_put_apic(CPUX86State *env)
1401 {
1402 DeviceState *apic = env->apic_state;
1403 struct kvm_lapic_state kapic;
1404
1405 if (apic && kvm_irqchip_in_kernel()) {
1406 kvm_put_apic_state(apic, &kapic);
1407
1408 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1409 }
1410 return 0;
1411 }
1412
1413 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1414 {
1415 struct kvm_vcpu_events events;
1416
1417 if (!kvm_has_vcpu_events()) {
1418 return 0;
1419 }
1420
1421 events.exception.injected = (env->exception_injected >= 0);
1422 events.exception.nr = env->exception_injected;
1423 events.exception.has_error_code = env->has_error_code;
1424 events.exception.error_code = env->error_code;
1425 events.exception.pad = 0;
1426
1427 events.interrupt.injected = (env->interrupt_injected >= 0);
1428 events.interrupt.nr = env->interrupt_injected;
1429 events.interrupt.soft = env->soft_interrupt;
1430
1431 events.nmi.injected = env->nmi_injected;
1432 events.nmi.pending = env->nmi_pending;
1433 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1434 events.nmi.pad = 0;
1435
1436 events.sipi_vector = env->sipi_vector;
1437
1438 events.flags = 0;
1439 if (level >= KVM_PUT_RESET_STATE) {
1440 events.flags |=
1441 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1442 }
1443
1444 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1445 }
1446
1447 static int kvm_get_vcpu_events(CPUX86State *env)
1448 {
1449 struct kvm_vcpu_events events;
1450 int ret;
1451
1452 if (!kvm_has_vcpu_events()) {
1453 return 0;
1454 }
1455
1456 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1457 if (ret < 0) {
1458 return ret;
1459 }
1460 env->exception_injected =
1461 events.exception.injected ? events.exception.nr : -1;
1462 env->has_error_code = events.exception.has_error_code;
1463 env->error_code = events.exception.error_code;
1464
1465 env->interrupt_injected =
1466 events.interrupt.injected ? events.interrupt.nr : -1;
1467 env->soft_interrupt = events.interrupt.soft;
1468
1469 env->nmi_injected = events.nmi.injected;
1470 env->nmi_pending = events.nmi.pending;
1471 if (events.nmi.masked) {
1472 env->hflags2 |= HF2_NMI_MASK;
1473 } else {
1474 env->hflags2 &= ~HF2_NMI_MASK;
1475 }
1476
1477 env->sipi_vector = events.sipi_vector;
1478
1479 return 0;
1480 }
1481
1482 static int kvm_guest_debug_workarounds(CPUX86State *env)
1483 {
1484 int ret = 0;
1485 unsigned long reinject_trap = 0;
1486
1487 if (!kvm_has_vcpu_events()) {
1488 if (env->exception_injected == 1) {
1489 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1490 } else if (env->exception_injected == 3) {
1491 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1492 }
1493 env->exception_injected = -1;
1494 }
1495
1496 /*
1497 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1498 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1499 * by updating the debug state once again if single-stepping is on.
1500 * Another reason to call kvm_update_guest_debug here is a pending debug
1501 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1502 * reinject them via SET_GUEST_DEBUG.
1503 */
1504 if (reinject_trap ||
1505 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1506 ret = kvm_update_guest_debug(env, reinject_trap);
1507 }
1508 return ret;
1509 }
1510
1511 static int kvm_put_debugregs(CPUX86State *env)
1512 {
1513 struct kvm_debugregs dbgregs;
1514 int i;
1515
1516 if (!kvm_has_debugregs()) {
1517 return 0;
1518 }
1519
1520 for (i = 0; i < 4; i++) {
1521 dbgregs.db[i] = env->dr[i];
1522 }
1523 dbgregs.dr6 = env->dr[6];
1524 dbgregs.dr7 = env->dr[7];
1525 dbgregs.flags = 0;
1526
1527 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1528 }
1529
1530 static int kvm_get_debugregs(CPUX86State *env)
1531 {
1532 struct kvm_debugregs dbgregs;
1533 int i, ret;
1534
1535 if (!kvm_has_debugregs()) {
1536 return 0;
1537 }
1538
1539 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1540 if (ret < 0) {
1541 return ret;
1542 }
1543 for (i = 0; i < 4; i++) {
1544 env->dr[i] = dbgregs.db[i];
1545 }
1546 env->dr[4] = env->dr[6] = dbgregs.dr6;
1547 env->dr[5] = env->dr[7] = dbgregs.dr7;
1548
1549 return 0;
1550 }
1551
1552 int kvm_arch_put_registers(CPUX86State *env, int level)
1553 {
1554 int ret;
1555
1556 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1557
1558 ret = kvm_getput_regs(env, 1);
1559 if (ret < 0) {
1560 return ret;
1561 }
