]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
i386: kvm: mask cpuid_kvm_features earlier
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_deadline;
66 static bool has_msr_async_pf_en;
67 static bool has_msr_pv_eoi_en;
68 static bool has_msr_misc_enable;
69 static int lm_capable_kernel;
70
71 bool kvm_allows_irq0_override(void)
72 {
73 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
74 }
75
76 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
77 {
78 struct kvm_cpuid2 *cpuid;
79 int r, size;
80
81 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
82 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
83 cpuid->nent = max;
84 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
85 if (r == 0 && cpuid->nent >= max) {
86 r = -E2BIG;
87 }
88 if (r < 0) {
89 if (r == -E2BIG) {
90 g_free(cpuid);
91 return NULL;
92 } else {
93 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
94 strerror(-r));
95 exit(1);
96 }
97 }
98 return cpuid;
99 }
100
101 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
102 * for all entries.
103 */
104 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
105 {
106 struct kvm_cpuid2 *cpuid;
107 int max = 1;
108 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
109 max *= 2;
110 }
111 return cpuid;
112 }
113
114 struct kvm_para_features {
115 int cap;
116 int feature;
117 } para_features[] = {
118 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
119 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
120 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
121 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
122 { -1, -1 }
123 };
124
125 static int get_para_features(KVMState *s)
126 {
127 int i, features = 0;
128
129 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
130 if (kvm_check_extension(s, para_features[i].cap)) {
131 features |= (1 << para_features[i].feature);
132 }
133 }
134
135 return features;
136 }
137
138
139 /* Returns the value for a specific register on the cpuid entry
140 */
141 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
142 {
143 uint32_t ret = 0;
144 switch (reg) {
145 case R_EAX:
146 ret = entry->eax;
147 break;
148 case R_EBX:
149 ret = entry->ebx;
150 break;
151 case R_ECX:
152 ret = entry->ecx;
153 break;
154 case R_EDX:
155 ret = entry->edx;
156 break;
157 }
158 return ret;
159 }
160
161 /* Find matching entry for function/index on kvm_cpuid2 struct
162 */
163 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
164 uint32_t function,
165 uint32_t index)
166 {
167 int i;
168 for (i = 0; i < cpuid->nent; ++i) {
169 if (cpuid->entries[i].function == function &&
170 cpuid->entries[i].index == index) {
171 return &cpuid->entries[i];
172 }
173 }
174 /* not found: */
175 return NULL;
176 }
177
178 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
179 uint32_t index, int reg)
180 {
181 struct kvm_cpuid2 *cpuid;
182 uint32_t ret = 0;
183 uint32_t cpuid_1_edx;
184 bool found = false;
185
186 cpuid = get_supported_cpuid(s);
187
188 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
189 if (entry) {
190 found = true;
191 ret = cpuid_entry_get_reg(entry, reg);
192 }
193
194 /* Fixups for the data returned by KVM, below */
195
196 if (function == 1 && reg == R_EDX) {
197 /* KVM before 2.6.30 misreports the following features */
198 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
199 } else if (function == 1 && reg == R_ECX) {
200 /* We can set the hypervisor flag, even if KVM does not return it on
201 * GET_SUPPORTED_CPUID
202 */
203 ret |= CPUID_EXT_HYPERVISOR;
204 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
205 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
206 * and the irqchip is in the kernel.
207 */
208 if (kvm_irqchip_in_kernel() &&
209 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
210 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
211 }
212
213 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
214 * without the in-kernel irqchip
215 */
216 if (!kvm_irqchip_in_kernel()) {
217 ret &= ~CPUID_EXT_X2APIC;
218 }
219 } else if (function == 0x80000001 && reg == R_EDX) {
220 /* On Intel, kvm returns cpuid according to the Intel spec,
221 * so add missing bits according to the AMD spec:
222 */
223 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
224 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
225 }
226
227 g_free(cpuid);
228
229 /* fallback for older kernels */
230 if ((function == KVM_CPUID_FEATURES) && !found) {
231 ret = get_para_features(s);
232 }
233
234 return ret;
235 }
236
237 typedef struct HWPoisonPage {
238 ram_addr_t ram_addr;
239 QLIST_ENTRY(HWPoisonPage) list;
240 } HWPoisonPage;
241
242 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
243 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
244
245 static void kvm_unpoison_all(void *param)
246 {
247 HWPoisonPage *page, *next_page;
248
249 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
250 QLIST_REMOVE(page, list);
251 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
252 g_free(page);
253 }
254 }
255
256 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
257 {
258 HWPoisonPage *page;
259
260 QLIST_FOREACH(page, &hwpoison_page_list, list) {
261 if (page->ram_addr == ram_addr) {
262 return;
263 }
264 }
265 page = g_malloc(sizeof(HWPoisonPage));
266 page->ram_addr = ram_addr;
267 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
268 }
269
270 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
271 int *max_banks)
272 {
273 int r;
274
275 r = kvm_check_extension(s, KVM_CAP_MCE);
276 if (r > 0) {
277 *max_banks = r;
278 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
279 }
280 return -ENOSYS;
281 }
282
283 static void kvm_mce_inject(CPUX86State *env, hwaddr paddr, int code)
284 {
285 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
286 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
287 uint64_t mcg_status = MCG_STATUS_MCIP;
288
289 if (code == BUS_MCEERR_AR) {
290 status |= MCI_STATUS_AR | 0x134;
291 mcg_status |= MCG_STATUS_EIPV;
292 } else {
293 status |= 0xc0;
294 mcg_status |= MCG_STATUS_RIPV;
295 }
296 cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
297 (MCM_ADDR_PHYS << 6) | 0xc,
298 cpu_x86_support_mca_broadcast(env) ?
299 MCE_INJECT_BROADCAST : 0);
300 }
301
302 static void hardware_memory_error(void)
303 {
304 fprintf(stderr, "Hardware memory error!\n");
305 exit(1);
306 }
307
308 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
309 {
310 ram_addr_t ram_addr;
311 hwaddr paddr;
312
313 if ((env->mcg_cap & MCG_SER_P) && addr
314 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
315 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
316 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
317 fprintf(stderr, "Hardware memory error for memory used by "
318 "QEMU itself instead of guest system!\n");
319 /* Hope we are lucky for AO MCE */
320 if (code == BUS_MCEERR_AO) {
321 return 0;
322 } else {
323 hardware_memory_error();
324 }
325 }
326 kvm_hwpoison_page_add(ram_addr);
327 kvm_mce_inject(env, paddr, code);
328 } else {
329 if (code == BUS_MCEERR_AO) {
330 return 0;
331 } else if (code == BUS_MCEERR_AR) {
332 hardware_memory_error();
333 } else {
334 return 1;
335 }
336 }
337 return 0;
338 }
339
340 int kvm_arch_on_sigbus(int code, void *addr)
341 {
342 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
343 ram_addr_t ram_addr;
344 hwaddr paddr;
345
346 /* Hope we are lucky for AO MCE */
347 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
348 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
349 &paddr)) {
350 fprintf(stderr, "Hardware memory error for memory used by "
351 "QEMU itself instead of guest system!: %p\n", addr);
352 return 0;
353 }
354 kvm_hwpoison_page_add(ram_addr);
355 kvm_mce_inject(first_cpu, paddr, code);
356 } else {
357 if (code == BUS_MCEERR_AO) {
358 return 0;
359 } else if (code == BUS_MCEERR_AR) {
360 hardware_memory_error();
361 } else {
362 return 1;
363 }
364 }
365 return 0;
366 }
367
368 static int kvm_inject_mce_oldstyle(CPUX86State *env)
369 {
370 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
371 unsigned int bank, bank_num = env->mcg_cap & 0xff;
372 struct kvm_x86_mce mce;
373
374 env->exception_injected = -1;
375
376 /*
377 * There must be at least one bank in use if an MCE is pending.
