]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Fix build on !KVM_CAP_MCE
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "hw/apic.h"
29 #include "ioport.h"
30 #include "kvm_x86.h"
31
32 #ifdef CONFIG_KVM_PARA
33 #include <linux/kvm_para.h>
34 #endif
35 //
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 #ifdef KVM_CAP_EXT_CPUID
57
58 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
59 {
60 struct kvm_cpuid2 *cpuid;
61 int r, size;
62
63 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
64 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
65 cpuid->nent = max;
66 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
67 if (r == 0 && cpuid->nent >= max) {
68 r = -E2BIG;
69 }
70 if (r < 0) {
71 if (r == -E2BIG) {
72 qemu_free(cpuid);
73 return NULL;
74 } else {
75 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
76 strerror(-r));
77 exit(1);
78 }
79 }
80 return cpuid;
81 }
82
83 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
84 uint32_t index, int reg)
85 {
86 struct kvm_cpuid2 *cpuid;
87 int i, max;
88 uint32_t ret = 0;
89 uint32_t cpuid_1_edx;
90
91 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
92 return -1U;
93 }
94
95 max = 1;
96 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
97 max *= 2;
98 }
99
100 for (i = 0; i < cpuid->nent; ++i) {
101 if (cpuid->entries[i].function == function &&
102 cpuid->entries[i].index == index) {
103 switch (reg) {
104 case R_EAX:
105 ret = cpuid->entries[i].eax;
106 break;
107 case R_EBX:
108 ret = cpuid->entries[i].ebx;
109 break;
110 case R_ECX:
111 ret = cpuid->entries[i].ecx;
112 break;
113 case R_EDX:
114 ret = cpuid->entries[i].edx;
115 switch (function) {
116 case 1:
117 /* KVM before 2.6.30 misreports the following features */
118 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
119 break;
120 case 0x80000001:
121 /* On Intel, kvm returns cpuid according to the Intel spec,
122 * so add missing bits according to the AMD spec:
123 */
124 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
125 ret |= cpuid_1_edx & 0x183f7ff;
126 break;
127 }
128 break;
129 }
130 }
131 }
132
133 qemu_free(cpuid);
134
135 return ret;
136 }
137
138 #else
139
140 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
141 uint32_t index, int reg)
142 {
143 return -1U;
144 }
145
146 #endif
147
148 #ifdef CONFIG_KVM_PARA
149 struct kvm_para_features {
150 int cap;
151 int feature;
152 } para_features[] = {
153 #ifdef KVM_CAP_CLOCKSOURCE
154 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
155 #endif
156 #ifdef KVM_CAP_NOP_IO_DELAY
157 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
158 #endif
159 #ifdef KVM_CAP_PV_MMU
160 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
161 #endif
162 { -1, -1 }
163 };
164
165 static int get_para_features(CPUState *env)
166 {
167 int i, features = 0;
168
169 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
170 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
171 features |= (1 << para_features[i].feature);
172 }
173
174 return features;
175 }
176 #endif
177
178 #ifdef KVM_CAP_MCE
179 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
180 int *max_banks)
181 {
182 int r;
183
184 r = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_MCE);
185 if (r > 0) {
186 *max_banks = r;
187 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
188 }
189 return -ENOSYS;
190 }
191
192 static int kvm_setup_mce(CPUState *env, uint64_t *mcg_cap)
193 {
194 return kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, mcg_cap);
195 }
196
197 static int kvm_set_mce(CPUState *env, struct kvm_x86_mce *m)
198 {
199 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, m);
200 }
201
202 static int kvm_get_msr(CPUState *env, struct kvm_msr_entry *msrs, int n)
203 {
204 struct kvm_msrs *kmsrs = qemu_malloc(sizeof *kmsrs + n * sizeof *msrs);
205 int r;
206
207 kmsrs->nmsrs = n;
208 memcpy(kmsrs->entries, msrs, n * sizeof *msrs);
209 r = kvm_vcpu_ioctl(env, KVM_GET_MSRS, kmsrs);
210 memcpy(msrs, kmsrs->entries, n * sizeof *msrs);
211 free(kmsrs);
212 return r;
213 }
214
215 /* FIXME: kill this and kvm_get_msr, use env->mcg_status instead */
216 static int kvm_mce_in_exception(CPUState *env)
217 {
218 struct kvm_msr_entry msr_mcg_status = {
219 .index = MSR_MCG_STATUS,
220 };
221 int r;
222
223 r = kvm_get_msr(env, &msr_mcg_status, 1);
224 if (r == -1 || r == 0) {
225 return -1;
226 }
227 return !!(msr_mcg_status.data & MCG_STATUS_MCIP);
228 }
229
230 struct kvm_x86_mce_data
231 {
232 CPUState *env;
233 struct kvm_x86_mce *mce;
234 int abort_on_error;
235 };
236
237 static void kvm_do_inject_x86_mce(void *_data)
238 {
239 struct kvm_x86_mce_data *data = _data;
240 int r;
241
242 /* If there is an MCE exception being processed, ignore this SRAO MCE */
243 if ((data->env->mcg_cap & MCG_SER_P) &&
244 !(data->mce->status & MCI_STATUS_AR)) {
245 r = kvm_mce_in_exception(data->env);
246 if (r == -1) {
247 fprintf(stderr, "Failed to get MCE status\n");
248 } else if (r) {
249 return;
250 }
251 }
252
253 r = kvm_set_mce(data->env, data->mce);
254 if (r < 0) {
255 perror("kvm_set_mce FAILED");
256 if (data->abort_on_error) {
257 abort();
258 }
259 }
260 }
261 #endif
262
263 void kvm_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
264 uint64_t mcg_status, uint64_t addr, uint64_t misc,
265 int abort_on_error)
266 {
267 #ifdef KVM_CAP_MCE
268 struct kvm_x86_mce mce = {
269 .bank = bank,
270 .status = status,
271 .mcg_status = mcg_status,
272 .addr = addr,
273 .misc = misc,
274 };
275 struct kvm_x86_mce_data data = {
276 .env = cenv,
277 .mce = &mce,
278 };
279
280 if (!cenv->mcg_cap) {
281 fprintf(stderr, "MCE support is not enabled!\n");
282 return;
283 }
284
285 run_on_cpu(cenv, kvm_do_inject_x86_mce, &data);
286 #else
287 if (abort_on_error)
288 abort();
289 #endif
290 }
291
292 int kvm_arch_init_vcpu(CPUState *env)
293 {
294 struct {
295 struct kvm_cpuid2 cpuid;
296 struct kvm_cpuid_entry2 entries[100];
297 } __attribute__((packed)) cpuid_data;
298 uint32_t limit, i, j, cpuid_i;
299 uint32_t unused;
300 struct kvm_cpuid_entry2 *c;
