]> git.proxmox.com Git - qemu.git/blob - target-i386/kvm.c
target-i386: Enabling IA32_TSC_ADJUST for QEMU KVM guest VMs
[qemu.git] / target-i386 / kvm.c
1 /*
2 * QEMU KVM support
3 *
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
6 *
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
9 *
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
12 *
13 */
14
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
18 #include <sys/utsname.h>
19
20 #include <linux/kvm.h>
21 #include <linux/kvm_para.h>
22
23 #include "qemu-common.h"
24 #include "sysemu.h"
25 #include "kvm.h"
26 #include "kvm_i386.h"
27 #include "cpu.h"
28 #include "gdbstub.h"
29 #include "host-utils.h"
30 #include "hw/pc.h"
31 #include "hw/apic.h"
32 #include "ioport.h"
33 #include "hyperv.h"
34 #include "hw/pci.h"
35
36 //#define DEBUG_KVM
37
38 #ifdef DEBUG_KVM
39 #define DPRINTF(fmt, ...) \
40 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
41 #else
42 #define DPRINTF(fmt, ...) \
43 do { } while (0)
44 #endif
45
46 #define MSR_KVM_WALL_CLOCK 0x11
47 #define MSR_KVM_SYSTEM_TIME 0x12
48
49 #ifndef BUS_MCEERR_AR
50 #define BUS_MCEERR_AR 4
51 #endif
52 #ifndef BUS_MCEERR_AO
53 #define BUS_MCEERR_AO 5
54 #endif
55
56 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
57 KVM_CAP_INFO(SET_TSS_ADDR),
58 KVM_CAP_INFO(EXT_CPUID),
59 KVM_CAP_INFO(MP_STATE),
60 KVM_CAP_LAST_INFO
61 };
62
63 static bool has_msr_star;
64 static bool has_msr_hsave_pa;
65 static bool has_msr_tsc_adjust;
66 static bool has_msr_tsc_deadline;
67 static bool has_msr_async_pf_en;
68 static bool has_msr_pv_eoi_en;
69 static bool has_msr_misc_enable;
70 static int lm_capable_kernel;
71
72 bool kvm_allows_irq0_override(void)
73 {
74 return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
75 }
76
77 static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
78 {
79 struct kvm_cpuid2 *cpuid;
80 int r, size;
81
82 size = sizeof(*cpuid) + max * sizeof(*cpuid->entries);
83 cpuid = (struct kvm_cpuid2 *)g_malloc0(size);
84 cpuid->nent = max;
85 r = kvm_ioctl(s, KVM_GET_SUPPORTED_CPUID, cpuid);
86 if (r == 0 && cpuid->nent >= max) {
87 r = -E2BIG;
88 }
89 if (r < 0) {
90 if (r == -E2BIG) {
91 g_free(cpuid);
92 return NULL;
93 } else {
94 fprintf(stderr, "KVM_GET_SUPPORTED_CPUID failed: %s\n",
95 strerror(-r));
96 exit(1);
97 }
98 }
99 return cpuid;
100 }
101
102 /* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
103 * for all entries.
104 */
105 static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
106 {
107 struct kvm_cpuid2 *cpuid;
108 int max = 1;
109 while ((cpuid = try_get_cpuid(s, max)) == NULL) {
110 max *= 2;
111 }
112 return cpuid;
113 }
114
115 struct kvm_para_features {
116 int cap;
117 int feature;
118 } para_features[] = {
119 { KVM_CAP_CLOCKSOURCE, KVM_FEATURE_CLOCKSOURCE },
120 { KVM_CAP_NOP_IO_DELAY, KVM_FEATURE_NOP_IO_DELAY },
121 { KVM_CAP_PV_MMU, KVM_FEATURE_MMU_OP },
122 { KVM_CAP_ASYNC_PF, KVM_FEATURE_ASYNC_PF },
123 { -1, -1 }
124 };
125
126 static int get_para_features(KVMState *s)
127 {
128 int i, features = 0;
129
130 for (i = 0; i < ARRAY_SIZE(para_features) - 1; i++) {
131 if (kvm_check_extension(s, para_features[i].cap)) {
132 features |= (1 << para_features[i].feature);
133 }
134 }
135
136 return features;
137 }
138
139
140 /* Returns the value for a specific register on the cpuid entry
141 */
142 static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
143 {
144 uint32_t ret = 0;
145 switch (reg) {
146 case R_EAX:
147 ret = entry->eax;
148 break;
149 case R_EBX:
150 ret = entry->ebx;
151 break;
152 case R_ECX:
153 ret = entry->ecx;
154 break;
155 case R_EDX:
156 ret = entry->edx;
157 break;
158 }
159 return ret;
160 }
161
162 /* Find matching entry for function/index on kvm_cpuid2 struct
163 */
164 static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
165 uint32_t function,
166 uint32_t index)
167 {
168 int i;
169 for (i = 0; i < cpuid->nent; ++i) {
170 if (cpuid->entries[i].function == function &&
171 cpuid->entries[i].index == index) {
172 return &cpuid->entries[i];
173 }
174 }
175 /* not found: */
176 return NULL;
177 }
178
179 uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
180 uint32_t index, int reg)
181 {
182 struct kvm_cpuid2 *cpuid;
183 uint32_t ret = 0;
184 uint32_t cpuid_1_edx;
185 bool found = false;
186
187 cpuid = get_supported_cpuid(s);
188
189 struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
190 if (entry) {
191 found = true;
192 ret = cpuid_entry_get_reg(entry, reg);
193 }
194
195 /* Fixups for the data returned by KVM, below */
196
197 if (function == 1 && reg == R_EDX) {
198 /* KVM before 2.6.30 misreports the following features */
199 ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
200 } else if (function == 1 && reg == R_ECX) {
201 /* We can set the hypervisor flag, even if KVM does not return it on
202 * GET_SUPPORTED_CPUID
203 */
204 ret |= CPUID_EXT_HYPERVISOR;
205 /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
206 * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
207 * and the irqchip is in the kernel.
208 */
209 if (kvm_irqchip_in_kernel() &&
210 kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
211 ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
212 }
213
214 /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
215 * without the in-kernel irqchip
216 */
217 if (!kvm_irqchip_in_kernel()) {
218 ret &= ~CPUID_EXT_X2APIC;
219 }
220 } else if (function == 0x80000001 && reg == R_EDX) {
221 /* On Intel, kvm returns cpuid according to the Intel spec,
222 * so add missing bits according to the AMD spec:
223 */
224 cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
225 ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
226 }
227
228 g_free(cpuid);
229
230 /* fallback for older kernels */
231 if ((function == KVM_CPUID_FEATURES) && !found) {
232 ret = get_para_features(s);
233 }
234
235 return ret;
236 }
237
238 typedef struct HWPoisonPage {
239 ram_addr_t ram_addr;
240 QLIST_ENTRY(HWPoisonPage) list;
241 } HWPoisonPage;
242
243 static QLIST_HEAD(, HWPoisonPage) hwpoison_page_list =
244 QLIST_HEAD_INITIALIZER(hwpoison_page_list);
245
246 static void kvm_unpoison_all(void *param)
247 {
248 HWPoisonPage *page, *next_page;
249
250 QLIST_FOREACH_SAFE(page, &hwpoison_page_list, list, next_page) {
251 QLIST_REMOVE(page, list);
252 qemu_ram_remap(page->ram_addr, TARGET_PAGE_SIZE);
253 g_free(page);
254 }
255 }
256
257 static void kvm_hwpoison_page_add(ram_addr_t ram_addr)
258 {
259 HWPoisonPage *page;
260
261 QLIST_FOREACH(page, &hwpoison_page_list, list) {
262 if (page->ram_addr == ram_addr) {
263 return;
264 }
265 }
266 page = g_malloc(sizeof(HWPoisonPage));
267 page->ram_addr = ram_addr;
268 QLIST_INSERT_HEAD(&hwpoison_page_list, page, list);
269 }
270
271 static int kvm_get_mce_cap_supported(KVMState *s, uint64_t *mce_cap,
272 int *max_banks)
273 {
274 int r;
275
276 r = kvm_check_extension(s, KVM_CAP_MCE);
277 if (r > 0) {
278 *max_banks = r;
279 return kvm_ioctl(s, KVM_X86_GET_MCE_CAP_SUPPORTED, mce_cap);
280 }
281 return -ENOSYS;
282 }
283
284 static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
285 {
286 CPUX86State *env = &cpu->env;
287 uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
288 MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
289 uint64_t mcg_status = MCG_STATUS_MCIP;
290
291 if (code == BUS_MCEERR_AR) {
292 status |= MCI_STATUS_AR | 0x134;
293 mcg_status |= MCG_STATUS_EIPV;
294 } else {
295 status |= 0xc0;
296 mcg_status |= MCG_STATUS_RIPV;
297 }
298 cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
299 (MCM_ADDR_PHYS << 6) | 0xc,
300 cpu_x86_support_mca_broadcast(env) ?
