]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
target-i386: move cpu halted decision into x86_cpu_reset
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "cpu.h"
27 #include "gdbstub.h"
28 #include "host-utils.h"
29 #include "hw/pc.h"
30 #include "hw/apic.h"
31 #include "ioport.h"
32 #include "hyperv.h"
33
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
46
47 #ifndef BUS_MCEERR_AR
48 #define BUS_MCEERR_AR 4
49 #endif
50 #ifndef BUS_MCEERR_AO
51 #define BUS_MCEERR_AO 5
52 #endif
53
54 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
55 KVM_CAP_INFO(SET_TSS_ADDR),
56 KVM_CAP_INFO(EXT_CPUID),
57 KVM_CAP_INFO(MP_STATE),
58 KVM_CAP_LAST_INFO
59 };
60
61 static bool has_msr_star;
62 static bool has_msr_hsave_pa;
63 static bool has_msr_tsc_deadline;
64 static bool has_msr_async_pf_en;
65 static bool has_msr_misc_enable;
66 static int lm_capable_kernel;
67
68 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
69 {
70 struct kvm_cpuid2 *cpuid;
71 int r, size;
72
73 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
74 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
75 cpuid->nent = max;
76 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
77 if (r == 0 && cpuid->nent >= max) {
78 r = -E2BIG;
79 }
80 if (r < 0) {
81 if (r == -E2BIG) {
82 g_free(cpuid);
83 return NULL;
84 } else {
85 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
86 strerror(-r));
87 exit(1);
88 }
89 }
90 return cpuid;
91 }
92
93 struct kvm_para_features {
94 int cap;
95 int feature;
96 } para_features[] = {
97 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
98 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
99 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
100 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
101 { -1, -1 }
102 };
103
104 static int get_para_features(KVMState *s)
105 {
106 int i, features = 0;
107
108 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
109 if (kvm_check_extension(s, para_features[i].cap)) {
110 features |= (1 << para_features[i].feature);
111 }
112 }
113
114 return features;
115 }
116
117
118 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
119 uint32_t index, int reg)
120 {
121 struct kvm_cpuid2 *cpuid;
122 int i, max;
123 uint32_t ret = 0;
124 uint32_t cpuid_1_edx;
125 int has_kvm_features = 0;
126
127 max = 1;
128 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
129 max *= 2;
130 }
131
132 for (i = 0; i < cpuid->nent; ++i) {
133 if (cpuid->entries[i].function == function &&
134 cpuid->entries[i].index == index) {
135 if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
136 has_kvm_features = 1;
137 }
138 switch (reg) {
139 case R_EAX:
140 ret = cpuid->entries[i].eax;
141 break;
142 case R_EBX:
143 ret = cpuid->entries[i].ebx;
144 break;
145 case R_ECX:
146 ret = cpuid->entries[i].ecx;
147 break;
148 case R_EDX:
149 ret = cpuid->entries[i].edx;
150 switch (function) {
151 case 1:
152 /* KVM before 2.6.30 misreports the following features */
153 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
154 break;
155 case 0x80000001:
156 /* On Intel, kvm returns cpuid according to the Intel spec,
157 * so add missing bits according to the AMD spec:
158 */
159 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
160 ret |= cpuid_1_edx & 0x183f7ff;
161 break;
162 }
163 break;
164 }
165 }
166 }
167
168 g_free(cpuid);
169
170 /* fallback for older kernels */
171 if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
172 ret = get_para_features(s);
173 }
174
175 return ret;
176 }
177
178 typedef struct HWPoisonPage {
179 ram_addr_t ram_addr;
180 QLIST_ENTRY(HWPoisonPage) list;
181 } HWPoisonPage;
182
183 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
184 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
185
186 static void kvm_unpoison_all(void *param)
187 {
188 HWPoisonPage *page, *next_page;
189
190 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
191 QLIST_REMOVE(page, list);
192 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
193 g_free(page);
194 }
195 }
196
197 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
198 {
199 HWPoisonPage *page;
200
201 QLIST_FOREACH(page, &hwpoison_page_list, list) {
202 if (page->ram_addr == ram_addr) {
203 return;
204 }
205 }
206 page = g_malloc(sizeof(HWPoisonPage));
207 page->ram_addr = ram_addr;
208 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
209 }
210
211 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
212 int *max_banks)
213 {
214 int r;
215
216 r = kvm_check_extension(s, KVM_CAP_MCE);
217 if (r > 0) {
218 *max_banks = r;
219 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
220 }
221 return -ENOSYS;
222 }
223
224 static void kvm_mce_inject(CPUX86State *env, target_phys_addr_t paddr, int code)
225 {
226 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
227 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
228 uint64_t mcg_status = MCG_STATUS_MCIP;
229
230 if (code == BUS_MCEERR_AR) {
231 status |= MCI_STATUS_AR | 0x134;
232 mcg_status |= MCG_STATUS_EIPV;
233 } else {
234 status |= 0xc0;
235 mcg_status |= MCG_STATUS_RIPV;
236 }
237 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
238 (MCM_ADDR_PHYS << 6) | 0xc,
239 cpu_x86_support_mca_broadcast(env) ?
240 MCE_INJECT_BROADCAST : 0);
241 }
242
243 static void hardware_memory_error(void)
244 {
245 fprintf(stderr, "Hardware memory error!\n");
246 exit(1);
247 }
248
249 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
250 {
251 ram_addr_t ram_addr;
252 target_phys_addr_t paddr;
253
254 if ((env->mcg_cap & MCG_SER_P) && addr
255 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
256 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
257 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
258 fprintf(stderr, "Hardware memory error for memory used by "
259 "QEMU itself instead of guest system!\n");
260 /* Hope we are lucky for AO MCE */
261 if (code == BUS_MCEERR_AO) {
262 return 0;
263 } else {
264 hardware_memory_error();
265 }
266 }
267 kvm_hwpoison_page_add(ram_addr);
268 kvm_mce_inject(env, paddr, code);
269 } else {
270 if (code == BUS_MCEERR_AO) {
271 return 0;
272 } else if (code == BUS_MCEERR_AR) {
273 hardware_memory_error();
274 } else {
275 return 1;
276 }
277 }
278 return 0;
279 }
280
281 int kvm_arch_on_sigbus(int code, void *addr)
282 {
283 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
284 ram_addr_t ram_addr;
285 target_phys_addr_t paddr;
286
287 /* Hope we are lucky for AO MCE */
288 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
289 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
290 &paddr)) {
291 fprintf(stderr, "Hardware memory error for memory used by "
292 "QEMU itself instead of guest system!: %p\n", addr);
293 return 0;
294 }
295 kvm_hwpoison_page_add(ram_addr);
296 kvm_mce_inject(first_cpu, paddr, code);
297 } else {
298 if (code == BUS_MCEERR_AO) {
299 return 0;
300 } else if (code == BUS_MCEERR_AR) {
301 hardware_memory_error();
302 } else {
303 return 1;
304 }
305 }
306 return 0;
307 }
308
309 static int kvm_inject_mce_oldstyle(CPUX86State *env)
310 {
311 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
312 unsigned int bank, bank_num = env->mcg_cap & 0xff;
313 struct kvm_x86_mce mce;
314
315 env->exception_injected = -1;
316
317 /*
318 * There must be at least one bank in use if an MCE is pending.
