]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
Merge remote-tracking branch 'afaerber/qom-cpu' into staging
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu/sysemu.h"
25 #include "sysemu/kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "exec/gdbstub.h"
29 #include "qemu/host-utils.h"
30 #include "qemu/config-file.h"
31 #include "hw/pc.h"
32 #include "hw/apic.h"
33 #include "exec/ioport.h"
34 #include "hyperv.h"
35 #include "hw/pci/pci.h"
36
37 //#define DEBUG_KVM
38
39 #ifdef DEBUG_KVM
40 #define DPRINTF(fmt, ...) \
41 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
42 #else
43 #define DPRINTF(fmt, ...) \
44 do { } while (0)
45 #endif
46
47 #define MSR_KVM_WALL_CLOCK 0x11
48 #define MSR_KVM_SYSTEM_TIME 0x12
49
50 #ifndef BUS_MCEERR_AR
51 #define BUS_MCEERR_AR 4
52 #endif
53 #ifndef BUS_MCEERR_AO
54 #define BUS_MCEERR_AO 5
55 #endif
56
57 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
58 KVM_CAP_INFO(SET_TSS_ADDR),
59 KVM_CAP_INFO(EXT_CPUID),
60 KVM_CAP_INFO(MP_STATE),
61 KVM_CAP_LAST_INFO
62 };
63
64 static bool has_msr_star;
65 static bool has_msr_hsave_pa;
66 static bool has_msr_tsc_adjust;
67 static bool has_msr_tsc_deadline;
68 static bool has_msr_async_pf_en;
69 static bool has_msr_pv_eoi_en;
70 static bool has_msr_misc_enable;
71 static int lm_capable_kernel;
72
73 bool kvm_allows_irq0_override(void)
74 {
75 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
76 }
77
78 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
79 {
80 struct kvm_cpuid2 *cpuid;
81 int r, size;
82
83 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
84 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
85 cpuid->nent = max;
86 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
87 if (r == 0 && cpuid->nent >= max) {
88 r = -E2BIG;
89 }
90 if (r < 0) {
91 if (r == -E2BIG) {
92 g_free(cpuid);
93 return NULL;
94 } else {
95 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
96 strerror(-r));
97 exit(1);
98 }
99 }
100 return cpuid;
101 }
102
103 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
104 * for all entries.
105 */
106 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
107 {
108 struct kvm_cpuid2 *cpuid;
109 int max = 1;
110 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
111 max *= 2;
112 }
113 return cpuid;
114 }
115
116 struct kvm_para_features {
117 int cap;
118 int feature;
119 } para_features[] = {
120 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
121 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
122 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
123 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
124 { -1, -1 }
125 };
126
127 static int get_para_features(KVMState *s)
128 {
129 int i, features = 0;
130
131 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
132 if (kvm_check_extension(s, para_features[i].cap)) {
133 features |= (1 << para_features[i].feature);
134 }
135 }
136
137 return features;
138 }
139
140
141 /* Returns the value for a specific register on the cpuid entry
142 */
143 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
144 {
145 uint32_t ret = 0;
146 switch (reg) {
147 case R_EAX:
148 ret = entry->eax;
149 break;
150 case R_EBX:
151 ret = entry->ebx;
152 break;
153 case R_ECX:
154 ret = entry->ecx;
155 break;
156 case R_EDX:
157 ret = entry->edx;
158 break;
159 }
160 return ret;
161 }
162
163 /* Find matching entry for function/index on kvm_cpuid2 struct
164 */
165 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
166 uint32_t function,
167 uint32_t index)
168 {
169 int i;
170 for (i = 0; i < cpuid->nent; ++i) {
171 if (cpuid->entries[i].function == function &&
172 cpuid->entries[i].index == index) {
173 return &cpuid->entries[i];
174 }
175 }
176 /* not found: */
177 return NULL;
178 }
179
180 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
181 uint32_t index, int reg)
182 {
183 struct kvm_cpuid2 *cpuid;
184 uint32_t ret = 0;
185 uint32_t cpuid_1_edx;
186 bool found = false;
187
188 cpuid = get_supported_cpuid(s);
189
190 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
191 if (entry) {
192 found = true;
193 ret = cpuid_entry_get_reg(entry, reg);
194 }
195
196 /* Fixups for the data returned by KVM, below */
197
198 if (function == 1 && reg == R_EDX) {
199 /* KVM before 2.6.30 misreports the following features */
200 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
201 } else if (function == 1 && reg == R_ECX) {
202 /* We can set the hypervisor flag, even if KVM does not return it on
203 * GET_SUPPORTED_CPUID
204 */
205 ret |= CPUID_EXT_HYPERVISOR;
206 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
207 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
208 * and the irqchip is in the kernel.
209 */
210 if (kvm_irqchip_in_kernel() &&
211 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
212 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
213 }
214
215 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
216 * without the in-kernel irqchip
217 */
218 if (!kvm_irqchip_in_kernel()) {
219 ret &= ~CPUID_EXT_X2APIC;
220 }
221 } else if (function == 0x80000001 && reg == R_EDX) {
222 /* On Intel, kvm returns cpuid according to the Intel spec,
223 * so add missing bits according to the AMD spec:
224 */
225 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
226 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
227 }
228
229 g_free(cpuid);
230
231 /* fallback for older kernels */
232 if ((function == KVM_CPUID_FEATURES) && !found) {
233 ret = get_para_features(s);
234 }
235
236 return ret;
237 }
238
239 typedef struct HWPoisonPage {
240 ram_addr_t ram_addr;
241 QLIST_ENTRY(HWPoisonPage) list;
242 } HWPoisonPage;
243
244 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
245 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
246
247 static void kvm_unpoison_all(void *param)
248 {
249 HWPoisonPage *page, *next_page;
250
251 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
252 QLIST_REMOVE(page, list);
253 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
254 g_free(page);
255 }
256 }
257
258 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
259 {
260 HWPoisonPage *page;
261
262 QLIST_FOREACH(page, &hwpoison_page_list, list) {
263 if (page->ram_addr == ram_addr) {
264 return;
265 }
266 }
267 page = g_malloc(sizeof(HWPoisonPage));
268 page->ram_addr = ram_addr;
269 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
270 }
271
272 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
273 int *max_banks)
274 {
275 int r;
276
277 r = kvm_check_extension(s, KVM_CAP_MCE);
278 if (r > 0) {
279 *max_banks = r;
280 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
281 }
282 return -ENOSYS;
283 }
284
285 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
286 {
287 CPUX86State *env = &cpu->env;
288 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
289 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
290 uint64_t mcg_status = MCG_STATUS_MCIP;
291
292 if (code == BUS_MCEERR_AR) {
293 status |= MCI_STATUS_AR | 0x134;
294 mcg_status |= MCG_STATUS_EIPV;
295 } else {
296 status |= 0xc0;
297 mcg_status |= MCG_STATUS_RIPV;
298 }
299 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
300 (MCM_ADDR_PHYS << 6) | 0xc,
301 cpu_x86_support_mca_broadcast(env) ?