301 MCE_INJECT_BROADCAST : 0);
302 }
303
304 static void hardware_memory_error(void)
305 {
306 fprintf(stderr, "Hardware memory error!\n");
307 exit(1);
308 }
309
310 int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
311 {
312 X86CPU *cpu = x86_env_get_cpu(env);
313 ram_addr_t ram_addr;
314 hwaddr paddr;
315
316 if ((env->mcg_cap & MCG_SER_P) && addr
317 && (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
318 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
319 !kvm_physical_memory_addr_from_host(env->kvm_state, addr, &paddr)) {
320 fprintf(stderr, "Hardware memory error for memory used by "
321 "QEMU itself instead of guest system!\n");
322 /* Hope we are lucky for AO MCE */
323 if (code == BUS_MCEERR_AO) {
324 return 0;
325 } else {
326 hardware_memory_error();
327 }
328 }
329 kvm_hwpoison_page_add(ram_addr);
330 kvm_mce_inject(cpu, paddr, code);
331 } else {
332 if (code == BUS_MCEERR_AO) {
333 return 0;
334 } else if (code == BUS_MCEERR_AR) {
335 hardware_memory_error();
336 } else {
337 return 1;
338 }
339 }
340 return 0;
341 }
342
343 int kvm_arch_on_sigbus(int code, void *addr)
344 {
345 if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
346 ram_addr_t ram_addr;
347 hwaddr paddr;
348
349 /* Hope we are lucky for AO MCE */
350 if (qemu_ram_addr_from_host(addr, &ram_addr) ||
351 !kvm_physical_memory_addr_from_host(first_cpu->kvm_state, addr,
352 &paddr)) {
353 fprintf(stderr, "Hardware memory error for memory used by "
354 "QEMU itself instead of guest system!: %p\n", addr);
355 return 0;
356 }
357 kvm_hwpoison_page_add(ram_addr);
358 kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
359 } else {
360 if (code == BUS_MCEERR_AO) {
361 return 0;
362 } else if (code == BUS_MCEERR_AR) {
363 hardware_memory_error();
364 } else {
365 return 1;
366 }
367 }
368 return 0;
369 }
370
371 static int kvm_inject_mce_oldstyle(CPUX86State *env)
372 {
373 if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
374 unsigned int bank, bank_num = env->mcg_cap & 0xff;
375 struct kvm_x86_mce mce;
376
377 env->exception_injected = -1;
378
379 /*
380 * There must be at least one bank in use if an MCE is pending.
381 * Find it and use its values for the event injection.
382 */
383 for (bank = 0; bank < bank_num; bank++) {
384 if (env->mce_banks[bank * 4 + 1] & MCI_STATUS_VAL) {
385 break;
386 }
387 }
388 assert(bank < bank_num);
389
390 mce.bank = bank;
391 mce.status = env->mce_banks[bank * 4 + 1];
392 mce.mcg_status = env->mcg_status;
393 mce.addr = env->mce_banks[bank * 4 + 2];
394 mce.misc = env->mce_banks[bank * 4 + 3];
395
396 return kvm_vcpu_ioctl(env, KVM_X86_SET_MCE, &mce);
397 }
398 return 0;
399 }
400
401 static void cpu_update_state(void *opaque, int running, RunState state)
402 {
403 CPUX86State *env = opaque;
404
405 if (running) {
406 env->tsc_valid = false;
407 }
408 }
409
410 int kvm_arch_init_vcpu(CPUX86State *env)
411 {
412 struct {
413 struct kvm_cpuid2 cpuid;
414 struct kvm_cpuid_entry2 entries[100];
415 } QEMU_PACKED cpuid_data;
416 uint32_t limit, i, j, cpuid_i;
417 uint32_t unused;
418 struct kvm_cpuid_entry2 *c;
419 uint32_t signature[3];
420 int r;
421
422 cpuid_i = 0;
423
424 /* Paravirtualization CPUIDs */
425 c = &cpuid_data.entries[cpuid_i++];
426 memset(c, 0, sizeof(*c));
427 c->function = KVM_CPUID_SIGNATURE;
428 if (!hyperv_enabled()) {
429 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
430 c->eax = 0;
431 } else {
432 memcpy(signature, "Microsoft Hv", 12);
433 c->eax = HYPERV_CPUID_MIN;
434 }
435 c->ebx = signature[0];
436 c->ecx = signature[1];
437 c->edx = signature[2];
438
439 c = &cpuid_data.entries[cpuid_i++];
440 memset(c, 0, sizeof(*c));
441 c->function = KVM_CPUID_FEATURES;
442 c->eax = env->cpuid_kvm_features;
443
444 if (hyperv_enabled()) {
445 memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
446 c->eax = signature[0];
447
448 c = &cpuid_data.entries[cpuid_i++];
449 memset(c, 0, sizeof(*c));
450 c->function = HYPERV_CPUID_VERSION;
451 c->eax = 0x00001bbc;
452 c->ebx = 0x00060001;
453
454 c = &cpuid_data.entries[cpuid_i++];
455 memset(c, 0, sizeof(*c));
456 c->function = HYPERV_CPUID_FEATURES;
457 if (hyperv_relaxed_timing_enabled()) {
458 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
459 }
460 if (hyperv_vapic_recommended()) {
461 c->eax |= HV_X64_MSR_HYPERCALL_AVAILABLE;
462 c->eax |= HV_X64_MSR_APIC_ACCESS_AVAILABLE;
463 }
464
465 c = &cpuid_data.entries[cpuid_i++];
466 memset(c, 0, sizeof(*c));
467 c->function = HYPERV_CPUID_ENLIGHTMENT_INFO;
468 if (hyperv_relaxed_timing_enabled()) {
469 c->eax |= HV_X64_RELAXED_TIMING_RECOMMENDED;
470 }
471 if (hyperv_vapic_recommended()) {
472 c->eax |= HV_X64_APIC_ACCESS_RECOMMENDED;
473 }
474 c->ebx = hyperv_get_spinlock_retries();
475
476 c = &cpuid_data.entries[cpuid_i++];
477 memset(c, 0, sizeof(*c));
478 c->function = HYPERV_CPUID_IMPLEMENT_LIMITS;
479 c->eax = 0x40;
480 c->ebx = 0x40;
481
482 c = &cpuid_data.entries[cpuid_i++];
483 memset(c, 0, sizeof(*c));
484 c->function = KVM_CPUID_SIGNATURE_NEXT;
485 memcpy(signature, "KVMKVMKVM\0\0\0", 12);
486 c->eax = 0;
487 c->ebx = signature[0];
488 c->ecx = signature[1];
489 c->edx = signature[2];
490 }
491
492 has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
493
494 has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
495
496 cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
497
498 for (i = 0; i <= limit; i++) {
499 c = &cpuid_data.entries[cpuid_i++];
500
501 switch (i) {
502 case 2: {
503 /* Keep reading function 2 till all the input is received */
504 int times;
505
506 c->function = i;
507 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC |
508 KVM_CPUID_FLAG_STATE_READ_NEXT;
509 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
510 times = c->eax & 0xff;
511
512 for (j = 1; j < times; ++j) {
513 c = &cpuid_data.entries[cpuid_i++];
514 c->function = i;
515 c->flags = KVM_CPUID_FLAG_STATEFUL_FUNC;
516 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
517 }
518 break;
519 }
520 case 4:
521 case 0xb:
522 case 0xd:
523 for (j = 0; ; j++) {
524 if (i == 0xd && j == 64) {
525 break;
526 }
527 c->function = i;
528 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
529 c->index = j;
530 cpu_x86_cpuid(env, i, j, &c->eax, &c->ebx, &c->ecx, &c->edx);
531
532 if (i == 4 && c->eax == 0) {
533 break;
534 }
535 if (i == 0xb && !(c->ecx & 0xff00)) {
536 break;
537 }
538 if (i == 0xd && c->eax == 0) {
539 continue;
540 }
541 c = &cpuid_data.entries[cpuid_i++];
542 }
543 break;
544 default:
545 c->function = i;
546 c->flags = 0;
547 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
548 break;
549 }
550 }
551 cpu_x86_cpuid(env, 0x80000000, 0, &limit, &unused, &unused, &unused);
552
553 for (i = 0x80000000; i <= limit; i++) {
554 c = &cpuid_data.entries[cpuid_i++];
555
556 c->function = i;
557 c->flags = 0;
558 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
559 }
560
561 /* Call Centaur's CPUID instructions they are supported. */
562 if (env->cpuid_xlevel2 > 0) {
563 cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
564
565 for (i = 0xC0000000; i <= limit; i++) {
566 c = &cpuid_data.entries[cpuid_i++];
567
568 c->function = i;
569 c->flags = 0;
