]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
kvm: Enable XSAVE live migration support
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18
19 #include <linux/kvm.h>
20
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
26 #include "host-utils.h"
27 #include "hw/pc.h"
28 #include "ioport.h"
29
30 #ifdef CONFIG_KVM_PARA
31 #include <linux/kvm_para.h>
32 #endif
33 //
34 //#define DEBUG_KVM
35
36 #ifdef DEBUG_KVM
37 #define DPRINTF(fmt, ...) \
38 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
39 #else
40 #define DPRINTF(fmt, ...) \
41 do { } while (0)
42 #endif
43
44 #define MSR_KVM_WALL_CLOCK 0x11
45 #define MSR_KVM_SYSTEM_TIME 0x12
46
47 #ifdef KVM_CAP_EXT_CPUID
48
49 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
50 {
51 struct kvm_cpuid2 *cpuid;
52 int r, size;
53
54 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
55 cpuid = (struct kvm_cpuid2 *)qemu_mallocz(size);
56 cpuid->nent = max;
57 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
58 if (r == 0 && cpuid->nent >= max) {
59 r = -E2BIG;
60 }
61 if (r < 0) {
62 if (r == -E2BIG) {
63 qemu_free(cpuid);
64 return NULL;
65 } else {
66 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
67 strerror(-r));
68 exit(1);
69 }
70 }
71 return cpuid;
72 }
73
74 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
75 uint32_t index, int reg)
76 {
77 struct kvm_cpuid2 *cpuid;
78 int i, max;
79 uint32_t ret = 0;
80 uint32_t cpuid_1_edx;
81
82 if (!kvm_check_extension(env->kvm_state, KVM_CAP_EXT_CPUID)) {
83 return -1U;
84 }
85
86 max = 1;
87 while ((cpuid = try_get_cpuid(env->kvm_state, max)) == NULL) {
88 max *= 2;
89 }
90
91 for (i = 0; i < cpuid->nent; ++i) {
92 if (cpuid->entries[i].function == function &&
93 cpuid->entries[i].index == index) {
94 switch (reg) {
95 case R_EAX:
96 ret = cpuid->entries[i].eax;
97 break;
98 case R_EBX:
99 ret = cpuid->entries[i].ebx;
100 break;
101 case R_ECX:
102 ret = cpuid->entries[i].ecx;
103 break;
104 case R_EDX:
105 ret = cpuid->entries[i].edx;
106 switch (function) {
107 case 1:
108 /* KVM before 2.6.30 misreports the following features */
109 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
110 break;
111 case 0x80000001:
112 /* On Intel, kvm returns cpuid according to the Intel spec,
113 * so add missing bits according to the AMD spec:
114 */
115 cpuid_1_edx = kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
116 ret |= cpuid_1_edx & 0x183f7ff;
117 break;
118 }
119 break;
120 }
121 }
122 }
123
124 qemu_free(cpuid);
125
126 return ret;
127 }
128
129 #else
130
131 uint32_t kvm_arch_get_supported_cpuid(CPUState *env, uint32_t function,
132 uint32_t index, int reg)
133 {
134 return -1U;
135 }
136
137 #endif
138
139 #ifdef CONFIG_KVM_PARA
140 struct kvm_para_features {
141 int cap;
142 int feature;
143 } para_features[] = {
144 #ifdef KVM_CAP_CLOCKSOURCE
145 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
146 #endif
147 #ifdef KVM_CAP_NOP_IO_DELAY
148 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
149 #endif
150 #ifdef KVM_CAP_PV_MMU
151 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
152 #endif
153 { -1, -1 }
154 };
155
156 static int get_para_features(CPUState *env)
157 {
158 int i, features = 0;
159
160 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
161 if (kvm_check_extension(env->kvm_state, para_features[i].cap))
162 features |= (1 << para_features[i].feature);
163 }
164
165 return features;
166 }
167 #endif
168
169 int kvm_arch_init_vcpu(CPUState *env)
170 {
171 struct {
172 struct kvm_cpuid2 cpuid;
173 struct kvm_cpuid_entry2 entries[100];
174 } __attribute__((packed)) cpuid_data;
175 uint32_t limit, i, j, cpuid_i;
176 uint32_t unused;
177 struct kvm_cpuid_entry2 *c;
178 #ifdef KVM_CPUID_SIGNATURE
179 uint32_t signature[3];
180 #endif
181
182 env->mp_state = KVM_MP_STATE_RUNNABLE;
183
184 env->cpuid_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_EDX);
185
186 i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
187 env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(env, 1, 0, R_ECX);
188 env->cpuid_ext_features |= i;
189
190 env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
191 0, R_EDX);
192 env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(env, 0x80000001,
193 0, R_ECX);
194
195 cpuid_i = 0;
196
197 #ifdef CONFIG_KVM_PARA
198 /* Paravirtualization CPUIDs */
199 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
200 c = &cpuid_data.entries[cpuid_i++];
201 memset(c, 0, sizeof(*c));
202 c->function = KVM_CPUID_SIGNATURE;