378 * Find it and use its values for the event injection.
379 */
380 for (bank = 0; bank < bank_num; bank++) {
381 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
382 break;
383 }
384 }
385 assert(bank < bank_num);
386
387 mce.bank = bank;
388 mce.status = env->mce_banks[bank * 4 + 1];
389 mce.mcg_status = env->mcg_status;
390 mce.addr = env->mce_banks[bank * 4 + 2];
391 mce.misc = env->mce_banks[bank * 4 + 3];
392
393 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
394 }
395 return 0;
396 }
397
398 static void cpu_update_state(void *opaque, int running, RunState state)
399 {
400 CPUX86State *env = opaque;
401
402 if (running) {
403 env->tsc_valid = false;
404 }
405 }
406
407 int kvm_arch_init_vcpu(CPUX86State *env)
408 {
409 struct {
410 struct kvm_cpuid2 cpuid;
411 struct kvm_cpuid_entry2 entries[100];
412 } QEMU_PACKED cpuid_data;
413 KVMState *s = env->kvm_state;
414 uint32_t limit, i, j, cpuid_i;
415 uint32_t unused;
416 struct kvm_cpuid_entry2 *c;
417 uint32_t signature[3];
418 int r;
419
420 env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
421
422 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
423
424 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
425 0, R_EDX);
426 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
427 0, R_ECX);
428 env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
429 0, R_EDX);
430
431 env->cpuid_kvm_features &=
432 kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
433
434 cpuid_i = 0;
435
436 /* Paravirtualization CPUIDs */
437 c = &cpuid_data.entries[cpuid_i++];
438 memset(c, 0, sizeof(*c));
439 c->function = KVM_CPUID_SIGNATURE;
440 if (!hyperv_enabled()) {
441 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
442 c->eax = 0;
443 } else {
444 memcpy(signature, "Microsoft Hv", 12);
445 c->eax = HYPERV_CPUID_MIN;
446 }
447 c->ebx = signature[0];
448 c->ecx = signature[1];
449 c->edx = signature[2];
450
451 c = &cpuid_data.entries[cpuid_i++];
452 memset(c, 0, sizeof(*c));
453 c->function = KVM_CPUID_FEATURES;
454 c->eax = env->cpuid_kvm_features;
455
456 if (hyperv_enabled()) {
457 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
458 c->eax = signature[0];
459
460 c = &cpuid_data.entries[cpuid_i++];
461 memset(c, 0, sizeof(*c));
462 c->function = HYPERV_CPUID_VERSION;
463 c->eax = 0x00001bbc;
464 c->ebx = 0x00060001;
465
466 c = &cpuid_data.entries[cpuid_i++];
467 memset(c, 0, sizeof(*c));
468 c->function = HYPERV_CPUID_FEATURES;
469 if (hyperv_relaxed_timing_enabled()) {
470 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
471 }
472 if (hyperv_vapic_recommended()) {
473 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
474 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
475 }
476
477 c = &cpuid_data.entries[cpuid_i++];
478 memset(c, 0, sizeof(*c));
479 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
480 if (hyperv_relaxed_timing_enabled()) {
481 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
482 }
483 if (hyperv_vapic_recommended()) {
484 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
485 }
486 c->ebx = hyperv_get_spinlock_retries();
487
488 c = &cpuid_data.entries[cpuid_i++];
489 memset(c, 0, sizeof(*c));
490 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
491 c->eax = 0x40;
492 c->ebx = 0x40;
493
494 c = &cpuid_data.entries[cpuid_i++];
495 memset(c, 0, sizeof(*c));
496 c->function = KVM_CPUID_SIGNATURE_NEXT;
497 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
498 c->eax = 0;
499 c->ebx = signature[0];
500 c->ecx = signature[1];
501 c->edx = signature[2];
502 }
503
504 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
505
506 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
507
508 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
509
510 for (i = 0; i <= limit; i++) {
511 c = &cpuid_data.entries[cpuid_i++];
512
513 switch (i) {
514 case 2: {
515 /* Keep reading function 2 till all the input is received */
516 int times;
517
518 c->function = i;
519 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
520 KVM_CPUID_FLAG_STATE_READ_NEXT;
521 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
522 times = c->eax & 0xff;
523
524 for (j = 1; j < times; ++j) {
525 c = &cpuid_data.entries[cpuid_i++];
526 c->function = i;
527 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
528 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
529 }
530 break;
531 }
532 case 4:
533 case 0xb:
534 case 0xd:
535 for (j = 0; ; j++) {
536 if (i == 0xd && j == 64) {
537 break;
538 }
539 c->function = i;
540 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
541 c->index = j;
542 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
543
544 if (i == 4 && c->eax == 0) {
545 break;
546 }
547 if (i == 0xb && !(c->ecx & 0xff00)) {
548 break;
549 }
550 if (i == 0xd && c->eax == 0) {
551 continue;
552 }
553 c = &cpuid_data.entries[cpuid_i++];
554 }
555 break;
556 default:
557 c->function = i;
558 c->flags = 0;
559 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
560 break;
561 }
562 }
563 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
564
565 for (i = 0x80000000; i <= limit; i++) {
566 c = &cpuid_data.entries[cpuid_i++];
567
568 c->function = i;
569 c->flags = 0;
570 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571 }
572
573 /* Call Centaur's CPUID instructions they are supported. */
574 if (env->cpuid_xlevel2 > 0) {
575 env->cpuid_ext4_features &=
576 kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
577 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
578
579 for (i = 0xC0000000; i <= limit; i++) {
580 c = &cpuid_data.entries[cpuid_i++];
581
582 c->function = i;
583 c->flags = 0;
584 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
585 }
586 }
587
588 cpuid_data.cpuid.nent = cpuid_i;
589
590 if (((env->cpuid_version >> 8)&0xF) >= 6
591 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
592 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
593 uint64_t mcg_cap;
594 int banks;
595 int ret;
596
597 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
598 if (ret < 0) {
599 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
600 return ret;
601 }
602
603 if (banks > MCE_BANKS_DEF) {
604 banks = MCE_BANKS_DEF;
605 }
606 mcg_cap &= MCE_CAP_DEF;
607 mcg_cap |= banks;
608 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
609 if (ret < 0) {
610 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
611 return ret;
612 }
613
614 env->mcg_cap = mcg_cap;
615 }
616
617 qemu_add_vm_change_state_handler(cpu_update_state, env);
618
619 cpuid_data.cpuid.padding = 0;
620 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
621 if (r) {
622 return r;
623 }
624
625 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
626 if (r && env->tsc_khz) {
627 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
628 if (r < 0) {
629 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
630 return r;
631 }
632 }
633
634 if (kvm_has_xsave()) {
635 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
636 }
637
638 return 0;
639 }
640
641 void kvm_arch_reset_vcpu(CPUX86State *env)
642 {
643 X86CPU *cpu = x86_env_get_cpu(env);
644
645 env->exception_injected = -1;
646 env->interrupt_injected = -1;
647 env->xcr0 = 1;
648 if (kvm_irqchip_in_kernel()) {
649 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
650 KVM_MP_STATE_UNINITIALIZED;
651 } else {
652 env->mp_state = KVM_MP_STATE_RUNNABLE;