570 cpu_x86_cpuid(env, i, 0, &c->eax, &c->ebx, &c->ecx, &c->edx);
571 }
572 }
573
574 cpuid_data.cpuid.nent = cpuid_i;
575
576 if (((env->cpuid_version >> 8)&0xF) >= 6
577 && (env->cpuid_features&(CPUID_MCE|CPUID_MCA)) == (CPUID_MCE|CPUID_MCA)
578 && kvm_check_extension(env->kvm_state, KVM_CAP_MCE) > 0) {
579 uint64_t mcg_cap;
580 int banks;
581 int ret;
582
583 ret = kvm_get_mce_cap_supported(env->kvm_state, &mcg_cap, &banks);
584 if (ret < 0) {
585 fprintf(stderr, "kvm_get_mce_cap_supported: %s", strerror(-ret));
586 return ret;
587 }
588
589 if (banks > MCE_BANKS_DEF) {
590 banks = MCE_BANKS_DEF;
591 }
592 mcg_cap &= MCE_CAP_DEF;
593 mcg_cap |= banks;
594 ret = kvm_vcpu_ioctl(env, KVM_X86_SETUP_MCE, &mcg_cap);
595 if (ret < 0) {
596 fprintf(stderr, "KVM_X86_SETUP_MCE: %s", strerror(-ret));
597 return ret;
598 }
599
600 env->mcg_cap = mcg_cap;
601 }
602
603 qemu_add_vm_change_state_handler(cpu_update_state, env);
604
605 cpuid_data.cpuid.padding = 0;
606 r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
607 if (r) {
608 return r;
609 }
610
611 r = kvm_check_extension(env->kvm_state, KVM_CAP_TSC_CONTROL);
612 if (r && env->tsc_khz) {
613 r = kvm_vcpu_ioctl(env, KVM_SET_TSC_KHZ, env->tsc_khz);
614 if (r < 0) {
615 fprintf(stderr, "KVM_SET_TSC_KHZ failed\n");
616 return r;
617 }
618 }
619
620 if (kvm_has_xsave()) {
621 env->kvm_xsave_buf = qemu_memalign(4096, sizeof(struct kvm_xsave));
622 }
623
624 return 0;
625 }
626
627 void kvm_arch_reset_vcpu(CPUX86State *env)
628 {
629 X86CPU *cpu = x86_env_get_cpu(env);
630
631 env->exception_injected = -1;
632 env->interrupt_injected = -1;
633 env->xcr0 = 1;
634 if (kvm_irqchip_in_kernel()) {
635 env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
636 KVM_MP_STATE_UNINITIALIZED;
637 } else {
638 env->mp_state = KVM_MP_STATE_RUNNABLE;
639 }
640 }
641
642 static int kvm_get_supported_msrs(KVMState *s)
643 {
644 static int kvm_supported_msrs;
645 int ret = 0;
646
647 /* first time */
648 if (kvm_supported_msrs == 0) {
649 struct kvm_msr_list msr_list, *kvm_msr_list;
650
651 kvm_supported_msrs = -1;
652
653 /* Obtain MSR list from KVM. These are the MSRs that we must
654 * save/restore */
655 msr_list.nmsrs = 0;
656 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, &msr_list);
657 if (ret < 0 && ret != -E2BIG) {
658 return ret;
659 }
660 /* Old kernel modules had a bug and could write beyond the provided
661 memory. Allocate at least a safe amount of 1K. */
662 kvm_msr_list = g_malloc0(MAX(1024, sizeof(msr_list) +
663 msr_list.nmsrs *
664 sizeof(msr_list.indices[0])));
665
666 kvm_msr_list->nmsrs = msr_list.nmsrs;
667 ret = kvm_ioctl(s, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
668 if (ret >= 0) {
669 int i;
670
671 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
672 if (kvm_msr_list->indices[i] == MSR_STAR) {
673 has_msr_star = true;
674 continue;
675 }
676 if (kvm_msr_list->indices[i] == MSR_VM_HSAVE_PA) {
677 has_msr_hsave_pa = true;
678 continue;
679 }
680 if (kvm_msr_list->indices[i] == MSR_TSC_ADJUST) {
681 has_msr_tsc_adjust = true;
682 continue;
683 }
684 if (kvm_msr_list->indices[i] == MSR_IA32_TSCDEADLINE) {
685 has_msr_tsc_deadline = true;
686 continue;
687 }
688 if (kvm_msr_list->indices[i] == MSR_IA32_MISC_ENABLE) {
689 has_msr_misc_enable = true;
690 continue;
691 }
692 }
693 }
694
695 g_free(kvm_msr_list);
696 }
697
698 return ret;
699 }
700
701 int kvm_arch_init(KVMState *s)
702 {
703 QemuOptsList *list = qemu_find_opts("machine");
704 uint64_t identity_base = 0xfffbc000;
705 uint64_t shadow_mem;
706 int ret;
707 struct utsname utsname;
708
709 ret = kvm_get_supported_msrs(s);
710 if (ret < 0) {
711 return ret;
712 }
713
714 uname(&utsname);
715 lm_capable_kernel = strcmp(utsname.machine, "x86_64") == 0;
716
717 /*
718 * On older Intel CPUs, KVM uses vm86 mode to emulate 16-bit code directly.
719 * In order to use vm86 mode, an EPT identity map and a TSS are needed.
720 * Since these must be part of guest physical memory, we need to allocate
721 * them, both by setting their start addresses in the kernel and by
722 * creating a corresponding e820 entry. We need 4 pages before the BIOS.
723 *
724 * Older KVM versions may not support setting the identity map base. In
725 * that case we need to stick with the default, i.e. a 256K maximum BIOS
726 * size.
727 */
728 if (kvm_check_extension(s, KVM_CAP_SET_IDENTITY_MAP_ADDR)) {
729 /* Allows up to 16M BIOSes. */
730 identity_base = 0xfeffc000;
731
732 ret = kvm_vm_ioctl(s, KVM_SET_IDENTITY_MAP_ADDR, &identity_base);
733 if (ret < 0) {
734 return ret;
735 }
736 }
737
738 /* Set TSS base one page after EPT identity map. */
739 ret = kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, identity_base + 0x1000);
740 if (ret < 0) {
741 return ret;
742 }
743
744 /* Tell fw_cfg to notify the BIOS to reserve the range. */
745 ret = e820_add_entry(identity_base, 0x4000, E820_RESERVED);
746 if (ret < 0) {
747 fprintf(stderr, "e820_add_entry() table is full\n");
748 return ret;
749 }
750 qemu_register_reset(kvm_unpoison_all, NULL);
751
752 if (!QTAILQ_EMPTY(&list->head)) {
753 shadow_mem = qemu_opt_get_size(QTAILQ_FIRST(&list->head),
754 "kvm_shadow_mem", -1);
755 if (shadow_mem != -1) {
756 shadow_mem /= 4096;
757 ret = kvm_vm_ioctl(s, KVM_SET_NR_MMU_PAGES, shadow_mem);
758 if (ret < 0) {
759 return ret;
760 }
761 }
762 }
763 return 0;
764 }
765
766 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
767 {
768 lhs->selector = rhs->selector;
769 lhs->base = rhs->base;
770 lhs->limit = rhs->limit;
771 lhs->type = 3;
772 lhs->present = 1;
773 lhs->dpl = 3;
774 lhs->db = 0;
775 lhs->s = 1;
776 lhs->l = 0;
777 lhs->g = 0;
778 lhs->avl = 0;
779 lhs->unusable = 0;
780 }
781
782 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
783 {
784 unsigned flags = rhs->flags;
785 lhs->selector = rhs->selector;
786 lhs->base = rhs->base;
787 lhs->limit = rhs->limit;
788 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
789 lhs->present = (flags & DESC_P_MASK) != 0;
790 lhs->dpl = (flags >> DESC_DPL_SHIFT) & 3;
791 lhs->db = (flags >> DESC_B_SHIFT) & 1;
792 lhs->s = (flags & DESC_S_MASK) != 0;
793 lhs->l = (flags >> DESC_L_SHIFT) & 1;
794 lhs->g = (flags & DESC_G_MASK) != 0;
795 lhs->avl = (flags & DESC_AVL_MASK) != 0;
796 lhs->unusable = 0;
797 lhs->padding = 0;
798 }
799
800 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
801 {
802 lhs->selector = rhs->selector;
803 lhs->base = rhs->base;
804 lhs->limit = rhs->limit;
805 lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
806 (rhs->present * DESC_P_MASK) |
807 (rhs->dpl << DESC_DPL_SHIFT) |
808 (rhs->db << DESC_B_SHIFT) |
809 (rhs->s * DESC_S_MASK) |
810 (rhs->l << DESC_L_SHIFT) |
811 (rhs->g * DESC_G_MASK) |
812 (rhs->avl * DESC_AVL_MASK);
813 }
814
815 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
816 {
817 if (set) {
818 *kvm_reg = *qemu_reg;
819 } else {
820 *qemu_reg = *kvm_reg;
821 }
822 }
823
824 static int kvm_getput_regs(CPUX86State *env, int set)
825 {
826 struct kvm_regs regs;
827 int ret = 0;
828
829 if (!set) {
830 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
831 if (ret < 0) {
832 return ret;
833 }
834 }
835
836 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