203 c->eax = 0;
204 c->ebx = signature[0];
205 c->ecx = signature[1];
206 c->edx = signature[2];
207
208 c = &cpuid_data.entries[cpuid_i++];
209 memset(c, 0, sizeof(*c));
210 c->function = KVM_CPUID_FEATURES;
211 c->eax = env->cpuid_kvm_features & get_para_features(env);
212 #endif
213
214 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
215
216 for (i = 0; i <= limit; i++) {
217 c = &cpuid_data.entries[cpuid_i++];
218
219 switch (i) {
220 case 2: {
221 /* Keep reading function 2 till all the input is received */
222 int times;
223
224 c->function = i;
225 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
226 KVM_CPUID_FLAG_STATE_READ_NEXT;
227 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
228 times = c->eax & 0xff;
229
230 for (j = 1; j < times; ++j) {
231 c = &cpuid_data.entries[cpuid_i++];
232 c->function = i;
233 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
234 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
235 }
236 break;
237 }
238 case 4:
239 case 0xb:
240 case 0xd:
241 for (j = 0; ; j++) {
242 c->function = i;
243 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
244 c->index = j;
245 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
246
247 if (i == 4 && c->eax == 0)
248 break;
249 if (i == 0xb && !(c->ecx & 0xff00))
250 break;
251 if (i == 0xd && c->eax == 0)
252 break;
253
254 c = &cpuid_data.entries[cpuid_i++];
255 }
256 break;
257 default:
258 c->function = i;
259 c->flags = 0;
260 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
261 break;
262 }
263 }
264 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
265
266 for (i = 0x80000000; i <= limit; i++) {
267 c = &cpuid_data.entries[cpuid_i++];
268
269 c->function = i;
270 c->flags = 0;
271 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
272 }
273
274 cpuid_data.cpuid.nent = cpuid_i;
275
276 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
277 }
278
279 void kvm_arch_reset_vcpu(CPUState *env)
280 {
281 env->exception_injected = -1;
282 env->interrupt_injected = -1;
283 env->nmi_injected = 0;
284 env->nmi_pending = 0;
285 }
286
287 static int kvm_has_msr_star(CPUState *env)
288 {
289 static int has_msr_star;
290 int ret;
291
292 /* first time */
293 if (has_msr_star == 0) {
294 struct kvm_msr_list msr_list, *kvm_msr_list;
295
296 has_msr_star = -1;
297
298 /* Obtain MSR list from KVM. These are the MSRs that we must
299 * save/restore */
300 msr_list.nmsrs = 0;
301 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
302 if (ret < 0 && ret != -E2BIG) {
303 return 0;
304 }
305 /* Old kernel modules had a bug and could write beyond the provided
306 memory. Allocate at least a safe amount of 1K. */
307 kvm_msr_list = qemu_mallocz(MAX(1024, sizeof(msr_list) +
308 msr_list.nmsrs *
309 sizeof(msr_list.indices[0])));
310
311 kvm_msr_list->nmsrs = msr_list.nmsrs;
312 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
313 if (ret >= 0) {
314 int i;
315
316 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
317 if (kvm_msr_list->indices[i] == MSR_STAR) {
318 has_msr_star = 1;
319 break;
320 }
321 }
322 }
323
324 free(kvm_msr_list);
325 }
326
327 if (has_msr_star == 1)
328 return 1;
329 return 0;
330 }
331
332 static int kvm_init_identity_map_page(KVMState *s)
333 {
334 #ifdef KVM_CAP_SET_IDENTITY_MAP_ADDR
335 int ret;
336 uint64_t addr = 0xfffbc000;
337
338 if (!kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
339 return 0;
340 }
341
342 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &addr);
343 if (ret < 0) {
344 fprintf(stderr, "kvm_set_identity_map_addr: %s\n", strerror(ret));
345 return ret;
346 }
347 #endif
348 return 0;
349 }
350
351 int kvm_arch_init(KVMState *s, int smp_cpus)
352 {
353 int ret;
354
355 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
356 * directly. In order to use vm86 mode, a TSS is needed. Since this
357 * must be part of guest physical memory, we need to allocate it. Older
358 * versions of KVM just assumed that it would be at the end of physical
359 * memory but that doesn't work with more than 4GB of memory. We simply
360 * refuse to work with those older versions of KVM. */
361 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
362 if (ret <= 0) {
363 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
364 return ret;
365 }
366
367 /* this address is 3 pages before the bios, and the bios should present
368 * as unavaible memory. FIXME, need to ensure the e820 map deals with
369 * this?
370 */
371 /*
372 * Tell fw_cfg to notify the BIOS to reserve the range.