1562 ret = kvm_put_xsave(env);
1563 if (ret < 0) {
1564 return ret;
1565 }
1566 ret = kvm_put_xcrs(env);
1567 if (ret < 0) {
1568 return ret;
1569 }
1570 ret = kvm_put_sregs(env);
1571 if (ret < 0) {
1572 return ret;
1573 }
1574 /* must be before kvm_put_msrs */
1575 ret = kvm_inject_mce_oldstyle(env);
1576 if (ret < 0) {
1577 return ret;
1578 }
1579 ret = kvm_put_msrs(env, level);
1580 if (ret < 0) {
1581 return ret;
1582 }
1583 if (level >= KVM_PUT_RESET_STATE) {
1584 ret = kvm_put_mp_state(env);
1585 if (ret < 0) {
1586 return ret;
1587 }
1588 ret = kvm_put_apic(env);
1589 if (ret < 0) {
1590 return ret;
1591 }
1592 }
1593 ret = kvm_put_vcpu_events(env, level);
1594 if (ret < 0) {
1595 return ret;
1596 }
1597 ret = kvm_put_debugregs(env);
1598 if (ret < 0) {
1599 return ret;
1600 }
1601 /* must be last */
1602 ret = kvm_guest_debug_workarounds(env);
1603 if (ret < 0) {
1604 return ret;
1605 }
1606 return 0;
1607 }
1608
1609 int kvm_arch_get_registers(CPUX86State *env)
1610 {
1611 int ret;
1612
1613 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1614
1615 ret = kvm_getput_regs(env, 0);
1616 if (ret < 0) {
1617 return ret;
1618 }
1619 ret = kvm_get_xsave(env);
1620 if (ret < 0) {
1621 return ret;
1622 }
1623 ret = kvm_get_xcrs(env);
1624 if (ret < 0) {
1625 return ret;
1626 }
1627 ret = kvm_get_sregs(env);
1628 if (ret < 0) {
1629 return ret;
1630 }
1631 ret = kvm_get_msrs(env);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 ret = kvm_get_mp_state(env);
1636 if (ret < 0) {
1637 return ret;
1638 }
1639 ret = kvm_get_apic(env);
1640 if (ret < 0) {
1641 return ret;
1642 }
1643 ret = kvm_get_vcpu_events(env);
1644 if (ret < 0) {
1645 return ret;
1646 }
1647 ret = kvm_get_debugregs(env);
1648 if (ret < 0) {
1649 return ret;
1650 }
1651 return 0;
1652 }
1653
1654 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1655 {
1656 int ret;
1657
1658 /* Inject NMI */
1659 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1660 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1661 DPRINTF("injected NMI\n");
1662 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1663 if (ret < 0) {
1664 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1665 strerror(-ret));
1666 }
1667 }
1668
1669 if (!kvm_irqchip_in_kernel()) {
1670 /* Force the VCPU out of its inner loop to process any INIT requests
1671 * or pending TPR access reports. */
1672 if (env->interrupt_request &
1673 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1674 env->exit_request = 1;
1675 }
1676
1677 /* Try to inject an interrupt if the guest can accept it */
1678 if (run->ready_for_interrupt_injection &&
1679 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1680 (env->eflags & IF_MASK)) {
1681 int irq;
1682
1683 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1684 irq = cpu_get_pic_interrupt(env);
1685 if (irq >= 0) {
1686 struct kvm_interrupt intr;
1687
1688 intr.irq = irq;
1689 DPRINTF("injected interrupt %d\n", irq);
1690 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1691 if (ret < 0) {
1692 fprintf(stderr,
1693 "KVM: injection failed, interrupt lost (%s)\n",
1694 strerror(-ret));
1695 }
1696 }
1697 }
1698
1699 /* If we have an interrupt but the guest is not ready to receive an
1700 * interrupt, request an interrupt window exit. This will
1701 * cause a return to userspace as soon as the guest is ready to
1702 * receive interrupts. */
1703 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1704 run->request_interrupt_window = 1;
1705 } else {
1706 run->request_interrupt_window = 0;
1707 }
1708
1709 DPRINTF("setting tpr\n");
1710 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1711 }
1712 }
1713
1714 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1715 {
1716 if (run->if_flag) {
1717 env->eflags |= IF_MASK;
1718 } else {
1719 env->eflags &= ~IF_MASK;
1720 }
1721 cpu_set_apic_tpr(env->apic_state, run->cr8);
1722 cpu_set_apic_base(env->apic_state, run->apic_base);
1723 }
1724
1725 int kvm_arch_process_async_events(CPUX86State *env)
1726 {
1727 X86CPU *cpu = x86_env_get_cpu(env);
1728
1729 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1730 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1731 assert(env->mcg_cap);
1732
1733 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1734
1735 kvm_cpu_synchronize_state(env);
1736
1737 if (env->exception_injected == EXCP08_DBLE) {