319 * Find it and use its values for the event injection.
320 */
321 for (bank = 0; bank < bank_num; bank++) {
322 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
323 break;
324 }
325 }
326 assert(bank < bank_num);
327
328 mce.bank = bank;
329 mce.status = env->mce_banks[bank * 4 + 1];
330 mce.mcg_status = env->mcg_status;
331 mce.addr = env->mce_banks[bank * 4 + 2];
332 mce.misc = env->mce_banks[bank * 4 + 3];
333
334 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
335 }
336 return 0;
337 }
338
339 static void cpu_update_state(void *opaque, int running, RunState state)
340 {
341 CPUX86State *env = opaque;
342
343 if (running) {
344 env->tsc_valid = false;
345 }
346 }
347
348 int kvm_arch_init_vcpu(CPUX86State *env)
349 {
350 struct {
351 struct kvm_cpuid2 cpuid;
352 struct kvm_cpuid_entry2 entries[100];
353 } QEMU_PACKED cpuid_data;
354 KVMState *s = env->kvm_state;
355 uint32_t limit, i, j, cpuid_i;
356 uint32_t unused;
357 struct kvm_cpuid_entry2 *c;
358 uint32_t signature[3];
359 int r;
360
361 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
362
363 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
364 j = env->cpuid_ext_features & CPUID_EXT_TSC_DEADLINE_TIMER;
365 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
366 env->cpuid_ext_features |= i;
367 if (j && kvm_irqchip_in_kernel() &&
368 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
369 env->cpuid_ext_features |= CPUID_EXT_TSC_DEADLINE_TIMER;
370 }
371
372 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
373 0, R_EDX);
374 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
375 0, R_ECX);
376 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
377 0, R_EDX);
378
379 cpuid_i = 0;
380
381 /* Paravirtualization CPUIDs */
382 c = &cpuid_data.entries[cpuid_i++];
383 memset(c, 0, sizeof(*c));
384 c->function = KVM_CPUID_SIGNATURE;
385 if (!hyperv_enabled()) {
386 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
387 c->eax = 0;
388 } else {
389 memcpy(signature, "Microsoft Hv", 12);
390 c->eax = HYPERV_CPUID_MIN;
391 }
392 c->ebx = signature[0];
393 c->ecx = signature[1];
394 c->edx = signature[2];
395
396 c = &cpuid_data.entries[cpuid_i++];
397 memset(c, 0, sizeof(*c));
398 c->function = KVM_CPUID_FEATURES;
399 c->eax = env->cpuid_kvm_features &
400 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
401
402 if (hyperv_enabled()) {
403 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
404 c->eax = signature[0];
405
406 c = &cpuid_data.entries[cpuid_i++];
407 memset(c, 0, sizeof(*c));
408 c->function = HYPERV_CPUID_VERSION;
409 c->eax = 0x00001bbc;
410 c->ebx = 0x00060001;
411
412 c = &cpuid_data.entries[cpuid_i++];
413 memset(c, 0, sizeof(*c));
414 c->function = HYPERV_CPUID_FEATURES;
415 if (hyperv_relaxed_timing_enabled()) {
416 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
417 }
418 if (hyperv_vapic_recommended()) {
419 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
420 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
421 }
422
423 c = &cpuid_data.entries[cpuid_i++];
424 memset(c, 0, sizeof(*c));
425 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
426 if (hyperv_relaxed_timing_enabled()) {
427 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
428 }
429 if (hyperv_vapic_recommended()) {
430 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
431 }
432 c->ebx = hyperv_get_spinlock_retries();
433
434 c = &cpuid_data.entries[cpuid_i++];
435 memset(c, 0, sizeof(*c));
436 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
437 c->eax = 0x40;
438 c->ebx = 0x40;
439
440 c = &cpuid_data.entries[cpuid_i++];
441 memset(c, 0, sizeof(*c));
442 c->function = KVM_CPUID_SIGNATURE_NEXT;
443 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
444 c->eax = 0;
445 c->ebx = signature[0];
446 c->ecx = signature[1];
447 c->edx = signature[2];
448 }
449
450 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
451
452 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
453
454 for (i = 0; i <= limit; i++) {
455 c = &cpuid_data.entries[cpuid_i++];
456
457 switch (i) {
458 case 2: {
459 /* Keep reading function 2 till all the input is received */
460 int times;
461
462 c->function = i;
463 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
464 KVM_CPUID_FLAG_STATE_READ_NEXT;
465 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
466 times = c->eax & 0xff;
467
468 for (j = 1; j < times; ++j) {
469 c = &cpuid_data.entries[cpuid_i++];
470 c->function = i;
471 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
472 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
473 }
474 break;
475 }
476 case 4:
477 case 0xb:
478 case 0xd:
479 for (j = 0; ; j++) {
480 if (i == 0xd && j == 64) {
481 break;
482 }
483 c->function = i;
484 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
485 c->index = j;
486 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
487
488 if (i == 4 && c->eax == 0) {
489 break;
490 }
491 if (i == 0xb && !(c->ecx & 0xff00)) {
492 break;
493 }
494 if (i == 0xd && c->eax == 0) {
495 continue;
496 }
497 c = &cpuid_data.entries[cpuid_i++];
498 }
499 break;
500 default:
501 c->function = i;
502 c->flags = 0;
503 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
504 break;
505 }
506 }
507 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
508
509 for (i = 0x80000000; i <= limit; i++) {
510 c = &cpuid_data.entries[cpuid_i++];
511
512 c->function = i;
513 c->flags = 0;
514 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
515 }
516
517 /* Call Centaur's CPUID instructions they are supported. */
518 if (env->cpuid_xlevel2 > 0) {
519 env->cpuid_ext4_features &=
520 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
521 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
522
523 for (i = 0xC0000000; i <= limit; i++) {
524 c = &cpuid_data.entries[cpuid_i++];
525
526 c->function = i;
527 c->flags = 0;
528 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
529 }
530 }
531
532 cpuid_data.cpuid.nent = cpuid_i;
533
534 if (((env->cpuid_version >> 8)&0xF) >= 6
535 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
536 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
537 uint64_t mcg_cap;
538 int banks;
539 int ret;
540
541 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
542 if (ret < 0) {
543 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
544 return ret;
545 }
546
547 if (banks > MCE_BANKS_DEF) {
548 banks = MCE_BANKS_DEF;
549 }
550 mcg_cap &= MCE_CAP_DEF;
551 mcg_cap |= banks;
552 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
553 if (ret < 0) {