373 */
374 if (e820_add_entry(0xfffbc000, 0x4000, E820_RESERVED) < 0) {
375 perror("e820_add_entry() table is full");
376 exit(1);
377 }
378 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
379 if (ret < 0) {
380 return ret;
381 }
382
383 return kvm_init_identity_map_page(s);
384 }
385
386 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
387 {
388 lhs->selector = rhs->selector;
389 lhs->base = rhs->base;
390 lhs->limit = rhs->limit;
391 lhs->type = 3;
392 lhs->present = 1;
393 lhs->dpl = 3;
394 lhs->db = 0;
395 lhs->s = 1;
396 lhs->l = 0;
397 lhs->g = 0;
398 lhs->avl = 0;
399 lhs->unusable = 0;
400 }
401
402 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
403 {
404 unsigned flags = rhs->flags;
405 lhs->selector = rhs->selector;
406 lhs->base = rhs->base;
407 lhs->limit = rhs->limit;
408 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
409 lhs->present = (flags & DESC_P_MASK) != 0;
410 lhs->dpl = rhs->selector & 3;
411 lhs->db = (flags >> DESC_B_SHIFT) & 1;
412 lhs->s = (flags & DESC_S_MASK) != 0;
413 lhs->l = (flags >> DESC_L_SHIFT) & 1;
414 lhs->g = (flags & DESC_G_MASK) != 0;
415 lhs->avl = (flags & DESC_AVL_MASK) != 0;
416 lhs->unusable = 0;
417 }
418
419 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
420 {
421 lhs->selector = rhs->selector;
422 lhs->base = rhs->base;
423 lhs->limit = rhs->limit;
424 lhs->flags =
425 (rhs->type << DESC_TYPE_SHIFT)
426 | (rhs->present * DESC_P_MASK)
427 | (rhs->dpl << DESC_DPL_SHIFT)
428 | (rhs->db << DESC_B_SHIFT)
429 | (rhs->s * DESC_S_MASK)
430 | (rhs->l << DESC_L_SHIFT)
431 | (rhs->g * DESC_G_MASK)
432 | (rhs->avl * DESC_AVL_MASK);
433 }
434
435 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
436 {
437 if (set)
438 *kvm_reg = *qemu_reg;
439 else
440 *qemu_reg = *kvm_reg;
441 }
442
443 static int kvm_getput_regs(CPUState *env, int set)
444 {
445 struct kvm_regs regs;
446 int ret = 0;
447
448 if (!set) {
449 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
450 if (ret < 0)
451 return ret;
452 }
453
454 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
455 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
456 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
457 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
458 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
459 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
460 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
461 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
462 #ifdef TARGET_X86_64
463 kvm_getput_reg(&regs.r8, &env->regs[8], set);
464 kvm_getput_reg(&regs.r9, &env->regs[9], set);
465 kvm_getput_reg(&regs.r10, &env->regs[10], set);
466 kvm_getput_reg(&regs.r11, &env->regs[11], set);
467 kvm_getput_reg(&regs.r12, &env->regs[12], set);
468 kvm_getput_reg(&regs.r13, &env->regs[13], set);
469 kvm_getput_reg(&regs.r14, &env->regs[14], set);
470 kvm_getput_reg(&regs.r15, &env->regs[15], set);
471 #endif
472
473 kvm_getput_reg(&regs.rflags, &env->eflags, set);
474 kvm_getput_reg(&regs.rip, &env->eip, set);
475
476 if (set)
477 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
478
479 return ret;
480 }
481
482 static int kvm_put_fpu(CPUState *env)
483 {
484 struct kvm_fpu fpu;
485 int i;
486
487 memset(&fpu, 0, sizeof fpu);
488 fpu.fsw = env->fpus & ~(7 << 11);
489 fpu.fsw |= (env->fpstt & 7) << 11;
490 fpu.fcw = env->fpuc;
491 for (i = 0; i < 8; ++i)
492 fpu.ftwx |= (!env->fptags[i]) << i;
493 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
494 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
495 fpu.mxcsr = env->mxcsr;
496
497 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
498 }
499
500 #ifdef KVM_CAP_XSAVE
501 #define XSAVE_CWD_RIP 2
502 #define XSAVE_CWD_RDP 4
503 #define XSAVE_MXCSR 6
504 #define XSAVE_ST_SPACE 8
505 #define XSAVE_XMM_SPACE 40
506 #define XSAVE_XSTATE_BV 128
507 #define XSAVE_YMMH_SPACE 144
508 #endif
509
510 static int kvm_put_xsave(CPUState *env)
511 {
512 #ifdef KVM_CAP_XSAVE
513 int i;
514 struct kvm_xsave* xsave;
515 uint16_t cwd, swd, twd, fop;
516
517 if (!kvm_has_xsave())
518 return kvm_put_fpu(env);
519
520 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
521 memset(xsave, 0, sizeof(struct kvm_xsave));
522 cwd = swd = twd = fop = 0;
523 swd = env->fpus & ~(7 << 11);
524 swd |= (env->fpstt & 7) << 11;
525 cwd = env->fpuc;
526 for (i = 0; i < 8; ++i)
527 twd |= (!env->fptags[i]) << i;
528 xsave->region[0] = (uint32_t)(swd << 16) + cwd;
529 xsave->region[1] = (uint32_t)(fop << 16) + twd;
530 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
531 sizeof env->fpregs);