1738 /* this means triple fault */
1739 qemu_system_reset_request();
1740 env->exit_request = 1;
1741 return 0;
1742 }
1743 env->exception_injected = EXCP12_MCHK;
1744 env->has_error_code = 0;
1745
1746 env->halted = 0;
1747 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1748 env->mp_state = KVM_MP_STATE_RUNNABLE;
1749 }
1750 }
1751
1752 if (kvm_irqchip_in_kernel()) {
1753 return 0;
1754 }
1755
1756 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1757 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1758 apic_poll_irq(env->apic_state);
1759 }
1760 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1761 (env->eflags & IF_MASK)) ||
1762 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1763 env->halted = 0;
1764 }
1765 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1766 kvm_cpu_synchronize_state(env);
1767 do_cpu_init(cpu);
1768 }
1769 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1770 kvm_cpu_synchronize_state(env);
1771 do_cpu_sipi(cpu);
1772 }
1773 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1774 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1775 kvm_cpu_synchronize_state(env);
1776 apic_handle_tpr_access_report(env->apic_state, env->eip,
1777 env->tpr_access_type);
1778 }
1779
1780 return env->halted;
1781 }
1782
1783 static int kvm_handle_halt(CPUX86State *env)
1784 {
1785 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1786 (env->eflags & IF_MASK)) &&
1787 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1788 env->halted = 1;
1789 return EXCP_HLT;
1790 }
1791
1792 return 0;
1793 }
1794
1795 static int kvm_handle_tpr_access(CPUX86State *env)
1796 {
1797 struct kvm_run *run = env->kvm_run;
1798
1799 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1800 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1801 : TPR_ACCESS_READ);
1802 return 1;
1803 }
1804
1805 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1806 {
1807 static const uint8_t int3 = 0xcc;
1808
1809 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1810 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1811 return -EINVAL;
1812 }
1813 return 0;
1814 }
1815
1816 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1817 {
1818 uint8_t int3;
1819
1820 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1821 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1822 return -EINVAL;
1823 }
1824 return 0;
1825 }
1826
1827 static struct {
1828 target_ulong addr;
1829 int len;
1830 int type;
1831 } hw_breakpoint[4];
1832
1833 static int nb_hw_breakpoint;
1834
1835 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1836 {
1837 int n;
1838
1839 for (n = 0; n < nb_hw_breakpoint; n++) {
1840 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1841 (hw_breakpoint[n].len == len || len == -1)) {
1842 return n;
1843 }
1844 }
1845 return -1;
1846 }
1847
1848 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1849 target_ulong len, int type)
1850 {
1851 switch (type) {
1852 case GDB_BREAKPOINT_HW:
1853 len = 1;
1854 break;
1855 case GDB_WATCHPOINT_WRITE:
1856 case GDB_WATCHPOINT_ACCESS:
1857 switch (len) {
1858 case 1:
1859 break;
1860 case 2:
1861 case 4:
1862 case 8:
1863 if (addr & (len - 1)) {
1864 return -EINVAL;
1865 }
1866 break;
1867 default:
1868 return -EINVAL;
1869 }
1870 break;
1871 default:
1872 return -ENOSYS;
1873 }
1874
1875 if (nb_hw_breakpoint == 4) {
1876 return -ENOBUFS;
1877 }
1878 if (find_hw_breakpoint(addr, len, type) >= 0) {
1879 return -EEXIST;
1880 }
1881 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1882 hw_breakpoint[nb_hw_breakpoint].len = len;
1883 hw_breakpoint[nb_hw_breakpoint].type = type;
1884 nb_hw_breakpoint++;
1885
1886 return 0;
1887 }
1888
1889 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1890 target_ulong len, int type)
1891 {
1892 int n;
1893
1894 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1895 if (n < 0) {
1896 return -ENOENT;
1897 }
1898 nb_hw_breakpoint--;
1899 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1900
1901 return 0;
1902 }
1903
1904 void kvm_arch_remove_all_hw_breakpoints(void)
1905 {
1906 nb_hw_breakpoint = 0;
1907 }
1908
1909 static CPUWatchpoint hw_watchpoint;
1910
1911 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1912 {
1913 int ret = 0;
1914 int n;
1915
1916 if (arch_info->exception == 1) {
1917 if (arch_info->dr6 & (1 << 14)) {
1918 if (cpu_single_env->singlestep_enabled) {