554 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
555 return ret;
556 }
557
558 env->mcg_cap = mcg_cap;
559 }
560
561 qemu_add_vm_change_state_handler(cpu_update_state, env);
562
563 cpuid_data.cpuid.padding = 0;
564 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
565 if (r) {
566 return r;
567 }
568
569 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
570 if (r && env->tsc_khz) {
571 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
572 if (r < 0) {
573 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
574 return r;
575 }
576 }
577
578 if (kvm_has_xsave()) {
579 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
580 }
581
582 return 0;
583 }
584
585 void kvm_arch_reset_vcpu(CPUX86State *env)
586 {
587 X86CPU *cpu = x86_env_get_cpu(env);
588
589 env->exception_injected = -1;
590 env->interrupt_injected = -1;
591 env->xcr0 = 1;
592 if (kvm_irqchip_in_kernel()) {
593 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
594 KVM_MP_STATE_UNINITIALIZED;
595 } else {
596 env->mp_state = KVM_MP_STATE_RUNNABLE;
597 }
598 }
599
600 static int kvm_get_supported_msrs(KVMState *s)
601 {
602 static int kvm_supported_msrs;
603 int ret = 0;
604
605 /* first time */
606 if (kvm_supported_msrs == 0) {
607 struct kvm_msr_list msr_list, *kvm_msr_list;
608
609 kvm_supported_msrs = -1;
610
611 /* Obtain MSR list from KVM. These are the MSRs that we must
612 * save/restore */
613 msr_list.nmsrs = 0;
614 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
615 if (ret < 0 && ret != -E2BIG) {
616 return ret;
617 }
618 /* Old kernel modules had a bug and could write beyond the provided
619 memory. Allocate at least a safe amount of 1K. */
620 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
621 msr_list.nmsrs *
622 sizeof(msr_list.indices[0])));
623
624 kvm_msr_list->nmsrs = msr_list.nmsrs;
625 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
626 if (ret >= 0) {
627 int i;
628
629 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
630 if (kvm_msr_list->indices[i] == MSR_STAR) {
631 has_msr_star = true;
632 continue;
633 }
634 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
635 has_msr_hsave_pa = true;
636 continue;
637 }
638 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
639 has_msr_tsc_deadline = true;
640 continue;
641 }
642 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
643 has_msr_misc_enable = true;
644 continue;
645 }
646 }
647 }
648
649 g_free(kvm_msr_list);
650 }
651
652 return ret;
653 }
654
655 int kvm_arch_init(KVMState *s)
656 {
657 QemuOptsList *list = qemu_find_opts("machine");
658 uint64_t identity_base = 0xfffbc000;
659 uint64_t shadow_mem;
660 int ret;
661 struct utsname utsname;
662
663 ret = kvm_get_supported_msrs(s);
664 if (ret < 0) {
665 return ret;
666 }
667
668 uname(&utsname);
669 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
670
671 /*
672 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
673 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
674 * Since these must be part of guest physical memory, we need to allocate
675 * them, both by setting their start addresses in the kernel and by
676 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
677 *
678 * Older KVM versions may not support setting the identity map base. In
679 * that case we need to stick with the default, i.e. a 256K maximum BIOS
680 * size.
681 */
682 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
683 /* Allows up to 16M BIOSes. */
684 identity_base = 0xfeffc000;
685
686 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
687 if (ret < 0) {
688 return ret;
689 }
690 }
691
692 /* Set TSS base one page after EPT identity map. */
693 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
694 if (ret < 0) {
695 return ret;
696 }
697
698 /* Tell fw_cfg to notify the BIOS to reserve the range. */
699 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
700 if (ret < 0) {
701 fprintf(stderr, "e820_add_entry() table is full\n");
702 return ret;
703 }
704 qemu_register_reset(kvm_unpoison_all, NULL);
705
706 if (!QTAILQ_EMPTY(&list->head)) {
707 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
708 "kvm_shadow_mem", -1);
709 if (shadow_mem != -1) {
710 shadow_mem /= 4096;
711 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
712 if (ret < 0) {
713 return ret;
714 }
715 }
716 }
717 return 0;
718 }
719
720 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
721 {
722 lhs->selector = rhs->selector;
723 lhs->base = rhs->base;
724 lhs->limit = rhs->limit;
725 lhs->type = 3;
726 lhs->present = 1;
727 lhs->dpl = 3;
728 lhs->db = 0;
729 lhs->s = 1;
730 lhs->l = 0;
731 lhs->g = 0;
732 lhs->avl = 0;
733 lhs->unusable = 0;
734 }
735
736 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
737 {
738 unsigned flags = rhs->flags;
739 lhs->selector = rhs->selector;
740 lhs->base = rhs->base;
741 lhs->limit = rhs->limit;
742 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
743 lhs->present = (flags & DESC_P_MASK) != 0;
744 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
745 lhs->db = (flags >> DESC_B_SHIFT) & 1;
746 lhs->s = (flags & DESC_S_MASK) != 0;
747 lhs->l = (flags >> DESC_L_SHIFT) & 1;
748 lhs->g = (flags & DESC_G_MASK) != 0;
749 lhs->avl = (flags & DESC_AVL_MASK) != 0;
750 lhs->unusable = 0;
751 lhs->padding = 0;
752 }
753
754 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
755 {
756 lhs->selector = rhs->selector;
757 lhs->base = rhs->base;
758 lhs->limit = rhs->limit;
759 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
760 (rhs->present * DESC_P_MASK) |
761 (rhs->dpl << DESC_DPL_SHIFT) |
762 (rhs->db << DESC_B_SHIFT) |
763 (rhs->s * DESC_S_MASK) |
764 (rhs->l << DESC_L_SHIFT) |
765 (rhs->g * DESC_G_MASK) |
766 (rhs->avl * DESC_AVL_MASK);
767 }
768
769 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
770 {
771 if (set) {
772 *kvm_reg = *qemu_reg;
773 } else {
774 *qemu_reg = *kvm_reg;
775 }
776 }
777
778 static int kvm_getput_regs(CPUX86State *env, int set)
779 {
780 struct kvm_regs regs;
781 int ret = 0;
782
783 if (!set) {
784 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
785 if (ret < 0) {
786 return ret;
787 }
788 }
789
790 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
791 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
792 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
793 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
794 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
795 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
796 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
797 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