532 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
533 sizeof env->xmm_regs);
534 xsave->region[XSAVE_MXCSR] = env->mxcsr;
535 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
536 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
537 sizeof env->ymmh_regs);
538 return kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
539 #else
540 return kvm_put_fpu(env);
541 #endif
542 }
543
544 static int kvm_put_xcrs(CPUState *env)
545 {
546 #ifdef KVM_CAP_XCRS
547 struct kvm_xcrs xcrs;
548
549 if (!kvm_has_xcrs())
550 return 0;
551
552 xcrs.nr_xcrs = 1;
553 xcrs.flags = 0;
554 xcrs.xcrs[0].xcr = 0;
555 xcrs.xcrs[0].value = env->xcr0;
556 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
557 #else
558 return 0;
559 #endif
560 }
561
562 static int kvm_put_sregs(CPUState *env)
563 {
564 struct kvm_sregs sregs;
565
566 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
567 if (env->interrupt_injected >= 0) {
568 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
569 (uint64_t)1 << (env->interrupt_injected % 64);
570 }
571
572 if ((env->eflags & VM_MASK)) {
573 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
574 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
575 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
576 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
577 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
578 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
579 } else {
580 set_seg(&sregs.cs, &env->segs[R_CS]);
581 set_seg(&sregs.ds, &env->segs[R_DS]);
582 set_seg(&sregs.es, &env->segs[R_ES]);
583 set_seg(&sregs.fs, &env->segs[R_FS]);
584 set_seg(&sregs.gs, &env->segs[R_GS]);
585 set_seg(&sregs.ss, &env->segs[R_SS]);
586
587 if (env->cr[0] & CR0_PE_MASK) {
588 /* force ss cpl to cs cpl */
589 sregs.ss.selector = (sregs.ss.selector & ~3) |
590 (sregs.cs.selector & 3);
591 sregs.ss.dpl = sregs.ss.selector & 3;
592 }
593 }
594
595 set_seg(&sregs.tr, &env->tr);
596 set_seg(&sregs.ldt, &env->ldt);
597
598 sregs.idt.limit = env->idt.limit;
599 sregs.idt.base = env->idt.base;
600 sregs.gdt.limit = env->gdt.limit;
601 sregs.gdt.base = env->gdt.base;
602
603 sregs.cr0 = env->cr[0];
604 sregs.cr2 = env->cr[2];
605 sregs.cr3 = env->cr[3];
606 sregs.cr4 = env->cr[4];
607
608 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
609 sregs.apic_base = cpu_get_apic_base(env->apic_state);
610
611 sregs.efer = env->efer;
612
613 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
614 }
615
616 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
617 uint32_t index, uint64_t value)
618 {
619 entry->index = index;
620 entry->data = value;
621 }
622
623 static int kvm_put_msrs(CPUState *env, int level)
624 {
625 struct {
626 struct kvm_msrs info;
627 struct kvm_msr_entry entries[100];
628 } msr_data;
629 struct kvm_msr_entry *msrs = msr_data.entries;
630 int n = 0;
631
632 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
633 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
634 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
635 if (kvm_has_msr_star(env))
636 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
637 #ifdef TARGET_X86_64
638 /* FIXME if lm capable */
639 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
640 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
641 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
642 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
643 #endif
644 if (level == KVM_PUT_FULL_STATE) {
645 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
646 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
647 env->system_time_msr);
648 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
649 }
650
651 msr_data.info.nmsrs = n;
652
653 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
654
655 }
656
657
658 static int kvm_get_fpu(CPUState *env)
659 {
660 struct kvm_fpu fpu;
661 int i, ret;
662
663 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
664 if (ret < 0)
665 return ret;
666
667 env->fpstt = (fpu.fsw >> 11) & 7;
668 env->fpus = fpu.fsw;
669 env->fpuc = fpu.fcw;
670 for (i = 0; i < 8; ++i)
671 env->fptags[i] = !((fpu.ftwx >> i) & 1);
672 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
673 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
674 env->mxcsr = fpu.mxcsr;
675
676 return 0;
677 }
678
679 static int kvm_get_xsave(CPUState *env)
680 {
681 #ifdef KVM_CAP_XSAVE
682 struct kvm_xsave* xsave;
683 int ret, i;
684 uint16_t cwd, swd, twd, fop;
685
686 if (!kvm_has_xsave())
687 return kvm_get_fpu(env);
688
689 xsave = qemu_memalign(4096, sizeof(struct kvm_xsave));