301 #ifdef KVM_CPUID_SIGNATURE
302 uint32_t signature[3];
303 #endif
304
305 env->mp_state = KVM_MP_STATE_RUNNABLE;
306
307 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
308
309 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
310 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
311 env->cpuid_ext_features |= i;
312
313 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
314 0, R_EDX);
315 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
316 0, R_ECX);
317 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(env, 0x8000000A,
318 0, R_EDX);
319
320
321 cpuid_i = 0;
322
323 #ifdef CONFIG_KVM_PARA
324 /* Paravirtualization CPUIDs */
325 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
326 c = &cpuid_data.entries[cpuid_i++];
327 memset(c, 0, sizeof(*c));
328 c->function = KVM_CPUID_SIGNATURE;
329 c->eax = 0;
330 c->ebx = signature[0];
331 c->ecx = signature[1];
332 c->edx = signature[2];
333
334 c = &cpuid_data.entries[cpuid_i++];
335 memset(c, 0, sizeof(*c));
336 c->function = KVM_CPUID_FEATURES;
337 c->eax = env->cpuid_kvm_features & get_para_features(env);
338 #endif
339
340 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
341
342 for (i = 0; i <= limit; i++) {
343 c = &cpuid_data.entries[cpuid_i++];
344
345 switch (i) {
346 case 2: {
347 /* Keep reading function 2 till all the input is received */
348 int times;
349
350 c->function = i;
351 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
352 KVM_CPUID_FLAG_STATE_READ_NEXT;
353 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
354 times = c->eax & 0xff;
355
356 for (j = 1; j < times; ++j) {
357 c = &cpuid_data.entries[cpuid_i++];
358 c->function = i;
359 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
360 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
361 }
362 break;
363 }
364 case 4:
365 case 0xb:
366 case 0xd:
367 for (j = 0; ; j++) {
368 c->function = i;
369 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
370 c->index = j;
371 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
372
373 if (i == 4 && c->eax == 0)
374 break;
375 if (i == 0xb && !(c->ecx & 0xff00))
376 break;
377 if (i == 0xd && c->eax == 0)
378 break;
379
380 c = &cpuid_data.entries[cpuid_i++];
381 }
382 break;
383 default:
384 c->function = i;
385 c->flags = 0;
386 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
387 break;
388 }
389 }
390 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
391
392 for (i = 0x80000000; i <= limit; i++) {
393 c = &cpuid_data.entries[cpuid_i++];
394
395 c->function = i;
396 c->flags = 0;
397 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
398 }
399
400 cpuid_data.cpuid.nent = cpuid_i;
401
402 #ifdef KVM_CAP_MCE
403 if (((env->cpuid_version >> 8)&0xF) >= 6
404 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
405 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
406 uint64_t mcg_cap;
407 int banks;
408
409 if (kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks))
410 perror("kvm_get_mce_cap_supported FAILED");
411 else {
412 if (banks > MCE_BANKS_DEF)
413 banks = MCE_BANKS_DEF;
414 mcg_cap &= MCE_CAP_DEF;
415 mcg_cap |= banks;
416 if (kvm_setup_mce(env, &mcg_cap))
417 perror("kvm_setup_mce FAILED");
418 else
419 env->mcg_cap = mcg_cap;
420 }
421 }
422 #endif
423
424 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
425 }
426
427 void kvm_arch_reset_vcpu(CPUState *env)
428 {
429 env->exception_injected = -1;
430 env->interrupt_injected = -1;
431 env->nmi_injected = 0;
432 env->nmi_pending = 0;
433 if (kvm_irqchip_in_kernel()) {
434 env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
435 KVM_MP_STATE_UNINITIALIZED;
436 } else {
437 env->mp_state = KVM_MP_STATE_RUNNABLE;
438 }
439 }
440
441 static int kvm_has_msr_star(CPUState *env)
442 {
443 static int has_msr_star;
444 int ret;
445
446 /* first time */
447 if (has_msr_star == 0) {
448 struct kvm_msr_list msr_list, *kvm_msr_list;
449
450 has_msr_star = -1;
451
452 /* Obtain MSR list from KVM. These are the MSRs that we must
453 * save/restore */
454 msr_list.nmsrs = 0;
455 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
456 if (ret < 0 && ret != -E2BIG) {
457 return 0;
458 }
459 /* Old kernel modules had a bug and could write beyond the provided
460 memory. Allocate at least a safe amount of 1K. */
461 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
462 msr_list.nmsrs *
463 sizeof(msr_list.indices[0])));
464
465 kvm_msr_list->nmsrs = msr_list.nmsrs;
466 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
467 if (ret >= 0) {
468 int i;
469
470 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
471 if (kvm_msr_list->indices[i] == MSR_STAR) {
472 has_msr_star = 1;
473 break;
474 }
475 }
476 }
477
478 free(kvm_msr_list);
479 }
480
481 if (has_msr_star == 1)
482 return 1;
483 return 0;
484 }
485
486 static int kvm_init_identity_map_page(KVMState *s)
487 {
488 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
489 int ret;
490 uint64_t addr = 0xfffbc000;
491
492 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
493 return 0;
494 }
495
496 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
497 if (ret < 0) {
498 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
499 return ret;
500 }
501 #endif
502 return 0;
503 }
504
505 int kvm_arch_init(KVMState *s, int smp_cpus)
506 {
507 int ret;
508
509 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
510 * directly. In order to use vm86 mode, a TSS is needed. Since this
511 * must be part of guest physical memory, we need to allocate it. Older
512 * versions of KVM just assumed that it would be at the end of physical
513 * memory but that doesn't work with more than 4GB of memory. We simply
514 * refuse to work with those older versions of KVM. */
515 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
516 if (ret <= 0) {
517 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
518 return ret;
519 }
520
521 /* this address is 3 pages before the bios, and the bios should present
522 * as unavaible memory. FIXME, need to ensure the e820 map deals with
523 * this?