798 #ifdef TARGET_X86_64
799 kvm_getput_reg(&regs.r8, &env->regs[8], set);
800 kvm_getput_reg(&regs.r9, &env->regs[9], set);
801 kvm_getput_reg(&regs.r10, &env->regs[10], set);
802 kvm_getput_reg(&regs.r11, &env->regs[11], set);
803 kvm_getput_reg(&regs.r12, &env->regs[12], set);
804 kvm_getput_reg(&regs.r13, &env->regs[13], set);
805 kvm_getput_reg(&regs.r14, &env->regs[14], set);
806 kvm_getput_reg(&regs.r15, &env->regs[15], set);
807 #endif
808
809 kvm_getput_reg(&regs.rflags, &env->eflags, set);
810 kvm_getput_reg(&regs.rip, &env->eip, set);
811
812 if (set) {
813 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
814 }
815
816 return ret;
817 }
818
819 static int kvm_put_fpu(CPUX86State *env)
820 {
821 struct kvm_fpu fpu;
822 int i;
823
824 memset(&fpu, 0, sizeof fpu);
825 fpu.fsw = env->fpus & ~(7 << 11);
826 fpu.fsw |= (env->fpstt & 7) << 11;
827 fpu.fcw = env->fpuc;
828 fpu.last_opcode = env->fpop;
829 fpu.last_ip = env->fpip;
830 fpu.last_dp = env->fpdp;
831 for (i = 0; i < 8; ++i) {
832 fpu.ftwx |= (!env->fptags[i]) << i;
833 }
834 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
835 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
836 fpu.mxcsr = env->mxcsr;
837
838 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
839 }
840
841 #define XSAVE_FCW_FSW 0
842 #define XSAVE_FTW_FOP 1
843 #define XSAVE_CWD_RIP 2
844 #define XSAVE_CWD_RDP 4
845 #define XSAVE_MXCSR 6
846 #define XSAVE_ST_SPACE 8
847 #define XSAVE_XMM_SPACE 40
848 #define XSAVE_XSTATE_BV 128
849 #define XSAVE_YMMH_SPACE 144
850
851 static int kvm_put_xsave(CPUX86State *env)
852 {
853 struct kvm_xsave* xsave = env->kvm_xsave_buf;
854 uint16_t cwd, swd, twd;
855 int i, r;
856
857 if (!kvm_has_xsave()) {
858 return kvm_put_fpu(env);
859 }
860
861 memset(xsave, 0, sizeof(struct kvm_xsave));
862 twd = 0;
863 swd = env->fpus & ~(7 << 11);
864 swd |= (env->fpstt & 7) << 11;
865 cwd = env->fpuc;
866 for (i = 0; i < 8; ++i) {
867 twd |= (!env->fptags[i]) << i;
868 }
869 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
870 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
871 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
872 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
873 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
874 sizeof env->fpregs);
875 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
876 sizeof env->xmm_regs);
877 xsave->region[XSAVE_MXCSR] = env->mxcsr;
878 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
879 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
880 sizeof env->ymmh_regs);
881 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
882 return r;
883 }
884
885 static int kvm_put_xcrs(CPUX86State *env)
886 {
887 struct kvm_xcrs xcrs;
888
889 if (!kvm_has_xcrs()) {
890 return 0;
891 }
892
893 xcrs.nr_xcrs = 1;
894 xcrs.flags = 0;
895 xcrs.xcrs[0].xcr = 0;
896 xcrs.xcrs[0].value = env->xcr0;
897 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
898 }
899
900 static int kvm_put_sregs(CPUX86State *env)
901 {
902 struct kvm_sregs sregs;
903
904 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
905 if (env->interrupt_injected >= 0) {
906 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
907 (uint64_t)1 << (env->interrupt_injected % 64);
908 }
909
910 if ((env->eflags & VM_MASK)) {
911 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
912 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
913 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
914 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
915 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
916 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
917 } else {
918 set_seg(&sregs.cs, &env->segs[R_CS]);
919 set_seg(&sregs.ds, &env->segs[R_DS]);
920 set_seg(&sregs.es, &env->segs[R_ES]);
921 set_seg(&sregs.fs, &env->segs[R_FS]);
922 set_seg(&sregs.gs, &env->segs[R_GS]);
923 set_seg(&sregs.ss, &env->segs[R_SS]);
924 }
925
926 set_seg(&sregs.tr, &env->tr);
927 set_seg(&sregs.ldt, &env->ldt);
928
929 sregs.idt.limit = env->idt.limit;
930 sregs.idt.base = env->idt.base;
931 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
932 sregs.gdt.limit = env->gdt.limit;
933 sregs.gdt.base = env->gdt.base;
934 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
935
936 sregs.cr0 = env->cr[0];
937 sregs.cr2 = env->cr[2];
938 sregs.cr3 = env->cr[3];
939 sregs.cr4 = env->cr[4];
940
941 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
942 sregs.apic_base = cpu_get_apic_base(env->apic_state);
943
944 sregs.efer = env->efer;
945
946 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
947 }
948
949 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
950 uint32_t index, uint64_t value)
951 {
952 entry->index = index;
953 entry->data = value;
954 }
955
956 static int kvm_put_msrs(CPUX86State *env, int level)
957 {
958 struct {
959 struct kvm_msrs info;
960 struct kvm_msr_entry entries[100];
961 } msr_data;
962 struct kvm_msr_entry *msrs = msr_data.entries;
963 int n = 0;
964
965 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
966 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
967 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
968 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
969 if (has_msr_star) {
970 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
971 }
972 if (has_msr_hsave_pa) {
973 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
974 }
975 if (has_msr_tsc_deadline) {
976 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
977 }
978 if (has_msr_misc_enable) {
979 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
980 env->msr_ia32_misc_enable);
981 }
982 #ifdef TARGET_X86_64
983 if (lm_capable_kernel) {
984 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
985 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
986 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
987 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
988 }
989 #endif
990 if (level == KVM_PUT_FULL_STATE) {
991 /*
992 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
993 * writeback. Until this is fixed, we only write the offset to SMP
994 * guests after migration, desynchronizing the VCPUs, but avoiding
995 * huge jump-backs that would occur without any writeback at all.
996 */
997 if (smp_cpus == 1 || env->tsc != 0) {
998 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
999 }
1000 }
1001 /*
1002 * The following paravirtual MSRs have side effects on the guest or are
1003 * too heavy for normal writeback. Limit them to reset or full state
1004 * updates.