690 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
691 if (ret < 0)
692 return ret;
693
694 cwd = (uint16_t)xsave->region[0];
695 swd = (uint16_t)(xsave->region[0] >> 16);
696 twd = (uint16_t)xsave->region[1];
697 fop = (uint16_t)(xsave->region[1] >> 16);
698 env->fpstt = (swd >> 11) & 7;
699 env->fpus = swd;
700 env->fpuc = cwd;
701 for (i = 0; i < 8; ++i)
702 env->fptags[i] = !((twd >> i) & 1);
703 env->mxcsr = xsave->region[XSAVE_MXCSR];
704 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
705 sizeof env->fpregs);
706 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
707 sizeof env->xmm_regs);
708 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
709 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
710 sizeof env->ymmh_regs);
711 return 0;
712 #else
713 return kvm_get_fpu(env);
714 #endif
715 }
716
717 static int kvm_get_xcrs(CPUState *env)
718 {
719 #ifdef KVM_CAP_XCRS
720 int i, ret;
721 struct kvm_xcrs xcrs;
722
723 if (!kvm_has_xcrs())
724 return 0;
725
726 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
727 if (ret < 0)
728 return ret;
729
730 for (i = 0; i < xcrs.nr_xcrs; i++)
731 /* Only support xcr0 now */
732 if (xcrs.xcrs[0].xcr == 0) {
733 env->xcr0 = xcrs.xcrs[0].value;
734 break;
735 }
736 return 0;
737 #else
738 return 0;
739 #endif
740 }
741
742 static int kvm_get_sregs(CPUState *env)
743 {
744 struct kvm_sregs sregs;
745 uint32_t hflags;
746 int bit, i, ret;
747
748 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
749 if (ret < 0)
750 return ret;
751
752 /* There can only be one pending IRQ set in the bitmap at a time, so try
753 to find it and save its number instead (-1 for none). */
754 env->interrupt_injected = -1;
755 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
756 if (sregs.interrupt_bitmap[i]) {
757 bit = ctz64(sregs.interrupt_bitmap[i]);
758 env->interrupt_injected = i * 64 + bit;
759 break;
760 }
761 }
762
763 get_seg(&env->segs[R_CS], &sregs.cs);
764 get_seg(&env->segs[R_DS], &sregs.ds);
765 get_seg(&env->segs[R_ES], &sregs.es);
766 get_seg(&env->segs[R_FS], &sregs.fs);
767 get_seg(&env->segs[R_GS], &sregs.gs);
768 get_seg(&env->segs[R_SS], &sregs.ss);
769
770 get_seg(&env->tr, &sregs.tr);
771 get_seg(&env->ldt, &sregs.ldt);
772
773 env->idt.limit = sregs.idt.limit;
774 env->idt.base = sregs.idt.base;
775 env->gdt.limit = sregs.gdt.limit;
776 env->gdt.base = sregs.gdt.base;
777
778 env->cr[0] = sregs.cr0;
779 env->cr[2] = sregs.cr2;
780 env->cr[3] = sregs.cr3;
781 env->cr[4] = sregs.cr4;
782
783 cpu_set_apic_base(env->apic_state, sregs.apic_base);
784
785 env->efer = sregs.efer;
786 //cpu_set_apic_tpr(env->apic_state, sregs.cr8);
787
788 #define HFLAG_COPY_MASK ~( \
789 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
790 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
791 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
792 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
793
794
795
796 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
797 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
798 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
799 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
800 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
801 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
802 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
803
804 if (env->efer & MSR_EFER_LMA) {
805 hflags |= HF_LMA_MASK;
806 }
807
808 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
809 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
810 } else {
811 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
812 (DESC_B_SHIFT - HF_CS32_SHIFT);
813 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
814 (DESC_B_SHIFT - HF_SS32_SHIFT);
815 if (!(env->cr[0] & CR0_PE_MASK) ||
816 (env->eflags & VM_MASK) ||
817 !(hflags & HF_CS32_MASK)) {
818 hflags |= HF_ADDSEG_MASK;
819 } else {
820 hflags |= ((env->segs[R_DS].base |
821 env->segs[R_ES].base |
822 env->segs[R_SS].base) != 0) <<
823 HF_ADDSEG_SHIFT;
824 }
825 }
826 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
827
828 return 0;
829 }
830
831 static int kvm_get_msrs(CPUState *env)
832 {
833 struct {
834 struct kvm_msrs info;
835 struct kvm_msr_entry entries[100];
836 } msr_data;
837 struct kvm_msr_entry *msrs = msr_data.entries;
838 int ret, i, n;
839
840 n = 0;
841 msrs[n++].index = MSR_IA32_SYSENTER_CS;
842 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
843 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
844 if (kvm_has_msr_star(env))
845 msrs[n++].index = MSR_STAR;
846 msrs[n++].index = MSR_IA32_TSC;
847 #ifdef TARGET_X86_64