653 }
654 }
655
656 static int kvm_get_supported_msrs(KVMState *s)
657 {
658 static int kvm_supported_msrs;
659 int ret = 0;
660
661 /* first time */
662 if (kvm_supported_msrs == 0) {
663 struct kvm_msr_list msr_list, *kvm_msr_list;
664
665 kvm_supported_msrs = -1;
666
667 /* Obtain MSR list from KVM. These are the MSRs that we must
668 * save/restore */
669 msr_list.nmsrs = 0;
670 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
671 if (ret < 0 && ret != -E2BIG) {
672 return ret;
673 }
674 /* Old kernel modules had a bug and could write beyond the provided
675 memory. Allocate at least a safe amount of 1K. */
676 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
677 msr_list.nmsrs *
678 sizeof(msr_list.indices[0])));
679
680 kvm_msr_list->nmsrs = msr_list.nmsrs;
681 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
682 if (ret >= 0) {
683 int i;
684
685 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
686 if (kvm_msr_list->indices[i] == MSR_STAR) {
687 has_msr_star = true;
688 continue;
689 }
690 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
691 has_msr_hsave_pa = true;
692 continue;
693 }
694 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
695 has_msr_tsc_deadline = true;
696 continue;
697 }
698 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
699 has_msr_misc_enable = true;
700 continue;
701 }
702 }
703 }
704
705 g_free(kvm_msr_list);
706 }
707
708 return ret;
709 }
710
711 int kvm_arch_init(KVMState *s)
712 {
713 QemuOptsList *list = qemu_find_opts("machine");
714 uint64_t identity_base = 0xfffbc000;
715 uint64_t shadow_mem;
716 int ret;
717 struct utsname utsname;
718
719 ret = kvm_get_supported_msrs(s);
720 if (ret < 0) {
721 return ret;
722 }
723
724 uname(&utsname);
725 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
726
727 /*
728 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
729 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
730 * Since these must be part of guest physical memory, we need to allocate
731 * them, both by setting their start addresses in the kernel and by
732 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
733 *
734 * Older KVM versions may not support setting the identity map base. In
735 * that case we need to stick with the default, i.e. a 256K maximum BIOS
736 * size.
737 */
738 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
739 /* Allows up to 16M BIOSes. */
740 identity_base = 0xfeffc000;
741
742 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
743 if (ret < 0) {
744 return ret;
745 }
746 }
747
748 /* Set TSS base one page after EPT identity map. */
749 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
750 if (ret < 0) {
751 return ret;
752 }
753
754 /* Tell fw_cfg to notify the BIOS to reserve the range. */
755 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
756 if (ret < 0) {
757 fprintf(stderr, "e820_add_entry() table is full\n");
758 return ret;
759 }
760 qemu_register_reset(kvm_unpoison_all, NULL);
761
762 if (!QTAILQ_EMPTY(&list->head)) {
763 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
764 "kvm_shadow_mem", -1);
765 if (shadow_mem != -1) {
766 shadow_mem /= 4096;
767 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
768 if (ret < 0) {
769 return ret;
770 }
771 }
772 }
773 return 0;
774 }
775
776 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
777 {
778 lhs->selector = rhs->selector;
779 lhs->base = rhs->base;
780 lhs->limit = rhs->limit;
781 lhs->type = 3;
782 lhs->present = 1;
783 lhs->dpl = 3;
784 lhs->db = 0;
785 lhs->s = 1;
786 lhs->l = 0;
787 lhs->g = 0;
788 lhs->avl = 0;
789 lhs->unusable = 0;
790 }
791
792 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
793 {
794 unsigned flags = rhs->flags;
795 lhs->selector = rhs->selector;
796 lhs->base = rhs->base;
797 lhs->limit = rhs->limit;
798 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
799 lhs->present = (flags & DESC_P_MASK) != 0;
800 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
801 lhs->db = (flags >> DESC_B_SHIFT) & 1;
802 lhs->s = (flags & DESC_S_MASK) != 0;
803 lhs->l = (flags >> DESC_L_SHIFT) & 1;
804 lhs->g = (flags & DESC_G_MASK) != 0;
805 lhs->avl = (flags & DESC_AVL_MASK) != 0;
806 lhs->unusable = 0;
807 lhs->padding = 0;
808 }
809
810 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
811 {
812 lhs->selector = rhs->selector;
813 lhs->base = rhs->base;
814 lhs->limit = rhs->limit;
815 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
816 (rhs->present * DESC_P_MASK) |
817 (rhs->dpl << DESC_DPL_SHIFT) |
818 (rhs->db << DESC_B_SHIFT) |
819 (rhs->s * DESC_S_MASK) |
820 (rhs->l << DESC_L_SHIFT) |
821 (rhs->g * DESC_G_MASK) |
822 (rhs->avl * DESC_AVL_MASK);
823 }
824
825 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
826 {
827 if (set) {
828 *kvm_reg = *qemu_reg;
829 } else {
830 *qemu_reg = *kvm_reg;
831 }
832 }
833
834 static int kvm_getput_regs(CPUX86State *env, int set)
835 {
836 struct kvm_regs regs;
837 int ret = 0;
838
839 if (!set) {
840 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
841 if (ret < 0) {
842 return ret;
843 }
844 }
845
846 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
847 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
848 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
849 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
850 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
851 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
852 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
853 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
854 #ifdef TARGET_X86_64
855 kvm_getput_reg(&regs.r8, &env->regs[8], set);
856 kvm_getput_reg(&regs.r9, &env->regs[9], set);
857 kvm_getput_reg(&regs.r10, &env->regs[10], set);
858 kvm_getput_reg(&regs.r11, &env->regs[11], set);
859 kvm_getput_reg(&regs.r12, &env->regs[12], set);
860 kvm_getput_reg(&regs.r13, &env->regs[13], set);
861 kvm_getput_reg(&regs.r14, &env->regs[14], set);
862 kvm_getput_reg(&regs.r15, &env->regs[15], set);
863 #endif
864
865 kvm_getput_reg(&regs.rflags, &env->eflags, set);
866 kvm_getput_reg(&regs.rip, &env->eip, set);
867
868 if (set) {
869 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
870 }
871
872 return ret;
873 }
874
875 static int kvm_put_fpu(CPUX86State *env)
876 {
877 struct kvm_fpu fpu;
878 int i;
879
880 memset(&fpu, 0, sizeof fpu);
881 fpu.fsw = env->fpus & ~(7 << 11);
882 fpu.fsw |= (env->fpstt & 7) << 11;
883 fpu.fcw = env->fpuc;
884 fpu.last_opcode = env->fpop;
885 fpu.last_ip = env->fpip;
886 fpu.last_dp = env->fpdp;
887 for (i = 0; i < 8; ++i) {
888 fpu.ftwx |= (!env->fptags[i]) << i;
889 }
890 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
891 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
892 fpu.mxcsr = env->mxcsr;
893
894 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
895 }
896
897 #define XSAVE_FCW_FSW 0
898 #define XSAVE_FTW_FOP 1
899 #define XSAVE_CWD_RIP 2
900 #define XSAVE_CWD_RDP 4
901 #define XSAVE_MXCSR 6
902 #define XSAVE_ST_SPACE 8
903 #define XSAVE_XMM_SPACE 40
904 #define XSAVE_XSTATE_BV 128
905 #define XSAVE_YMMH_SPACE 144
906
907 static int kvm_put_xsave(CPUX86State *env)
908 {
909 struct kvm_xsave* xsave = env->kvm_xsave_buf;
910 uint16_t cwd, swd, twd;
911 int i, r;
912
913 if (!kvm_has_xsave()) {
914 return kvm_put_fpu(env);
915 }
916
917 memset(xsave, 0, sizeof(struct kvm_xsave));
918 twd = 0;