837 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
838 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
839 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
840 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
841 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
842 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
843 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
844 #ifdef TARGET_X86_64
845 kvm_getput_reg(&regs.r8, &env->regs[8], set);
846 kvm_getput_reg(&regs.r9, &env->regs[9], set);
847 kvm_getput_reg(&regs.r10, &env->regs[10], set);
848 kvm_getput_reg(&regs.r11, &env->regs[11], set);
849 kvm_getput_reg(&regs.r12, &env->regs[12], set);
850 kvm_getput_reg(&regs.r13, &env->regs[13], set);
851 kvm_getput_reg(&regs.r14, &env->regs[14], set);
852 kvm_getput_reg(&regs.r15, &env->regs[15], set);
853 #endif
854
855 kvm_getput_reg(&regs.rflags, &env->eflags, set);
856 kvm_getput_reg(&regs.rip, &env->eip, set);
857
858 if (set) {
859 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
860 }
861
862 return ret;
863 }
864
865 static int kvm_put_fpu(CPUX86State *env)
866 {
867 struct kvm_fpu fpu;
868 int i;
869
870 memset(&fpu, 0, sizeof fpu);
871 fpu.fsw = env->fpus & ~(7 << 11);
872 fpu.fsw |= (env->fpstt & 7) << 11;
873 fpu.fcw = env->fpuc;
874 fpu.last_opcode = env->fpop;
875 fpu.last_ip = env->fpip;
876 fpu.last_dp = env->fpdp;
877 for (i = 0; i < 8; ++i) {
878 fpu.ftwx |= (!env->fptags[i]) << i;
879 }
880 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
881 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
882 fpu.mxcsr = env->mxcsr;
883
884 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
885 }
886
887 #define XSAVE_FCW_FSW 0
888 #define XSAVE_FTW_FOP 1
889 #define XSAVE_CWD_RIP 2
890 #define XSAVE_CWD_RDP 4
891 #define XSAVE_MXCSR 6
892 #define XSAVE_ST_SPACE 8
893 #define XSAVE_XMM_SPACE 40
894 #define XSAVE_XSTATE_BV 128
895 #define XSAVE_YMMH_SPACE 144
896
897 static int kvm_put_xsave(CPUX86State *env)
898 {
899 struct kvm_xsave* xsave = env->kvm_xsave_buf;
900 uint16_t cwd, swd, twd;
901 int i, r;
902
903 if (!kvm_has_xsave()) {
904 return kvm_put_fpu(env);
905 }
906
907 memset(xsave, 0, sizeof(struct kvm_xsave));
908 twd = 0;
909 swd = env->fpus & ~(7 << 11);
910 swd |= (env->fpstt & 7) << 11;
911 cwd = env->fpuc;
912 for (i = 0; i < 8; ++i) {
913 twd |= (!env->fptags[i]) << i;
914 }
915 xsave->region[XSAVE_FCW_FSW] = (uint32_t)(swd << 16) + cwd;
916 xsave->region[XSAVE_FTW_FOP] = (uint32_t)(env->fpop << 16) + twd;
917 memcpy(&xsave->region[XSAVE_CWD_RIP], &env->fpip, sizeof(env->fpip));
918 memcpy(&xsave->region[XSAVE_CWD_RDP], &env->fpdp, sizeof(env->fpdp));
919 memcpy(&xsave->region[XSAVE_ST_SPACE], env->fpregs,
920 sizeof env->fpregs);
921 memcpy(&xsave->region[XSAVE_XMM_SPACE], env->xmm_regs,
922 sizeof env->xmm_regs);
923 xsave->region[XSAVE_MXCSR] = env->mxcsr;
924 *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV] = env->xstate_bv;
925 memcpy(&xsave->region[XSAVE_YMMH_SPACE], env->ymmh_regs,
926 sizeof env->ymmh_regs);
927 r = kvm_vcpu_ioctl(env, KVM_SET_XSAVE, xsave);
928 return r;
929 }
930
931 static int kvm_put_xcrs(CPUX86State *env)
932 {
933 struct kvm_xcrs xcrs;
934
935 if (!kvm_has_xcrs()) {
936 return 0;
937 }
938
939 xcrs.nr_xcrs = 1;
940 xcrs.flags = 0;
941 xcrs.xcrs[0].xcr = 0;
942 xcrs.xcrs[0].value = env->xcr0;
943 return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
944 }
945
946 static int kvm_put_sregs(CPUX86State *env)
947 {
948 struct kvm_sregs sregs;
949
950 memset(sregs.interrupt_bitmap, 0, sizeof(sregs.interrupt_bitmap));
951 if (env->interrupt_injected >= 0) {
952 sregs.interrupt_bitmap[env->interrupt_injected / 64] |=
953 (uint64_t)1 << (env->interrupt_injected % 64);
954 }
955
956 if ((env->eflags & VM_MASK)) {
957 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
958 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
959 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
960 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
961 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
962 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
963 } else {
964 set_seg(&sregs.cs, &env->segs[R_CS]);
965 set_seg(&sregs.ds, &env->segs[R_DS]);
966 set_seg(&sregs.es, &env->segs[R_ES]);
967 set_seg(&sregs.fs, &env->segs[R_FS]);
968 set_seg(&sregs.gs, &env->segs[R_GS]);
969 set_seg(&sregs.ss, &env->segs[R_SS]);
970 }
971
972 set_seg(&sregs.tr, &env->tr);
973 set_seg(&sregs.ldt, &env->ldt);
974
975 sregs.idt.limit = env->idt.limit;
976 sregs.idt.base = env->idt.base;
977 memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
978 sregs.gdt.limit = env->gdt.limit;
979 sregs.gdt.base = env->gdt.base;
980 memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
981
982 sregs.cr0 = env->cr[0];
983 sregs.cr2 = env->cr[2];
984 sregs.cr3 = env->cr[3];
985 sregs.cr4 = env->cr[4];
986
987 sregs.cr8 = cpu_get_apic_tpr(env->apic_state);
988 sregs.apic_base = cpu_get_apic_base(env->apic_state);
989
990 sregs.efer = env->efer;
991
992 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
993 }
994
995 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
996 uint32_t index, uint64_t value)
997 {
998 entry->index = index;
999 entry->data = value;
1000 }
1001
1002 static int kvm_put_msrs(CPUX86State *env, int level)
1003 {
1004 struct {
1005 struct kvm_msrs info;
1006 struct kvm_msr_entry entries[100];
1007 } msr_data;
1008 struct kvm_msr_entry *msrs = msr_data.entries;
1009 int n = 0;
1010
1011 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
1012 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
1013 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
1014 kvm_msr_entry_set(&msrs[n++], MSR_PAT, env->pat);
1015 if (has_msr_star) {
1016 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
1017 }
1018 if (has_msr_hsave_pa) {
1019 kvm_msr_entry_set(&msrs[n++], MSR_VM_HSAVE_PA, env->vm_hsave);
1020 }
1021 if (has_msr_tsc_adjust) {
1022 kvm_msr_entry_set(&msrs[n++], MSR_TSC_ADJUST, env->tsc_adjust);
1023 }
1024 if (has_msr_tsc_deadline) {
1025 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSCDEADLINE, env->tsc_deadline);
1026 }
1027 if (has_msr_misc_enable) {
1028 kvm_msr_entry_set(&msrs[n++], MSR_IA32_MISC_ENABLE,
1029 env->msr_ia32_misc_enable);
1030 }
1031 #ifdef TARGET_X86_64
1032 if (lm_capable_kernel) {
1033 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
1034 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
1035 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
1036 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
1037 }
1038 #endif
1039 if (level == KVM_PUT_FULL_STATE) {
1040 /*
1041 * KVM is yet unable to synchronize TSC values of multiple VCPUs on
1042 * writeback. Until this is fixed, we only write the offset to SMP
1043 * guests after migration, desynchronizing the VCPUs, but avoiding
1044 * huge jump-backs that would occur without any writeback at all.
1045 */
1046 if (smp_cpus == 1 || env->tsc != 0) {
1047 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
1048 }
1049 }
1050 /*
1051 * The following paravirtual MSRs have side effects on the guest or are
1052 * too heavy for normal writeback. Limit them to reset or full state
1053 * updates.