302 MCE_INJECT_BROADCAST : 0);
303 }
304
305 static void hardware_memory_error(void)
306 {
307 fprintf(stderr, "Hardware memory error!\n");
308 exit(1);
309 }
310
311 int kvm_arch_on_sigbus_vcpu(CPUState *c, int code, void *addr)
312 {
313 X86CPU *cpu = X86_CPU(c);
314 CPUX86State *env = &cpu->env;
315 ram_addr_t ram_addr;
316 hwaddr paddr;
317
318 if ((env->mcg_cap & MCG_SER_P) && addr
319 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
320 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
321 !kvm_physical_memory_addr_from_host(c->kvm_state, addr, &paddr)) {
322 fprintf(stderr, "Hardware memory error for memory used by "
323 "QEMU itself instead of guest system!\n");
324 /* Hope we are lucky for AO MCE */
325 if (code == BUS_MCEERR_AO) {
326 return 0;
327 } else {
328 hardware_memory_error();
329 }
330 }
331 kvm_hwpoison_page_add(ram_addr);
332 kvm_mce_inject(cpu, paddr, code);
333 } else {
334 if (code == BUS_MCEERR_AO) {
335 return 0;
336 } else if (code == BUS_MCEERR_AR) {
337 hardware_memory_error();
338 } else {
339 return 1;
340 }
341 }
342 return 0;
343 }
344
345 int kvm_arch_on_sigbus(int code, void *addr)
346 {
347 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
348 ram_addr_t ram_addr;
349 hwaddr paddr;
350
351 /* Hope we are lucky for AO MCE */
352 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
353 !kvm_physical_memory_addr_from_host(CPU(first_cpu)->kvm_state,
354 addr, &paddr)) {
355 fprintf(stderr, "Hardware memory error for memory used by "
356 "QEMU itself instead of guest system!: %p\n", addr);
357 return 0;
358 }
359 kvm_hwpoison_page_add(ram_addr);
360 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
361 } else {
362 if (code == BUS_MCEERR_AO) {
363 return 0;
364 } else if (code == BUS_MCEERR_AR) {
365 hardware_memory_error();
366 } else {
367 return 1;
368 }
369 }
370 return 0;
371 }
372
373 static int kvm_inject_mce_oldstyle(X86CPU *cpu)
374 {
375 CPUX86State *env = &cpu->env;
376
377 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
378 unsigned int bank, bank_num = env->mcg_cap & 0xff;
379 struct kvm_x86_mce mce;
380
381 env->exception_injected = -1;
382
383 /*
384 * There must be at least one bank in use if an MCE is pending.
385 * Find it and use its values for the event injection.
386 */
387 for (bank = 0; bank < bank_num; bank++) {
388 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
389 break;
390 }
391 }
392 assert(bank < bank_num);
393
394 mce.bank = bank;
395 mce.status = env->mce_banks[bank * 4 + 1];
396 mce.mcg_status = env->mcg_status;
397 mce.addr = env->mce_banks[bank * 4 + 2];
398 mce.misc = env->mce_banks[bank * 4 + 3];
399
400 return kvm_vcpu_ioctl(CPU(cpu), KVM_X86_SET_MCE, &mce);
401 }
402 return 0;
403 }
404
405 static void cpu_update_state(void *opaque, int running, RunState state)
406 {
407 CPUX86State *env = opaque;
408
409 if (running) {
410 env->tsc_valid = false;
411 }
412 }
413
414 unsigned long kvm_arch_vcpu_id(CPUState *cs)
415 {
416 X86CPU *cpu = X86_CPU(cs);
417 return cpu->env.cpuid_apic_id;
418 }
419
420 int kvm_arch_init_vcpu(CPUState *cs)
421 {
422 struct {
423 struct kvm_cpuid2 cpuid;
424 struct kvm_cpuid_entry2 entries[100];
425 } QEMU_PACKED cpuid_data;
426 X86CPU *cpu = X86_CPU(cs);
427 CPUX86State *env = &cpu->env;
428 uint32_t limit, i, j, cpuid_i;
429 uint32_t unused;
430 struct kvm_cpuid_entry2 *c;
431 uint32_t signature[3];
432 int r;
433
434 cpuid_i = 0;
435
436 /* Paravirtualization CPUIDs */
437 c = &cpuid_data.entries[cpuid_i++];
438 memset(c, 0, sizeof(*c));
439 c->function = KVM_CPUID_SIGNATURE;
440 if (!hyperv_enabled()) {
441 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
442 c->eax = 0;
443 } else {
444 memcpy(signature, "Microsoft Hv", 12);
445 c->eax = HYPERV_CPUID_MIN;
446 }
447 c->ebx = signature[0];
448 c->ecx = signature[1];
449 c->edx = signature[2];
450
451 c = &cpuid_data.entries[cpuid_i++];
452 memset(c, 0, sizeof(*c));
453 c->function = KVM_CPUID_FEATURES;
454 c->eax = env->cpuid_kvm_features;
455
456 if (hyperv_enabled()) {
457 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
458 c->eax = signature[0];
459
460 c = &cpuid_data.entries[cpuid_i++];
461 memset(c, 0, sizeof(*c));
462 c->function = HYPERV_CPUID_VERSION;
463 c->eax = 0x00001bbc;
464 c->ebx = 0x00060001;
465
466 c = &cpuid_data.entries[cpuid_i++];
467 memset(c, 0, sizeof(*c));
468 c->function = HYPERV_CPUID_FEATURES;
469 if (hyperv_relaxed_timing_enabled()) {
470 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
471 }
472 if (hyperv_vapic_recommended()) {
473 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
474 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
475 }
476
477 c = &cpuid_data.entries[cpuid_i++];
478 memset(c, 0, sizeof(*c));
479 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
480 if (hyperv_relaxed_timing_enabled()) {
481 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
482 }
483 if (hyperv_vapic_recommended()) {
484 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
485 }
486 c->ebx = hyperv_get_spinlock_retries();
487
488 c = &cpuid_data.entries[cpuid_i++];
489 memset(c, 0, sizeof(*c));
490 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
491 c->eax = 0x40;
492 c->ebx = 0x40;
493
494 c = &cpuid_data.entries[cpuid_i++];
495 memset(c, 0, sizeof(*c));
496 c->function = KVM_CPUID_SIGNATURE_NEXT;
497 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
498 c->eax = 0;
499 c->ebx = signature[0];
500 c->ecx = signature[1];
501 c->edx = signature[2];
502 }
503
504 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
505
506 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
507
508 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
509
510 for (i = 0; i <= limit; i++) {
511 c = &cpuid_data.entries[cpuid_i++];
512
513 switch (i) {
514 case 2: {
515 /* Keep reading function 2 till all the input is received */
516 int times;
517
518 c->function = i;
519 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
520 KVM_CPUID_FLAG_STATE_READ_NEXT;
521 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
522 times = c->eax & 0xff;
523
524 for (j = 1; j < times; ++j) {
525 c = &cpuid_data.entries[cpuid_i++];
526 c->function = i;
527 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
528 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
529 }
530 break;
531 }
532 case 4:
533 case 0xb:
534 case 0xd:
535 for (j = 0; ; j++) {
536 if (i == 0xd && j == 64) {
537 break;
538 }
539 c->function = i;
540 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
541 c->index = j;
542 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
543
544 if (i == 4 && c->eax == 0) {
545 break;
546 }
547 if (i == 0xb && !(c->ecx & 0xff00)) {
548 break;
549 }
550 if (i == 0xd && c->eax == 0) {
551 continue;
552 }
553 c = &cpuid_data.entries[cpuid_i++];
554 }
555 break;
556 default:
557 c->function = i;
558 c->flags = 0;
559 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
560 break;
561 }
562 }
563 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
564
565 for (i = 0x80000000; i <= limit; i++) {
566 c = &cpuid_data.entries[cpuid_i++];
567
568 c->function = i;
569 c->flags = 0;
570 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571 }
572
573 /* Call Centaur's CPUID instructions they are supported. */
574 if (env->cpuid_xlevel2 > 0) {
575 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
576
577 for (i = 0xC0000000; i <= limit; i++) {
578 c = &cpuid_data.entries[cpuid_i++];
579
580 c->function = i;
581 c->flags = 0;
582 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
583 }
584 }
585
586 cpuid_data.cpuid.nent = cpuid_i;
587
588 if (((env->cpuid_version >> 8)&0xF) >= 6
589 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
590 && kvm_check_extension(cs->kvm_state, KVM_CAP_MCE) > 0) {
591 uint64_t mcg_cap;
592 int banks;
593 int ret;
594
595 ret = kvm_get_mce_cap_supported(cs->kvm_state, &mcg_cap, &banks);
596 if (ret < 0) {