524 */
525 /*
526 * Tell fw_cfg to notify the BIOS to reserve the range.
527 */
528 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
529 perror("e820_add_entry() table is full");
530 exit(1);
531 }
532 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
533 if (ret < 0) {
534 return ret;
535 }
536
537 return kvm_init_identity_map_page(s);
538 }
539
540 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
541 {
542 lhs->selector = rhs->selector;
543 lhs->base = rhs->base;
544 lhs->limit = rhs->limit;
545 lhs->type = 3;
546 lhs->present = 1;
547 lhs->dpl = 3;
548 lhs->db = 0;
549 lhs->s = 1;
550 lhs->l = 0;
551 lhs->g = 0;
552 lhs->avl = 0;
553 lhs->unusable = 0;
554 }
555
556 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
557 {
558 unsigned flags = rhs->flags;
559 lhs->selector = rhs->selector;
560 lhs->base = rhs->base;
561 lhs->limit = rhs->limit;
562 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
563 lhs->present = (flags & DESC_P_MASK) != 0;
564 lhs->dpl = rhs->selector & 3;
565 lhs->db = (flags >> DESC_B_SHIFT) & 1;
566 lhs->s = (flags & DESC_S_MASK) != 0;
567 lhs->l = (flags >> DESC_L_SHIFT) & 1;
568 lhs->g = (flags & DESC_G_MASK) != 0;
569 lhs->avl = (flags & DESC_AVL_MASK) != 0;
570 lhs->unusable = 0;
571 }
572
573 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
574 {
575 lhs->selector = rhs->selector;
576 lhs->base = rhs->base;
577 lhs->limit = rhs->limit;
578 lhs->flags =
579 (rhs->type << DESC_TYPE_SHIFT)
580 | (rhs->present * DESC_P_MASK)
581 | (rhs->dpl << DESC_DPL_SHIFT)
582 | (rhs->db << DESC_B_SHIFT)
583 | (rhs->s * DESC_S_MASK)
584 | (rhs->l << DESC_L_SHIFT)
585 | (rhs->g * DESC_G_MASK)
586 | (rhs->avl * DESC_AVL_MASK);
587 }
588
589 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
590 {
591 if (set)
592 *kvm_reg = *qemu_reg;
593 else
594 *qemu_reg = *kvm_reg;
595 }
596
597 static int kvm_getput_regs(CPUState *env, int set)
598 {
599 struct kvm_regs regs;
600 int ret = 0;
601
602 if (!set) {
603 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
604 if (ret < 0)
605 return ret;
606 }
607
608 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
609 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
610 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
611 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
612 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
613 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
614 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
615 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
616 #ifdef TARGET_X86_64
617 kvm_getput_reg(&regs.r8, &env->regs[8], set);
618 kvm_getput_reg(&regs.r9, &env->regs[9], set);
619 kvm_getput_reg(&regs.r10, &env->regs[10], set);
620 kvm_getput_reg(&regs.r11, &env->regs[11], set);
621 kvm_getput_reg(&regs.r12, &env->regs[12], set);
622 kvm_getput_reg(&regs.r13, &env->regs[13], set);
623 kvm_getput_reg(&regs.r14, &env->regs[14], set);
624 kvm_getput_reg(&regs.r15, &env->regs[15], set);
625 #endif
626
627 kvm_getput_reg(&regs.rflags, &env->eflags, set);
628 kvm_getput_reg(&regs.rip, &env->eip, set);
629
630 if (set)
631 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
632
633 return ret;
634 }
635
636 static int kvm_put_fpu(CPUState *env)
637 {
638 struct kvm_fpu fpu;
639 int i;
640
641 memset(&fpu, 0, sizeof fpu);
642 fpu.fsw = env->fpus & ~(7 << 11);
643 fpu.fsw |= (env->fpstt & 7) << 11;
644 fpu.fcw = env->fpuc;
645 for (i = 0; i < 8; ++i)
646 fpu.ftwx |= (!env->fptags[i]) << i;
647 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
648 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
649 fpu.mxcsr = env->mxcsr;
650
651 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
652 }
653
654 #ifdef KVM_CAP_XSAVE
655 #define XSAVE_CWD_RIP 2
656 #define XSAVE_CWD_RDP 4
657 #define XSAVE_MXCSR 6
658 #define XSAVE_ST_SPACE 8
659 #define XSAVE_XMM_SPACE 40
660 #define XSAVE_XSTATE_BV 128
661 #define XSAVE_YMMH_SPACE 144
662 #endif
663
664 static int kvm_put_xsave(CPUState *env)
665 {
666 #ifdef KVM_CAP_XSAVE
667 int i, r;
668 struct kvm_xsave* xsave;
669 uint16_t cwd, swd, twd, fop;
670
671 if (!kvm_has_xsave())
672 return kvm_put_fpu(env);
673
674 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
675 memset(xsave, 0, sizeof(struct kvm_xsave));
676 cwd = swd = twd = fop = 0;
677 swd = env->fpus & ~(7 << 11);
678 swd |= (env->fpstt & 7) << 11;
679 cwd = env->fpuc;
680 for (i = 0; i < 8; ++i)
681 twd |= (!env->fptags[i]) << i;
682 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
683 xsave->region[1] = (uint32_t)(fop << 16) + twd;
684 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
685 sizeof env->fpregs);
686 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
687 sizeof env->xmm_regs);
688 xsave->region[XSAVE_MXCSR] = env->mxcsr;
689 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
690 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
691 sizeof env->ymmh_regs);
692 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
693 qemu_free(xsave);
694 return r;
695 #else
696 return kvm_put_fpu(env);
697 #endif
698 }
699
700 static int kvm_put_xcrs(CPUState *env)
701 {
702 #ifdef KVM_CAP_XCRS
703 struct kvm_xcrs xcrs;
704
705 if (!kvm_has_xcrs())
706 return 0;
707
708 xcrs.nr_xcrs = 1;
709 xcrs.flags = 0;
710 xcrs.xcrs[0].xcr = 0;
711 xcrs.xcrs[0].value = env->xcr0;
712 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
713 #else
714 return 0;
715 #endif
716 }
717
718 static int kvm_put_sregs(CPUState *env)
719 {
720 struct kvm_sregs sregs;
721
722 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
723 if (env->interrupt_injected >= 0) {