1054 */
1055 if (level >= KVM_PUT_RESET_STATE) {
1056 kvm_msr_entry_set(&msrs[n++], MSR_KVM_SYSTEM_TIME,
1057 env->system_time_msr);
1058 kvm_msr_entry_set(&msrs[n++], MSR_KVM_WALL_CLOCK, env->wall_clock_msr);
1059 if (has_msr_async_pf_en) {
1060 kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
1061 env->async_pf_en_msr);
1062 }
1063 if (has_msr_pv_eoi_en) {
1064 kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
1065 env->pv_eoi_en_msr);
1066 }
1067 if (hyperv_hypercall_available()) {
1068 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
1069 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
1070 }
1071 if (hyperv_vapic_recommended()) {
1072 kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_APIC_ASSIST_PAGE, 0);
1073 }
1074 }
1075 if (env->mcg_cap) {
1076 int i;
1077
1078 kvm_msr_entry_set(&msrs[n++], MSR_MCG_STATUS, env->mcg_status);
1079 kvm_msr_entry_set(&msrs[n++], MSR_MCG_CTL, env->mcg_ctl);
1080 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1081 kvm_msr_entry_set(&msrs[n++], MSR_MC0_CTL + i, env->mce_banks[i]);
1082 }
1083 }
1084
1085 msr_data.info.nmsrs = n;
1086
1087 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
1088
1089 }
1090
1091
1092 static int kvm_get_fpu(CPUX86State *env)
1093 {
1094 struct kvm_fpu fpu;
1095 int i, ret;
1096
1097 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
1098 if (ret < 0) {
1099 return ret;
1100 }
1101
1102 env->fpstt = (fpu.fsw >> 11) & 7;
1103 env->fpus = fpu.fsw;
1104 env->fpuc = fpu.fcw;
1105 env->fpop = fpu.last_opcode;
1106 env->fpip = fpu.last_ip;
1107 env->fpdp = fpu.last_dp;
1108 for (i = 0; i < 8; ++i) {
1109 env->fptags[i] = !((fpu.ftwx >> i) & 1);
1110 }
1111 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
1112 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
1113 env->mxcsr = fpu.mxcsr;
1114
1115 return 0;
1116 }
1117
1118 static int kvm_get_xsave(CPUX86State *env)
1119 {
1120 struct kvm_xsave* xsave = env->kvm_xsave_buf;
1121 int ret, i;
1122 uint16_t cwd, swd, twd;
1123
1124 if (!kvm_has_xsave()) {
1125 return kvm_get_fpu(env);
1126 }
1127
1128 ret = kvm_vcpu_ioctl(env, KVM_GET_XSAVE, xsave);
1129 if (ret < 0) {
1130 return ret;
1131 }
1132
1133 cwd = (uint16_t)xsave->region[XSAVE_FCW_FSW];
1134 swd = (uint16_t)(xsave->region[XSAVE_FCW_FSW] >> 16);
1135 twd = (uint16_t)xsave->region[XSAVE_FTW_FOP];
1136 env->fpop = (uint16_t)(xsave->region[XSAVE_FTW_FOP] >> 16);
1137 env->fpstt = (swd >> 11) & 7;
1138 env->fpus = swd;
1139 env->fpuc = cwd;
1140 for (i = 0; i < 8; ++i) {
1141 env->fptags[i] = !((twd >> i) & 1);
1142 }
1143 memcpy(&env->fpip, &xsave->region[XSAVE_CWD_RIP], sizeof(env->fpip));
1144 memcpy(&env->fpdp, &xsave->region[XSAVE_CWD_RDP], sizeof(env->fpdp));
1145 env->mxcsr = xsave->region[XSAVE_MXCSR];
1146 memcpy(env->fpregs, &xsave->region[XSAVE_ST_SPACE],
1147 sizeof env->fpregs);
1148 memcpy(env->xmm_regs, &xsave->region[XSAVE_XMM_SPACE],
1149 sizeof env->xmm_regs);
1150 env->xstate_bv = *(uint64_t *)&xsave->region[XSAVE_XSTATE_BV];
1151 memcpy(env->ymmh_regs, &xsave->region[XSAVE_YMMH_SPACE],
1152 sizeof env->ymmh_regs);
1153 return 0;
1154 }
1155
1156 static int kvm_get_xcrs(CPUX86State *env)
1157 {
1158 int i, ret;
1159 struct kvm_xcrs xcrs;
1160
1161 if (!kvm_has_xcrs()) {
1162 return 0;
1163 }
1164
1165 ret = kvm_vcpu_ioctl(env, KVM_GET_XCRS, &xcrs);
1166 if (ret < 0) {
1167 return ret;
1168 }
1169
1170 for (i = 0; i < xcrs.nr_xcrs; i++) {
1171 /* Only support xcr0 now */
1172 if (xcrs.xcrs[0].xcr == 0) {
1173 env->xcr0 = xcrs.xcrs[0].value;
1174 break;
1175 }
1176 }
1177 return 0;
1178 }
1179
1180 static int kvm_get_sregs(CPUX86State *env)
1181 {
1182 struct kvm_sregs sregs;
1183 uint32_t hflags;
1184 int bit, i, ret;
1185
1186 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
1187 if (ret < 0) {
1188 return ret;
1189 }
1190
1191 /* There can only be one pending IRQ set in the bitmap at a time, so try
1192 to find it and save its number instead (-1 for none). */
1193 env->interrupt_injected = -1;
1194 for (i = 0; i < ARRAY_SIZE(sregs.interrupt_bitmap); i++) {
1195 if (sregs.interrupt_bitmap[i]) {
1196 bit = ctz64(sregs.interrupt_bitmap[i]);
1197 env->interrupt_injected = i * 64 + bit;
1198 break;
1199 }
1200 }
1201
1202 get_seg(&env->segs[R_CS], &sregs.cs);
1203 get_seg(&env->segs[R_DS], &sregs.ds);
1204 get_seg(&env->segs[R_ES], &sregs.es);
1205 get_seg(&env->segs[R_FS], &sregs.fs);
1206 get_seg(&env->segs[R_GS], &sregs.gs);
1207 get_seg(&env->segs[R_SS], &sregs.ss);
1208
1209 get_seg(&env->tr, &sregs.tr);
1210 get_seg(&env->ldt, &sregs.ldt);
1211
1212 env->idt.limit = sregs.idt.limit;
1213 env->idt.base = sregs.idt.base;
1214 env->gdt.limit = sregs.gdt.limit;
1215 env->gdt.base = sregs.gdt.base;
1216
1217 env->cr[0] = sregs.cr0;
1218 env->cr[2] = sregs.cr2;
1219 env->cr[3] = sregs.cr3;
1220 env->cr[4] = sregs.cr4;
1221
1222 env->efer = sregs.efer;
1223
1224 /* changes to apic base and cr8/tpr are read back via kvm_arch_post_run */
1225
1226 #define HFLAG_COPY_MASK \
1227 ~( HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
1228 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
1229 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
1230 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
1231
1232 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
1233 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
1234 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
1235 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
1236 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
1237 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
1238 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
1239
1240 if (env->efer & MSR_EFER_LMA) {
1241 hflags |= HF_LMA_MASK;
1242 }
1243
1244 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
1245 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
1246 } else {
1247 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
1248 (DESC_B_SHIFT - HF_CS32_SHIFT);
1249 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
1250 (DESC_B_SHIFT - HF_SS32_SHIFT);
1251 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK) ||
1252 !(hflags & HF_CS32_MASK)) {
1253 hflags |= HF_ADDSEG_MASK;
1254 } else {
1255 hflags |= ((env->segs[R_DS].base | env->segs[R_ES].base |
1256 env->segs[R_SS].base) != 0) << HF_ADDSEG_SHIFT;
1257 }
1258 }
1259 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
1260
1261 return 0;
1262 }
1263
1264 static int kvm_get_msrs(CPUX86State *env)
1265 {
1266 struct {
1267 struct kvm_msrs info;
1268 struct kvm_msr_entry entries[100];
1269 } msr_data;
1270 struct kvm_msr_entry *msrs = msr_data.entries;
1271 int ret, i, n;
1272
1273 n = 0;
1274 msrs[n++].index = MSR_IA32_SYSENTER_CS;
1275 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
1276 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
1277 msrs[n++].index = MSR_PAT;
1278 if (has_msr_star) {
1279 msrs[n++].index = MSR_STAR;
1280 }
1281 if (has_msr_hsave_pa) {
1282 msrs[n++].index = MSR_VM_HSAVE_PA;
1283 }
1284 if (has_msr_tsc_adjust) {
1285 msrs[n++].index = MSR_TSC_ADJUST;
1286 }
1287 if (has_msr_tsc_deadline) {