848 /* FIXME lm_capable_kernel */
849 msrs[n++].index = MSR_CSTAR;
850 msrs[n++].index = MSR_KERNELGSBASE;
851 msrs[n++].index = MSR_FMASK;
852 msrs[n++].index = MSR_LSTAR;
853 #endif
854 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
855 msrs[n++].index = MSR_KVM_WALL_CLOCK;
856
857 msr_data.info.nmsrs = n;
858 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
859 if (ret < 0)
860 return ret;
861
862 for (i = 0; i < ret; i++) {
863 switch (msrs[i].index) {
864 case MSR_IA32_SYSENTER_CS:
865 env->sysenter_cs = msrs[i].data;
866 break;
867 case MSR_IA32_SYSENTER_ESP:
868 env->sysenter_esp = msrs[i].data;
869 break;
870 case MSR_IA32_SYSENTER_EIP:
871 env->sysenter_eip = msrs[i].data;
872 break;
873 case MSR_STAR:
874 env->star = msrs[i].data;
875 break;
876 #ifdef TARGET_X86_64
877 case MSR_CSTAR:
878 env->cstar = msrs[i].data;
879 break;
880 case MSR_KERNELGSBASE:
881 env->kernelgsbase = msrs[i].data;
882 break;
883 case MSR_FMASK:
884 env->fmask = msrs[i].data;
885 break;
886 case MSR_LSTAR:
887 env->lstar = msrs[i].data;
888 break;
889 #endif
890 case MSR_IA32_TSC:
891 env->tsc = msrs[i].data;
892 break;
893 case MSR_KVM_SYSTEM_TIME:
894 env->system_time_msr = msrs[i].data;
895 break;
896 case MSR_KVM_WALL_CLOCK:
897 env->wall_clock_msr = msrs[i].data;
898 break;
899 }
900 }
901
902 return 0;
903 }
904
905 static int kvm_put_mp_state(CPUState *env)
906 {
907 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
908
909 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
910 }
911
912 static int kvm_get_mp_state(CPUState *env)
913 {
914 struct kvm_mp_state mp_state;
915 int ret;
916
917 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
918 if (ret < 0) {
919 return ret;
920 }
921 env->mp_state = mp_state.mp_state;
922 return 0;
923 }
924
925 static int kvm_put_vcpu_events(CPUState *env, int level)
926 {
927 #ifdef KVM_CAP_VCPU_EVENTS
928 struct kvm_vcpu_events events;
929
930 if (!kvm_has_vcpu_events()) {
931 return 0;
932 }
933
934 events.exception.injected = (env->exception_injected >= 0);
935 events.exception.nr = env->exception_injected;
936 events.exception.has_error_code = env->has_error_code;
937 events.exception.error_code = env->error_code;
938
939 events.interrupt.injected = (env->interrupt_injected >= 0);
940 events.interrupt.nr = env->interrupt_injected;
941 events.interrupt.soft = env->soft_interrupt;
942
943 events.nmi.injected = env->nmi_injected;
944 events.nmi.pending = env->nmi_pending;
945 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
946
947 events.sipi_vector = env->sipi_vector;
948
949 events.flags = 0;
950 if (level >= KVM_PUT_RESET_STATE) {
951 events.flags |=
952 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
953 }
954
955 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
956 #else
957 return 0;
958 #endif
959 }
960
961 static int kvm_get_vcpu_events(CPUState *env)
962 {
963 #ifdef KVM_CAP_VCPU_EVENTS
964 struct kvm_vcpu_events events;
965 int ret;
966
967 if (!kvm_has_vcpu_events()) {
968 return 0;
969 }
970
971 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
972 if (ret < 0) {
973 return ret;
974 }
975 env->exception_injected =
976 events.exception.injected ? events.exception.nr : -1;
977 env->has_error_code = events.exception.has_error_code;
978 env->error_code = events.exception.error_code;
979
980 env->interrupt_injected =
981 events.interrupt.injected ? events.interrupt.nr : -1;
982 env->soft_interrupt = events.interrupt.soft;
983
984 env->nmi_injected = events.nmi.injected;
985 env->nmi_pending = events.nmi.pending;
986 if (events.nmi.masked) {
987 env->hflags2 |= HF2_NMI_MASK;
988 } else {
989 env->hflags2 &= ~HF2_NMI_MASK;
990 }
991
992 env->sipi_vector = events.sipi_vector;
993 #endif
994
995 return 0;
996 }
997
998 static int kvm_guest_debug_workarounds(CPUState *env)
999 {
1000 int ret = 0;
1001 #ifdef KVM_CAP_SET_GUEST_DEBUG
1002 unsigned long reinject_trap = 0;
1003
1004 if (!kvm_has_vcpu_events()) {
1005 if (env->exception_injected == 1) {
1006 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1007 } else if (env->exception_injected == 3) {
1008 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1009 }
1010 env->exception_injected = -1;
1011 }
1012
1013 /*
1014 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1015 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1016 * by updating the debug state once again if single-stepping is on.
1017 * Another reason to call kvm_update_guest_debug here is a pending debug
1018 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1019 * reinject them via SET_GUEST_DEBUG.