1005 */
1006 if (level >= KVM_PUT_RESET_STATE) {
1007 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1008 env->system_time_msr);
1009 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1010 if (has_msr_async_pf_en) {
1011 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1012 env->async_pf_en_msr);
1013 }
1014 if (hyperv_hypercall_available()) {
1015 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1016 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1017 }
1018 if (hyperv_vapic_recommended()) {
1019 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1020 }
1021 }
1022 if (env->mcg_cap) {
1023 int i;
1024
1025 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1026 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1027 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1028 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1029 }
1030 }
1031
1032 msr_data.info.nmsrs = n;
1033
1034 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1035
1036 }
1037
1038
1039 static int kvm_get_fpu(CPUX86State *env)
1040 {
1041 struct kvm_fpu fpu;
1042 int i, ret;
1043
1044 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1045 if (ret < 0) {
1046 return ret;
1047 }
1048
1049 env->fpstt = (fpu.fsw >> 11) & 7;
1050 env->fpus = fpu.fsw;
1051 env->fpuc = fpu.fcw;
1052 env->fpop = fpu.last_opcode;
1053 env->fpip = fpu.last_ip;
1054 env->fpdp = fpu.last_dp;
1055 for (i = 0; i < 8; ++i) {
1056 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1057 }
1058 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1059 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1060 env->mxcsr = fpu.mxcsr;
1061
1062 return 0;
1063 }
1064
1065 static int kvm_get_xsave(CPUX86State *env)
1066 {
1067 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1068 int ret, i;
1069 uint16_t cwd, swd, twd;
1070
1071 if (!kvm_has_xsave()) {
1072 return kvm_get_fpu(env);
1073 }
1074
1075 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1076 if (ret < 0) {
1077 return ret;
1078 }
1079
1080 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1081 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1082 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1083 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1084 env->fpstt = (swd >> 11) & 7;
1085 env->fpus = swd;
1086 env->fpuc = cwd;
1087 for (i = 0; i < 8; ++i) {
1088 env->fptags[i] = !((twd >> i) & 1);
1089 }
1090 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1091 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1092 env->mxcsr = xsave->region[XSAVE_MXCSR];
1093 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1094 sizeof env->fpregs);
1095 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1096 sizeof env->xmm_regs);
1097 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1098 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1099 sizeof env->ymmh_regs);
1100 return 0;
1101 }
1102
1103 static int kvm_get_xcrs(CPUX86State *env)
1104 {
1105 int i, ret;
1106 struct kvm_xcrs xcrs;
1107
1108 if (!kvm_has_xcrs()) {
1109 return 0;
1110 }
1111
1112 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1113 if (ret < 0) {
1114 return ret;
1115 }
1116
1117 for (i = 0; i < xcrs.nr_xcrs; i++) {
1118 /* Only support xcr0 now */
1119 if (xcrs.xcrs[0].xcr == 0) {
1120 env->xcr0 = xcrs.xcrs[0].value;
1121 break;
1122 }
1123 }
1124 return 0;
1125 }
1126
1127 static int kvm_get_sregs(CPUX86State *env)
1128 {
1129 struct kvm_sregs sregs;
1130 uint32_t hflags;
1131 int bit, i, ret;
1132
1133 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1134 if (ret < 0) {
1135 return ret;
1136 }
1137
1138 /* There can only be one pending IRQ set in the bitmap at a time, so try
1139 to find it and save its number instead (-1 for none). */
1140 env->interrupt_injected = -1;
1141 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1142 if (sregs.interrupt_bitmap[i]) {
1143 bit = ctz64(sregs.interrupt_bitmap[i]);
1144 env->interrupt_injected = i * 64 + bit;
1145 break;
1146 }
1147 }
1148
1149 get_seg(&env->segs[R_CS], &sregs.cs);
1150 get_seg(&env->segs[R_DS], &sregs.ds);
1151 get_seg(&env->segs[R_ES], &sregs.es);
1152 get_seg(&env->segs[R_FS], &sregs.fs);
1153 get_seg(&env->segs[R_GS], &sregs.gs);
1154 get_seg(&env->segs[R_SS], &sregs.ss);
1155
1156 get_seg(&env->tr, &sregs.tr);
1157 get_seg(&env->ldt, &sregs.ldt);
1158
1159 env->idt.limit = sregs.idt.limit;
1160 env->idt.base = sregs.idt.base;
1161 env->gdt.limit = sregs.gdt.limit;
1162 env->gdt.base = sregs.gdt.base;
1163
1164 env->cr[0] = sregs.cr0;
1165 env->cr[2] = sregs.cr2;
1166 env->cr[3] = sregs.cr3;
1167 env->cr[4] = sregs.cr4;
1168
1169 env->efer = sregs.efer;
1170
1171 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1172
1173 #define HFLAG_COPY_MASK \
1174 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1175 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1176 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1177 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1178
1179 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1180 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1181 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1182 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1183 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1184 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1185 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1186
1187 if (env->efer & MSR_EFER_LMA) {
1188 hflags |= HF_LMA_MASK;
1189 }
1190
1191 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1192 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1193 } else {
1194 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1195 (DESC_B_SHIFT - HF_CS32_SHIFT);
1196 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1197 (DESC_B_SHIFT - HF_SS32_SHIFT);
1198 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1199 !(hflags & HF_CS32_MASK)) {
1200 hflags |= HF_ADDSEG_MASK;
1201 } else {
1202 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1203 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1204 }
1205 }
1206 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1207
1208 return 0;
1209 }
1210
1211 static int kvm_get_msrs(CPUX86State *env)
1212 {
1213 struct {
1214 struct kvm_msrs info;
1215 struct kvm_msr_entry entries[100];
1216 } msr_data;
1217 struct kvm_msr_entry *msrs = msr_data.entries;
1218 int ret, i, n;
1219
1220 n = 0;
1221 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1222 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1223 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1224 msrs[n++].index = MSR_PAT;
1225 if (has_msr_star) {
1226 msrs[n++].index = MSR_STAR;
1227 }
1228 if (has_msr_hsave_pa) {
1229 msrs[n++].index = MSR_VM_HSAVE_PA;
1230 }
1231 if (has_msr_tsc_deadline) {