597 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
598 return ret;
599 }
600
601 if (banks > MCE_BANKS_DEF) {
602 banks = MCE_BANKS_DEF;
603 }
604 mcg_cap &= MCE_CAP_DEF;
605 mcg_cap |= banks;
606 ret = kvm_vcpu_ioctl(cs, KVM_X86_SETUP_MCE, &mcg_cap);
607 if (ret < 0) {
608 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
609 return ret;
610 }
611
612 env->mcg_cap = mcg_cap;
613 }
614
615 qemu_add_vm_change_state_handler(cpu_update_state, env);
616
617 cpuid_data.cpuid.padding = 0;
618 r = kvm_vcpu_ioctl(cs, KVM_SET_CPUID2, &cpuid_data);
619 if (r) {
620 return r;
621 }
622
623 r = kvm_check_extension(cs->kvm_state, KVM_CAP_TSC_CONTROL);
624 if (r && env->tsc_khz) {
625 r = kvm_vcpu_ioctl(cs, KVM_SET_TSC_KHZ, env->tsc_khz);
626 if (r < 0) {
627 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
628 return r;
629 }
630 }
631
632 if (kvm_has_xsave()) {
633 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
634 }
635
636 return 0;
637 }
638
639 void kvm_arch_reset_vcpu(CPUState *cs)
640 {
641 X86CPU *cpu = X86_CPU(cs);
642 CPUX86State *env = &cpu->env;
643
644 env->exception_injected = -1;
645 env->interrupt_injected = -1;
646 env->xcr0 = 1;
647 if (kvm_irqchip_in_kernel()) {
648 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
649 KVM_MP_STATE_UNINITIALIZED;
650 } else {
651 env->mp_state = KVM_MP_STATE_RUNNABLE;
652 }
653 }
654
655 static int kvm_get_supported_msrs(KVMState *s)
656 {
657 static int kvm_supported_msrs;
658 int ret = 0;
659
660 /* first time */
661 if (kvm_supported_msrs == 0) {
662 struct kvm_msr_list msr_list, *kvm_msr_list;
663
664 kvm_supported_msrs = -1;
665
666 /* Obtain MSR list from KVM. These are the MSRs that we must
667 * save/restore */
668 msr_list.nmsrs = 0;
669 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
670 if (ret < 0 && ret != -E2BIG) {
671 return ret;
672 }
673 /* Old kernel modules had a bug and could write beyond the provided
674 memory. Allocate at least a safe amount of 1K. */
675 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
676 msr_list.nmsrs *
677 sizeof(msr_list.indices[0])));
678
679 kvm_msr_list->nmsrs = msr_list.nmsrs;
680 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
681 if (ret >= 0) {
682 int i;
683
684 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
685 if (kvm_msr_list->indices[i] == MSR_STAR) {
686 has_msr_star = true;
687 continue;
688 }
689 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
690 has_msr_hsave_pa = true;
691 continue;
692 }
693 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
694 has_msr_tsc_adjust = true;
695 continue;
696 }
697 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
698 has_msr_tsc_deadline = true;
699 continue;
700 }
701 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
702 has_msr_misc_enable = true;
703 continue;
704 }
705 }
706 }
707
708 g_free(kvm_msr_list);
709 }
710
711 return ret;
712 }
713
714 int kvm_arch_init(KVMState *s)
715 {
716 QemuOptsList *list = qemu_find_opts("machine");
717 uint64_t identity_base = 0xfffbc000;
718 uint64_t shadow_mem;
719 int ret;
720 struct utsname utsname;
721
722 ret = kvm_get_supported_msrs(s);
723 if (ret < 0) {
724 return ret;
725 }
726
727 uname(&utsname);
728 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
729
730 /*
731 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
732 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
733 * Since these must be part of guest physical memory, we need to allocate
734 * them, both by setting their start addresses in the kernel and by
735 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
736 *
737 * Older KVM versions may not support setting the identity map base. In
738 * that case we need to stick with the default, i.e. a 256K maximum BIOS
739 * size.
740 */
741 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
742 /* Allows up to 16M BIOSes. */
743 identity_base = 0xfeffc000;
744
745 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
746 if (ret < 0) {
747 return ret;
748 }
749 }
750
751 /* Set TSS base one page after EPT identity map. */
752 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
753 if (ret < 0) {
754 return ret;
755 }
756
757 /* Tell fw_cfg to notify the BIOS to reserve the range. */
758 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
759 if (ret < 0) {
760 fprintf(stderr, "e820_add_entry() table is full\n");
761 return ret;
762 }
763 qemu_register_reset(kvm_unpoison_all, NULL);
764
765 if (!QTAILQ_EMPTY(&list->head)) {
766 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
767 "kvm_shadow_mem", -1);
768 if (shadow_mem != -1) {
769 shadow_mem /= 4096;
770 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
771 if (ret < 0) {
772 return ret;
773 }
774 }
775 }
776 return 0;
777 }
778
779 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
780 {
781 lhs->selector = rhs->selector;
782 lhs->base = rhs->base;
783 lhs->limit = rhs->limit;
784 lhs->type = 3;
785 lhs->present = 1;
786 lhs->dpl = 3;
787 lhs->db = 0;
788 lhs->s = 1;
789 lhs->l = 0;
790 lhs->g = 0;
791 lhs->avl = 0;
792 lhs->unusable = 0;
793 }
794
795 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
796 {
797 unsigned flags = rhs->flags;
798 lhs->selector = rhs->selector;
799 lhs->base = rhs->base;
800 lhs->limit = rhs->limit;
801 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
802 lhs->present = (flags & DESC_P_MASK) != 0;
803 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
804 lhs->db = (flags >> DESC_B_SHIFT) & 1;
805 lhs->s = (flags & DESC_S_MASK) != 0;
806 lhs->l = (flags >> DESC_L_SHIFT) & 1;
807 lhs->g = (flags & DESC_G_MASK) != 0;
808 lhs->avl = (flags & DESC_AVL_MASK) != 0;
809 lhs->unusable = 0;
810 lhs->padding = 0;
811 }
812
813 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
814 {
815 lhs->selector = rhs->selector;
816 lhs->base = rhs->base;
817 lhs->limit = rhs->limit;
818 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
819 (rhs->present * DESC_P_MASK) |
820 (rhs->dpl << DESC_DPL_SHIFT) |
821 (rhs->db << DESC_B_SHIFT) |
822 (rhs->s * DESC_S_MASK) |
823 (rhs->l << DESC_L_SHIFT) |
824 (rhs->g * DESC_G_MASK) |
825 (rhs->avl * DESC_AVL_MASK);
826 }
827
828 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
829 {
830 if (set) {
831 *kvm_reg = *qemu_reg;
832 } else {
833 *qemu_reg = *kvm_reg;
834 }
835 }
836
837 static int kvm_getput_regs(X86CPU *cpu, int set)
838 {
839 CPUX86State *env = &cpu->env;
840 struct kvm_regs regs;
841 int ret = 0;
842
843 if (!set) {
844 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_REGS, &regs);
845 if (ret < 0) {
846 return ret;
847 }
848 }
849
850 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
851 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
852 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
853 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
854 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
855 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
856 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
857 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
858 #ifdef TARGET_X86_64
859 kvm_getput_reg(&regs.r8, &env->regs[8], set);
860 kvm_getput_reg(&regs.r9, &env->regs[9], set);
861 kvm_getput_reg(&regs.r10, &env->regs[10], set);
862 kvm_getput_reg(&regs.r11, &env->regs[11], set);
863 kvm_getput_reg(&regs.r12, &env->regs[12], set);
864 kvm_getput_reg(&regs.r13, &env->regs[13], set);
865 kvm_getput_reg(&regs.r14, &env->regs[14], set);
866 kvm_getput_reg(&regs.r15, &env->regs[15], set);
867 #endif
868
869 kvm_getput_reg(&regs.rflags, &env->eflags, set);
870 kvm_getput_reg(&regs.rip, &env->eip, set);
871
872 if (set) {
873 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_REGS, &regs);
874 }
875
876 return ret;
877 }
878
879 static int kvm_put_fpu(X86CPU *cpu)
880 {
881 CPUX86State *env = &cpu->env;
882 struct kvm_fpu fpu;
883 int i;
884
885 memset(&fpu, 0, sizeof fpu);
886 fpu.fsw = env->fpus & ~(7 << 11);