1020 */
1021 if (reinject_trap ||
1022 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1023 ret = kvm_update_guest_debug(env, reinject_trap);
1024 }
1025 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1026 return ret;
1027 }
1028
1029 static int kvm_put_debugregs(CPUState *env)
1030 {
1031 #ifdef KVM_CAP_DEBUGREGS
1032 struct kvm_debugregs dbgregs;
1033 int i;
1034
1035 if (!kvm_has_debugregs()) {
1036 return 0;
1037 }
1038
1039 for (i = 0; i < 4; i++) {
1040 dbgregs.db[i] = env->dr[i];
1041 }
1042 dbgregs.dr6 = env->dr[6];
1043 dbgregs.dr7 = env->dr[7];
1044 dbgregs.flags = 0;
1045
1046 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1047 #else
1048 return 0;
1049 #endif
1050 }
1051
1052 static int kvm_get_debugregs(CPUState *env)
1053 {
1054 #ifdef KVM_CAP_DEBUGREGS
1055 struct kvm_debugregs dbgregs;
1056 int i, ret;
1057
1058 if (!kvm_has_debugregs()) {
1059 return 0;
1060 }
1061
1062 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1063 if (ret < 0) {
1064 return ret;
1065 }
1066 for (i = 0; i < 4; i++) {
1067 env->dr[i] = dbgregs.db[i];
1068 }
1069 env->dr[4] = env->dr[6] = dbgregs.dr6;
1070 env->dr[5] = env->dr[7] = dbgregs.dr7;
1071 #endif
1072
1073 return 0;
1074 }
1075
1076 int kvm_arch_put_registers(CPUState *env, int level)
1077 {
1078 int ret;
1079
1080 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1081
1082 ret = kvm_getput_regs(env, 1);
1083 if (ret < 0)
1084 return ret;
1085
1086 ret = kvm_put_xsave(env);
1087 if (ret < 0)
1088 return ret;
1089
1090 ret = kvm_put_xcrs(env);
1091 if (ret < 0)
1092 return ret;
1093
1094 ret = kvm_put_sregs(env);
1095 if (ret < 0)
1096 return ret;
1097
1098 ret = kvm_put_msrs(env, level);
1099 if (ret < 0)
1100 return ret;
1101
1102 if (level >= KVM_PUT_RESET_STATE) {
1103 ret = kvm_put_mp_state(env);
1104 if (ret < 0)
1105 return ret;
1106 }
1107
1108 ret = kvm_put_vcpu_events(env, level);
1109 if (ret < 0)
1110 return ret;
1111
1112 /* must be last */
1113 ret = kvm_guest_debug_workarounds(env);
1114 if (ret < 0)
1115 return ret;
1116
1117 ret = kvm_put_debugregs(env);
1118 if (ret < 0)
1119 return ret;
1120
1121 return 0;
1122 }
1123
1124 int kvm_arch_get_registers(CPUState *env)
1125 {
1126 int ret;
1127
1128 assert(cpu_is_stopped(env) || qemu_cpu_self(env));
1129
1130 ret = kvm_getput_regs(env, 0);
1131 if (ret < 0)
1132 return ret;
1133
1134 ret = kvm_get_xsave(env);
1135 if (ret < 0)
1136 return ret;
1137
1138 ret = kvm_get_xcrs(env);
1139 if (ret < 0)
1140 return ret;
1141
1142 ret = kvm_get_sregs(env);
1143 if (ret < 0)
1144 return ret;
1145
1146 ret = kvm_get_msrs(env);
1147 if (ret < 0)
1148 return ret;
1149
1150 ret = kvm_get_mp_state(env);
1151 if (ret < 0)
1152 return ret;
1153
1154 ret = kvm_get_vcpu_events(env);
1155 if (ret < 0)
1156 return ret;
1157
1158 ret = kvm_get_debugregs(env);
1159 if (ret < 0)
1160 return ret;
1161
1162 return 0;
1163 }
1164
1165 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
1166 {
1167 /* Try to inject an interrupt if the guest can accept it */
1168 if (run->ready_for_interrupt_injection &&
1169 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1170 (env->eflags & IF_MASK)) {
1171 int irq;
1172
1173 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1174 irq = cpu_get_pic_interrupt(env);
1175 if (irq >= 0) {
1176 struct kvm_interrupt intr;
1177 intr.irq = irq;
1178 /* FIXME: errors */
1179 DPRINTF("injected interrupt %d\n", irq);
1180 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1181 }
1182 }
1183
1184 /* If we have an interrupt but the guest is not ready to receive an
1185 * interrupt, request an interrupt window exit. This will
1186 * cause a return to userspace as soon as the guest is ready to
1187 * receive interrupts. */
1188 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
1189 run->request_interrupt_window = 1;
1190 else
1191 run->request_interrupt_window = 0;
1192
1193 DPRINTF("setting tpr\n");
1194 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1195
1196 return 0;
1197 }
1198
1199 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
1200 {
1201 if (run->if_flag)
1202 env->eflags |= IF_MASK;
1203 else
1204 env->eflags &= ~IF_MASK;
1205
1206 cpu_set_apic_tpr(env->apic_state, run->cr8);
1207 cpu_set_apic_base(env->apic_state, run->apic_base);
1208
1209 return 0;
1210 }
1211
1212 int kvm_arch_process_irqchip_events(CPUState *env)
1213 {
1214 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1215 kvm_cpu_synchronize_state(env);
1216 do_cpu_init(env);
1217 env->exception_index = EXCP_HALTED;
1218 }
1219
1220 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1221 kvm_cpu_synchronize_state(env);
1222 do_cpu_sipi(env);
1223 }
1224
1225 return env->halted;
1226 }
1227
1228 static int kvm_handle_halt(CPUState *env)
1229 {
1230 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1231 (env->eflags & IF_MASK)) &&
1232 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1233 env->halted = 1;