724 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
725 (uint64_t)1 << (env->interrupt_injected % 64);
726 }
727
728 if ((env->eflags & VM_MASK)) {
729 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
730 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
731 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
732 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
733 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
734 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
735 } else {
736 set_seg(&sregs.cs, &env->segs[R_CS]);
737 set_seg(&sregs.ds, &env->segs[R_DS]);
738 set_seg(&sregs.es, &env->segs[R_ES]);
739 set_seg(&sregs.fs, &env->segs[R_FS]);
740 set_seg(&sregs.gs, &env->segs[R_GS]);
741 set_seg(&sregs.ss, &env->segs[R_SS]);
742
743 if (env->cr[0] & CR0_PE_MASK) {
744 /* force ss cpl to cs cpl */
745 sregs.ss.selector = (sregs.ss.selector & ~3) |
746 (sregs.cs.selector & 3);
747 sregs.ss.dpl = sregs.ss.selector & 3;
748 }
749 }
750
751 set_seg(&sregs.tr, &env->tr);
752 set_seg(&sregs.ldt, &env->ldt);
753
754 sregs.idt.limit = env->idt.limit;
755 sregs.idt.base = env->idt.base;
756 sregs.gdt.limit = env->gdt.limit;
757 sregs.gdt.base = env->gdt.base;
758
759 sregs.cr0 = env->cr[0];
760 sregs.cr2 = env->cr[2];
761 sregs.cr3 = env->cr[3];
762 sregs.cr4 = env->cr[4];
763
764 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
765 sregs.apic_base = cpu_get_apic_base(env->apic_state);
766
767 sregs.efer = env->efer;
768
769 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
770 }
771
772 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
773 uint32_t index, uint64_t value)
774 {
775 entry->index = index;
776 entry->data = value;
777 }
778
779 static int kvm_put_msrs(CPUState *env, int level)
780 {
781 struct {
782 struct kvm_msrs info;
783 struct kvm_msr_entry entries[100];
784 } msr_data;
785 struct kvm_msr_entry *msrs = msr_data.entries;
786 int n = 0;
787
788 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
789 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
790 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
791 if (kvm_has_msr_star(env))
792 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
793 #ifdef TARGET_X86_64
794 /* FIXME if lm capable */
795 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
796 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
797 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
798 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
799 #endif
800 if (level == KVM_PUT_FULL_STATE) {
801 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
802 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
803 env->system_time_msr);
804 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
805 }
806 #ifdef KVM_CAP_MCE
807 if (env->mcg_cap) {
808 int i;
809 if (level == KVM_PUT_RESET_STATE)
810 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
811 else if (level == KVM_PUT_FULL_STATE) {
812 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
813 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
814 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
815 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
816 }
817 }
818 #endif
819
820 msr_data.info.nmsrs = n;
821
822 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
823
824 }
825
826
827 static int kvm_get_fpu(CPUState *env)
828 {
829 struct kvm_fpu fpu;
830 int i, ret;
831
832 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
833 if (ret < 0)
834 return ret;
835
836 env->fpstt = (fpu.fsw >> 11) & 7;
837 env->fpus = fpu.fsw;
838 env->fpuc = fpu.fcw;
839 for (i = 0; i < 8; ++i)
840 env->fptags[i] = !((fpu.ftwx >> i) & 1);
841 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
842 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
843 env->mxcsr = fpu.mxcsr;
844
845 return 0;
846 }
847
848 static int kvm_get_xsave(CPUState *env)
849 {
850 #ifdef KVM_CAP_XSAVE
851 struct kvm_xsave* xsave;
852 int ret, i;
853 uint16_t cwd, swd, twd, fop;
854
855 if (!kvm_has_xsave())
856 return kvm_get_fpu(env);
857
858 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
859 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
860 if (ret < 0) {
861 qemu_free(xsave);
862 return ret;
863 }
864
865 cwd = (uint16_t)xsave->region[0];
866 swd = (uint16_t)(xsave->region[0] >> 16);
867 twd = (uint16_t)xsave->region[1];
868 fop = (uint16_t)(xsave->region[1] >> 16);
869 env->fpstt = (swd >> 11) & 7;
870 env->fpus = swd;
871 env->fpuc = cwd;
872 for (i = 0; i < 8; ++i)
873 env->fptags[i] = !((twd >> i) & 1);
874 env->mxcsr = xsave->region[XSAVE_MXCSR];
875 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
876 sizeof env->fpregs);
877 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
878 sizeof env->xmm_regs);
879 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
880 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
881 sizeof env->ymmh_regs);
882 qemu_free(xsave);
883 return 0;
884 #else
885 return kvm_get_fpu(env);
886 #endif
887 }
888
889 static int kvm_get_xcrs(CPUState *env)
890 {
891 #ifdef KVM_CAP_XCRS
892 int i, ret;
893 struct kvm_xcrs xcrs;
894
895 if (!kvm_has_xcrs())
896 return 0;
897
898 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
899 if (ret < 0)
900 return ret;
901
902 for (i = 0; i < xcrs.nr_xcrs; i++)
903 /* Only support xcr0 now */
904 if (xcrs.xcrs[0].xcr == 0) {
905 env->xcr0 = xcrs.xcrs[0].value;
906 break;
907 }
908 return 0;
909 #else
910 return 0;
911 #endif
912 }
913
914 static int kvm_get_sregs(CPUState *env)
915 {
916 struct kvm_sregs sregs;
917 uint32_t hflags;
918 int bit, i, ret;
919
920 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