887 fpu.fsw |= (env->fpstt & 7) << 11;
888 fpu.fcw = env->fpuc;
889 fpu.last_opcode = env->fpop;
890 fpu.last_ip = env->fpip;
891 fpu.last_dp = env->fpdp;
892 for (i = 0; i < 8; ++i) {
893 fpu.ftwx |= (!env->fptags[i]) << i;
894 }
895 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
896 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
897 fpu.mxcsr = env->mxcsr;
898
899 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_FPU, &fpu);
900 }
901
902 #define XSAVE_FCW_FSW 0
903 #define XSAVE_FTW_FOP 1
904 #define XSAVE_CWD_RIP 2
905 #define XSAVE_CWD_RDP 4
906 #define XSAVE_MXCSR 6
907 #define XSAVE_ST_SPACE 8
908 #define XSAVE_XMM_SPACE 40
909 #define XSAVE_XSTATE_BV 128
910 #define XSAVE_YMMH_SPACE 144
911
912 static int kvm_put_xsave(X86CPU *cpu)
913 {
914 CPUX86State *env = &cpu->env;
915 struct kvm_xsave* xsave = env->kvm_xsave_buf;
916 uint16_t cwd, swd, twd;
917 int i, r;
918
919 if (!kvm_has_xsave()) {
920 return kvm_put_fpu(cpu);
921 }
922
923 memset(xsave, 0, sizeof(struct kvm_xsave));
924 twd = 0;
925 swd = env->fpus & ~(7 << 11);
926 swd |= (env->fpstt & 7) << 11;
927 cwd = env->fpuc;
928 for (i = 0; i < 8; ++i) {
929 twd |= (!env->fptags[i]) << i;
930 }
931 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
932 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
933 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
934 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
935 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
936 sizeof env->fpregs);
937 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
938 sizeof env->xmm_regs);
939 xsave->region[XSAVE_MXCSR] = env->mxcsr;
940 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
941 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
942 sizeof env->ymmh_regs);
943 r = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XSAVE, xsave);
944 return r;
945 }
946
947 static int kvm_put_xcrs(X86CPU *cpu)
948 {
949 CPUX86State *env = &cpu->env;
950 struct kvm_xcrs xcrs;
951
952 if (!kvm_has_xcrs()) {
953 return 0;
954 }
955
956 xcrs.nr_xcrs = 1;
957 xcrs.flags = 0;
958 xcrs.xcrs[0].xcr = 0;
959 xcrs.xcrs[0].value = env->xcr0;
960 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_XCRS, &xcrs);
961 }
962
963 static int kvm_put_sregs(X86CPU *cpu)
964 {
965 CPUX86State *env = &cpu->env;
966 struct kvm_sregs sregs;
967
968 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
969 if (env->interrupt_injected >= 0) {
970 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
971 (uint64_t)1 << (env->interrupt_injected % 64);
972 }
973
974 if ((env->eflags & VM_MASK)) {
975 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
976 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
977 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
978 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
979 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
980 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
981 } else {
982 set_seg(&sregs.cs, &env->segs[R_CS]);
983 set_seg(&sregs.ds, &env->segs[R_DS]);
984 set_seg(&sregs.es, &env->segs[R_ES]);
985 set_seg(&sregs.fs, &env->segs[R_FS]);
986 set_seg(&sregs.gs, &env->segs[R_GS]);
987 set_seg(&sregs.ss, &env->segs[R_SS]);
988 }
989
990 set_seg(&sregs.tr, &env->tr);
991 set_seg(&sregs.ldt, &env->ldt);
992
993 sregs.idt.limit = env->idt.limit;
994 sregs.idt.base = env->idt.base;
995 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
996 sregs.gdt.limit = env->gdt.limit;
997 sregs.gdt.base = env->gdt.base;
998 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
999
1000 sregs.cr0 = env->cr[0];
1001 sregs.cr2 = env->cr[2];
1002 sregs.cr3 = env->cr[3];
1003 sregs.cr4 = env->cr[4];
1004
1005 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
1006 sregs.apic_base = cpu_get_apic_base(env->apic_state);
1007
1008 sregs.efer = env->efer;
1009
1010 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_SREGS, &sregs);
1011 }
1012
1013 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
1014 uint32_t index, uint64_t value)
1015 {
1016 entry->index = index;
1017 entry->data = value;
1018 }
1019
1020 static int kvm_put_msrs(X86CPU *cpu, int level)
1021 {
1022 CPUX86State *env = &cpu->env;
1023 struct {
1024 struct kvm_msrs info;
1025 struct kvm_msr_entry entries[100];
1026 } msr_data;
1027 struct kvm_msr_entry *msrs = msr_data.entries;
1028 int n = 0;
1029
1030 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1031 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1032 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1033 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1034 if (has_msr_star) {
1035 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1036 }
1037 if (has_msr_hsave_pa) {
1038 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1039 }
1040 if (has_msr_tsc_adjust) {
1041 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1042 }
1043 if (has_msr_tsc_deadline) {
1044 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1045 }
1046 if (has_msr_misc_enable) {
1047 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1048 env->msr_ia32_misc_enable);
1049 }
1050 #ifdef TARGET_X86_64
1051 if (lm_capable_kernel) {
1052 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1053 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1054 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1055 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1056 }
1057 #endif
1058 if (level == KVM_PUT_FULL_STATE) {
1059 /*
1060 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1061 * writeback. Until this is fixed, we only write the offset to SMP
1062 * guests after migration, desynchronizing the VCPUs, but avoiding
1063 * huge jump-backs that would occur without any writeback at all.
1064 */
1065 if (smp_cpus == 1 || env->tsc != 0) {
1066 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1067 }
1068 }
1069 /*
1070 * The following paravirtual MSRs have side effects on the guest or are
1071 * too heavy for normal writeback. Limit them to reset or full state
1072 * updates.
1073 */
1074 if (level >= KVM_PUT_RESET_STATE) {
1075 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1076 env->system_time_msr);
1077 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1078 if (has_msr_async_pf_en) {
1079 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1080 env->async_pf_en_msr);
1081 }
1082 if (has_msr_pv_eoi_en) {
1083 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1084 env->pv_eoi_en_msr);
1085 }
1086 if (hyperv_hypercall_available()) {
1087 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1088 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1089 }
1090 if (hyperv_vapic_recommended()) {
1091 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1092 }
1093 }
1094 if (env->mcg_cap) {
1095 int i;
1096
1097 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1098 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1099 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1100 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1101 }
1102 }
1103
1104 msr_data.info.nmsrs = n;
1105
1106 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MSRS, &msr_data);
1107
1108 }
1109
1110
1111 static int kvm_get_fpu(X86CPU *cpu)
1112 {
1113 CPUX86State *env = &cpu->env;
1114 struct kvm_fpu fpu;
1115 int i, ret;
1116
1117 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_FPU, &fpu);
1118 if (ret < 0) {
1119 return ret;
1120 }
1121
1122 env->fpstt = (fpu.fsw >> 11) & 7;
1123 env->fpus = fpu.fsw;
1124 env->fpuc = fpu.fcw;
1125 env->fpop = fpu.last_opcode;
1126 env->fpip = fpu.last_ip;
1127 env->fpdp = fpu.last_dp;
1128 for (i = 0; i < 8; ++i) {
1129 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1130 }
1131 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1132 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1133 env->mxcsr = fpu.mxcsr;
1134
1135 return 0;
1136 }
1137
1138 static int kvm_get_xsave(X86CPU *cpu)