919 swd = env->fpus & ~(7 << 11);
920 swd |= (env->fpstt & 7) << 11;
921 cwd = env->fpuc;
922 for (i = 0; i < 8; ++i) {
923 twd |= (!env->fptags[i]) << i;
924 }
925 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
926 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
927 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
928 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
929 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
930 sizeof env->fpregs);
931 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
932 sizeof env->xmm_regs);
933 xsave->region[XSAVE_MXCSR] = env->mxcsr;
934 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
935 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
936 sizeof env->ymmh_regs);
937 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
938 return r;
939 }
940
941 static int kvm_put_xcrs(CPUX86State *env)
942 {
943 struct kvm_xcrs xcrs;
944
945 if (!kvm_has_xcrs()) {
946 return 0;
947 }
948
949 xcrs.nr_xcrs = 1;
950 xcrs.flags = 0;
951 xcrs.xcrs[0].xcr = 0;
952 xcrs.xcrs[0].value = env->xcr0;
953 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
954 }
955
956 static int kvm_put_sregs(CPUX86State *env)
957 {
958 struct kvm_sregs sregs;
959
960 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
961 if (env->interrupt_injected >= 0) {
962 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
963 (uint64_t)1 << (env->interrupt_injected % 64);
964 }
965
966 if ((env->eflags & VM_MASK)) {
967 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
968 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
969 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
970 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
971 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
972 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
973 } else {
974 set_seg(&sregs.cs, &env->segs[R_CS]);
975 set_seg(&sregs.ds, &env->segs[R_DS]);
976 set_seg(&sregs.es, &env->segs[R_ES]);
977 set_seg(&sregs.fs, &env->segs[R_FS]);
978 set_seg(&sregs.gs, &env->segs[R_GS]);
979 set_seg(&sregs.ss, &env->segs[R_SS]);
980 }
981
982 set_seg(&sregs.tr, &env->tr);
983 set_seg(&sregs.ldt, &env->ldt);
984
985 sregs.idt.limit = env->idt.limit;
986 sregs.idt.base = env->idt.base;
987 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
988 sregs.gdt.limit = env->gdt.limit;
989 sregs.gdt.base = env->gdt.base;
990 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
991
992 sregs.cr0 = env->cr[0];
993 sregs.cr2 = env->cr[2];
994 sregs.cr3 = env->cr[3];
995 sregs.cr4 = env->cr[4];
996
997 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
998 sregs.apic_base = cpu_get_apic_base(env->apic_state);
999
1000 sregs.efer = env->efer;
1001
1002 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
1003 }
1004
1005 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1006 uint32_t index, uint64_t value)
1007 {
1008 entry->index = index;
1009 entry->data = value;
1010 }
1011
1012 static int kvm_put_msrs(CPUX86State *env, int level)
1013 {
1014 struct {
1015 struct kvm_msrs info;
1016 struct kvm_msr_entry entries[100];
1017 } msr_data;
1018 struct kvm_msr_entry *msrs = msr_data.entries;
1019 int n = 0;
1020
1021 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1022 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1023 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1024 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1025 if (has_msr_star) {
1026 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1027 }
1028 if (has_msr_hsave_pa) {
1029 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1030 }
1031 if (has_msr_tsc_deadline) {
1032 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1033 }
1034 if (has_msr_misc_enable) {
1035 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1036 env->msr_ia32_misc_enable);
1037 }
1038 #ifdef TARGET_X86_64
1039 if (lm_capable_kernel) {
1040 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1041 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1042 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1043 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1044 }
1045 #endif
1046 if (level == KVM_PUT_FULL_STATE) {
1047 /*
1048 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1049 * writeback. Until this is fixed, we only write the offset to SMP
1050 * guests after migration, desynchronizing the VCPUs, but avoiding
1051 * huge jump-backs that would occur without any writeback at all.
1052 */
1053 if (smp_cpus == 1 || env->tsc != 0) {
1054 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1055 }
1056 }
1057 /*
1058 * The following paravirtual MSRs have side effects on the guest or are
1059 * too heavy for normal writeback. Limit them to reset or full state
1060 * updates.
1061 */
1062 if (level >= KVM_PUT_RESET_STATE) {
1063 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1064 env->system_time_msr);
1065 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1066 if (has_msr_async_pf_en) {
1067 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1068 env->async_pf_en_msr);
1069 }
1070 if (has_msr_pv_eoi_en) {
1071 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1072 env->pv_eoi_en_msr);
1073 }
1074 if (hyperv_hypercall_available()) {
1075 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1076 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1077 }
1078 if (hyperv_vapic_recommended()) {
1079 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1080 }
1081 }
1082 if (env->mcg_cap) {
1083 int i;
1084
1085 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1086 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1087 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1088 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1089 }
1090 }
1091
1092 msr_data.info.nmsrs = n;
1093
1094 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1095
1096 }
1097
1098
1099 static int kvm_get_fpu(CPUX86State *env)
1100 {
1101 struct kvm_fpu fpu;
1102 int i, ret;
1103
1104 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1105 if (ret < 0) {
1106 return ret;
1107 }
1108
1109 env->fpstt = (fpu.fsw >> 11) & 7;
1110 env->fpus = fpu.fsw;
1111 env->fpuc = fpu.fcw;
1112 env->fpop = fpu.last_opcode;
1113 env->fpip = fpu.last_ip;
1114 env->fpdp = fpu.last_dp;
1115 for (i = 0; i < 8; ++i) {
1116 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1117 }
1118 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1119 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1120 env->mxcsr = fpu.mxcsr;
1121
1122 return 0;
1123 }
1124
1125 static int kvm_get_xsave(CPUX86State *env)
1126 {
1127 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1128 int ret, i;
1129 uint16_t cwd, swd, twd;
1130
1131 if (!kvm_has_xsave()) {
1132 return kvm_get_fpu(env);
1133 }
1134
1135 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1136 if (ret < 0) {
1137 return ret;
1138 }
1139
1140 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1141 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1142 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1143 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1144 env->fpstt = (swd >> 11) & 7;
1145 env->fpus = swd;
1146 env->fpuc = cwd;
1147 for (i = 0; i < 8; ++i) {
1148 env->fptags[i] = !((twd >> i) & 1);
1149 }
1150 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1151 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1152 env->mxcsr = xsave->region[XSAVE_MXCSR];