1234 env->exception_index = EXCP_HLT;
1235 return 0;
1236 }
1237
1238 return 1;
1239 }
1240
1241 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
1242 {
1243 int ret = 0;
1244
1245 switch (run->exit_reason) {
1246 case KVM_EXIT_HLT:
1247 DPRINTF("handle_hlt\n");
1248 ret = kvm_handle_halt(env);
1249 break;
1250 }
1251
1252 return ret;
1253 }
1254
1255 #ifdef KVM_CAP_SET_GUEST_DEBUG
1256 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1257 {
1258 static const uint8_t int3 = 0xcc;
1259
1260 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1261 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1))
1262 return -EINVAL;
1263 return 0;
1264 }
1265
1266 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
1267 {
1268 uint8_t int3;
1269
1270 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1271 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1))
1272 return -EINVAL;
1273 return 0;
1274 }
1275
1276 static struct {
1277 target_ulong addr;
1278 int len;
1279 int type;
1280 } hw_breakpoint[4];
1281
1282 static int nb_hw_breakpoint;
1283
1284 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1285 {
1286 int n;
1287
1288 for (n = 0; n < nb_hw_breakpoint; n++)
1289 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1290 (hw_breakpoint[n].len == len || len == -1))
1291 return n;
1292 return -1;
1293 }
1294
1295 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1296 target_ulong len, int type)
1297 {
1298 switch (type) {
1299 case GDB_BREAKPOINT_HW:
1300 len = 1;
1301 break;
1302 case GDB_WATCHPOINT_WRITE:
1303 case GDB_WATCHPOINT_ACCESS:
1304 switch (len) {
1305 case 1:
1306 break;
1307 case 2:
1308 case 4:
1309 case 8:
1310 if (addr & (len - 1))
1311 return -EINVAL;
1312 break;
1313 default:
1314 return -EINVAL;
1315 }
1316 break;
1317 default:
1318 return -ENOSYS;
1319 }
1320
1321 if (nb_hw_breakpoint == 4)
1322 return -ENOBUFS;
1323
1324 if (find_hw_breakpoint(addr, len, type) >= 0)
1325 return -EEXIST;
1326
1327 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1328 hw_breakpoint[nb_hw_breakpoint].len = len;
1329 hw_breakpoint[nb_hw_breakpoint].type = type;
1330 nb_hw_breakpoint++;
1331
1332 return 0;
1333 }
1334
1335 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1336 target_ulong len, int type)
1337 {
1338 int n;
1339
1340 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1341 if (n < 0)
1342 return -ENOENT;
1343
1344 nb_hw_breakpoint--;
1345 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1346
1347 return 0;
1348 }
1349
1350 void kvm_arch_remove_all_hw_breakpoints(void)
1351 {
1352 nb_hw_breakpoint = 0;
1353 }
1354
1355 static CPUWatchpoint hw_watchpoint;
1356
1357 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
1358 {
1359 int handle = 0;
1360 int n;
1361
1362 if (arch_info->exception == 1) {
1363 if (arch_info->dr6 & (1 << 14)) {
1364 if (cpu_single_env->singlestep_enabled)
1365 handle = 1;
1366 } else {
1367 for (n = 0; n < 4; n++)
1368 if (arch_info->dr6 & (1 << n))
1369 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1370 case 0x0:
1371 handle = 1;
1372 break;
1373 case 0x1:
1374 handle = 1;
1375 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1376 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1377 hw_watchpoint.flags = BP_MEM_WRITE;
1378 break;
1379 case 0x3:
1380 handle = 1;
1381 cpu_single_env->watchpoint_hit = &hw_watchpoint;
1382 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1383 hw_watchpoint.flags = BP_MEM_ACCESS;
1384 break;
1385 }
1386 }
1387 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
1388 handle = 1;
1389
1390 if (!handle) {
1391 cpu_synchronize_state(cpu_single_env);
1392 assert(cpu_single_env->exception_injected == -1);
1393
1394 cpu_single_env->exception_injected = arch_info->exception;
1395 cpu_single_env->has_error_code = 0;
1396 }
1397
1398 return handle;
1399 }
1400
1401 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
1402 {
1403 const uint8_t type_code[] = {
1404 [GDB_BREAKPOINT_HW] = 0x0,
1405 [GDB_WATCHPOINT_WRITE] = 0x1,
1406 [GDB_WATCHPOINT_ACCESS] = 0x3
1407 };
1408 const uint8_t len_code[] = {
1409 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
1410 };
1411 int n;
1412
1413 if (kvm_sw_breakpoints_active(env))
1414 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
1415
1416 if (nb_hw_breakpoint > 0) {
1417 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
1418 dbg->arch.debugreg[7] = 0x0600;
1419 for (n = 0; n < nb_hw_breakpoint; n++) {
1420 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
1421 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
1422 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
1423 (len_code[hw_breakpoint[n].len] << (18 + n*4));
1424 }
1425 }
1426 /* Legal xcr0 for loading */
1427 env->xcr0 = 1;
1428 }
1429 #endif /* KVM_CAP_SET_GUEST_DEBUG */
1430
1431 bool kvm_arch_stop_on_emulation_error(CPUState *env)
1432 {
1433 return !(env->cr[0] & CR0_PE_MASK) ||
1434 ((env->segs[R_CS].selector & 3) != 3);
1435 }
1436