]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
KVM: x86: Restrict writeback of VCPU state
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
29
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
33 //
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define dprintf(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define dprintf(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
46
47 #ifdef KVM_CAP_EXT_CPUID
48
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50 {
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
53
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
60 }
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
69 }
70 }
71 return cpuid;
72 }
73
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
75 {
76 struct kvm_cpuid2 *cpuid;
77 int i, max;
78 uint32_t ret = 0;
79 uint32_t cpuid_1_edx;
80
81 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
82 return -1U;
83 }
84
85 max = 1;
86 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
87 max *= 2;
88 }
89
90 for (i = 0; i < cpuid->nent; ++i) {
91 if (cpuid->entries[i].function == function) {
92 switch (reg) {
93 case R_EAX:
94 ret = cpuid->entries[i].eax;
95 break;
96 case R_EBX:
97 ret = cpuid->entries[i].ebx;
98 break;
99 case R_ECX:
100 ret = cpuid->entries[i].ecx;
101 break;
102 case R_EDX:
103 ret = cpuid->entries[i].edx;
104 switch (function) {
105 case 1:
106 /* KVM before 2.6.30 misreports the following features */
107 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
108 break;
109 case 0x80000001:
110 /* On Intel, kvm returns cpuid according to the Intel spec,
111 * so add missing bits according to the AMD spec:
112 */
113 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, R_EDX);
114 ret |= cpuid_1_edx & 0xdfeff7ff;
115 break;
116 }
117 break;
118 }
119 }
120 }
121
122 qemu_free(cpuid);
123
124 return ret;
125 }
126
127 #else
128
129 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function, int reg)
130 {
131 return -1U;
132 }
133
134 #endif
135
136 static void kvm_trim_features(uint32_t *features, uint32_t supported)
137 {
138 int i;
139 uint32_t mask;
140
141 for (i = 0; i < 32; ++i) {
142 mask = 1U << i;
143 if ((*features & mask) && !(supported & mask)) {
144 *features &= ~mask;
145 }
146 }
147 }
148
149 #ifdef CONFIG_KVM_PARA
150 struct kvm_para_features {
151 int cap;
152 int feature;
153 } para_features[] = {
154 #ifdef KVM_CAP_CLOCKSOURCE
155 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
156 #endif
157 #ifdef KVM_CAP_NOP_IO_DELAY
158 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
159 #endif
160 #ifdef KVM_CAP_PV_MMU
161 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
162 #endif
163 { -1, -1 }
164 };
165
166 static int get_para_features(CPUState *env)
167 {
168 int i, features = 0;
169
170 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
171 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
172 features |= (1 << para_features[i].feature);
173 }
174
175 return features;
176 }
177 #endif
178
179 int kvm_arch_init_vcpu(CPUState *env)
180 {
181 struct {
182 struct kvm_cpuid2 cpuid;
183 struct kvm_cpuid_entry2 entries[100];
184 } __attribute__((packed)) cpuid_data;
185 uint32_t limit, i, j, cpuid_i;
186 uint32_t unused;
187 struct kvm_cpuid_entry2 *c;
188 #ifdef KVM_CPUID_SIGNATURE
189 uint32_t signature[3];
190 #endif
191
192 env->mp_state = KVM_MP_STATE_RUNNABLE;
193
194 kvm_trim_features(&env->cpuid_features,
195 kvm_arch_get_supported_cpuid(env, 1, R_EDX));
196
197 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
198 kvm_trim_features(&env->cpuid_ext_features,
199 kvm_arch_get_supported_cpuid(env, 1, R_ECX));
200 env->cpuid_ext_features |= i;
201
202 kvm_trim_features(&env->cpuid_ext2_features,
203 kvm_arch_get_supported_cpuid(env, 0x80000001, R_EDX));
204 kvm_trim_features(&env->cpuid_ext3_features,
205 kvm_arch_get_supported_cpuid(env, 0x80000001, R_ECX));
206
207 cpuid_i = 0;
208
209 #ifdef CONFIG_KVM_PARA
210 /* Paravirtualization CPUIDs */
211 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
212 c = &cpuid_data.entries[cpuid_i++];