1153 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1154 sizeof env->fpregs);
1155 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1156 sizeof env->xmm_regs);
1157 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1158 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1159 sizeof env->ymmh_regs);
1160 return 0;
1161 }
1162
1163 static int kvm_get_xcrs(CPUX86State *env)
1164 {
1165 int i, ret;
1166 struct kvm_xcrs xcrs;
1167
1168 if (!kvm_has_xcrs()) {
1169 return 0;
1170 }
1171
1172 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1173 if (ret < 0) {
1174 return ret;
1175 }
1176
1177 for (i = 0; i < xcrs.nr_xcrs; i++) {
1178 /* Only support xcr0 now */
1179 if (xcrs.xcrs[0].xcr == 0) {
1180 env->xcr0 = xcrs.xcrs[0].value;
1181 break;
1182 }
1183 }
1184 return 0;
1185 }
1186
1187 static int kvm_get_sregs(CPUX86State *env)
1188 {
1189 struct kvm_sregs sregs;
1190 uint32_t hflags;
1191 int bit, i, ret;
1192
1193 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1194 if (ret < 0) {
1195 return ret;
1196 }
1197
1198 /* There can only be one pending IRQ set in the bitmap at a time, so try
1199 to find it and save its number instead (-1 for none). */
1200 env->interrupt_injected = -1;
1201 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1202 if (sregs.interrupt_bitmap[i]) {
1203 bit = ctz64(sregs.interrupt_bitmap[i]);
1204 env->interrupt_injected = i * 64 + bit;
1205 break;
1206 }
1207 }
1208
1209 get_seg(&env->segs[R_CS], &sregs.cs);
1210 get_seg(&env->segs[R_DS], &sregs.ds);
1211 get_seg(&env->segs[R_ES], &sregs.es);
1212 get_seg(&env->segs[R_FS], &sregs.fs);
1213 get_seg(&env->segs[R_GS], &sregs.gs);
1214 get_seg(&env->segs[R_SS], &sregs.ss);
1215
1216 get_seg(&env->tr, &sregs.tr);
1217 get_seg(&env->ldt, &sregs.ldt);
1218
1219 env->idt.limit = sregs.idt.limit;
1220 env->idt.base = sregs.idt.base;
1221 env->gdt.limit = sregs.gdt.limit;
1222 env->gdt.base = sregs.gdt.base;
1223
1224 env->cr[0] = sregs.cr0;
1225 env->cr[2] = sregs.cr2;
1226 env->cr[3] = sregs.cr3;
1227 env->cr[4] = sregs.cr4;
1228
1229 env->efer = sregs.efer;
1230
1231 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1232
1233 #define HFLAG_COPY_MASK \
1234 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1235 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1236 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1237 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1238
1239 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1240 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1241 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1242 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1243 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1244 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1245 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1246
1247 if (env->efer & MSR_EFER_LMA) {
1248 hflags |= HF_LMA_MASK;
1249 }
1250
1251 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1252 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1253 } else {
1254 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1255 (DESC_B_SHIFT - HF_CS32_SHIFT);
1256 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1257 (DESC_B_SHIFT - HF_SS32_SHIFT);
1258 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1259 !(hflags & HF_CS32_MASK)) {
1260 hflags |= HF_ADDSEG_MASK;
1261 } else {
1262 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1263 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1264 }
1265 }
1266 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1267
1268 return 0;
1269 }
1270
1271 static int kvm_get_msrs(CPUX86State *env)
1272 {
1273 struct {
1274 struct kvm_msrs info;
1275 struct kvm_msr_entry entries[100];
1276 } msr_data;
1277 struct kvm_msr_entry *msrs = msr_data.entries;
1278 int ret, i, n;
1279
1280 n = 0;
1281 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1282 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1283 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1284 msrs[n++].index = MSR_PAT;
1285 if (has_msr_star) {
1286 msrs[n++].index = MSR_STAR;
1287 }
1288 if (has_msr_hsave_pa) {
1289 msrs[n++].index = MSR_VM_HSAVE_PA;
1290 }
1291 if (has_msr_tsc_deadline) {
1292 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1293 }
1294 if (has_msr_misc_enable) {
1295 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1296 }
1297
1298 if (!env->tsc_valid) {
1299 msrs[n++].index = MSR_IA32_TSC;
1300 env->tsc_valid = !runstate_is_running();
1301 }
1302
1303 #ifdef TARGET_X86_64
1304 if (lm_capable_kernel) {
1305 msrs[n++].index = MSR_CSTAR;
1306 msrs[n++].index = MSR_KERNELGSBASE;
1307 msrs[n++].index = MSR_FMASK;
1308 msrs[n++].index = MSR_LSTAR;
1309 }
1310 #endif
1311 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1312 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1313 if (has_msr_async_pf_en) {
1314 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1315 }
1316 if (has_msr_pv_eoi_en) {
1317 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1318 }
1319
1320 if (env->mcg_cap) {
1321 msrs[n++].index = MSR_MCG_STATUS;
1322 msrs[n++].index = MSR_MCG_CTL;
1323 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1324 msrs[n++].index = MSR_MC0_CTL + i;
1325 }
1326 }
1327
1328 msr_data.info.nmsrs = n;
1329 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1330 if (ret < 0) {
1331 return ret;
1332 }
1333
1334 for (i = 0; i < ret; i++) {
1335 switch (msrs[i].index) {
1336 case MSR_IA32_SYSENTER_CS:
1337 env->sysenter_cs = msrs[i].data;
1338 break;
1339 case MSR_IA32_SYSENTER_ESP:
1340 env->sysenter_esp = msrs[i].data;
1341 break;
1342 case MSR_IA32_SYSENTER_EIP:
1343 env->sysenter_eip = msrs[i].data;
1344 break;
1345 case MSR_PAT:
1346 env->pat = msrs[i].data;
1347 break;
1348 case MSR_STAR:
1349 env->star = msrs[i].data;
1350 break;
1351 #ifdef TARGET_X86_64
1352 case MSR_CSTAR:
1353 env->cstar = msrs[i].data;
1354 break;
1355 case MSR_KERNELGSBASE:
1356 env->kernelgsbase = msrs[i].data;
1357 break;
1358 case MSR_FMASK:
1359 env->fmask = msrs[i].data;
1360 break;
1361 case MSR_LSTAR:
1362 env->lstar = msrs[i].data;
1363 break;
1364 #endif
1365 case MSR_IA32_TSC:
1366 env->tsc = msrs[i].data;
1367 break;
1368 case MSR_IA32_TSCDEADLINE:
1369 env->tsc_deadline = msrs[i].data;
1370 break;
1371 case MSR_VM_HSAVE_PA:
1372 env->vm_hsave = msrs[i].data;
1373 break;
1374 case MSR_KVM_SYSTEM_TIME:
1375 env->system_time_msr = msrs[i].data;
1376 break;
1377 case MSR_KVM_WALL_CLOCK:
1378 env->wall_clock_msr = msrs[i].data;
1379 break;
1380 case MSR_MCG_STATUS:
1381 env->mcg_status = msrs[i].data;
1382 break;
1383 case MSR_MCG_CTL:
1384 env->mcg_ctl = msrs[i].data;
1385 break;
1386 case MSR_IA32_MISC_ENABLE:
1387 env->msr_ia32_misc_enable = msrs[i].data;
1388 break;
1389 default:
1390 if (msrs[i].index >= MSR_MC0_CTL &&
1391 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1392 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1393 }
1394 break;
1395 case MSR_KVM_ASYNC_PF_EN:
1396 env->async_pf_en_msr = msrs[i].data;
1397 break;
1398 case MSR_KVM_PV_EOI_EN:
1399 env->pv_eoi_en_msr = msrs[i].data;
1400 break;
1401 }
1402 }
1403
1404 return 0;
1405 }
1406
1407 static int kvm_put_mp_state(CPUX86State *env)
1408 {
1409 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1410