921 if (ret < 0)
922 return ret;
923
924 /* There can only be one pending IRQ set in the bitmap at a time, so try
925 to find it and save its number instead (-1 for none). */
926 env->interrupt_injected = -1;
927 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
928 if (sregs.interrupt_bitmap[i]) {
929 bit = ctz64(sregs.interrupt_bitmap[i]);
930 env->interrupt_injected = i * 64 + bit;
931 break;
932 }
933 }
934
935 get_seg(&env->segs[R_CS], &sregs.cs);
936 get_seg(&env->segs[R_DS], &sregs.ds);
937 get_seg(&env->segs[R_ES], &sregs.es);
938 get_seg(&env->segs[R_FS], &sregs.fs);
939 get_seg(&env->segs[R_GS], &sregs.gs);
940 get_seg(&env->segs[R_SS], &sregs.ss);
941
942 get_seg(&env->tr, &sregs.tr);
943 get_seg(&env->ldt, &sregs.ldt);
944
945 env->idt.limit = sregs.idt.limit;
946 env->idt.base = sregs.idt.base;
947 env->gdt.limit = sregs.gdt.limit;
948 env->gdt.base = sregs.gdt.base;
949
950 env->cr[0] = sregs.cr0;
951 env->cr[2] = sregs.cr2;
952 env->cr[3] = sregs.cr3;
953 env->cr[4] = sregs.cr4;
954
955 cpu_set_apic_base(env->apic_state, sregs.apic_base);
956
957 env->efer = sregs.efer;
958 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
959
960 #define HFLAG_COPY_MASK ~( \
961 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
962 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
963 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
964 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
965
966
967
968 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
969 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
970 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
971 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
972 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
973 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
974 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
975
976 if (env->efer & MSR_EFER_LMA) {
977 hflags |= HF_LMA_MASK;
978 }
979
980 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
981 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
982 } else {
983 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
984 (DESC_B_SHIFT - HF_CS32_SHIFT);
985 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
986 (DESC_B_SHIFT - HF_SS32_SHIFT);
987 if (!(env->cr[0] & CR0_PE_MASK) ||
988 (env->eflags & VM_MASK) ||
989 !(hflags & HF_CS32_MASK)) {
990 hflags |= HF_ADDSEG_MASK;
991 } else {
992 hflags |= ((env->segs[R_DS].base |
993 env->segs[R_ES].base |
994 env->segs[R_SS].base) != 0) <<
995 HF_ADDSEG_SHIFT;
996 }
997 }
998 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
999
1000 return 0;
1001 }
1002
1003 static int kvm_get_msrs(CPUState *env)
1004 {
1005 struct {
1006 struct kvm_msrs info;
1007 struct kvm_msr_entry entries[100];
1008 } msr_data;
1009 struct kvm_msr_entry *msrs = msr_data.entries;
1010 int ret, i, n;
1011
1012 n = 0;
1013 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1014 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1015 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1016 if (kvm_has_msr_star(env))
1017 msrs[n++].index = MSR_STAR;
1018 msrs[n++].index = MSR_IA32_TSC;
1019 #ifdef TARGET_X86_64
1020 /* FIXME lm_capable_kernel */
1021 msrs[n++].index = MSR_CSTAR;
1022 msrs[n++].index = MSR_KERNELGSBASE;
1023 msrs[n++].index = MSR_FMASK;
1024 msrs[n++].index = MSR_LSTAR;
1025 #endif
1026 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1027 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1028
1029 #ifdef KVM_CAP_MCE
1030 if (env->mcg_cap) {
1031 msrs[n++].index = MSR_MCG_STATUS;
1032 msrs[n++].index = MSR_MCG_CTL;
1033 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++)
1034 msrs[n++].index = MSR_MC0_CTL + i;
1035 }
1036 #endif
1037
1038 msr_data.info.nmsrs = n;
1039 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1040 if (ret < 0)
1041 return ret;
1042
1043 for (i = 0; i < ret; i++) {
1044 switch (msrs[i].index) {
1045 case MSR_IA32_SYSENTER_CS:
1046 env->sysenter_cs = msrs[i].data;
1047 break;
1048 case MSR_IA32_SYSENTER_ESP:
1049 env->sysenter_esp = msrs[i].data;
1050 break;
1051 case MSR_IA32_SYSENTER_EIP:
1052 env->sysenter_eip = msrs[i].data;
1053 break;
1054 case MSR_STAR:
1055 env->star = msrs[i].data;
1056 break;
1057 #ifdef TARGET_X86_64
1058 case MSR_CSTAR:
1059 env->cstar = msrs[i].data;
1060 break;
1061 case MSR_KERNELGSBASE:
1062 env->kernelgsbase = msrs[i].data;
1063 break;
1064 case MSR_FMASK:
1065 env->fmask = msrs[i].data;
1066 break;
1067 case MSR_LSTAR:
1068 env->lstar = msrs[i].data;
1069 break;
1070 #endif
1071 case MSR_IA32_TSC:
1072 env->tsc = msrs[i].data;
1073 break;
1074 case MSR_KVM_SYSTEM_TIME:
1075 env->system_time_msr = msrs[i].data;
1076 break;
1077 case MSR_KVM_WALL_CLOCK:
1078 env->wall_clock_msr = msrs[i].data;
1079 break;
1080 #ifdef KVM_CAP_MCE
1081 case MSR_MCG_STATUS:
1082 env->mcg_status = msrs[i].data;
1083 break;
1084 case MSR_MCG_CTL:
1085 env->mcg_ctl = msrs[i].data;
1086 break;
1087 #endif
1088 default:
1089 #ifdef KVM_CAP_MCE
1090 if (msrs[i].index >= MSR_MC0_CTL &&
1091 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1092 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1093 }
1094 #endif
1095 break;
1096 }
1097 }
1098
1099 return 0;
1100 }
1101
1102 static int kvm_put_mp_state(CPUState *env)
1103 {
1104 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1105
1106 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1107 }
1108
1109 static int kvm_get_mp_state(CPUState *env)
1110 {
1111 struct kvm_mp_state mp_state;
1112 int ret;
1113
1114 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1115 if (ret < 0) {
1116 return ret;
1117 }