1288 msrs[n++].index = MSR_IA32_TSCDEADLINE;
1289 }
1290 if (has_msr_misc_enable) {
1291 msrs[n++].index = MSR_IA32_MISC_ENABLE;
1292 }
1293
1294 if (!env->tsc_valid) {
1295 msrs[n++].index = MSR_IA32_TSC;
1296 env->tsc_valid = !runstate_is_running();
1297 }
1298
1299 #ifdef TARGET_X86_64
1300 if (lm_capable_kernel) {
1301 msrs[n++].index = MSR_CSTAR;
1302 msrs[n++].index = MSR_KERNELGSBASE;
1303 msrs[n++].index = MSR_FMASK;
1304 msrs[n++].index = MSR_LSTAR;
1305 }
1306 #endif
1307 msrs[n++].index = MSR_KVM_SYSTEM_TIME;
1308 msrs[n++].index = MSR_KVM_WALL_CLOCK;
1309 if (has_msr_async_pf_en) {
1310 msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
1311 }
1312 if (has_msr_pv_eoi_en) {
1313 msrs[n++].index = MSR_KVM_PV_EOI_EN;
1314 }
1315
1316 if (env->mcg_cap) {
1317 msrs[n++].index = MSR_MCG_STATUS;
1318 msrs[n++].index = MSR_MCG_CTL;
1319 for (i = 0; i < (env->mcg_cap & 0xff) * 4; i++) {
1320 msrs[n++].index = MSR_MC0_CTL + i;
1321 }
1322 }
1323
1324 msr_data.info.nmsrs = n;
1325 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
1326 if (ret < 0) {
1327 return ret;
1328 }
1329
1330 for (i = 0; i < ret; i++) {
1331 switch (msrs[i].index) {
1332 case MSR_IA32_SYSENTER_CS:
1333 env->sysenter_cs = msrs[i].data;
1334 break;
1335 case MSR_IA32_SYSENTER_ESP:
1336 env->sysenter_esp = msrs[i].data;
1337 break;
1338 case MSR_IA32_SYSENTER_EIP:
1339 env->sysenter_eip = msrs[i].data;
1340 break;
1341 case MSR_PAT:
1342 env->pat = msrs[i].data;
1343 break;
1344 case MSR_STAR:
1345 env->star = msrs[i].data;
1346 break;
1347 #ifdef TARGET_X86_64
1348 case MSR_CSTAR:
1349 env->cstar = msrs[i].data;
1350 break;
1351 case MSR_KERNELGSBASE:
1352 env->kernelgsbase = msrs[i].data;
1353 break;
1354 case MSR_FMASK:
1355 env->fmask = msrs[i].data;
1356 break;
1357 case MSR_LSTAR:
1358 env->lstar = msrs[i].data;
1359 break;
1360 #endif
1361 case MSR_IA32_TSC:
1362 env->tsc = msrs[i].data;
1363 break;
1364 case MSR_TSC_ADJUST:
1365 env->tsc_adjust = msrs[i].data;
1366 break;
1367 case MSR_IA32_TSCDEADLINE:
1368 env->tsc_deadline = msrs[i].data;
1369 break;
1370 case MSR_VM_HSAVE_PA:
1371 env->vm_hsave = msrs[i].data;
1372 break;
1373 case MSR_KVM_SYSTEM_TIME:
1374 env->system_time_msr = msrs[i].data;
1375 break;
1376 case MSR_KVM_WALL_CLOCK:
1377 env->wall_clock_msr = msrs[i].data;
1378 break;
1379 case MSR_MCG_STATUS:
1380 env->mcg_status = msrs[i].data;
1381 break;
1382 case MSR_MCG_CTL:
1383 env->mcg_ctl = msrs[i].data;
1384 break;
1385 case MSR_IA32_MISC_ENABLE:
1386 env->msr_ia32_misc_enable = msrs[i].data;
1387 break;
1388 default:
1389 if (msrs[i].index >= MSR_MC0_CTL &&
1390 msrs[i].index < MSR_MC0_CTL + (env->mcg_cap & 0xff) * 4) {
1391 env->mce_banks[msrs[i].index - MSR_MC0_CTL] = msrs[i].data;
1392 }
1393 break;
1394 case MSR_KVM_ASYNC_PF_EN:
1395 env->async_pf_en_msr = msrs[i].data;
1396 break;
1397 case MSR_KVM_PV_EOI_EN:
1398 env->pv_eoi_en_msr = msrs[i].data;
1399 break;
1400 }
1401 }
1402
1403 return 0;
1404 }
1405
1406 static int kvm_put_mp_state(CPUX86State *env)
1407 {
1408 struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
1409
1410 return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
1411 }
1412
1413 static int kvm_get_mp_state(X86CPU *cpu)
1414 {
1415 CPUX86State *env = &cpu->env;
1416 struct kvm_mp_state mp_state;
1417 int ret;
1418
1419 ret = kvm_vcpu_ioctl(env, KVM_GET_MP_STATE, &mp_state);
1420 if (ret < 0) {
1421 return ret;
1422 }
1423 env->mp_state = mp_state.mp_state;
1424 if (kvm_irqchip_in_kernel()) {
1425 env->halted = (mp_state.mp_state == KVM_MP_STATE_HALTED);
1426 }
1427 return 0;
1428 }
1429
1430 static int kvm_get_apic(CPUX86State *env)
1431 {
1432 DeviceState *apic = env->apic_state;
1433 struct kvm_lapic_state kapic;
1434 int ret;
1435
1436 if (apic && kvm_irqchip_in_kernel()) {
1437 ret = kvm_vcpu_ioctl(env, KVM_GET_LAPIC, &kapic);
1438 if (ret < 0) {
1439 return ret;
1440 }
1441
1442 kvm_get_apic_state(apic, &kapic);
1443 }
1444 return 0;
1445 }
1446
1447 static int kvm_put_apic(CPUX86State *env)
1448 {
1449 DeviceState *apic = env->apic_state;
1450 struct kvm_lapic_state kapic;
1451
1452 if (apic && kvm_irqchip_in_kernel()) {
1453 kvm_put_apic_state(apic, &kapic);
1454
1455 return kvm_vcpu_ioctl(env, KVM_SET_LAPIC, &kapic);
1456 }
1457 return 0;
1458 }
1459
1460 static int kvm_put_vcpu_events(CPUX86State *env, int level)
1461 {
1462 struct kvm_vcpu_events events;
1463
1464 if (!kvm_has_vcpu_events()) {
1465 return 0;
1466 }
1467
1468 events.exception.injected = (env->exception_injected >= 0);
1469 events.exception.nr = env->exception_injected;
1470 events.exception.has_error_code = env->has_error_code;
1471 events.exception.error_code = env->error_code;
1472 events.exception.pad = 0;
1473
1474 events.interrupt.injected = (env->interrupt_injected >= 0);
1475 events.interrupt.nr = env->interrupt_injected;
1476 events.interrupt.soft = env->soft_interrupt;
1477
1478 events.nmi.injected = env->nmi_injected;
1479 events.nmi.pending = env->nmi_pending;
1480 events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
1481 events.nmi.pad = 0;
1482
1483 events.sipi_vector = env->sipi_vector;
1484
1485 events.flags = 0;
1486 if (level >= KVM_PUT_RESET_STATE) {
1487 events.flags |=
1488 KVM_VCPUEVENT_VALID_NMI_PENDING | KVM_VCPUEVENT_VALID_SIPI_VECTOR;
1489 }
1490
1491 return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
1492 }
1493
1494 static int kvm_get_vcpu_events(CPUX86State *env)
1495 {
1496 struct kvm_vcpu_events events;
1497 int ret;
1498
1499 if (!kvm_has_vcpu_events()) {
1500 return 0;
1501 }
1502
1503 ret = kvm_vcpu_ioctl(env, KVM_GET_VCPU_EVENTS, &events);
1504 if (ret < 0) {
1505 return ret;
1506 }
1507 env->exception_injected =
1508 events.exception.injected ? events.exception.nr : -1;
1509 env->has_error_code = events.exception.has_error_code;
1510 env->error_code = events.exception.error_code;
1511
1512 env->interrupt_injected =
1513 events.interrupt.injected ? events.interrupt.nr : -1;
1514 env->soft_interrupt = events.interrupt.soft;
1515
1516 env->nmi_injected = events.nmi.injected;
1517 env->nmi_pending = events.nmi.pending;
1518 if (events.nmi.masked) {
1519 env->hflags2 |= HF2_NMI_MASK;
1520 } else {
1521 env->hflags2 &= ~HF2_NMI_MASK;
1522 }
1523
1524 env->sipi_vector = events.sipi_vector;
1525
1526 return 0;
1527 }
1528
1529 static int kvm_guest_debug_workarounds(CPUX86State *env)
1530 {
1531 int ret = 0;
1532 unsigned long reinject_trap = 0;
1533
1534 if (!kvm_has_vcpu_events()) {
1535 if (env->exception_injected == 1) {
1536 reinject_trap = KVM_GUESTDBG_INJECT_DB;
1537 } else if (env->exception_injected == 3) {
1538 reinject_trap = KVM_GUESTDBG_INJECT_BP;
1539 }
1540 env->exception_injected = -1;
1541 }
1542
1543 /*
1544 * Kernels before KVM_CAP_X86_ROBUST_SINGLESTEP overwrote flags.TF
1545 * injected via SET_GUEST_DEBUG while updating GP regs. Work around this
1546 * by updating the debug state once again if single-stepping is on.
1547 * Another reason to call kvm_update_guest_debug here is a pending debug
1548 * trap raise by the guest. On kernels without SET_VCPU_EVENTS we have to
1549 * reinject them via SET_GUEST_DEBUG.