1411 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1412 }
1413
1414 static int kvm_get_mp_state(CPUX86State *env)
1415 {
1416 struct kvm_mp_state mp_state;
1417 int ret;
1418
1419 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1420 if (ret < 0) {
1421 return ret;
1422 }
1423 env->mp_state = mp_state.mp_state;
1424 if (kvm_irqchip_in_kernel()) {
1425 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1426 }
1427 return 0;
1428 }
1429
1430 static int kvm_get_apic(CPUX86State *env)
1431 {
1432 DeviceState *apic = env->apic_state;
1433 struct kvm_lapic_state kapic;
1434 int ret;
1435
1436 if (apic && kvm_irqchip_in_kernel()) {
1437 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441
1442 kvm_get_apic_state(apic, &kapic);
1443 }
1444 return 0;
1445 }
1446
1447 static int kvm_put_apic(CPUX86State *env)
1448 {
1449 DeviceState *apic = env->apic_state;
1450 struct kvm_lapic_state kapic;
1451
1452 if (apic && kvm_irqchip_in_kernel()) {
1453 kvm_put_apic_state(apic, &kapic);
1454
1455 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1456 }
1457 return 0;
1458 }
1459
1460 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1461 {
1462 struct kvm_vcpu_events events;
1463
1464 if (!kvm_has_vcpu_events()) {
1465 return 0;
1466 }
1467
1468 events.exception.injected = (env->exception_injected >= 0);
1469 events.exception.nr = env->exception_injected;
1470 events.exception.has_error_code = env->has_error_code;
1471 events.exception.error_code = env->error_code;
1472 events.exception.pad = 0;
1473
1474 events.interrupt.injected = (env->interrupt_injected >= 0);
1475 events.interrupt.nr = env->interrupt_injected;
1476 events.interrupt.soft = env->soft_interrupt;
1477
1478 events.nmi.injected = env->nmi_injected;
1479 events.nmi.pending = env->nmi_pending;
1480 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1481 events.nmi.pad = 0;
1482
1483 events.sipi_vector = env->sipi_vector;
1484
1485 events.flags = 0;
1486 if (level >= KVM_PUT_RESET_STATE) {
1487 events.flags |=
1488 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1489 }
1490
1491 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1492 }
1493
1494 static int kvm_get_vcpu_events(CPUX86State *env)
1495 {
1496 struct kvm_vcpu_events events;
1497 int ret;
1498
1499 if (!kvm_has_vcpu_events()) {
1500 return 0;
1501 }
1502
1503 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1504 if (ret < 0) {
1505 return ret;
1506 }
1507 env->exception_injected =
1508 events.exception.injected ? events.exception.nr : -1;
1509 env->has_error_code = events.exception.has_error_code;
1510 env->error_code = events.exception.error_code;
1511
1512 env->interrupt_injected =
1513 events.interrupt.injected ? events.interrupt.nr : -1;
1514 env->soft_interrupt = events.interrupt.soft;
1515
1516 env->nmi_injected = events.nmi.injected;
1517 env->nmi_pending = events.nmi.pending;
1518 if (events.nmi.masked) {
1519 env->hflags2 |= HF2_NMI_MASK;
1520 } else {
1521 env->hflags2 &= ~HF2_NMI_MASK;
1522 }
1523
1524 env->sipi_vector = events.sipi_vector;
1525
1526 return 0;
1527 }
1528
1529 static int kvm_guest_debug_workarounds(CPUX86State *env)
1530 {
1531 int ret = 0;
1532 unsigned long reinject_trap = 0;
1533
1534 if (!kvm_has_vcpu_events()) {
1535 if (env->exception_injected == 1) {
1536 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1537 } else if (env->exception_injected == 3) {
1538 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1539 }
1540 env->exception_injected = -1;
1541 }
1542
1543 /*
1544 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1545 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1546 * by updating the debug state once again if single-stepping is on.
1547 * Another reason to call kvm_update_guest_debug here is a pending debug
1548 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1549 * reinject them via SET_GUEST_DEBUG.
1550 */
1551 if (reinject_trap ||
1552 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1553 ret = kvm_update_guest_debug(env, reinject_trap);
1554 }
1555 return ret;
1556 }
1557
1558 static int kvm_put_debugregs(CPUX86State *env)
1559 {
1560 struct kvm_debugregs dbgregs;
1561 int i;
1562
1563 if (!kvm_has_debugregs()) {
1564 return 0;
1565 }
1566
1567 for (i = 0; i < 4; i++) {
1568 dbgregs.db[i] = env->dr[i];
1569 }
1570 dbgregs.dr6 = env->dr[6];
1571 dbgregs.dr7 = env->dr[7];
1572 dbgregs.flags = 0;
1573
1574 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1575 }
1576
1577 static int kvm_get_debugregs(CPUX86State *env)
1578 {
1579 struct kvm_debugregs dbgregs;
1580 int i, ret;
1581
1582 if (!kvm_has_debugregs()) {
1583 return 0;
1584 }
1585
1586 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1587 if (ret < 0) {
1588 return ret;
1589 }
1590 for (i = 0; i < 4; i++) {
1591 env->dr[i] = dbgregs.db[i];
1592 }
1593 env->dr[4] = env->dr[6] = dbgregs.dr6;
1594 env->dr[5] = env->dr[7] = dbgregs.dr7;
1595
1596 return 0;
1597 }
1598
1599 int kvm_arch_put_registers(CPUX86State *env, int level)
1600 {
1601 int ret;
1602
1603 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1604
1605 ret = kvm_getput_regs(env, 1);
1606 if (ret < 0) {
1607 return ret;
1608 }
1609 ret = kvm_put_xsave(env);
1610 if (ret < 0) {
1611 return ret;
1612 }
1613 ret = kvm_put_xcrs(env);
1614 if (ret < 0) {
1615 return ret;
1616 }
1617 ret = kvm_put_sregs(env);
1618 if (ret < 0) {
1619 return ret;
1620 }
1621 /* must be before kvm_put_msrs */
1622 ret = kvm_inject_mce_oldstyle(env);
1623 if (ret < 0) {
1624 return ret;
1625 }
1626 ret = kvm_put_msrs(env, level);
1627 if (ret < 0) {
1628 return ret;
1629 }
1630 if (level >= KVM_PUT_RESET_STATE) {
1631 ret = kvm_put_mp_state(env);
1632 if (ret < 0) {
1633 return ret;
1634 }
1635 ret = kvm_put_apic(env);
1636 if (ret < 0) {
1637 return ret;
1638 }
1639 }
1640 ret = kvm_put_vcpu_events(env, level);
1641 if (ret < 0) {
1642 return ret;
1643 }
1644 ret = kvm_put_debugregs(env);
1645 if (ret < 0) {
1646 return ret;
1647 }
1648 /* must be last */
1649 ret = kvm_guest_debug_workarounds(env);
1650 if (ret < 0) {
1651 return ret;
1652 }
1653 return 0;
1654 }
1655
1656 int kvm_arch_get_registers(CPUX86State *env)
1657 {
1658 int ret;
1659
1660 assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
1661
1662 ret = kvm_getput_regs(env, 0);
1663 if (ret < 0) {
1664 return ret;
1665 }
1666 ret = kvm_get_xsave(env);
1667 if (ret < 0) {
1668 return ret;
1669 }
1670 ret = kvm_get_xcrs(env);
1671 if (ret < 0) {
1672 return ret;
1673 }
1674 ret = kvm_get_sregs(env);
1675 if (ret < 0) {
1676 return ret;
1677 }
1678 ret = kvm_get_msrs(env);
1679 if (ret < 0) {
1680 return ret;
1681 }
1682 ret = kvm_get_mp_state(env);
1683 if (ret < 0) {
1684 return ret;
1685 }
1686 ret = kvm_get_apic(env);
1687 if (ret < 0) {
1688 return ret;
1689 }
1690 ret = kvm_get_vcpu_events(env);
1691 if (ret < 0) {
1692 return ret;
1693 }
1694 ret = kvm_get_debugregs(env);
1695 if (ret < 0) {
1696 return ret;
1697 }
1698 return 0;
1699 }
1700
1701 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1702 {
1703 int ret;
1704
1705 /* Inject NMI */
1706 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1707 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1708 DPRINTF("injected NMI\n");
1709 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1710 if (ret < 0) {
1711 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1712 strerror(-ret));
1713 }
1714 }