1118 env->mp_state = mp_state.mp_state;
1119 return 0;
1120 }
1121
1122 static int kvm_put_vcpu_events(CPUState *env, int level)
1123 {
1124 #ifdef KVM_CAP_VCPU_EVENTS
1125 struct kvm_vcpu_events events;
1126
1127 if (!kvm_has_vcpu_events()) {
1128 return 0;
1129 }
1130
1131 events.exception.injected = (env->exception_injected >= 0);
1132 events.exception.nr = env->exception_injected;
1133 events.exception.has_error_code = env->has_error_code;
1134 events.exception.error_code = env->error_code;
1135
1136 events.interrupt.injected = (env->interrupt_injected >= 0);
1137 events.interrupt.nr = env->interrupt_injected;
1138 events.interrupt.soft = env->soft_interrupt;
1139
1140 events.nmi.injected = env->nmi_injected;
1141 events.nmi.pending = env->nmi_pending;
1142 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1143
1144 events.sipi_vector = env->sipi_vector;
1145
1146 events.flags = 0;
1147 if (level >= KVM_PUT_RESET_STATE) {
1148 events.flags |=
1149 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1150 }
1151
1152 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1153 #else
1154 return 0;
1155 #endif
1156 }
1157
1158 static int kvm_get_vcpu_events(CPUState *env)
1159 {
1160 #ifdef KVM_CAP_VCPU_EVENTS
1161 struct kvm_vcpu_events events;
1162 int ret;
1163
1164 if (!kvm_has_vcpu_events()) {
1165 return 0;
1166 }
1167
1168 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1169 if (ret < 0) {
1170 return ret;
1171 }
1172 env->exception_injected =
1173 events.exception.injected ? events.exception.nr : -1;
1174 env->has_error_code = events.exception.has_error_code;
1175 env->error_code = events.exception.error_code;
1176
1177 env->interrupt_injected =
1178 events.interrupt.injected ? events.interrupt.nr : -1;
1179 env->soft_interrupt = events.interrupt.soft;
1180
1181 env->nmi_injected = events.nmi.injected;
1182 env->nmi_pending = events.nmi.pending;
1183 if (events.nmi.masked) {
1184 env->hflags2 |= HF2_NMI_MASK;
1185 } else {
1186 env->hflags2 &= ~HF2_NMI_MASK;
1187 }
1188
1189 env->sipi_vector = events.sipi_vector;
1190 #endif
1191
1192 return 0;
1193 }
1194
1195 static int kvm_guest_debug_workarounds(CPUState *env)
1196 {
1197 int ret = 0;
1198 #ifdef KVM_CAP_SET_GUEST_DEBUG
1199 unsigned long reinject_trap = 0;
1200
1201 if (!kvm_has_vcpu_events()) {
1202 if (env->exception_injected == 1) {
1203 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1204 } else if (env->exception_injected == 3) {
1205 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1206 }
1207 env->exception_injected = -1;
1208 }
1209
1210 /*
1211 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1212 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1213 * by updating the debug state once again if single-stepping is on.
1214 * Another reason to call kvm_update_guest_debug here is a pending debug
1215 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1216 * reinject them via SET_GUEST_DEBUG.
1217 */
1218 if (reinject_trap ||
1219 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1220 ret = kvm_update_guest_debug(env, reinject_trap);
1221 }
1222 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1223 return ret;
1224 }
1225
1226 static int kvm_put_debugregs(CPUState *env)
1227 {
1228 #ifdef KVM_CAP_DEBUGREGS
1229 struct kvm_debugregs dbgregs;
1230 int i;
1231
1232 if (!kvm_has_debugregs()) {
1233 return 0;
1234 }
1235
1236 for (i = 0; i < 4; i++) {
1237 dbgregs.db[i] = env->dr[i];
1238 }
1239 dbgregs.dr6 = env->dr[6];
1240 dbgregs.dr7 = env->dr[7];
1241 dbgregs.flags = 0;
1242
1243 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1244 #else
1245 return 0;
1246 #endif
1247 }
1248
1249 static int kvm_get_debugregs(CPUState *env)
1250 {
1251 #ifdef KVM_CAP_DEBUGREGS
1252 struct kvm_debugregs dbgregs;
1253 int i, ret;
1254
1255 if (!kvm_has_debugregs()) {
1256 return 0;
1257 }
1258
1259 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1260 if (ret < 0) {
1261 return ret;
1262 }
1263 for (i = 0; i < 4; i++) {
1264 env->dr[i] = dbgregs.db[i];
1265 }
1266 env->dr[4] = env->dr[6] = dbgregs.dr6;
1267 env->dr[5] = env->dr[7] = dbgregs.dr7;
1268 #endif
1269
1270 return 0;
1271 }
1272
1273 int kvm_arch_put_registers(CPUState *env, int level)
1274 {
1275 int ret;
1276
1277 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1278
1279 ret = kvm_getput_regs(env, 1);
1280 if (ret < 0)
1281 return ret;
1282
1283 ret = kvm_put_xsave(env);
1284 if (ret < 0)
1285 return ret;
1286
1287 ret = kvm_put_xcrs(env);
1288 if (ret < 0)
1289 return ret;
1290
1291 ret = kvm_put_sregs(env);
1292 if (ret < 0)
1293 return ret;
1294
1295 ret = kvm_put_msrs(env, level);
1296 if (ret < 0)
1297 return ret;
1298
1299 if (level >= KVM_PUT_RESET_STATE) {
1300 ret = kvm_put_mp_state(env);
1301 if (ret < 0)
1302 return ret;
1303 }
1304
1305 ret = kvm_put_vcpu_events(env, level);
1306 if (ret < 0)
1307 return ret;
1308
1309 /* must be last */
1310 ret = kvm_guest_debug_workarounds(env);
1311 if (ret < 0)
1312 return ret;
1313
1314 ret = kvm_put_debugregs(env);
1315 if (ret < 0)
1316 return ret;
1317
1318 return 0;
1319 }
1320
1321 int kvm_arch_get_registers(CPUState *env)
1322 {
1323 int ret;
1324
1325 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1326
1327 ret = kvm_getput_regs(env, 0);
1328 if (ret < 0)
1329 return ret;
1330
1331 ret = kvm_get_xsave(env);
1332 if (ret < 0)
1333 return ret;
1334
1335 ret = kvm_get_xcrs(env);
1336 if (ret < 0)
1337 return ret;
1338
1339 ret = kvm_get_sregs(env);
1340 if (ret < 0)
1341 return ret;
1342
1343 ret = kvm_get_msrs(env);
1344 if (ret < 0)
1345 return ret;
1346
1347 ret = kvm_get_mp_state(env);