213 memset(c, 0, sizeof(*c));
214 c->function = KVM_CPUID_SIGNATURE;
215 c->eax = 0;
216 c->ebx = signature[0];
217 c->ecx = signature[1];
218 c->edx = signature[2];
219
220 c = &cpuid_data.entries[cpuid_i++];
221 memset(c, 0, sizeof(*c));
222 c->function = KVM_CPUID_FEATURES;
223 c->eax = env->cpuid_kvm_features & get_para_features(env);
224 #endif
225
226 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
227
228 for (i = 0; i <= limit; i++) {
229 c = &cpuid_data.entries[cpuid_i++];
230
231 switch (i) {
232 case 2: {
233 /* Keep reading function 2 till all the input is received */
234 int times;
235
236 c->function = i;
237 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
238 KVM_CPUID_FLAG_STATE_READ_NEXT;
239 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
240 times = c->eax & 0xff;
241
242 for (j = 1; j < times; ++j) {
243 c = &cpuid_data.entries[cpuid_i++];
244 c->function = i;
245 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
246 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
247 }
248 break;
249 }
250 case 4:
251 case 0xb:
252 case 0xd:
253 for (j = 0; ; j++) {
254 c->function = i;
255 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
256 c->index = j;
257 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
258
259 if (i == 4 && c->eax == 0)
260 break;
261 if (i == 0xb && !(c->ecx & 0xff00))
262 break;
263 if (i == 0xd && c->eax == 0)
264 break;
265
266 c = &cpuid_data.entries[cpuid_i++];
267 }
268 break;
269 default:
270 c->function = i;
271 c->flags = 0;
272 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
273 break;
274 }
275 }
276 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
277
278 for (i = 0x80000000; i <= limit; i++) {
279 c = &cpuid_data.entries[cpuid_i++];
280
281 c->function = i;
282 c->flags = 0;
283 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
284 }
285
286 cpuid_data.cpuid.nent = cpuid_i;
287
288 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
289 }
290
291 void kvm_arch_reset_vcpu(CPUState *env)
292 {
293 env->exception_injected = -1;
294 env->interrupt_injected = -1;
295 env->nmi_injected = 0;
296 env->nmi_pending = 0;
297 }
298
299 static int kvm_has_msr_star(CPUState *env)
300 {
301 static int has_msr_star;
302 int ret;
303
304 /* first time */
305 if (has_msr_star == 0) {
306 struct kvm_msr_list msr_list, *kvm_msr_list;
307
308 has_msr_star = -1;
309
310 /* Obtain MSR list from KVM. These are the MSRs that we must
311 * save/restore */
312 msr_list.nmsrs = 0;
313 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
314 if (ret < 0 && ret != -E2BIG) {
315 return 0;
316 }
317 /* Old kernel modules had a bug and could write beyond the provided
318 memory. Allocate at least a safe amount of 1K. */
319 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
320 msr_list.nmsrs *
321 sizeof(msr_list.indices[0])));
322
323 kvm_msr_list->nmsrs = msr_list.nmsrs;
324 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
325 if (ret >= 0) {
326 int i;
327
328 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
329 if (kvm_msr_list->indices[i] == MSR_STAR) {
330 has_msr_star = 1;
331 break;
332 }
333 }
334 }
335
336 free(kvm_msr_list);
337 }
338
339 if (has_msr_star == 1)
340 return 1;
341 return 0;
342 }
343
344 int kvm_arch_init(KVMState *s, int smp_cpus)
345 {
346 int ret;
347
348 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
349 * directly. In order to use vm86 mode, a TSS is needed. Since this
350 * must be part of guest physical memory, we need to allocate it. Older
351 * versions of KVM just assumed that it would be at the end of physical
352 * memory but that doesn't work with more than 4GB of memory. We simply
353 * refuse to work with those older versions of KVM. */
354 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
355 if (ret <= 0) {
356 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
357 return ret;
358 }
359
360 /* this address is 3 pages before the bios, and the bios should present
361 * as unavaible memory. FIXME, need to ensure the e820 map deals with
362 * this?