1715
1716 if (!kvm_irqchip_in_kernel()) {
1717 /* Force the VCPU out of its inner loop to process any INIT requests
1718 * or pending TPR access reports. */
1719 if (env->interrupt_request &
1720 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1721 env->exit_request = 1;
1722 }
1723
1724 /* Try to inject an interrupt if the guest can accept it */
1725 if (run->ready_for_interrupt_injection &&
1726 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1727 (env->eflags & IF_MASK)) {
1728 int irq;
1729
1730 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1731 irq = cpu_get_pic_interrupt(env);
1732 if (irq >= 0) {
1733 struct kvm_interrupt intr;
1734
1735 intr.irq = irq;
1736 DPRINTF("injected interrupt %d\n", irq);
1737 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1738 if (ret < 0) {
1739 fprintf(stderr,
1740 "KVM: injection failed, interrupt lost (%s)\n",
1741 strerror(-ret));
1742 }
1743 }
1744 }
1745
1746 /* If we have an interrupt but the guest is not ready to receive an
1747 * interrupt, request an interrupt window exit. This will
1748 * cause a return to userspace as soon as the guest is ready to
1749 * receive interrupts. */
1750 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1751 run->request_interrupt_window = 1;
1752 } else {
1753 run->request_interrupt_window = 0;
1754 }
1755
1756 DPRINTF("setting tpr\n");
1757 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1758 }
1759 }
1760
1761 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1762 {
1763 if (run->if_flag) {
1764 env->eflags |= IF_MASK;
1765 } else {
1766 env->eflags &= ~IF_MASK;
1767 }
1768 cpu_set_apic_tpr(env->apic_state, run->cr8);
1769 cpu_set_apic_base(env->apic_state, run->apic_base);
1770 }
1771
1772 int kvm_arch_process_async_events(CPUX86State *env)
1773 {
1774 X86CPU *cpu = x86_env_get_cpu(env);
1775
1776 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1777 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1778 assert(env->mcg_cap);
1779
1780 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1781
1782 kvm_cpu_synchronize_state(env);
1783
1784 if (env->exception_injected == EXCP08_DBLE) {
1785 /* this means triple fault */
1786 qemu_system_reset_request();
1787 env->exit_request = 1;
1788 return 0;
1789 }
1790 env->exception_injected = EXCP12_MCHK;
1791 env->has_error_code = 0;
1792
1793 env->halted = 0;
1794 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1795 env->mp_state = KVM_MP_STATE_RUNNABLE;
1796 }
1797 }
1798
1799 if (kvm_irqchip_in_kernel()) {
1800 return 0;
1801 }
1802
1803 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1804 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1805 apic_poll_irq(env->apic_state);
1806 }
1807 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1808 (env->eflags & IF_MASK)) ||
1809 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1810 env->halted = 0;
1811 }
1812 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1813 kvm_cpu_synchronize_state(env);
1814 do_cpu_init(cpu);
1815 }
1816 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1817 kvm_cpu_synchronize_state(env);
1818 do_cpu_sipi(cpu);
1819 }
1820 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1821 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1822 kvm_cpu_synchronize_state(env);
1823 apic_handle_tpr_access_report(env->apic_state, env->eip,
1824 env->tpr_access_type);
1825 }
1826
1827 return env->halted;
1828 }
1829
1830 static int kvm_handle_halt(CPUX86State *env)
1831 {
1832 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1833 (env->eflags & IF_MASK)) &&
1834 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1835 env->halted = 1;
1836 return EXCP_HLT;
1837 }
1838
1839 return 0;
1840 }
1841
1842 static int kvm_handle_tpr_access(CPUX86State *env)
1843 {
1844 struct kvm_run *run = env->kvm_run;
1845
1846 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1847 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1848 : TPR_ACCESS_READ);
1849 return 1;
1850 }
1851
1852 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1853 {
1854 static const uint8_t int3 = 0xcc;
1855
1856 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1857 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1858 return -EINVAL;
1859 }
1860 return 0;
1861 }
1862
1863 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1864 {
1865 uint8_t int3;
1866
1867 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1868 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1869 return -EINVAL;
1870 }
1871 return 0;
1872 }
1873
1874 static struct {
1875 target_ulong addr;
1876 int len;
1877 int type;
1878 } hw_breakpoint[4];
1879
1880 static int nb_hw_breakpoint;
1881
1882 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1883 {
1884 int n;
1885
1886 for (n = 0; n < nb_hw_breakpoint; n++) {
1887 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1888 (hw_breakpoint[n].len == len || len == -1)) {
1889 return n;
1890 }
1891 }
1892 return -1;
1893 }
1894
1895 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1896 target_ulong len, int type)
1897 {
1898 switch (type) {
1899 case GDB_BREAKPOINT_HW:
1900 len = 1;
1901 break;
1902 case GDB_WATCHPOINT_WRITE:
1903 case GDB_WATCHPOINT_ACCESS:
1904 switch (len) {
1905 case 1:
1906 break;
1907 case 2:
1908 case 4:
1909 case 8:
1910 if (addr & (len - 1)) {
1911 return -EINVAL;
1912 }
1913 break;
1914 default:
1915 return -EINVAL;
1916 }
1917 break;
1918 default:
1919 return -ENOSYS;
1920 }
1921
1922 if (nb_hw_breakpoint == 4) {
1923 return -ENOBUFS;
1924 }
1925 if (find_hw_breakpoint(addr, len, type) >= 0) {
1926 return -EEXIST;
1927 }
1928 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1929 hw_breakpoint[nb_hw_breakpoint].len = len;
1930 hw_breakpoint[nb_hw_breakpoint].type = type;
1931 nb_hw_breakpoint++;
1932
1933 return 0;
1934 }
1935
1936 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1937 target_ulong len, int type)
1938 {
1939 int n;
1940
1941 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1942 if (n < 0) {
1943 return -ENOENT;
1944 }
1945 nb_hw_breakpoint--;
1946 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1947
1948 return 0;
1949 }
1950
1951 void kvm_arch_remove_all_hw_breakpoints(void)
1952 {
1953 nb_hw_breakpoint = 0;
1954 }
1955
1956 static CPUWatchpoint hw_watchpoint;
1957
1958 static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
1959 {
1960 int ret = 0;
1961 int n;
1962
1963 if (arch_info->exception == 1) {
1964 if (arch_info->dr6 & (1 << 14)) {
1965 if (cpu_single_env->singlestep_enabled) {
1966 ret = EXCP_DEBUG;
1967 }
1968 } else {
1969 for (n = 0; n < 4; n++) {
1970 if (arch_info->dr6 & (1 << n)) {
1971 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1972 case 0x0:
1973 ret = EXCP_DEBUG;
1974 break;
1975 case 0x1:
1976 ret = EXCP_DEBUG;
1977 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1978 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1979 hw_watchpoint.flags = BP_MEM_WRITE;
1980 break;
1981 case 0x3:
1982 ret = EXCP_DEBUG;
1983 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1984 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1985 hw_watchpoint.flags = BP_MEM_ACCESS;
1986 break;
1987 }
1988 }
1989 }
1990 }
1991 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
1992 ret = EXCP_DEBUG;
1993 }
1994 if (ret == 0) {
1995 cpu_synchronize_state(cpu_single_env);