1348 if (ret < 0)
1349 return ret;
1350
1351 ret = kvm_get_vcpu_events(env);
1352 if (ret < 0)
1353 return ret;
1354
1355 ret = kvm_get_debugregs(env);
1356 if (ret < 0)
1357 return ret;
1358
1359 return 0;
1360 }
1361
1362 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1363 {
1364 /* Try to inject an interrupt if the guest can accept it */
1365 if (run->ready_for_interrupt_injection &&
1366 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1367 (env->eflags & IF_MASK)) {
1368 int irq;
1369
1370 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1371 irq = cpu_get_pic_interrupt(env);
1372 if (irq >= 0) {
1373 struct kvm_interrupt intr;
1374 intr.irq = irq;
1375 /* FIXME: errors */
1376 DPRINTF("injected interrupt %d\n", irq);
1377 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1378 }
1379 }
1380
1381 /* If we have an interrupt but the guest is not ready to receive an
1382 * interrupt, request an interrupt window exit. This will
1383 * cause a return to userspace as soon as the guest is ready to
1384 * receive interrupts. */
1385 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1386 run->request_interrupt_window = 1;
1387 else
1388 run->request_interrupt_window = 0;
1389
1390 DPRINTF("setting tpr\n");
1391 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1392
1393 return 0;
1394 }
1395
1396 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1397 {
1398 if (run->if_flag)
1399 env->eflags |= IF_MASK;
1400 else
1401 env->eflags &= ~IF_MASK;
1402
1403 cpu_set_apic_tpr(env->apic_state, run->cr8);
1404 cpu_set_apic_base(env->apic_state, run->apic_base);
1405
1406 return 0;
1407 }
1408
1409 int kvm_arch_process_irqchip_events(CPUState *env)
1410 {
1411 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1412 kvm_cpu_synchronize_state(env);
1413 do_cpu_init(env);
1414 env->exception_index = EXCP_HALTED;
1415 }
1416
1417 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1418 kvm_cpu_synchronize_state(env);
1419 do_cpu_sipi(env);
1420 }
1421
1422 return env->halted;
1423 }
1424
1425 static int kvm_handle_halt(CPUState *env)
1426 {
1427 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1428 (env->eflags & IF_MASK)) &&
1429 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1430 env->halted = 1;
1431 env->exception_index = EXCP_HLT;
1432 return 0;
1433 }
1434
1435 return 1;
1436 }
1437
1438 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1439 {
1440 int ret = 0;
1441
1442 switch (run->exit_reason) {
1443 case KVM_EXIT_HLT:
1444 DPRINTF("handle_hlt\n");
1445 ret = kvm_handle_halt(env);
1446 break;
1447 }
1448
1449 return ret;
1450 }
1451
1452 #ifdef KVM_CAP_SET_GUEST_DEBUG
1453 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1454 {
1455 static const uint8_t int3 = 0xcc;
1456
1457 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1458 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1459 return -EINVAL;
1460 return 0;
1461 }
1462
1463 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1464 {
1465 uint8_t int3;
1466
1467 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1468 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1469 return -EINVAL;
1470 return 0;
1471 }
1472
1473 static struct {
1474 target_ulong addr;
1475 int len;
1476 int type;
1477 } hw_breakpoint[4];
1478
1479 static int nb_hw_breakpoint;
1480
1481 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1482 {
1483 int n;
1484
1485 for (n = 0; n < nb_hw_breakpoint; n++)
1486 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1487 (hw_breakpoint[n].len == len || len == -1))
1488 return n;
1489 return -1;
1490 }
1491
1492 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1493 target_ulong len, int type)
1494 {
1495 switch (type) {
1496 case GDB_BREAKPOINT_HW:
1497 len = 1;
1498 break;
1499 case GDB_WATCHPOINT_WRITE:
1500 case GDB_WATCHPOINT_ACCESS:
1501 switch (len) {
1502 case 1:
1503 break;
1504 case 2:
1505 case 4:
1506 case 8:
1507 if (addr & (len - 1))
1508 return -EINVAL;
1509 break;
1510 default:
1511 return -EINVAL;
1512 }
1513 break;
1514 default:
1515 return -ENOSYS;
1516 }
1517
1518 if (nb_hw_breakpoint == 4)
1519 return -ENOBUFS;
1520
1521 if (find_hw_breakpoint(addr, len, type) >= 0)
1522 return -EEXIST;
1523
1524 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1525 hw_breakpoint[nb_hw_breakpoint].len = len;
1526 hw_breakpoint[nb_hw_breakpoint].type = type;
1527 nb_hw_breakpoint++;
1528
1529 return 0;
1530 }
1531
1532 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1533 target_ulong len, int type)
1534 {
1535 int n;
1536
1537 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1538 if (n < 0)
1539 return -ENOENT;
1540
1541 nb_hw_breakpoint--;
1542 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1543
1544 return 0;
1545 }
1546
1547 void kvm_arch_remove_all_hw_breakpoints(void)
1548 {
1549 nb_hw_breakpoint = 0;
1550 }
1551
1552 static CPUWatchpoint hw_watchpoint;
1553
1554 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1555 {
1556 int handle = 0;
1557 int n;
1558
1559 if (arch_info->exception == 1) {
1560 if (arch_info->dr6 & (1 << 14)) {
1561 if (cpu_single_env->singlestep_enabled)
1562 handle = 1;
1563 } else {
1564 for (n = 0; n < 4; n++)
1565 if (arch_info->dr6 & (1 << n))
1566 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1567 case 0x0:
1568 handle = 1;
1569 break;
1570 case 0x1:
1571 handle = 1;
1572 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1573 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1574 hw_watchpoint.flags = BP_MEM_WRITE;
1575 break;
1576 case 0x3:
1577 handle = 1;