363 */
364 /*
365 * Tell fw_cfg to notify the BIOS to reserve the range.
366 */
367 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
368 perror("e820_add_entry() table is full");
369 exit(1);
370 }
371 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
372 }
373
374 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
375 {
376 lhs->selector = rhs->selector;
377 lhs->base = rhs->base;
378 lhs->limit = rhs->limit;
379 lhs->type = 3;
380 lhs->present = 1;
381 lhs->dpl = 3;
382 lhs->db = 0;
383 lhs->s = 1;
384 lhs->l = 0;
385 lhs->g = 0;
386 lhs->avl = 0;
387 lhs->unusable = 0;
388 }
389
390 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
391 {
392 unsigned flags = rhs->flags;
393 lhs->selector = rhs->selector;
394 lhs->base = rhs->base;
395 lhs->limit = rhs->limit;
396 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
397 lhs->present = (flags & DESC_P_MASK) != 0;
398 lhs->dpl = rhs->selector & 3;
399 lhs->db = (flags >> DESC_B_SHIFT) & 1;
400 lhs->s = (flags & DESC_S_MASK) != 0;
401 lhs->l = (flags >> DESC_L_SHIFT) & 1;
402 lhs->g = (flags & DESC_G_MASK) != 0;
403 lhs->avl = (flags & DESC_AVL_MASK) != 0;
404 lhs->unusable = 0;
405 }
406
407 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
408 {
409 lhs->selector = rhs->selector;
410 lhs->base = rhs->base;
411 lhs->limit = rhs->limit;
412 lhs->flags =
413 (rhs->type << DESC_TYPE_SHIFT)
414 | (rhs->present * DESC_P_MASK)
415 | (rhs->dpl << DESC_DPL_SHIFT)
416 | (rhs->db << DESC_B_SHIFT)
417 | (rhs->s * DESC_S_MASK)
418 | (rhs->l << DESC_L_SHIFT)
419 | (rhs->g * DESC_G_MASK)
420 | (rhs->avl * DESC_AVL_MASK);
421 }
422
423 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
424 {
425 if (set)
426 *kvm_reg = *qemu_reg;
427 else
428 *qemu_reg = *kvm_reg;
429 }
430
431 static int kvm_getput_regs(CPUState *env, int set)
432 {
433 struct kvm_regs regs;
434 int ret = 0;
435
436 if (!set) {
437 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
438 if (ret < 0)
439 return ret;
440 }
441
442 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
443 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
444 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
445 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
446 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
447 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
448 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
449 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
450 #ifdef TARGET_X86_64
451 kvm_getput_reg(&regs.r8, &env->regs[8], set);
452 kvm_getput_reg(&regs.r9, &env->regs[9], set);
453 kvm_getput_reg(&regs.r10, &env->regs[10], set);
454 kvm_getput_reg(&regs.r11, &env->regs[11], set);
455 kvm_getput_reg(&regs.r12, &env->regs[12], set);
456 kvm_getput_reg(&regs.r13, &env->regs[13], set);
457 kvm_getput_reg(&regs.r14, &env->regs[14], set);
458 kvm_getput_reg(&regs.r15, &env->regs[15], set);
459 #endif
460
461 kvm_getput_reg(&regs.rflags, &env->eflags, set);
462 kvm_getput_reg(&regs.rip, &env->eip, set);
463
464 if (set)
465 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
466
467 return ret;
468 }
469
470 static int kvm_put_fpu(CPUState *env)
471 {
472 struct kvm_fpu fpu;
473 int i;
474
475 memset(&fpu, 0, sizeof fpu);
476 fpu.fsw = env->fpus & ~(7 << 11);
477 fpu.fsw |= (env->fpstt & 7) << 11;
478 fpu.fcw = env->fpuc;
479 for (i = 0; i < 8; ++i)
480 fpu.ftwx |= (!env->fptags[i]) << i;
481 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
482 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
483 fpu.mxcsr = env->mxcsr;
484
485 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
486 }
487
488 static int kvm_put_sregs(CPUState *env)
489 {
490 struct kvm_sregs sregs;
491
492 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