1550 */
1551 if (reinject_trap ||
1552 (!kvm_has_robust_singlestep() && env->singlestep_enabled)) {
1553 ret = kvm_update_guest_debug(env, reinject_trap);
1554 }
1555 return ret;
1556 }
1557
1558 static int kvm_put_debugregs(CPUX86State *env)
1559 {
1560 struct kvm_debugregs dbgregs;
1561 int i;
1562
1563 if (!kvm_has_debugregs()) {
1564 return 0;
1565 }
1566
1567 for (i = 0; i < 4; i++) {
1568 dbgregs.db[i] = env->dr[i];
1569 }
1570 dbgregs.dr6 = env->dr[6];
1571 dbgregs.dr7 = env->dr[7];
1572 dbgregs.flags = 0;
1573
1574 return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
1575 }
1576
1577 static int kvm_get_debugregs(CPUX86State *env)
1578 {
1579 struct kvm_debugregs dbgregs;
1580 int i, ret;
1581
1582 if (!kvm_has_debugregs()) {
1583 return 0;
1584 }
1585
1586 ret = kvm_vcpu_ioctl(env, KVM_GET_DEBUGREGS, &dbgregs);
1587 if (ret < 0) {
1588 return ret;
1589 }
1590 for (i = 0; i < 4; i++) {
1591 env->dr[i] = dbgregs.db[i];
1592 }
1593 env->dr[4] = env->dr[6] = dbgregs.dr6;
1594 env->dr[5] = env->dr[7] = dbgregs.dr7;
1595
1596 return 0;
1597 }
1598
1599 int kvm_arch_put_registers(CPUX86State *env, int level)
1600 {
1601 CPUState *cpu = ENV_GET_CPU(env);
1602 int ret;
1603
1604 assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
1605
1606 ret = kvm_getput_regs(env, 1);
1607 if (ret < 0) {
1608 return ret;
1609 }
1610 ret = kvm_put_xsave(env);
1611 if (ret < 0) {
1612 return ret;
1613 }
1614 ret = kvm_put_xcrs(env);
1615 if (ret < 0) {
1616 return ret;
1617 }
1618 ret = kvm_put_sregs(env);
1619 if (ret < 0) {
1620 return ret;
1621 }
1622 /* must be before kvm_put_msrs */
1623 ret = kvm_inject_mce_oldstyle(env);
1624 if (ret < 0) {
1625 return ret;
1626 }
1627 ret = kvm_put_msrs(env, level);
1628 if (ret < 0) {
1629 return ret;
1630 }
1631 if (level >= KVM_PUT_RESET_STATE) {
1632 ret = kvm_put_mp_state(env);
1633 if (ret < 0) {
1634 return ret;
1635 }
1636 ret = kvm_put_apic(env);
1637 if (ret < 0) {
1638 return ret;
1639 }
1640 }
1641 ret = kvm_put_vcpu_events(env, level);
1642 if (ret < 0) {
1643 return ret;
1644 }
1645 ret = kvm_put_debugregs(env);
1646 if (ret < 0) {
1647 return ret;
1648 }
1649 /* must be last */
1650 ret = kvm_guest_debug_workarounds(env);
1651 if (ret < 0) {
1652 return ret;
1653 }
1654 return 0;
1655 }
1656
1657 int kvm_arch_get_registers(CPUX86State *env)
1658 {
1659 X86CPU *cpu = x86_env_get_cpu(env);
1660 int ret;
1661
1662 assert(cpu_is_stopped(CPU(cpu)) || qemu_cpu_is_self(CPU(cpu)));
1663
1664 ret = kvm_getput_regs(env, 0);
1665 if (ret < 0) {
1666 return ret;
1667 }
1668 ret = kvm_get_xsave(env);
1669 if (ret < 0) {
1670 return ret;
1671 }
1672 ret = kvm_get_xcrs(env);
1673 if (ret < 0) {
1674 return ret;
1675 }
1676 ret = kvm_get_sregs(env);
1677 if (ret < 0) {
1678 return ret;
1679 }
1680 ret = kvm_get_msrs(env);
1681 if (ret < 0) {
1682 return ret;
1683 }
1684 ret = kvm_get_mp_state(cpu);
1685 if (ret < 0) {
1686 return ret;
1687 }
1688 ret = kvm_get_apic(env);
1689 if (ret < 0) {
1690 return ret;
1691 }
1692 ret = kvm_get_vcpu_events(env);
1693 if (ret < 0) {
1694 return ret;
1695 }
1696 ret = kvm_get_debugregs(env);
1697 if (ret < 0) {
1698 return ret;
1699 }
1700 return 0;
1701 }
1702
1703 void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
1704 {
1705 int ret;
1706
1707 /* Inject NMI */
1708 if (env->interrupt_request & CPU_INTERRUPT_NMI) {
1709 env->interrupt_request &= ~CPU_INTERRUPT_NMI;
1710 DPRINTF("injected NMI\n");
1711 ret = kvm_vcpu_ioctl(env, KVM_NMI);
1712 if (ret < 0) {
1713 fprintf(stderr, "KVM: injection failed, NMI lost (%s)\n",
1714 strerror(-ret));
1715 }
1716 }
1717
1718 if (!kvm_irqchip_in_kernel()) {
1719 /* Force the VCPU out of its inner loop to process any INIT requests
1720 * or pending TPR access reports. */
1721 if (env->interrupt_request &
1722 (CPU_INTERRUPT_INIT | CPU_INTERRUPT_TPR)) {
1723 env->exit_request = 1;
1724 }
1725
1726 /* Try to inject an interrupt if the guest can accept it */
1727 if (run->ready_for_interrupt_injection &&
1728 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
1729 (env->eflags & IF_MASK)) {
1730 int irq;
1731
1732 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
1733 irq = cpu_get_pic_interrupt(env);
1734 if (irq >= 0) {
1735 struct kvm_interrupt intr;
1736
1737 intr.irq = irq;
1738 DPRINTF("injected interrupt %d\n", irq);
1739 ret = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
1740 if (ret < 0) {
1741 fprintf(stderr,
1742 "KVM: injection failed, interrupt lost (%s)\n",
1743 strerror(-ret));
1744 }
1745 }
1746 }
1747
1748 /* If we have an interrupt but the guest is not ready to receive an
1749 * interrupt, request an interrupt window exit. This will
1750 * cause a return to userspace as soon as the guest is ready to
1751 * receive interrupts. */
1752 if ((env->interrupt_request & CPU_INTERRUPT_HARD)) {
1753 run->request_interrupt_window = 1;
1754 } else {
1755 run->request_interrupt_window = 0;
1756 }
1757
1758 DPRINTF("setting tpr\n");
1759 run->cr8 = cpu_get_apic_tpr(env->apic_state);
1760 }
1761 }
1762
1763 void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
1764 {
1765 if (run->if_flag) {
1766 env->eflags |= IF_MASK;
1767 } else {
1768 env->eflags &= ~IF_MASK;
1769 }
1770 cpu_set_apic_tpr(env->apic_state, run->cr8);
1771 cpu_set_apic_base(env->apic_state, run->apic_base);
1772 }
1773
1774 int kvm_arch_process_async_events(CPUX86State *env)
1775 {
1776 X86CPU *cpu = x86_env_get_cpu(env);
1777
1778 if (env->interrupt_request & CPU_INTERRUPT_MCE) {
1779 /* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
1780 assert(env->mcg_cap);
1781
1782 env->interrupt_request &= ~CPU_INTERRUPT_MCE;
1783
1784 kvm_cpu_synchronize_state(env);
1785
1786 if (env->exception_injected == EXCP08_DBLE) {
1787 /* this means triple fault */
1788 qemu_system_reset_request();
1789 env->exit_request = 1;
1790 return 0;
1791 }
1792 env->exception_injected = EXCP12_MCHK;
1793 env->has_error_code = 0;
1794
1795 env->halted = 0;
1796 if (kvm_irqchip_in_kernel() && env->mp_state == KVM_MP_STATE_HALTED) {
1797 env->mp_state = KVM_MP_STATE_RUNNABLE;
1798 }
1799 }
1800
1801 if (kvm_irqchip_in_kernel()) {
1802 return 0;
1803 }
1804
1805 if (env->interrupt_request & CPU_INTERRUPT_POLL) {
1806 env->interrupt_request &= ~CPU_INTERRUPT_POLL;
1807 apic_poll_irq(env->apic_state);
1808 }
1809 if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1810 (env->eflags & IF_MASK)) ||
1811 (env->interrupt_request & CPU_INTERRUPT_NMI)) {
1812 env->halted = 0;
1813 }
1814 if (env->interrupt_request & CPU_INTERRUPT_INIT) {
1815 kvm_cpu_synchronize_state(env);
1816 do_cpu_init(cpu);
1817 }
1818 if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
1819 kvm_cpu_synchronize_state(env);
1820 do_cpu_sipi(cpu);
1821 }
1822 if (env->interrupt_request & CPU_INTERRUPT_TPR) {
1823 env->interrupt_request &= ~CPU_INTERRUPT_TPR;
1824 kvm_cpu_synchronize_state(env);
1825 apic_handle_tpr_access_report(env->apic_state, env->eip,
1826 env->tpr_access_type);
1827 }
1828
1829 return env->halted;
1830 }
1831
1832 static int kvm_handle_halt(X86CPU *cpu)
1833 {
1834 CPUX86State *env = &cpu->env;
1835
1836 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
1837 (env->eflags & IF_MASK)) &&
1838 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
1839 env->halted = 1;
1840 return EXCP_HLT;
1841 }
1842
1843 return 0;
1844 }
1845
1846 static int kvm_handle_tpr_access(CPUX86State *env)