1232 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1233 }
1234 if (has_msr_misc_enable) {
1235 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1236 }
1237
1238 if (!env->tsc_valid) {
1239 msrs[n++].index = MSR_IA32_TSC;
1240 env->tsc_valid = !runstate_is_running();
1241 }
1242
1243 #ifdef TARGET_X86_64
1244 if (lm_capable_kernel) {
1245 msrs[n++].index = MSR_CSTAR;
1246 msrs[n++].index = MSR_KERNELGSBASE;
1247 msrs[n++].index = MSR_FMASK;
1248 msrs[n++].index = MSR_LSTAR;
1249 }
1250 #endif
1251 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1252 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1253 if (has_msr_async_pf_en) {
1254 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1255 }
1256
1257 if (env->mcg_cap) {
1258 msrs[n++].index = MSR_MCG_STATUS;
1259 msrs[n++].index = MSR_MCG_CTL;
1260 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1261 msrs[n++].index = MSR_MC0_CTL + i;
1262 }
1263 }
1264
1265 msr_data.info.nmsrs = n;
1266 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1267 if (ret < 0) {
1268 return ret;
1269 }
1270
1271 for (i = 0; i < ret; i++) {
1272 switch (msrs[i].index) {
1273 case MSR_IA32_SYSENTER_CS:
1274 env->sysenter_cs = msrs[i].data;
1275 break;
1276 case MSR_IA32_SYSENTER_ESP:
1277 env->sysenter_esp = msrs[i].data;
1278 break;
1279 case MSR_IA32_SYSENTER_EIP:
1280 env->sysenter_eip = msrs[i].data;
1281 break;
1282 case MSR_PAT:
1283 env->pat = msrs[i].data;
1284 break;
1285 case MSR_STAR:
1286 env->star = msrs[i].data;
1287 break;
1288 #ifdef TARGET_X86_64
1289 case MSR_CSTAR:
1290 env->cstar = msrs[i].data;
1291 break;
1292 case MSR_KERNELGSBASE:
1293 env->kernelgsbase = msrs[i].data;
1294 break;
1295 case MSR_FMASK:
1296 env->fmask = msrs[i].data;
1297 break;
1298 case MSR_LSTAR:
1299 env->lstar = msrs[i].data;
1300 break;
1301 #endif
1302 case MSR_IA32_TSC:
1303 env->tsc = msrs[i].data;
1304 break;
1305 case MSR_IA32_TSCDEADLINE:
1306 env->tsc_deadline = msrs[i].data;
1307 break;
1308 case MSR_VM_HSAVE_PA:
1309 env->vm_hsave = msrs[i].data;
1310 break;
1311 case MSR_KVM_SYSTEM_TIME:
1312 env->system_time_msr = msrs[i].data;
1313 break;
1314 case MSR_KVM_WALL_CLOCK:
1315 env->wall_clock_msr = msrs[i].data;
1316 break;
1317 case MSR_MCG_STATUS:
1318 env->mcg_status = msrs[i].data;
1319 break;
1320 case MSR_MCG_CTL:
1321 env->mcg_ctl = msrs[i].data;
1322 break;
1323 case MSR_IA32_MISC_ENABLE:
1324 env->msr_ia32_misc_enable = msrs[i].data;
1325 break;
1326 default:
1327 if (msrs[i].index >= MSR_MC0_CTL &&
1328 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1329 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1330 }
1331 break;
1332 case MSR_KVM_ASYNC_PF_EN:
1333 env->async_pf_en_msr = msrs[i].data;
1334 break;
1335 }
1336 }
1337
1338 return 0;
1339 }
1340
1341 static int kvm_put_mp_state(CPUX86State *env)
1342 {
1343 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1344
1345 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1346 }
1347
1348 static int kvm_get_mp_state(CPUX86State *env)
1349 {
1350 struct kvm_mp_state mp_state;
1351 int ret;
1352
1353 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1354 if (ret < 0) {
1355 return ret;
1356 }
1357 env->mp_state = mp_state.mp_state;
1358 if (kvm_irqchip_in_kernel()) {
1359 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1360 }
1361 return 0;
1362 }
1363
1364 static int kvm_get_apic(CPUX86State *env)
1365 {
1366 DeviceState *apic = env->apic_state;
1367 struct kvm_lapic_state kapic;
1368 int ret;
1369
1370 if (apic && kvm_irqchip_in_kernel()) {
1371 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1372 if (ret < 0) {
1373 return ret;
1374 }
1375
1376 kvm_get_apic_state(apic, &kapic);
1377 }
1378 return 0;
1379 }
1380
1381 static int kvm_put_apic(CPUX86State *env)
1382 {
1383 DeviceState *apic = env->apic_state;
1384 struct kvm_lapic_state kapic;
1385
1386 if (apic && kvm_irqchip_in_kernel()) {
1387 kvm_put_apic_state(apic, &kapic);
1388
1389 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1390 }
1391 return 0;
1392 }
1393
1394 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1395 {
1396 struct kvm_vcpu_events events;
1397
1398 if (!kvm_has_vcpu_events()) {
1399 return 0;
1400 }
1401
1402 events.exception.injected = (env->exception_injected >= 0);
1403 events.exception.nr = env->exception_injected;
1404 events.exception.has_error_code = env->has_error_code;
1405 events.exception.error_code = env->error_code;
1406 events.exception.pad = 0;
1407
1408 events.interrupt.injected = (env->interrupt_injected >= 0);
1409 events.interrupt.nr = env->interrupt_injected;
1410 events.interrupt.soft = env->soft_interrupt;
1411
1412 events.nmi.injected = env->nmi_injected;
1413 events.nmi.pending = env->nmi_pending;
1414 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1415 events.nmi.pad = 0;
1416
1417 events.sipi_vector = env->sipi_vector;
1418
1419 events.flags = 0;
1420 if (level >= KVM_PUT_RESET_STATE) {
1421 events.flags |=
1422 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1423 }
1424
1425 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1426 }
1427
1428 static int kvm_get_vcpu_events(CPUX86State *env)
1429 {
1430 struct kvm_vcpu_events events;
1431 int ret;
1432
1433 if (!kvm_has_vcpu_events()) {
1434 return 0;
1435 }
1436
1437 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441 env->exception_injected =
1442 events.exception.injected ? events.exception.nr : -1;
1443 env->has_error_code = events.exception.has_error_code;
1444 env->error_code = events.exception.error_code;
1445
1446 env->interrupt_injected =
1447 events.interrupt.injected ? events.interrupt.nr : -1;
1448 env->soft_interrupt = events.interrupt.soft;
1449
1450 env->nmi_injected = events.nmi.injected;
1451 env->nmi_pending = events.nmi.pending;
1452 if (events.nmi.masked) {
1453 env->hflags2 |= HF2_NMI_MASK;
1454 } else {
1455 env->hflags2 &= ~HF2_NMI_MASK;
1456 }
1457
1458 env->sipi_vector = events.sipi_vector;
1459
1460 return 0;
1461 }
1462
1463 static int kvm_guest_debug_workarounds(CPUX86State *env)
1464 {
1465 int ret = 0;
1466 unsigned long reinject_trap = 0;
1467
1468 if (!kvm_has_vcpu_events()) {
1469 if (env->exception_injected == 1) {
1470 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1471 } else if (env->exception_injected == 3) {
1472 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1473 }
1474 env->exception_injected = -1;
1475 }
1476
1477 /*
1478 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1479 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1480 * by updating the debug state once again if single-stepping is on.
1481 * Another reason to call kvm_update_guest_debug here is a pending debug
1482 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1483 * reinject them via SET_GUEST_DEBUG.