493 if (env->interrupt_injected >= 0) {
494 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
495 (uint64_t)1 << (env->interrupt_injected % 64);
496 }
497
498 if ((env->eflags & VM_MASK)) {
499 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
500 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
501 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
502 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
503 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
504 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
505 } else {
506 set_seg(&sregs.cs, &env->segs[R_CS]);
507 set_seg(&sregs.ds, &env->segs[R_DS]);
508 set_seg(&sregs.es, &env->segs[R_ES]);
509 set_seg(&sregs.fs, &env->segs[R_FS]);
510 set_seg(&sregs.gs, &env->segs[R_GS]);
511 set_seg(&sregs.ss, &env->segs[R_SS]);
512
513 if (env->cr[0] & CR0_PE_MASK) {
514 /* force ss cpl to cs cpl */
515 sregs.ss.selector = (sregs.ss.selector & ~3) |
516 (sregs.cs.selector & 3);
517 sregs.ss.dpl = sregs.ss.selector & 3;
518 }
519 }
520
521 set_seg(&sregs.tr, &env->tr);
522 set_seg(&sregs.ldt, &env->ldt);
523
524 sregs.idt.limit = env->idt.limit;
525 sregs.idt.base = env->idt.base;
526 sregs.gdt.limit = env->gdt.limit;
527 sregs.gdt.base = env->gdt.base;
528
529 sregs.cr0 = env->cr[0];
530 sregs.cr2 = env->cr[2];
531 sregs.cr3 = env->cr[3];
532 sregs.cr4 = env->cr[4];
533
534 sregs.cr8 = cpu_get_apic_tpr(env);
535 sregs.apic_base = cpu_get_apic_base(env);
536
537 sregs.efer = env->efer;
538
539 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
540 }
541
542 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
543 uint32_t index, uint64_t value)
544 {
545 entry->index = index;
546 entry->data = value;
547 }
548
549 static int kvm_put_msrs(CPUState *env, int level)
550 {
551 struct {
552 struct kvm_msrs info;
553 struct kvm_msr_entry entries[100];
554 } msr_data;
555 struct kvm_msr_entry *msrs = msr_data.entries;
556 int n = 0;
557
558 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
559 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
560 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
561 if (kvm_has_msr_star(env))
562 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
563 #ifdef TARGET_X86_64
564 /* FIXME if lm capable */
565 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
566 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
567 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
568 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
569 #endif
570 if (level == KVM_PUT_FULL_STATE) {
571 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
572 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
573 env->system_time_msr);
574 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
575 }
576
577 msr_data.info.nmsrs = n;
578
579 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
580
581 }
582
583
584 static int kvm_get_fpu(CPUState *env)
585 {
586 struct kvm_fpu fpu;
587 int i, ret;
588
589 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
590 if (ret < 0)
591 return ret;
592
593 env->fpstt = (fpu.fsw >> 11) & 7;
594 env->fpus = fpu.fsw;
595 env->fpuc = fpu.fcw;
596 for (i = 0; i < 8; ++i)
597 env->fptags[i] = !((fpu.ftwx >> i) & 1);
598 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
599 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
600 env->mxcsr = fpu.mxcsr;
601
602 return 0;
603 }
604
605 static int kvm_get_sregs(CPUState *env)
606 {
607 struct kvm_sregs sregs;
608 uint32_t hflags;
609 int bit, i, ret;
610
611 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
612 if (ret < 0)
613 return ret;
614
615 /* There can only be one pending IRQ set in the bitmap at a time, so try
616 to find it and save its number instead (-1 for none). */