1139 {
1140 CPUX86State *env = &cpu->env;
1141 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1142 int ret, i;
1143 uint16_t cwd, swd, twd;
1144
1145 if (!kvm_has_xsave()) {
1146 return kvm_get_fpu(cpu);
1147 }
1148
1149 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XSAVE, xsave);
1150 if (ret < 0) {
1151 return ret;
1152 }
1153
1154 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1155 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1156 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1157 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1158 env->fpstt = (swd >> 11) & 7;
1159 env->fpus = swd;
1160 env->fpuc = cwd;
1161 for (i = 0; i < 8; ++i) {
1162 env->fptags[i] = !((twd >> i) & 1);
1163 }
1164 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1165 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1166 env->mxcsr = xsave->region[XSAVE_MXCSR];
1167 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1168 sizeof env->fpregs);
1169 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1170 sizeof env->xmm_regs);
1171 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1172 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1173 sizeof env->ymmh_regs);
1174 return 0;
1175 }
1176
1177 static int kvm_get_xcrs(X86CPU *cpu)
1178 {
1179 CPUX86State *env = &cpu->env;
1180 int i, ret;
1181 struct kvm_xcrs xcrs;
1182
1183 if (!kvm_has_xcrs()) {
1184 return 0;
1185 }
1186
1187 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_XCRS, &xcrs);
1188 if (ret < 0) {
1189 return ret;
1190 }
1191
1192 for (i = 0; i < xcrs.nr_xcrs; i++) {
1193 /* Only support xcr0 now */
1194 if (xcrs.xcrs[0].xcr == 0) {
1195 env->xcr0 = xcrs.xcrs[0].value;
1196 break;
1197 }
1198 }
1199 return 0;
1200 }
1201
1202 static int kvm_get_sregs(X86CPU *cpu)
1203 {
1204 CPUX86State *env = &cpu->env;
1205 struct kvm_sregs sregs;
1206 uint32_t hflags;
1207 int bit, i, ret;
1208
1209 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_SREGS, &sregs);
1210 if (ret < 0) {
1211 return ret;
1212 }
1213
1214 /* There can only be one pending IRQ set in the bitmap at a time, so try
1215 to find it and save its number instead (-1 for none). */
1216 env->interrupt_injected = -1;
1217 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1218 if (sregs.interrupt_bitmap[i]) {
1219 bit = ctz64(sregs.interrupt_bitmap[i]);
1220 env->interrupt_injected = i * 64 + bit;
1221 break;
1222 }
1223 }
1224
1225 get_seg(&env->segs[R_CS], &sregs.cs);
1226 get_seg(&env->segs[R_DS], &sregs.ds);
1227 get_seg(&env->segs[R_ES], &sregs.es);
1228 get_seg(&env->segs[R_FS], &sregs.fs);
1229 get_seg(&env->segs[R_GS], &sregs.gs);
1230 get_seg(&env->segs[R_SS], &sregs.ss);
1231
1232 get_seg(&env->tr, &sregs.tr);
1233 get_seg(&env->ldt, &sregs.ldt);
1234
1235 env->idt.limit = sregs.idt.limit;
1236 env->idt.base = sregs.idt.base;
1237 env->gdt.limit = sregs.gdt.limit;
1238 env->gdt.base = sregs.gdt.base;
1239
1240 env->cr[0] = sregs.cr0;
1241 env->cr[2] = sregs.cr2;
1242 env->cr[3] = sregs.cr3;
1243 env->cr[4] = sregs.cr4;
1244
1245 env->efer = sregs.efer;
1246
1247 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1248
1249 #define HFLAG_COPY_MASK \
1250 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1251 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1252 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1253 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1254
1255 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1256 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1257 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1258 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1259 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1260 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1261 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1262
1263 if (env->efer & MSR_EFER_LMA) {
1264 hflags |= HF_LMA_MASK;
1265 }
1266
1267 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1268 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1269 } else {
1270 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1271 (DESC_B_SHIFT - HF_CS32_SHIFT);
1272 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1273 (DESC_B_SHIFT - HF_SS32_SHIFT);
1274 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1275 !(hflags & HF_CS32_MASK)) {
1276 hflags |= HF_ADDSEG_MASK;
1277 } else {
1278 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1279 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1280 }
1281 }
1282 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1283
1284 return 0;
1285 }
1286
1287 static int kvm_get_msrs(X86CPU *cpu)
1288 {
1289 CPUX86State *env = &cpu->env;
1290 struct {
1291 struct kvm_msrs info;
1292 struct kvm_msr_entry entries[100];
1293 } msr_data;
1294 struct kvm_msr_entry *msrs = msr_data.entries;
1295 int ret, i, n;
1296
1297 n = 0;
1298 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1299 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1300 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1301 msrs[n++].index = MSR_PAT;
1302 if (has_msr_star) {
1303 msrs[n++].index = MSR_STAR;
1304 }
1305 if (has_msr_hsave_pa) {
1306 msrs[n++].index = MSR_VM_HSAVE_PA;
1307 }
1308 if (has_msr_tsc_adjust) {
1309 msrs[n++].index = MSR_TSC_ADJUST;
1310 }
1311 if (has_msr_tsc_deadline) {
1312 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1313 }
1314 if (has_msr_misc_enable) {
1315 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1316 }
1317
1318 if (!env->tsc_valid) {
1319 msrs[n++].index = MSR_IA32_TSC;
1320 env->tsc_valid = !runstate_is_running();
1321 }
1322
1323 #ifdef TARGET_X86_64
1324 if (lm_capable_kernel) {
1325 msrs[n++].index = MSR_CSTAR;
1326 msrs[n++].index = MSR_KERNELGSBASE;
1327 msrs[n++].index = MSR_FMASK;
1328 msrs[n++].index = MSR_LSTAR;
1329 }
1330 #endif
1331 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1332 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1333 if (has_msr_async_pf_en) {
1334 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1335 }
1336 if (has_msr_pv_eoi_en) {
1337 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1338 }
1339
1340 if (env->mcg_cap) {
1341 msrs[n++].index = MSR_MCG_STATUS;
1342 msrs[n++].index = MSR_MCG_CTL;
1343 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1344 msrs[n++].index = MSR_MC0_CTL + i;
1345 }
1346 }
1347
1348 msr_data.info.nmsrs = n;
1349 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MSRS, &msr_data);
1350 if (ret < 0) {
1351 return ret;
1352 }
1353
1354 for (i = 0; i < ret; i++) {
1355 switch (msrs[i].index) {
1356 case MSR_IA32_SYSENTER_CS:
1357 env->sysenter_cs = msrs[i].data;
1358 break;
1359 case MSR_IA32_SYSENTER_ESP:
1360 env->sysenter_esp = msrs[i].data;
1361 break;
1362 case MSR_IA32_SYSENTER_EIP:
1363 env->sysenter_eip = msrs[i].data;
1364 break;
1365 case MSR_PAT:
1366 env->pat = msrs[i].data;
1367 break;
1368 case MSR_STAR:
1369 env->star = msrs[i].data;
1370 break;
1371 #ifdef TARGET_X86_64
1372 case MSR_CSTAR:
1373 env->cstar = msrs[i].data;
1374 break;
1375 case MSR_KERNELGSBASE:
1376 env->kernelgsbase = msrs[i].data;
1377 break;
1378 case MSR_FMASK:
1379 env->fmask = msrs[i].data;
1380 break;
1381 case MSR_LSTAR:
1382 env->lstar = msrs[i].data;
1383 break;
1384 #endif
1385 case MSR_IA32_TSC:
1386 env->tsc = msrs[i].data;
1387 break;
1388 case MSR_TSC_ADJUST:
1389 env->tsc_adjust = msrs[i].data;
1390 break;
1391 case MSR_IA32_TSCDEADLINE:
1392 env->tsc_deadline = msrs[i].data;
1393 break;
1394 case MSR_VM_HSAVE_PA:
1395 env->vm_hsave = msrs[i].data;
1396 break;
1397 case MSR_KVM_SYSTEM_TIME:
1398 env->system_time_msr = msrs[i].data;
1399 break;
1400 case MSR_KVM_WALL_CLOCK:
1401 env->wall_clock_msr = msrs[i].data;
1402 break;
1403 case MSR_MCG_STATUS:
1404 env->mcg_status = msrs[i].data;
1405 break;
1406 case MSR_MCG_CTL:
1407 env->mcg_ctl = msrs[i].data;
1408 break;
1409 case MSR_IA32_MISC_ENABLE:
1410 env->msr_ia32_misc_enable = msrs[i].data;
1411 break;
1412 default:
1413 if (msrs[i].index >= MSR_MC0_CTL &&
1414 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1415 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1416 }
1417 break;
1418 case MSR_KVM_ASYNC_PF_EN:
1419 env->async_pf_en_msr = msrs[i].data;
1420 break;
1421 case MSR_KVM_PV_EOI_EN:
1422 env->pv_eoi_en_msr = msrs[i].data;
1423 break;
1424 }
1425 }
1426
1427 return 0;
1428 }
1429
1430 static int kvm_put_mp_state(X86CPU *cpu)
1431 {
1432 struct kvm_mp_state mp_state = { .mp_state = cpu->env.mp_state };
1433
1434 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state);
1435 }
1436
1437 static int kvm_get_mp_state(X86CPU *cpu)
1438 {
1439 CPUX86State *env = &cpu->env;
1440 struct kvm_mp_state mp_state;
1441 int ret;
1442
1443 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_MP_STATE, &mp_state);
1444 if (ret < 0) {
1445 return ret;
1446 }
1447 env->mp_state = mp_state.mp_state;
1448 if (kvm_irqchip_in_kernel()) {
1449 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1450 }
1451 return 0;
1452 }
1453
1454 static int kvm_get_apic(X86CPU *cpu)
1455 {
1456 CPUX86State *env = &cpu->env;
1457 DeviceState *apic = env->apic_state;
1458 struct kvm_lapic_state kapic;
1459 int ret;
1460
1461 if (apic && kvm_irqchip_in_kernel()) {
1462 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_LAPIC, &kapic);
1463 if (ret < 0) {
1464 return ret;
1465 }
1466
1467 kvm_get_apic_state(apic, &kapic);
1468 }
1469 return 0;
1470 }
1471
1472 static int kvm_put_apic(X86CPU *cpu)
1473 {
1474 CPUX86State *env = &cpu->env;
1475 DeviceState *apic = env->apic_state;
1476 struct kvm_lapic_state kapic;
1477
1478 if (apic && kvm_irqchip_in_kernel()) {
1479 kvm_put_apic_state(apic, &kapic);
1480
1481 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_LAPIC, &kapic);
1482 }
1483 return 0;
1484 }
1485
1486 static int kvm_put_vcpu_events(X86CPU *cpu, int level)
1487 {
1488 CPUX86State *env = &cpu->env;
1489 struct kvm_vcpu_events events;
1490
1491 if (!kvm_has_vcpu_events()) {
1492 return 0;
1493 }
1494
1495 events.exception.injected = (env->exception_injected >= 0);
1496 events.exception.nr = env->exception_injected;
1497 events.exception.has_error_code = env->has_error_code;
1498 events.exception.error_code = env->error_code;
1499 events.exception.pad = 0;
1500
1501 events.interrupt.injected = (env->interrupt_injected >= 0);
1502 events.interrupt.nr = env->interrupt_injected;
1503 events.interrupt.soft = env->soft_interrupt;
1504
1505 events.nmi.injected = env->nmi_injected;
1506 events.nmi.pending = env->nmi_pending;
1507 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1508 events.nmi.pad = 0;
1509
1510 events.sipi_vector = env->sipi_vector;
1511
1512 events.flags = 0;
1513 if (level >= KVM_PUT_RESET_STATE) {
1514 events.flags |=
1515 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1516 }
1517
1518 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_VCPU_EVENTS, &events);
1519 }
1520
1521 static int kvm_get_vcpu_events(X86CPU *cpu)
1522 {
1523 CPUX86State *env = &cpu->env;
1524 struct kvm_vcpu_events events;
1525 int ret;
1526
1527 if (!kvm_has_vcpu_events()) {
1528 return 0;
1529 }
1530
1531 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_VCPU_EVENTS, &events);
1532 if (ret < 0) {
1533 return ret;
1534 }
1535 env->exception_injected =
1536 events.exception.injected ? events.exception.nr : -1;
1537 env->has_error_code = events.exception.has_error_code;
1538 env->error_code = events.exception.error_code;
1539
1540 env->interrupt_injected =
1541 events.interrupt.injected ? events.interrupt.nr : -1;
1542 env->soft_interrupt = events.interrupt.soft;
1543
1544 env->nmi_injected = events.nmi.injected;
1545 env->nmi_pending = events.nmi.pending;
1546 if (events.nmi.masked) {
1547 env->hflags2 |= HF2_NMI_MASK;
1548 } else {
1549 env->hflags2 &= ~HF2_NMI_MASK;
1550 }
1551
1552 env->sipi_vector = events.sipi_vector;
1553
1554 return 0;
1555 }
1556
1557 static int kvm_guest_debug_workarounds(X86CPU *cpu)
1558 {
1559 CPUX86State *env = &cpu->env;
1560 int ret = 0;
1561 unsigned long reinject_trap = 0;
1562
1563 if (!kvm_has_vcpu_events()) {
1564 if (env->exception_injected == 1) {
1565 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1566 } else if (env->exception_injected == 3) {
1567 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1568 }
1569 env->exception_injected = -1;
1570 }
1571
1572 /*
1573 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1574 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1575 * by updating the debug state once again if single-stepping is on.
1576 * Another reason to call kvm_update_guest_debug here is a pending debug
1577 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1578 * reinject them via SET_GUEST_DEBUG.
1579 */
1580 if (reinject_trap ||
1581 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1582 ret = kvm_update_guest_debug(env, reinject_trap);
1583 }
1584 return ret;
1585 }
1586
1587 static int kvm_put_debugregs(X86CPU *cpu)
1588 {
1589 CPUX86State *env = &cpu->env;
1590 struct kvm_debugregs dbgregs;
1591 int i;
1592
1593 if (!kvm_has_debugregs()) {
1594 return 0;
1595 }
1596
1597 for (i = 0; i < 4; i++) {
1598 dbgregs.db[i] = env->dr[i];
1599 }
1600 dbgregs.dr6 = env->dr[6];
1601 dbgregs.dr7 = env->dr[7];
1602 dbgregs.flags = 0;
1603
1604 return kvm_vcpu_ioctl(CPU(cpu), KVM_SET_DEBUGREGS, &dbgregs);
1605 }
1606
1607 static int kvm_get_debugregs(X86CPU *cpu)
1608 {
1609 CPUX86State *env = &cpu->env;
1610 struct kvm_debugregs dbgregs;
1611 int i, ret;
1612
1613 if (!kvm_has_debugregs()) {
1614 return 0;
1615 }
1616
1617 ret = kvm_vcpu_ioctl(CPU(cpu), KVM_GET_DEBUGREGS, &dbgregs);
1618 if (ret < 0) {
1619 return ret;
1620 }
1621 for (i = 0; i < 4; i++) {
1622 env->dr[i] = dbgregs.db[i];
1623 }
1624 env->dr[4] = env->dr[6] = dbgregs.dr6;
1625 env->dr[5] = env->dr[7] = dbgregs.dr7;
1626
1627 return 0;
1628 }
1629
1630 int kvm_arch_put_registers(CPUState *cpu, int level)
1631 {
1632 X86CPU *x86_cpu = X86_CPU(cpu);
1633 int ret;
1634
1635 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1636
1637 ret = kvm_getput_regs(x86_cpu, 1);
1638 if (ret < 0) {
1639 return ret;
1640 }
1641 ret = kvm_put_xsave(x86_cpu);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645 ret = kvm_put_xcrs(x86_cpu);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649 ret = kvm_put_sregs(x86_cpu);
1650 if (ret < 0) {
1651 return ret;
1652 }
1653 /* must be before kvm_put_msrs */
1654 ret = kvm_inject_mce_oldstyle(x86_cpu);
1655 if (ret < 0) {
1656 return ret;
1657 }
1658 ret = kvm_put_msrs(x86_cpu, level);
1659 if (ret < 0) {
1660 return ret;
1661 }
1662 if (level >= KVM_PUT_RESET_STATE) {
1663 ret = kvm_put_mp_state(x86_cpu);
1664 if (ret < 0) {
1665 return ret;
1666 }
1667 ret = kvm_put_apic(x86_cpu);
1668 if (ret < 0) {
1669 return ret;
1670 }
1671 }
1672 ret = kvm_put_vcpu_events(x86_cpu, level);
1673 if (ret < 0) {
1674 return ret;
1675 }
1676 ret = kvm_put_debugregs(x86_cpu);
1677 if (ret < 0) {
1678 return ret;
1679 }
1680 /* must be last */
1681 ret = kvm_guest_debug_workarounds(x86_cpu);
1682 if (ret < 0) {
1683 return ret;
1684 }
1685 return 0;
1686 }
1687
1688 int kvm_arch_get_registers(CPUState *cs)
1689 {
1690 X86CPU *cpu = X86_CPU(cs);
1691 int ret;
1692
1693 assert(cpu_is_stopped(cs) || qemu_cpu_is_self(cs));
1694
1695 ret = kvm_getput_regs(cpu, 0);
1696 if (ret < 0) {
1697 return ret;
1698 }
1699 ret = kvm_get_xsave(cpu);
1700 if (ret < 0) {
1701 return ret;
1702 }
1703 ret = kvm_get_xcrs(cpu);
1704 if (ret < 0) {
1705 return ret;
1706 }
1707 ret = kvm_get_sregs(cpu);
1708 if (ret < 0) {
1709 return ret;
1710 }
1711 ret = kvm_get_msrs(cpu);
1712 if (ret < 0) {
1713 return ret;
1714 }
1715 ret = kvm_get_mp_state(cpu);
1716 if (ret < 0) {
1717 return ret;
1718 }
1719 ret = kvm_get_apic(cpu);
1720 if (ret < 0) {
1721 return ret;
1722 }