1578 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1579 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1580 hw_watchpoint.flags = BP_MEM_ACCESS;
1581 break;
1582 }
1583 }
1584 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1585 handle = 1;
1586
1587 if (!handle) {
1588 cpu_synchronize_state(cpu_single_env);
1589 assert(cpu_single_env->exception_injected == -1);
1590
1591 cpu_single_env->exception_injected = arch_info->exception;
1592 cpu_single_env->has_error_code = 0;
1593 }
1594
1595 return handle;
1596 }
1597
1598 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1599 {
1600 const uint8_t type_code[] = {
1601 [GDB_BREAKPOINT_HW] = 0x0,
1602 [GDB_WATCHPOINT_WRITE] = 0x1,
1603 [GDB_WATCHPOINT_ACCESS] = 0x3
1604 };
1605 const uint8_t len_code[] = {
1606 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1607 };
1608 int n;
1609
1610 if (kvm_sw_breakpoints_active(env))
1611 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1612
1613 if (nb_hw_breakpoint > 0) {
1614 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1615 dbg->arch.debugreg[7] = 0x0600;
1616 for (n = 0; n < nb_hw_breakpoint; n++) {
1617 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1618 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1619 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1620 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1621 }
1622 }
1623 /* Legal xcr0 for loading */
1624 env->xcr0 = 1;
1625 }
1626 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1627
1628 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1629 {
1630 return !(env->cr[0] & CR0_PE_MASK) ||
1631 ((env->segs[R_CS].selector & 3) != 3);
1632 }
1633
1634 static void hardware_memory_error(void)
1635 {
1636 fprintf(stderr, "Hardware memory error!\n");
1637 exit(1);
1638 }
1639
1640 #ifdef KVM_CAP_MCE
1641 static void kvm_mce_broadcast_rest(CPUState *env)
1642 {
1643 CPUState *cenv;
1644 int family, model, cpuver = env->cpuid_version;
1645
1646 family = (cpuver >> 8) & 0xf;
1647 model = ((cpuver >> 12) & 0xf0) + ((cpuver >> 4) & 0xf);
1648
1649 /* Broadcast MCA signal for processor version 06H_EH and above */
1650 if ((family == 6 && model >= 14) || family > 6) {
1651 for (cenv = first_cpu; cenv != NULL; cenv = cenv->next_cpu) {
1652 if (cenv == env) {
1653 continue;
1654 }
1655 kvm_inject_x86_mce(cenv, 1, MCI_STATUS_VAL | MCI_STATUS_UC,
1656 MCG_STATUS_MCIP | MCG_STATUS_RIPV, 0, 0, 1);
1657 }
1658 }
1659 }
1660 #endif
1661
1662 int kvm_on_sigbus_vcpu(CPUState *env, int code, void *addr)
1663 {
1664 #if defined(KVM_CAP_MCE)
1665 struct kvm_x86_mce mce = {
1666 .bank = 9,
1667 };
1668 void *vaddr;
1669 ram_addr_t ram_addr;
1670 target_phys_addr_t paddr;
1671 int r;
1672
1673 if ((env->mcg_cap & MCG_SER_P) && addr
1674 && (code == BUS_MCEERR_AR
1675 || code == BUS_MCEERR_AO)) {
1676 if (code == BUS_MCEERR_AR) {
1677 /* Fake an Intel architectural Data Load SRAR UCR */
1678 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1679 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1680 | MCI_STATUS_AR | 0x134;
1681 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1682 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_EIPV;
1683 } else {
1684 /*
1685 * If there is an MCE excpetion being processed, ignore
1686 * this SRAO MCE
1687 */
1688 r = kvm_mce_in_exception(env);
1689 if (r == -1) {
1690 fprintf(stderr, "Failed to get MCE status\n");
1691 } else if (r) {
1692 return 0;
1693 }
1694 /* Fake an Intel architectural Memory scrubbing UCR */
1695 mce.status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1696 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1697 | 0xc0;
1698 mce.misc = (MCM_ADDR_PHYS << 6) | 0xc;
1699 mce.mcg_status = MCG_STATUS_MCIP | MCG_STATUS_RIPV;
1700 }
1701 vaddr = (void *)addr;
1702 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1703 !kvm_physical_memory_addr_from_ram(env->kvm_state, ram_addr, &paddr)) {
1704 fprintf(stderr, "Hardware memory error for memory used by "
1705 "QEMU itself instead of guest system!\n");
1706 /* Hope we are lucky for AO MCE */
1707 if (code == BUS_MCEERR_AO) {
1708 return 0;
1709 } else {
1710 hardware_memory_error();
1711 }
1712 }
1713 mce.addr = paddr;
1714 r = kvm_set_mce(env, &mce);
1715 if (r < 0) {
1716 fprintf(stderr, "kvm_set_mce: %s\n", strerror(errno));
1717 abort();
1718 }
1719 kvm_mce_broadcast_rest(env);
1720 } else
1721 #endif
1722 {
1723 if (code == BUS_MCEERR_AO) {
1724 return 0;
1725 } else if (code == BUS_MCEERR_AR) {
1726 hardware_memory_error();
1727 } else {
1728 return 1;
1729 }
1730 }
1731 return 0;
1732 }
1733
1734 int kvm_on_sigbus(int code, void *addr)
1735 {
1736 #if defined(KVM_CAP_MCE)
1737 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
1738 uint64_t status;
1739 void *vaddr;
1740 ram_addr_t ram_addr;
1741 target_phys_addr_t paddr;
1742
1743 /* Hope we are lucky for AO MCE */
1744 vaddr = addr;
1745 if (qemu_ram_addr_from_host(vaddr, &ram_addr) ||
1746 !kvm_physical_memory_addr_from_ram(first_cpu->kvm_state, ram_addr, &paddr)) {
1747 fprintf(stderr, "Hardware memory error for memory used by "
1748 "QEMU itself instead of guest system!: %p\n", addr);
1749 return 0;
1750 }
1751 status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN
1752 | MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S
1753 | 0xc0;
1754 kvm_inject_x86_mce(first_cpu, 9, status,
1755 MCG_STATUS_MCIP | MCG_STATUS_RIPV, paddr,
1756 (MCM_ADDR_PHYS << 6) | 0xc, 1);
1757 kvm_mce_broadcast_rest(first_cpu);
1758 } else
1759 #endif
1760 {
1761 if (code == BUS_MCEERR_AO) {
1762 return 0;
1763 } else if (code == BUS_MCEERR_AR) {
1764 hardware_memory_error();
1765 } else {
1766 return 1;
1767 }
1768 }
1769 return 0;
1770 }