1919 ret = EXCP_DEBUG;
1920 }
1921 } else {
1922 for (n = 0; n < 4; n++) {
1923 if (arch_info->dr6 & (1 << n)) {
1924 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1925 case 0x0:
1926 ret = EXCP_DEBUG;
1927 break;
1928 case 0x1:
1929 ret = EXCP_DEBUG;
1930 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1931 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1932 hw_watchpoint.flags = BP_MEM_WRITE;
1933 break;
1934 case 0x3:
1935 ret = EXCP_DEBUG;
1936 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1937 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1938 hw_watchpoint.flags = BP_MEM_ACCESS;
1939 break;
1940 }
1941 }
1942 }
1943 }
1944 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1945 ret = EXCP_DEBUG;
1946 }
1947 if (ret == 0) {
1948 cpu_synchronize_state(cpu_single_env);
1949 assert(cpu_single_env->exception_injected == -1);
1950
1951 /* pass to guest */
1952 cpu_single_env->exception_injected = arch_info->exception;
1953 cpu_single_env->has_error_code = 0;
1954 }
1955
1956 return ret;
1957 }
1958
1959 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1960 {
1961 const uint8_t type_code[] = {
1962 [GDB_BREAKPOINT_HW] = 0x0,
1963 [GDB_WATCHPOINT_WRITE] = 0x1,
1964 [GDB_WATCHPOINT_ACCESS] = 0x3
1965 };
1966 const uint8_t len_code[] = {
1967 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1968 };
1969 int n;
1970
1971 if (kvm_sw_breakpoints_active(env)) {
1972 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1973 }
1974 if (nb_hw_breakpoint > 0) {
1975 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1976 dbg->arch.debugreg[7] = 0x0600;
1977 for (n = 0; n < nb_hw_breakpoint; n++) {
1978 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1979 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1980 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1981 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1982 }
1983 }
1984 }
1985
1986 static bool host_supports_vmx(void)
1987 {
1988 uint32_t ecx, unused;
1989
1990 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1991 return ecx & CPUID_EXT_VMX;
1992 }
1993
1994 #define VMX_INVALID_GUEST_STATE 0x80000021
1995
1996 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
1997 {
1998 uint64_t code;
1999 int ret;
2000
2001 switch (run->exit_reason) {
2002 case KVM_EXIT_HLT:
2003 DPRINTF("handle_hlt\n");
2004 ret = kvm_handle_halt(env);
2005 break;
2006 case KVM_EXIT_SET_TPR:
2007 ret = 0;
2008 break;
2009 case KVM_EXIT_TPR_ACCESS:
2010 ret = kvm_handle_tpr_access(env);
2011 break;
2012 case KVM_EXIT_FAIL_ENTRY:
2013 code = run->fail_entry.hardware_entry_failure_reason;
2014 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2015 code);
2016 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2017 fprintf(stderr,
2018 "\nIf you're running a guest on an Intel machine without "
2019 "unrestricted mode\n"
2020 "support, the failure can be most likely due to the guest "
2021 "entering an invalid\n"
2022 "state for Intel VT. For example, the guest maybe running "
2023 "in big real mode\n"
2024 "which is not supported on less recent Intel processors."
2025 "\n\n");
2026 }
2027 ret = -1;
2028 break;
2029 case KVM_EXIT_EXCEPTION:
2030 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2031 run->ex.exception, run->ex.error_code);
2032 ret = -1;
2033 break;
2034 case KVM_EXIT_DEBUG:
2035 DPRINTF("kvm_exit_debug\n");
2036 ret = kvm_handle_debug(&run->debug.arch);
2037 break;
2038 default:
2039 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2040 ret = -1;
2041 break;
2042 }
2043
2044 return ret;
2045 }
2046
2047 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2048 {
2049 kvm_cpu_synchronize_state(env);
2050 return !(env->cr[0] & CR0_PE_MASK) ||
2051 ((env->segs[R_CS].selector & 3) != 3);
2052 }
2053
2054 void kvm_arch_init_irq_routing(KVMState *s)
2055 {
2056 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2057 /* If kernel can't do irq routing, interrupt source
2058 * override 0->2 cannot be set up as required by HPET.
2059 * So we have to disable it.
2060 */
2061 no_hpet = 1;
2062 }
2063 /* We know at this point that we're using the in-kernel
2064 * irqchip, so we can use irqfds, and on x86 we know
2065 * we can use msi via irqfd and GSI routing.
2066 */
2067 kvm_irqfds_allowed = true;
2068 kvm_msi_via_irqfd_allowed = true;
2069 kvm_gsi_routing_allowed = true;
2070 }