1484 */
1485 if (reinject_trap ||
1486 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1487 ret = kvm_update_guest_debug(env, reinject_trap);
1488 }
1489 return ret;
1490 }
1491
1492 static int kvm_put_debugregs(CPUX86State *env)
1493 {
1494 struct kvm_debugregs dbgregs;
1495 int i;
1496
1497 if (!kvm_has_debugregs()) {
1498 return 0;
1499 }
1500
1501 for (i = 0; i < 4; i++) {
1502 dbgregs.db[i] = env->dr[i];
1503 }
1504 dbgregs.dr6 = env->dr[6];
1505 dbgregs.dr7 = env->dr[7];
1506 dbgregs.flags = 0;
1507
1508 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1509 }
1510
1511 static int kvm_get_debugregs(CPUX86State *env)
1512 {
1513 struct kvm_debugregs dbgregs;
1514 int i, ret;
1515
1516 if (!kvm_has_debugregs()) {
1517 return 0;
1518 }
1519
1520 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1521 if (ret < 0) {
1522 return ret;
1523 }
1524 for (i = 0; i < 4; i++) {
1525 env->dr[i] = dbgregs.db[i];
1526 }
1527 env->dr[4] = env->dr[6] = dbgregs.dr6;
1528 env->dr[5] = env->dr[7] = dbgregs.dr7;
1529
1530 return 0;
1531 }
1532
1533 int kvm_arch_put_registers(CPUX86State *env, int level)
1534 {
1535 int ret;
1536
1537 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1538
1539 ret = kvm_getput_regs(env, 1);
1540 if (ret < 0) {
1541 return ret;
1542 }
1543 ret = kvm_put_xsave(env);
1544 if (ret < 0) {
1545 return ret;
1546 }
1547 ret = kvm_put_xcrs(env);
1548 if (ret < 0) {
1549 return ret;
1550 }
1551 ret = kvm_put_sregs(env);
1552 if (ret < 0) {
1553 return ret;
1554 }
1555 /* must be before kvm_put_msrs */
1556 ret = kvm_inject_mce_oldstyle(env);
1557 if (ret < 0) {
1558 return ret;
1559 }
1560 ret = kvm_put_msrs(env, level);
1561 if (ret < 0) {
1562 return ret;
1563 }
1564 if (level >= KVM_PUT_RESET_STATE) {
1565 ret = kvm_put_mp_state(env);
1566 if (ret < 0) {
1567 return ret;
1568 }
1569 ret = kvm_put_apic(env);
1570 if (ret < 0) {
1571 return ret;
1572 }
1573 }
1574 ret = kvm_put_vcpu_events(env, level);
1575 if (ret < 0) {
1576 return ret;
1577 }
1578 ret = kvm_put_debugregs(env);
1579 if (ret < 0) {
1580 return ret;
1581 }
1582 /* must be last */
1583 ret = kvm_guest_debug_workarounds(env);
1584 if (ret < 0) {
1585 return ret;
1586 }
1587 return 0;
1588 }
1589
1590 int kvm_arch_get_registers(CPUX86State *env)
1591 {
1592 int ret;
1593
1594 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1595
1596 ret = kvm_getput_regs(env, 0);
1597 if (ret < 0) {
1598 return ret;
1599 }
1600 ret = kvm_get_xsave(env);
1601 if (ret < 0) {
1602 return ret;
1603 }
1604 ret = kvm_get_xcrs(env);
1605 if (ret < 0) {
1606 return ret;
1607 }
1608 ret = kvm_get_sregs(env);
1609 if (ret < 0) {
1610 return ret;
1611 }
1612 ret = kvm_get_msrs(env);
1613 if (ret < 0) {
1614 return ret;
1615 }
1616 ret = kvm_get_mp_state(env);
1617 if (ret < 0) {
1618 return ret;
1619 }
1620 ret = kvm_get_apic(env);
1621 if (ret < 0) {
1622 return ret;
1623 }
1624 ret = kvm_get_vcpu_events(env);
1625 if (ret < 0) {
1626 return ret;
1627 }
1628 ret = kvm_get_debugregs(env);
1629 if (ret < 0) {
1630 return ret;
1631 }
1632 return 0;
1633 }
1634
1635 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1636 {
1637 int ret;
1638
1639 /* Inject NMI */
1640 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1641 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1642 DPRINTF("injected NMI\n");
1643 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1644 if (ret < 0) {
1645 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1646 strerror(-ret));
1647 }
1648 }
1649
1650 if (!kvm_irqchip_in_kernel()) {
1651 /* Force the VCPU out of its inner loop to process any INIT requests
1652 * or pending TPR access reports. */
1653 if (env->interrupt_request &
1654 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1655 env->exit_request = 1;
1656 }
1657
1658 /* Try to inject an interrupt if the guest can accept it */
1659 if (run->ready_for_interrupt_injection &&
1660 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1661 (env->eflags & IF_MASK)) {
1662 int irq;
1663
1664 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1665 irq = cpu_get_pic_interrupt(env);
1666 if (irq >= 0) {
1667 struct kvm_interrupt intr;
1668
1669 intr.irq = irq;
1670 DPRINTF("injected interrupt %d\n", irq);
1671 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1672 if (ret < 0) {
1673 fprintf(stderr,
1674 "KVM: injection failed, interrupt lost (%s)\n",
1675 strerror(-ret));
1676 }
1677 }
1678 }
1679
1680 /* If we have an interrupt but the guest is not ready to receive an
1681 * interrupt, request an interrupt window exit. This will
1682 * cause a return to userspace as soon as the guest is ready to
1683 * receive interrupts. */
1684 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1685 run->request_interrupt_window = 1;
1686 } else {
1687 run->request_interrupt_window = 0;
1688 }
1689
1690 DPRINTF("setting tpr\n");
1691 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1692 }
1693 }
1694
1695 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1696 {
1697 if (run->if_flag) {
1698 env->eflags |= IF_MASK;
1699 } else {
1700 env->eflags &= ~IF_MASK;
1701 }
1702 cpu_set_apic_tpr(env->apic_state, run->cr8);
1703 cpu_set_apic_base(env->apic_state, run->apic_base);
1704 }
1705
1706 int kvm_arch_process_async_events(CPUX86State *env)
1707 {
1708 X86CPU *cpu = x86_env_get_cpu(env);
1709
1710 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1711 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1712 assert(env->mcg_cap);
1713
1714 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1715
1716 kvm_cpu_synchronize_state(env);
1717
1718 if (env->exception_injected == EXCP08_DBLE) {
1719 /* this means triple fault */
1720 qemu_system_reset_request();
1721 env->exit_request = 1;
1722 return 0;
1723 }
1724 env->exception_injected = EXCP12_MCHK;
1725 env->has_error_code = 0;
1726
1727 env->halted = 0;
1728 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1729 env->mp_state = KVM_MP_STATE_RUNNABLE;
1730 }
1731 }
1732
1733 if (kvm_irqchip_in_kernel()) {
1734 return 0;
1735 }
1736
1737 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1738 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1739 apic_poll_irq(env->apic_state);
1740 }
1741 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1742 (env->eflags & IF_MASK)) ||
1743 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1744 env->halted = 0;
1745 }
1746 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1747 kvm_cpu_synchronize_state(env);
1748 do_cpu_init(cpu);
1749 }
1750 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1751 kvm_cpu_synchronize_state(env);
1752 do_cpu_sipi(cpu);
1753 }
1754 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1755 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1756 kvm_cpu_synchronize_state(env);
1757 apic_handle_tpr_access_report(env->apic_state, env->eip,
1758 env->tpr_access_type);
1759 }
1760
1761 return env->halted;
1762 }
1763
1764 static int kvm_handle_halt(CPUX86State *env)
1765 {
1766 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1767 (env->eflags & IF_MASK)) &&