617 env->interrupt_injected = -1;
618 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
619 if (sregs.interrupt_bitmap[i]) {
620 bit = ctz64(sregs.interrupt_bitmap[i]);
621 env->interrupt_injected = i * 64 + bit;
622 break;
623 }
624 }
625
626 get_seg(&env->segs[R_CS], &sregs.cs);
627 get_seg(&env->segs[R_DS], &sregs.ds);
628 get_seg(&env->segs[R_ES], &sregs.es);
629 get_seg(&env->segs[R_FS], &sregs.fs);
630 get_seg(&env->segs[R_GS], &sregs.gs);
631 get_seg(&env->segs[R_SS], &sregs.ss);
632
633 get_seg(&env->tr, &sregs.tr);
634 get_seg(&env->ldt, &sregs.ldt);
635
636 env->idt.limit = sregs.idt.limit;
637 env->idt.base = sregs.idt.base;
638 env->gdt.limit = sregs.gdt.limit;
639 env->gdt.base = sregs.gdt.base;
640
641 env->cr[0] = sregs.cr0;
642 env->cr[2] = sregs.cr2;
643 env->cr[3] = sregs.cr3;
644 env->cr[4] = sregs.cr4;
645
646 cpu_set_apic_base(env, sregs.apic_base);
647
648 env->efer = sregs.efer;
649 //cpu_set_apic_tpr(env, sregs.cr8);
650
651 #define HFLAG_COPY_MASK ~( \
652 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
653 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
654 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
655 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
656
657
658
659 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
660 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
661 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
662 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
663 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
664 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
665 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
666
667 if (env->efer & MSR_EFER_LMA) {
668 hflags |= HF_LMA_MASK;
669 }
670
671 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
672 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
673 } else {
674 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
675 (DESC_B_SHIFT - HF_CS32_SHIFT);
676 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
677 (DESC_B_SHIFT - HF_SS32_SHIFT);
678 if (!(env->cr[0] & CR0_PE_MASK) ||
679 (env->eflags & VM_MASK) ||
680 !(hflags & HF_CS32_MASK)) {
681 hflags |= HF_ADDSEG_MASK;
682 } else {
683 hflags |= ((env->segs[R_DS].base |
684 env->segs[R_ES].base |
685 env->segs[R_SS].base) != 0) <<
686 HF_ADDSEG_SHIFT;
687 }
688 }
689 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
690
691 return 0;
692 }
693
694 static int kvm_get_msrs(CPUState *env)
695 {
696 struct {
697 struct kvm_msrs info;
698 struct kvm_msr_entry entries[100];
699 } msr_data;
700 struct kvm_msr_entry *msrs = msr_data.entries;
701 int ret, i, n;
702
703 n = 0;
704 msrs[n++].index = MSR_IA32_SYSENTER_CS;
705 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
706 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
707 if (kvm_has_msr_star(env))
708 msrs[n++].index = MSR_STAR;
709 msrs[n++].index = MSR_IA32_TSC;
710 #ifdef TARGET_X86_64
711 /* FIXME lm_capable_kernel */
712 msrs[n++].index = MSR_CSTAR;
713 msrs[n++].index = MSR_KERNELGSBASE;
714 msrs[n++].index = MSR_FMASK;
715 msrs[n++].index = MSR_LSTAR;
716 #endif
717 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
718 msrs[n++].index = MSR_KVM_WALL_CLOCK;
719
720 msr_data.info.nmsrs = n;
721 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
722 if (ret < 0)
723 return ret;
724
725 for (i = 0; i < ret; i++) {
726 switch (msrs[i].index) {
727 case MSR_IA32_SYSENTER_CS:
728 env->sysenter_cs = msrs[i].data;
729 break;
730 case MSR_IA32_SYSENTER_ESP:
731 env->sysenter_esp = msrs[i].data;
732 break;
733 case MSR_IA32_SYSENTER_EIP:
734 env->sysenter_eip = msrs[i].data;
735 break;
736 case MSR_STAR:
737 env->star = msrs[i].data;
738 break;
739 #ifdef TARGET_X86_64