1723 ret = kvm_get_vcpu_events(cpu);
1724 if (ret < 0) {
1725 return ret;
1726 }
1727 ret = kvm_get_debugregs(cpu);
1728 if (ret < 0) {
1729 return ret;
1730 }
1731 return 0;
1732 }
1733
1734 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
1735 {
1736 X86CPU *x86_cpu = X86_CPU(cpu);
1737 CPUX86State *env = &x86_cpu->env;
1738 int ret;
1739
1740 /* Inject NMI */
1741 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1742 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1743 DPRINTF("injected NMI\n");
1744 ret = kvm_vcpu_ioctl(cpu, KVM_NMI);
1745 if (ret < 0) {
1746 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1747 strerror(-ret));
1748 }
1749 }
1750
1751 if (!kvm_irqchip_in_kernel()) {
1752 /* Force the VCPU out of its inner loop to process any INIT requests
1753 * or pending TPR access reports. */
1754 if (env->interrupt_request &
1755 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1756 env->exit_request = 1;
1757 }
1758
1759 /* Try to inject an interrupt if the guest can accept it */
1760 if (run->ready_for_interrupt_injection &&
1761 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1762 (env->eflags & IF_MASK)) {
1763 int irq;
1764
1765 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1766 irq = cpu_get_pic_interrupt(env);
1767 if (irq >= 0) {
1768 struct kvm_interrupt intr;
1769
1770 intr.irq = irq;
1771 DPRINTF("injected interrupt %d\n", irq);
1772 ret = kvm_vcpu_ioctl(cpu, KVM_INTERRUPT, &intr);
1773 if (ret < 0) {
1774 fprintf(stderr,
1775 "KVM: injection failed, interrupt lost (%s)\n",
1776 strerror(-ret));
1777 }
1778 }
1779 }
1780
1781 /* If we have an interrupt but the guest is not ready to receive an
1782 * interrupt, request an interrupt window exit. This will
1783 * cause a return to userspace as soon as the guest is ready to
1784 * receive interrupts. */
1785 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1786 run->request_interrupt_window = 1;
1787 } else {
1788 run->request_interrupt_window = 0;
1789 }
1790
1791 DPRINTF("setting tpr\n");
1792 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1793 }
1794 }
1795
1796 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
1797 {
1798 X86CPU *x86_cpu = X86_CPU(cpu);
1799 CPUX86State *env = &x86_cpu->env;
1800
1801 if (run->if_flag) {
1802 env->eflags |= IF_MASK;
1803 } else {
1804 env->eflags &= ~IF_MASK;
1805 }
1806 cpu_set_apic_tpr(env->apic_state, run->cr8);
1807 cpu_set_apic_base(env->apic_state, run->apic_base);
1808 }
1809
1810 int kvm_arch_process_async_events(CPUState *cs)
1811 {
1812 X86CPU *cpu = X86_CPU(cs);
1813 CPUX86State *env = &cpu->env;
1814
1815 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1816 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1817 assert(env->mcg_cap);
1818
1819 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1820
1821 kvm_cpu_synchronize_state(env);
1822
1823 if (env->exception_injected == EXCP08_DBLE) {
1824 /* this means triple fault */
1825 qemu_system_reset_request();
1826 env->exit_request = 1;
1827 return 0;
1828 }
1829 env->exception_injected = EXCP12_MCHK;
1830 env->has_error_code = 0;
1831
1832 env->halted = 0;
1833 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1834 env->mp_state = KVM_MP_STATE_RUNNABLE;
1835 }
1836 }
1837
1838 if (kvm_irqchip_in_kernel()) {
1839 return 0;
1840 }
1841
1842 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1843 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1844 apic_poll_irq(env->apic_state);
1845 }
1846 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1847 (env->eflags & IF_MASK)) ||
1848 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1849 env->halted = 0;
1850 }
1851 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1852 kvm_cpu_synchronize_state(env);
1853 do_cpu_init(cpu);
1854 }
1855 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1856 kvm_cpu_synchronize_state(env);
1857 do_cpu_sipi(cpu);
1858 }
1859 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1860 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1861 kvm_cpu_synchronize_state(env);
1862 apic_handle_tpr_access_report(env->apic_state, env->eip,
1863 env->tpr_access_type);
1864 }
1865
1866 return env->halted;
1867 }
1868
1869 static int kvm_handle_halt(X86CPU *cpu)
1870 {
1871 CPUX86State *env = &cpu->env;
1872
1873 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1874 (env->eflags & IF_MASK)) &&
1875 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1876 env->halted = 1;
1877 return EXCP_HLT;
1878 }
1879
1880 return 0;
1881 }
1882
1883 static int kvm_handle_tpr_access(X86CPU *cpu)
1884 {
1885 CPUX86State *env = &cpu->env;
1886 CPUState *cs = CPU(cpu);
1887 struct kvm_run *run = cs->kvm_run;
1888
1889 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1890 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1891 : TPR_ACCESS_READ);
1892 return 1;
1893 }
1894
1895 int kvm_arch_insert_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1896 {
1897 CPUX86State *env = &X86_CPU(cpu)->env;
1898 static const uint8_t int3 = 0xcc;
1899
1900 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1901 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1902 return -EINVAL;
1903 }
1904 return 0;
1905 }
1906
1907 int kvm_arch_remove_sw_breakpoint(CPUState *cpu, struct kvm_sw_breakpoint *bp)
1908 {
1909 CPUX86State *env = &X86_CPU(cpu)->env;
1910 uint8_t int3;
1911
1912 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1913 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1914 return -EINVAL;
1915 }
1916 return 0;
1917 }
1918
1919 static struct {
1920 target_ulong addr;
1921 int len;
1922 int type;
1923 } hw_breakpoint[4];
1924
1925 static int nb_hw_breakpoint;
1926
1927 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1928 {
1929 int n;
1930
1931 for (n = 0; n < nb_hw_breakpoint; n++) {
1932 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1933 (hw_breakpoint[n].len == len || len == -1)) {
1934 return n;
1935 }
1936 }
1937 return -1;
1938 }
1939
1940 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1941 target_ulong len, int type)
1942 {
1943 switch (type) {
1944 case GDB_BREAKPOINT_HW:
1945 len = 1;
1946 break;
1947 case GDB_WATCHPOINT_WRITE:
1948 case GDB_WATCHPOINT_ACCESS:
1949 switch (len) {
1950 case 1:
1951 break;
1952 case 2:
1953 case 4:
1954 case 8:
1955 if (addr & (len - 1)) {
1956 return -EINVAL;
1957 }
1958 break;
1959 default:
1960 return -EINVAL;
1961 }
1962 break;
1963 default:
1964 return -ENOSYS;
1965 }
1966
1967 if (nb_hw_breakpoint == 4) {
1968 return -ENOBUFS;
1969 }
1970 if (find_hw_breakpoint(addr, len, type) >= 0) {
1971 return -EEXIST;
1972 }
1973 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1974 hw_breakpoint[nb_hw_breakpoint].len = len;
1975 hw_breakpoint[nb_hw_breakpoint].type = type;
1976 nb_hw_breakpoint++;
1977
1978 return 0;
1979 }
1980
1981 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1982 target_ulong len, int type)
1983 {
1984 int n;
1985
1986 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1987 if (n < 0) {
1988 return -ENOENT;
1989 }
1990 nb_hw_breakpoint--;
1991 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1992
1993 return 0;
1994 }
1995
1996 void kvm_arch_remove_all_hw_breakpoints(void)
1997 {
1998 nb_hw_breakpoint = 0;
1999 }
2000
2001 static CPUWatchpoint hw_watchpoint;
2002
2003 static int kvm_handle_debug(X86CPU *cpu,
2004 struct kvm_debug_exit_arch *arch_info)
2005 {
2006 CPUX86State *env = &cpu->env;
2007 int ret = 0;
2008 int n;
2009
2010 if (arch_info->exception == 1) {
2011 if (arch_info->dr6 & (1 << 14)) {
2012 if (env->singlestep_enabled) {
2013 ret = EXCP_DEBUG;
2014 }
2015 } else {
2016 for (n = 0; n < 4; n++) {
2017 if (arch_info->dr6 & (1 << n)) {
2018 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
2019 case 0x0:
2020 ret = EXCP_DEBUG;
2021 break;
2022 case 0x1:
2023 ret = EXCP_DEBUG;
2024 env->watchpoint_hit = &hw_watchpoint;