1768 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1769 env->halted = 1;
1770 return EXCP_HLT;
1771 }
1772
1773 return 0;
1774 }
1775
1776 static int kvm_handle_tpr_access(CPUX86State *env)
1777 {
1778 struct kvm_run *run = env->kvm_run;
1779
1780 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1781 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1782 : TPR_ACCESS_READ);
1783 return 1;
1784 }
1785
1786 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1787 {
1788 static const uint8_t int3 = 0xcc;
1789
1790 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1791 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1792 return -EINVAL;
1793 }
1794 return 0;
1795 }
1796
1797 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1798 {
1799 uint8_t int3;
1800
1801 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1802 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1803 return -EINVAL;
1804 }
1805 return 0;
1806 }
1807
1808 static struct {
1809 target_ulong addr;
1810 int len;
1811 int type;
1812 } hw_breakpoint[4];
1813
1814 static int nb_hw_breakpoint;
1815
1816 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1817 {
1818 int n;
1819
1820 for (n = 0; n < nb_hw_breakpoint; n++) {
1821 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1822 (hw_breakpoint[n].len == len || len == -1)) {
1823 return n;
1824 }
1825 }
1826 return -1;
1827 }
1828
1829 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1830 target_ulong len, int type)
1831 {
1832 switch (type) {
1833 case GDB_BREAKPOINT_HW:
1834 len = 1;
1835 break;
1836 case GDB_WATCHPOINT_WRITE:
1837 case GDB_WATCHPOINT_ACCESS:
1838 switch (len) {
1839 case 1:
1840 break;
1841 case 2:
1842 case 4:
1843 case 8:
1844 if (addr & (len - 1)) {
1845 return -EINVAL;
1846 }
1847 break;
1848 default:
1849 return -EINVAL;
1850 }
1851 break;
1852 default:
1853 return -ENOSYS;
1854 }
1855
1856 if (nb_hw_breakpoint == 4) {
1857 return -ENOBUFS;
1858 }
1859 if (find_hw_breakpoint(addr, len, type) >= 0) {
1860 return -EEXIST;
1861 }
1862 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1863 hw_breakpoint[nb_hw_breakpoint].len = len;
1864 hw_breakpoint[nb_hw_breakpoint].type = type;
1865 nb_hw_breakpoint++;
1866
1867 return 0;
1868 }
1869
1870 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1871 target_ulong len, int type)
1872 {
1873 int n;
1874
1875 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1876 if (n < 0) {
1877 return -ENOENT;
1878 }
1879 nb_hw_breakpoint--;
1880 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1881
1882 return 0;
1883 }
1884
1885 void kvm_arch_remove_all_hw_breakpoints(void)
1886 {
1887 nb_hw_breakpoint = 0;
1888 }
1889
1890 static CPUWatchpoint hw_watchpoint;
1891
1892 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1893 {
1894 int ret = 0;
1895 int n;
1896
1897 if (arch_info->exception == 1) {
1898 if (arch_info->dr6 & (1 << 14)) {
1899 if (cpu_single_env->singlestep_enabled) {
1900 ret = EXCP_DEBUG;
1901 }
1902 } else {
1903 for (n = 0; n < 4; n++) {
1904 if (arch_info->dr6 & (1 << n)) {
1905 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1906 case 0x0:
1907 ret = EXCP_DEBUG;
1908 break;
1909 case 0x1:
1910 ret = EXCP_DEBUG;
1911 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1912 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1913 hw_watchpoint.flags = BP_MEM_WRITE;
1914 break;
1915 case 0x3:
1916 ret = EXCP_DEBUG;
1917 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1918 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1919 hw_watchpoint.flags = BP_MEM_ACCESS;
1920 break;
1921 }
1922 }
1923 }
1924 }
1925 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1926 ret = EXCP_DEBUG;
1927 }
1928 if (ret == 0) {
1929 cpu_synchronize_state(cpu_single_env);
1930 assert(cpu_single_env->exception_injected == -1);
1931
1932 /* pass to guest */
1933 cpu_single_env->exception_injected = arch_info->exception;
1934 cpu_single_env->has_error_code = 0;
1935 }
1936
1937 return ret;
1938 }
1939
1940 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
1941 {
1942 const uint8_t type_code[] = {
1943 [GDB_BREAKPOINT_HW] = 0x0,
1944 [GDB_WATCHPOINT_WRITE] = 0x1,
1945 [GDB_WATCHPOINT_ACCESS] = 0x3
1946 };
1947 const uint8_t len_code[] = {
1948 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1949 };
1950 int n;
1951
1952 if (kvm_sw_breakpoints_active(env)) {
1953 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1954 }
1955 if (nb_hw_breakpoint > 0) {
1956 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1957 dbg->arch.debugreg[7] = 0x0600;
1958 for (n = 0; n < nb_hw_breakpoint; n++) {
1959 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1960 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1961 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1962 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
1963 }
1964 }
1965 }
1966
1967 static bool host_supports_vmx(void)
1968 {
1969 uint32_t ecx, unused;
1970
1971 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
1972 return ecx & CPUID_EXT_VMX;
1973 }
1974
1975 #define VMX_INVALID_GUEST_STATE 0x80000021
1976
1977 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
1978 {
1979 uint64_t code;
1980 int ret;
1981
1982 switch (run->exit_reason) {
1983 case KVM_EXIT_HLT:
1984 DPRINTF("handle_hlt\n");
1985 ret = kvm_handle_halt(env);
1986 break;
1987 case KVM_EXIT_SET_TPR:
1988 ret = 0;
1989 break;
1990 case KVM_EXIT_TPR_ACCESS:
1991 ret = kvm_handle_tpr_access(env);
1992 break;
1993 case KVM_EXIT_FAIL_ENTRY:
1994 code = run->fail_entry.hardware_entry_failure_reason;
1995 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
1996 code);
1997 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
1998 fprintf(stderr,
1999 "\nIf you're running a guest on an Intel machine without "
2000 "unrestricted mode\n"
2001 "support, the failure can be most likely due to the guest "
2002 "entering an invalid\n"
2003 "state for Intel VT. For example, the guest maybe running "
2004 "in big real mode\n"
2005 "which is not supported on less recent Intel processors."
2006 "\n\n");
2007 }
2008 ret = -1;
2009 break;
2010 case KVM_EXIT_EXCEPTION:
2011 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2012 run->ex.exception, run->ex.error_code);
2013 ret = -1;
2014 break;
2015 case KVM_EXIT_DEBUG:
2016 DPRINTF("kvm_exit_debug\n");
2017 ret = kvm_handle_debug(&run->debug.arch);
2018 break;
2019 default:
2020 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2021 ret = -1;
2022 break;
2023 }
2024
2025 return ret;
2026 }
2027
2028 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2029 {
2030 kvm_cpu_synchronize_state(env);
2031 return !(env->cr[0] & CR0_PE_MASK) ||
2032 ((env->segs[R_CS].selector & 3) != 3);
2033 }
2034
2035 void kvm_arch_init_irq_routing(KVMState *s)
2036 {
2037 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2038 /* If kernel can't do irq routing, interrupt source
2039 * override 0->2 cannot be set up as required by HPET.
2040 * So we have to disable it.
2041 */
2042 no_hpet = 1;
2043 }
2044 }