740 case MSR_CSTAR:
741 env->cstar = msrs[i].data;
742 break;
743 case MSR_KERNELGSBASE:
744 env->kernelgsbase = msrs[i].data;
745 break;
746 case MSR_FMASK:
747 env->fmask = msrs[i].data;
748 break;
749 case MSR_LSTAR:
750 env->lstar = msrs[i].data;
751 break;
752 #endif
753 case MSR_IA32_TSC:
754 env->tsc = msrs[i].data;
755 break;
756 case MSR_KVM_SYSTEM_TIME:
757 env->system_time_msr = msrs[i].data;
758 break;
759 case MSR_KVM_WALL_CLOCK:
760 env->wall_clock_msr = msrs[i].data;
761 break;
762 }
763 }
764
765 return 0;
766 }
767
768 static int kvm_put_mp_state(CPUState *env)
769 {
770 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
771
772 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
773 }
774
775 static int kvm_get_mp_state(CPUState *env)
776 {
777 struct kvm_mp_state mp_state;
778 int ret;
779
780 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
781 if (ret < 0) {
782 return ret;
783 }
784 env->mp_state = mp_state.mp_state;
785 return 0;
786 }
787
788 static int kvm_put_vcpu_events(CPUState *env, int level)
789 {
790 #ifdef KVM_CAP_VCPU_EVENTS
791 struct kvm_vcpu_events events;
792
793 if (!kvm_has_vcpu_events()) {
794 return 0;
795 }
796
797 events.exception.injected = (env->exception_injected >= 0);
798 events.exception.nr = env->exception_injected;
799 events.exception.has_error_code = env->has_error_code;
800 events.exception.error_code = env->error_code;
801
802 events.interrupt.injected = (env->interrupt_injected >= 0);
803 events.interrupt.nr = env->interrupt_injected;
804 events.interrupt.soft = env->soft_interrupt;
805
806 events.nmi.injected = env->nmi_injected;
807 events.nmi.pending = env->nmi_pending;
808 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
809
810 events.sipi_vector = env->sipi_vector;
811
812 events.flags = 0;
813 if (level >= KVM_PUT_RESET_STATE) {
814 events.flags |=
815 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
816 }
817
818 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
819 #else
820 return 0;
821 #endif
822 }
823
824 static int kvm_get_vcpu_events(CPUState *env)
825 {
826 #ifdef KVM_CAP_VCPU_EVENTS
827 struct kvm_vcpu_events events;
828 int ret;
829
830 if (!kvm_has_vcpu_events()) {
831 return 0;
832 }
833
834 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
835 if (ret < 0) {
836 return ret;
837 }
838 env->exception_injected =
839 events.exception.injected ? events.exception.nr : -1;
840 env->has_error_code = events.exception.has_error_code;
841 env->error_code = events.exception.error_code;
842
843 env->interrupt_injected =
844 events.interrupt.injected ? events.interrupt.nr : -1;
845 env->soft_interrupt = events.interrupt.soft;
846
847 env->nmi_injected = events.nmi.injected;
848 env->nmi_pending = events.nmi.pending;
849 if (events.nmi.masked) {
850 env->hflags2 |= HF2_NMI_MASK;
851 } else {
852 env->hflags2 &= ~HF2_NMI_MASK;
853 }
854
855 env->sipi_vector = events.sipi_vector;
856 #endif
857
858 return 0;
859 }
860
861 static int kvm_guest_debug_workarounds(CPUState *env)
862 {
863 int ret = 0;
864 #ifdef KVM_CAP_SET_GUEST_DEBUG
865 unsigned long reinject_trap = 0;
866
867 if (!kvm_has_vcpu_events()) {
868 if (env->exception_injected == 1) {
869 reinject_trap = KVM_GUESTDBG_INJECT_DB;
870 } else if (env->exception_injected == 3) {
871 reinject_trap = KVM_GUESTDBG_INJECT_BP;
872 }
873 env->exception_injected = -1;
874 }
875
876 /*
877 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
878 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
879 * by updating the debug state once again if single-stepping is on.
880 * Another reason to call kvm_update_guest_debug here is a pending debug
881 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
882 * reinject them via SET_GUEST_DEBUG.