2025 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2026 hw_watchpoint.flags = BP_MEM_WRITE;
2027 break;
2028 case 0x3:
2029 ret = EXCP_DEBUG;
2030 env->watchpoint_hit = &hw_watchpoint;
2031 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
2032 hw_watchpoint.flags = BP_MEM_ACCESS;
2033 break;
2034 }
2035 }
2036 }
2037 }
2038 } else if (kvm_find_sw_breakpoint(CPU(cpu), arch_info->pc)) {
2039 ret = EXCP_DEBUG;
2040 }
2041 if (ret == 0) {
2042 cpu_synchronize_state(env);
2043 assert(env->exception_injected == -1);
2044
2045 /* pass to guest */
2046 env->exception_injected = arch_info->exception;
2047 env->has_error_code = 0;
2048 }
2049
2050 return ret;
2051 }
2052
2053 void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg)
2054 {
2055 const uint8_t type_code[] = {
2056 [GDB_BREAKPOINT_HW] = 0x0,
2057 [GDB_WATCHPOINT_WRITE] = 0x1,
2058 [GDB_WATCHPOINT_ACCESS] = 0x3
2059 };
2060 const uint8_t len_code[] = {
2061 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2062 };
2063 int n;
2064
2065 if (kvm_sw_breakpoints_active(cpu)) {
2066 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2067 }
2068 if (nb_hw_breakpoint > 0) {
2069 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2070 dbg->arch.debugreg[7] = 0x0600;
2071 for (n = 0; n < nb_hw_breakpoint; n++) {
2072 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2073 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2074 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2075 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2076 }
2077 }
2078 }
2079
2080 static bool host_supports_vmx(void)
2081 {
2082 uint32_t ecx, unused;
2083
2084 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2085 return ecx & CPUID_EXT_VMX;
2086 }
2087
2088 #define VMX_INVALID_GUEST_STATE 0x80000021
2089
2090 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
2091 {
2092 X86CPU *cpu = X86_CPU(cs);
2093 uint64_t code;
2094 int ret;
2095
2096 switch (run->exit_reason) {
2097 case KVM_EXIT_HLT:
2098 DPRINTF("handle_hlt\n");
2099 ret = kvm_handle_halt(cpu);
2100 break;
2101 case KVM_EXIT_SET_TPR:
2102 ret = 0;
2103 break;
2104 case KVM_EXIT_TPR_ACCESS:
2105 ret = kvm_handle_tpr_access(cpu);
2106 break;
2107 case KVM_EXIT_FAIL_ENTRY:
2108 code = run->fail_entry.hardware_entry_failure_reason;
2109 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2110 code);
2111 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2112 fprintf(stderr,
2113 "\nIf you're running a guest on an Intel machine without "
2114 "unrestricted mode\n"
2115 "support, the failure can be most likely due to the guest "
2116 "entering an invalid\n"
2117 "state for Intel VT. For example, the guest maybe running "
2118 "in big real mode\n"
2119 "which is not supported on less recent Intel processors."
2120 "\n\n");
2121 }
2122 ret = -1;
2123 break;
2124 case KVM_EXIT_EXCEPTION:
2125 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2126 run->ex.exception, run->ex.error_code);
2127 ret = -1;
2128 break;
2129 case KVM_EXIT_DEBUG:
2130 DPRINTF("kvm_exit_debug\n");
2131 ret = kvm_handle_debug(cpu, &run->debug.arch);
2132 break;
2133 default:
2134 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2135 ret = -1;
2136 break;
2137 }
2138
2139 return ret;
2140 }
2141
2142 bool kvm_arch_stop_on_emulation_error(CPUState *cs)
2143 {
2144 X86CPU *cpu = X86_CPU(cs);
2145 CPUX86State *env = &cpu->env;
2146
2147 kvm_cpu_synchronize_state(env);
2148 return !(env->cr[0] & CR0_PE_MASK) ||
2149 ((env->segs[R_CS].selector & 3) != 3);
2150 }
2151
2152 void kvm_arch_init_irq_routing(KVMState *s)
2153 {
2154 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2155 /* If kernel can't do irq routing, interrupt source
2156 * override 0->2 cannot be set up as required by HPET.
2157 * So we have to disable it.
2158 */
2159 no_hpet = 1;
2160 }
2161 /* We know at this point that we're using the in-kernel
2162 * irqchip, so we can use irqfds, and on x86 we know
2163 * we can use msi via irqfd and GSI routing.
2164 */
2165 kvm_irqfds_allowed = true;
2166 kvm_msi_via_irqfd_allowed = true;
2167 kvm_gsi_routing_allowed = true;
2168 }
2169
2170 /* Classic KVM device assignment interface. Will remain x86 only. */
2171 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2172 uint32_t flags, uint32_t *dev_id)
2173 {
2174 struct kvm_assigned_pci_dev dev_data = {
2175 .segnr = dev_addr->domain,
2176 .busnr = dev_addr->bus,
2177 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2178 .flags = flags,
2179 };
2180 int ret;
2181
2182 dev_data.assigned_dev_id =
2183 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2184
2185 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2186 if (ret < 0) {
2187 return ret;
2188 }
2189
2190 *dev_id = dev_data.assigned_dev_id;
2191
2192 return 0;
2193 }
2194
2195 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2196 {
2197 struct kvm_assigned_pci_dev dev_data = {
2198 .assigned_dev_id = dev_id,
2199 };
2200
2201 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2202 }
2203
2204 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2205 uint32_t irq_type, uint32_t guest_irq)
2206 {
2207 struct kvm_assigned_irq assigned_irq = {
2208 .assigned_dev_id = dev_id,
2209 .guest_irq = guest_irq,
2210 .flags = irq_type,
2211 };
2212
2213 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2214 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2215 } else {
2216 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2217 }
2218 }
2219
2220 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2221 uint32_t guest_irq)
2222 {
2223 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2224 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2225
2226 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2227 }
2228
2229 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2230 {
2231 struct kvm_assigned_pci_dev dev_data = {
2232 .assigned_dev_id = dev_id,
2233 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2234 };
2235
2236 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2237 }
2238
2239 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2240 uint32_t type)
2241 {
2242 struct kvm_assigned_irq assigned_irq = {
2243 .assigned_dev_id = dev_id,
2244 .flags = type,
2245 };
2246
2247 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2248 }
2249
2250 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2251 {
2252 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2253 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2254 }
2255
2256 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2257 {
2258 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2259 KVM_DEV_IRQ_GUEST_MSI, virq);
2260 }
2261
2262 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2263 {
2264 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2265 KVM_DEV_IRQ_HOST_MSI);
2266 }
2267
2268 bool kvm_device_msix_supported(KVMState *s)
2269 {
2270 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2271 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2272 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2273 }
2274
2275 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2276 uint32_t nr_vectors)
2277 {
2278 struct kvm_assigned_msix_nr msix_nr = {
2279 .assigned_dev_id = dev_id,
2280 .entry_nr = nr_vectors,
2281 };
2282
2283 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2284 }
2285
2286 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2287 int virq)
2288 {
2289 struct kvm_assigned_msix_entry msix_entry = {
2290 .assigned_dev_id = dev_id,
2291 .gsi = virq,
2292 .entry = vector,
2293 };
2294
2295 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2296 }
2297
2298 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2299 {
2300 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2301 KVM_DEV_IRQ_GUEST_MSIX, 0);
2302 }
2303
2304 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2305 {
2306 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2307 KVM_DEV_IRQ_HOST_MSIX);
2308 }