1996 assert(cpu_single_env->exception_injected == -1);
1997
1998 /* pass to guest */
1999 cpu_single_env->exception_injected = arch_info->exception;
2000 cpu_single_env->has_error_code = 0;
2001 }
2002
2003 return ret;
2004 }
2005
2006 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
2007 {
2008 const uint8_t type_code[] = {
2009 [GDB_BREAKPOINT_HW] = 0x0,
2010 [GDB_WATCHPOINT_WRITE] = 0x1,
2011 [GDB_WATCHPOINT_ACCESS] = 0x3
2012 };
2013 const uint8_t len_code[] = {
2014 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2015 };
2016 int n;
2017
2018 if (kvm_sw_breakpoints_active(env)) {
2019 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2020 }
2021 if (nb_hw_breakpoint > 0) {
2022 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2023 dbg->arch.debugreg[7] = 0x0600;
2024 for (n = 0; n < nb_hw_breakpoint; n++) {
2025 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2026 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2027 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2028 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2029 }
2030 }
2031 }
2032
2033 static bool host_supports_vmx(void)
2034 {
2035 uint32_t ecx, unused;
2036
2037 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2038 return ecx & CPUID_EXT_VMX;
2039 }
2040
2041 #define VMX_INVALID_GUEST_STATE 0x80000021
2042
2043 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2044 {
2045 uint64_t code;
2046 int ret;
2047
2048 switch (run->exit_reason) {
2049 case KVM_EXIT_HLT:
2050 DPRINTF("handle_hlt\n");
2051 ret = kvm_handle_halt(env);
2052 break;
2053 case KVM_EXIT_SET_TPR:
2054 ret = 0;
2055 break;
2056 case KVM_EXIT_TPR_ACCESS:
2057 ret = kvm_handle_tpr_access(env);
2058 break;
2059 case KVM_EXIT_FAIL_ENTRY:
2060 code = run->fail_entry.hardware_entry_failure_reason;
2061 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2062 code);
2063 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2064 fprintf(stderr,
2065 "\nIf you're running a guest on an Intel machine without "
2066 "unrestricted mode\n"
2067 "support, the failure can be most likely due to the guest "
2068 "entering an invalid\n"
2069 "state for Intel VT. For example, the guest maybe running "
2070 "in big real mode\n"
2071 "which is not supported on less recent Intel processors."
2072 "\n\n");
2073 }
2074 ret = -1;
2075 break;
2076 case KVM_EXIT_EXCEPTION:
2077 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2078 run->ex.exception, run->ex.error_code);
2079 ret = -1;
2080 break;
2081 case KVM_EXIT_DEBUG:
2082 DPRINTF("kvm_exit_debug\n");
2083 ret = kvm_handle_debug(&run->debug.arch);
2084 break;
2085 default:
2086 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2087 ret = -1;
2088 break;
2089 }
2090
2091 return ret;
2092 }
2093
2094 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2095 {
2096 kvm_cpu_synchronize_state(env);
2097 return !(env->cr[0] & CR0_PE_MASK) ||
2098 ((env->segs[R_CS].selector & 3) != 3);
2099 }
2100
2101 void kvm_arch_init_irq_routing(KVMState *s)
2102 {
2103 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2104 /* If kernel can't do irq routing, interrupt source
2105 * override 0->2 cannot be set up as required by HPET.
2106 * So we have to disable it.
2107 */
2108 no_hpet = 1;
2109 }
2110 /* We know at this point that we're using the in-kernel
2111 * irqchip, so we can use irqfds, and on x86 we know
2112 * we can use msi via irqfd and GSI routing.
2113 */
2114 kvm_irqfds_allowed = true;
2115 kvm_msi_via_irqfd_allowed = true;
2116 kvm_gsi_routing_allowed = true;
2117 }
2118
2119 /* Classic KVM device assignment interface. Will remain x86 only. */
2120 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2121 uint32_t flags, uint32_t *dev_id)
2122 {
2123 struct kvm_assigned_pci_dev dev_data = {
2124 .segnr = dev_addr->domain,
2125 .busnr = dev_addr->bus,
2126 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2127 .flags = flags,
2128 };
2129 int ret;
2130
2131 dev_data.assigned_dev_id =
2132 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2133
2134 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2135 if (ret < 0) {
2136 return ret;
2137 }
2138
2139 *dev_id = dev_data.assigned_dev_id;
2140
2141 return 0;
2142 }
2143
2144 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2145 {
2146 struct kvm_assigned_pci_dev dev_data = {
2147 .assigned_dev_id = dev_id,
2148 };
2149
2150 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2151 }
2152
2153 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2154 uint32_t irq_type, uint32_t guest_irq)
2155 {
2156 struct kvm_assigned_irq assigned_irq = {
2157 .assigned_dev_id = dev_id,
2158 .guest_irq = guest_irq,
2159 .flags = irq_type,
2160 };
2161
2162 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2163 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2164 } else {
2165 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2166 }
2167 }
2168
2169 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2170 uint32_t guest_irq)
2171 {
2172 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2173 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2174
2175 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2176 }
2177
2178 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2179 {
2180 struct kvm_assigned_pci_dev dev_data = {
2181 .assigned_dev_id = dev_id,
2182 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2183 };
2184
2185 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2186 }
2187
2188 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2189 uint32_t type)
2190 {
2191 struct kvm_assigned_irq assigned_irq = {
2192 .assigned_dev_id = dev_id,
2193 .flags = type,
2194 };
2195
2196 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2197 }
2198
2199 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2200 {
2201 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2202 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2203 }
2204
2205 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2206 {
2207 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2208 KVM_DEV_IRQ_GUEST_MSI, virq);
2209 }
2210
2211 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2212 {
2213 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2214 KVM_DEV_IRQ_HOST_MSI);
2215 }
2216
2217 bool kvm_device_msix_supported(KVMState *s)
2218 {
2219 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2220 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2221 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2222 }
2223
2224 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2225 uint32_t nr_vectors)
2226 {
2227 struct kvm_assigned_msix_nr msix_nr = {
2228 .assigned_dev_id = dev_id,
2229 .entry_nr = nr_vectors,
2230 };
2231
2232 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2233 }
2234
2235 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2236 int virq)
2237 {
2238 struct kvm_assigned_msix_entry msix_entry = {
2239 .assigned_dev_id = dev_id,
2240 .gsi = virq,
2241 .entry = vector,
2242 };
2243
2244 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2245 }
2246
2247 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2248 {
2249 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2250 KVM_DEV_IRQ_GUEST_MSIX, 0);
2251 }
2252
2253 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2254 {
2255 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2256 KVM_DEV_IRQ_HOST_MSIX);
2257 }