883 */
884 if (reinject_trap ||
885 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
886 ret = kvm_update_guest_debug(env, reinject_trap);
887 }
888 #endif /* KVM_CAP_SET_GUEST_DEBUG */
889 return ret;
890 }
891
892 int kvm_arch_put_registers(CPUState *env, int level)
893 {
894 int ret;
895
896 ret = kvm_getput_regs(env, 1);
897 if (ret < 0)
898 return ret;
899
900 ret = kvm_put_fpu(env);
901 if (ret < 0)
902 return ret;
903
904 ret = kvm_put_sregs(env);
905 if (ret < 0)
906 return ret;
907
908 ret = kvm_put_msrs(env, level);
909 if (ret < 0)
910 return ret;
911
912 if (level >= KVM_PUT_RESET_STATE) {
913 ret = kvm_put_mp_state(env);
914 if (ret < 0)
915 return ret;
916 }
917
918 ret = kvm_put_vcpu_events(env, level);
919 if (ret < 0)
920 return ret;
921
922 /* must be last */
923 ret = kvm_guest_debug_workarounds(env);
924 if (ret < 0)
925 return ret;
926
927 return 0;
928 }
929
930 int kvm_arch_get_registers(CPUState *env)
931 {
932 int ret;
933
934 ret = kvm_getput_regs(env, 0);
935 if (ret < 0)
936 return ret;
937
938 ret = kvm_get_fpu(env);
939 if (ret < 0)
940 return ret;
941
942 ret = kvm_get_sregs(env);
943 if (ret < 0)
944 return ret;
945
946 ret = kvm_get_msrs(env);
947 if (ret < 0)
948 return ret;
949
950 ret = kvm_get_mp_state(env);
951 if (ret < 0)
952 return ret;
953
954 ret = kvm_get_vcpu_events(env);
955 if (ret < 0)
956 return ret;
957
958 return 0;
959 }
960
961 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
962 {
963 /* Try to inject an interrupt if the guest can accept it */
964 if (run->ready_for_interrupt_injection &&
965 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
966 (env->eflags & IF_MASK)) {
967 int irq;
968
969 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
970 irq = cpu_get_pic_interrupt(env);
971 if (irq >= 0) {
972 struct kvm_interrupt intr;
973 intr.irq = irq;
974 /* FIXME: errors */
975 dprintf("injected interrupt %d\n", irq);
976 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
977 }
978 }
979
980 /* If we have an interrupt but the guest is not ready to receive an
981 * interrupt, request an interrupt window exit. This will
982 * cause a return to userspace as soon as the guest is ready to
983 * receive interrupts. */
984 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
985 run->request_interrupt_window = 1;
986 else
987 run->request_interrupt_window = 0;
988
989 dprintf("setting tpr\n");
990 run->cr8 = cpu_get_apic_tpr(env);
991
992 return 0;
993 }
994
995 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
996 {
997 if (run->if_flag)
998 env->eflags |= IF_MASK;
999 else
1000 env->eflags &= ~IF_MASK;
1001
1002 cpu_set_apic_tpr(env, run->cr8);
1003 cpu_set_apic_base(env, run->apic_base);
1004
1005 return 0;
1006 }
1007
1008 static int kvm_handle_halt(CPUState *env)
1009 {
1010 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1011 (env->eflags & IF_MASK)) &&
1012 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1013 env->halted = 1;
1014 env->exception_index = EXCP_HLT;
1015 return 0;
1016 }
1017
1018 return 1;
1019 }
1020
1021 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1022 {
1023 int ret = 0;
1024
1025 switch (run->exit_reason) {
1026 case KVM_EXIT_HLT:
1027 dprintf("handle_hlt\n");
1028 ret = kvm_handle_halt(env);
1029 break;
1030 }
1031
1032 return ret;
1033 }
1034
1035 #ifdef KVM_CAP_SET_GUEST_DEBUG
1036 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1037 {
1038 static const uint8_t int3 = 0xcc;
1039
1040 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1041 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1042 return -EINVAL;
1043 return 0;
1044 }
1045
1046 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1047 {
1048 uint8_t int3;
1049
1050 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1051 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1052 return -EINVAL;
1053 return 0;
1054 }
1055
1056 static struct {
1057 target_ulong addr;
1058 int len;
1059 int type;
1060 } hw_breakpoint[4];
1061
1062 static int nb_hw_breakpoint;
1063
1064 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1065 {
1066 int n;
1067
1068 for (n = 0; n < nb_hw_breakpoint; n++)
1069 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1070 (hw_breakpoint[n].len == len || len == -1))
1071 return n;
1072 return -1;
1073 }
1074
1075 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1076 target_ulong len, int type)
1077 {
1078 switch (type) {
1079 case GDB_BREAKPOINT_HW:
1080 len = 1;
1081 break;
1082 case GDB_WATCHPOINT_WRITE:
1083 case GDB_WATCHPOINT_ACCESS:
1084 switch (len) {
1085 case 1:
1086 break;
1087 case 2:
1088 case 4:
1089 case 8:
1090 if (addr & (len - 1))
1091 return -EINVAL;
1092 break;
1093 default:
1094 return -EINVAL;
1095 }
1096 break;
1097 default:
1098 return -ENOSYS;
1099 }
1100
1101 if (nb_hw_breakpoint == 4)
1102 return -ENOBUFS;
1103
1104 if (find_hw_breakpoint(addr, len, type) >= 0)
1105 return -EEXIST;
1106
1107 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1108 hw_breakpoint[nb_hw_breakpoint].len = len;
1109 hw_breakpoint[nb_hw_breakpoint].type = type;
1110 nb_hw_breakpoint++;
1111
1112 return 0;
1113 }
1114
1115 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1116 target_ulong len, int type)
1117 {
1118 int n;
1119
1120 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1121 if (n < 0)
1122 return -ENOENT;
1123
1124 nb_hw_breakpoint--;
1125 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1126
1127 return 0;
1128 }
1129
1130 void kvm_arch_remove_all_hw_breakpoints(void)
1131 {
1132 nb_hw_breakpoint = 0;
1133 }
1134
1135 static CPUWatchpoint hw_watchpoint;
1136
1137 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1138 {
1139 int handle = 0;
1140 int n;
1141
1142 if (arch_info->exception == 1) {
1143 if (arch_info->dr6 & (1 << 14)) {
1144 if (cpu_single_env->singlestep_enabled)
1145 handle = 1;
1146 } else {
1147 for (n = 0; n < 4; n++)
1148 if (arch_info->dr6 & (1 << n))
1149 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1150 case 0x0:
1151 handle = 1;
1152 break;
1153 case 0x1:
1154 handle = 1;
1155 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1156 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1157 hw_watchpoint.flags = BP_MEM_WRITE;
1158 break;
1159 case 0x3:
1160 handle = 1;
1161 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1162 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1163 hw_watchpoint.flags = BP_MEM_ACCESS;
1164 break;
1165 }
1166 }
1167 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1168 handle = 1;
1169
1170 if (!handle) {
1171 cpu_synchronize_state(cpu_single_env);
1172 assert(cpu_single_env->exception_injected == -1);
1173
1174 cpu_single_env->exception_injected = arch_info->exception;
1175 cpu_single_env->has_error_code = 0;
1176 }
1177
1178 return handle;
1179 }
1180
1181 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1182 {
1183 const uint8_t type_code[] = {
1184 [GDB_BREAKPOINT_HW] = 0x0,
1185 [GDB_WATCHPOINT_WRITE] = 0x1,
1186 [GDB_WATCHPOINT_ACCESS] = 0x3
1187 };
1188 const uint8_t len_code[] = {
1189 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1190 };
1191 int n;
1192
1193 if (kvm_sw_breakpoints_active(env))
1194 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1195
1196 if (nb_hw_breakpoint > 0) {
1197 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1198 dbg->arch.debugreg[7] = 0x0600;
1199 for (n = 0; n < nb_hw_breakpoint; n++) {
1200 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1201 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1202 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1203 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1204 }
1205 }
1206 }
1207 #endif /* KVM_CAP_SET_GUEST_DEBUG */