1847 {
1848 struct kvm_run *run = env->kvm_run;
1849
1850 apic_handle_tpr_access_report(env->apic_state, run->tpr_access.rip,
1851 run->tpr_access.is_write ? TPR_ACCESS_WRITE
1852 : TPR_ACCESS_READ);
1853 return 1;
1854 }
1855
1856 int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1857 {
1858 static const uint8_t int3 = 0xcc;
1859
1860 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
1861 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&int3, 1, 1)) {
1862 return -EINVAL;
1863 }
1864 return 0;
1865 }
1866
1867 int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
1868 {
1869 uint8_t int3;
1870
1871 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
1872 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
1873 return -EINVAL;
1874 }
1875 return 0;
1876 }
1877
1878 static struct {
1879 target_ulong addr;
1880 int len;
1881 int type;
1882 } hw_breakpoint[4];
1883
1884 static int nb_hw_breakpoint;
1885
1886 static int find_hw_breakpoint(target_ulong addr, int len, int type)
1887 {
1888 int n;
1889
1890 for (n = 0; n < nb_hw_breakpoint; n++) {
1891 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
1892 (hw_breakpoint[n].len == len || len == -1)) {
1893 return n;
1894 }
1895 }
1896 return -1;
1897 }
1898
1899 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
1900 target_ulong len, int type)
1901 {
1902 switch (type) {
1903 case GDB_BREAKPOINT_HW:
1904 len = 1;
1905 break;
1906 case GDB_WATCHPOINT_WRITE:
1907 case GDB_WATCHPOINT_ACCESS:
1908 switch (len) {
1909 case 1:
1910 break;
1911 case 2:
1912 case 4:
1913 case 8:
1914 if (addr & (len - 1)) {
1915 return -EINVAL;
1916 }
1917 break;
1918 default:
1919 return -EINVAL;
1920 }
1921 break;
1922 default:
1923 return -ENOSYS;
1924 }
1925
1926 if (nb_hw_breakpoint == 4) {
1927 return -ENOBUFS;
1928 }
1929 if (find_hw_breakpoint(addr, len, type) >= 0) {
1930 return -EEXIST;
1931 }
1932 hw_breakpoint[nb_hw_breakpoint].addr = addr;
1933 hw_breakpoint[nb_hw_breakpoint].len = len;
1934 hw_breakpoint[nb_hw_breakpoint].type = type;
1935 nb_hw_breakpoint++;
1936
1937 return 0;
1938 }
1939
1940 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
1941 target_ulong len, int type)
1942 {
1943 int n;
1944
1945 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
1946 if (n < 0) {
1947 return -ENOENT;
1948 }
1949 nb_hw_breakpoint--;
1950 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
1951
1952 return 0;
1953 }
1954
1955 void kvm_arch_remove_all_hw_breakpoints(void)
1956 {
1957 nb_hw_breakpoint = 0;
1958 }
1959
1960 static CPUWatchpoint hw_watchpoint;
1961
1962 static int kvm_handle_debug(CPUX86State *env,
1963 struct kvm_debug_exit_arch *arch_info)
1964 {
1965 int ret = 0;
1966 int n;
1967
1968 if (arch_info->exception == 1) {
1969 if (arch_info->dr6 & (1 << 14)) {
1970 if (env->singlestep_enabled) {
1971 ret = EXCP_DEBUG;
1972 }
1973 } else {
1974 for (n = 0; n < 4; n++) {
1975 if (arch_info->dr6 & (1 << n)) {
1976 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
1977 case 0x0:
1978 ret = EXCP_DEBUG;
1979 break;
1980 case 0x1:
1981 ret = EXCP_DEBUG;
1982 env->watchpoint_hit = &hw_watchpoint;
1983 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1984 hw_watchpoint.flags = BP_MEM_WRITE;
1985 break;
1986 case 0x3:
1987 ret = EXCP_DEBUG;
1988 env->watchpoint_hit = &hw_watchpoint;
1989 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
1990 hw_watchpoint.flags = BP_MEM_ACCESS;
1991 break;
1992 }
1993 }
1994 }
1995 }
1996 } else if (kvm_find_sw_breakpoint(env, arch_info->pc)) {
1997 ret = EXCP_DEBUG;
1998 }
1999 if (ret == 0) {
2000 cpu_synchronize_state(env);
2001 assert(env->exception_injected == -1);
2002
2003 /* pass to guest */
2004 env->exception_injected = arch_info->exception;
2005 env->has_error_code = 0;
2006 }
2007
2008 return ret;
2009 }
2010
2011 void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
2012 {
2013 const uint8_t type_code[] = {
2014 [GDB_BREAKPOINT_HW] = 0x0,
2015 [GDB_WATCHPOINT_WRITE] = 0x1,
2016 [GDB_WATCHPOINT_ACCESS] = 0x3
2017 };
2018 const uint8_t len_code[] = {
2019 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
2020 };
2021 int n;
2022
2023 if (kvm_sw_breakpoints_active(env)) {
2024 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
2025 }
2026 if (nb_hw_breakpoint > 0) {
2027 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
2028 dbg->arch.debugreg[7] = 0x0600;
2029 for (n = 0; n < nb_hw_breakpoint; n++) {
2030 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
2031 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
2032 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
2033 ((uint32_t)len_code[hw_breakpoint[n].len] << (18 + n*4));
2034 }
2035 }
2036 }
2037
2038 static bool host_supports_vmx(void)
2039 {
2040 uint32_t ecx, unused;
2041
2042 host_cpuid(1, 0, &unused, &unused, &ecx, &unused);
2043 return ecx & CPUID_EXT_VMX;
2044 }
2045
2046 #define VMX_INVALID_GUEST_STATE 0x80000021
2047
2048 int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
2049 {
2050 X86CPU *cpu = x86_env_get_cpu(env);
2051 uint64_t code;
2052 int ret;
2053
2054 switch (run->exit_reason) {
2055 case KVM_EXIT_HLT:
2056 DPRINTF("handle_hlt\n");
2057 ret = kvm_handle_halt(cpu);
2058 break;
2059 case KVM_EXIT_SET_TPR:
2060 ret = 0;
2061 break;
2062 case KVM_EXIT_TPR_ACCESS:
2063 ret = kvm_handle_tpr_access(env);
2064 break;
2065 case KVM_EXIT_FAIL_ENTRY:
2066 code = run->fail_entry.hardware_entry_failure_reason;
2067 fprintf(stderr, "KVM: entry failed, hardware error 0x%" PRIx64 "\n",
2068 code);
2069 if (host_supports_vmx() && code == VMX_INVALID_GUEST_STATE) {
2070 fprintf(stderr,
2071 "\nIf you're running a guest on an Intel machine without "
2072 "unrestricted mode\n"
2073 "support, the failure can be most likely due to the guest "
2074 "entering an invalid\n"
2075 "state for Intel VT. For example, the guest maybe running "
2076 "in big real mode\n"
2077 "which is not supported on less recent Intel processors."
2078 "\n\n");
2079 }
2080 ret = -1;
2081 break;
2082 case KVM_EXIT_EXCEPTION:
2083 fprintf(stderr, "KVM: exception %d exit (error code 0x%x)\n",
2084 run->ex.exception, run->ex.error_code);
2085 ret = -1;
2086 break;
2087 case KVM_EXIT_DEBUG:
2088 DPRINTF("kvm_exit_debug\n");
2089 ret = kvm_handle_debug(env, &run->debug.arch);
2090 break;
2091 default:
2092 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
2093 ret = -1;
2094 break;
2095 }
2096
2097 return ret;
2098 }
2099
2100 bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
2101 {
2102 kvm_cpu_synchronize_state(env);
2103 return !(env->cr[0] & CR0_PE_MASK) ||
2104 ((env->segs[R_CS].selector & 3) != 3);
2105 }
2106
2107 void kvm_arch_init_irq_routing(KVMState *s)
2108 {
2109 if (!kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) {
2110 /* If kernel can't do irq routing, interrupt source
2111 * override 0->2 cannot be set up as required by HPET.
2112 * So we have to disable it.
2113 */
2114 no_hpet = 1;
2115 }
2116 /* We know at this point that we're using the in-kernel
2117 * irqchip, so we can use irqfds, and on x86 we know
2118 * we can use msi via irqfd and GSI routing.
2119 */
2120 kvm_irqfds_allowed = true;
2121 kvm_msi_via_irqfd_allowed = true;
2122 kvm_gsi_routing_allowed = true;
2123 }
2124
2125 /* Classic KVM device assignment interface. Will remain x86 only. */
2126 int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
2127 uint32_t flags, uint32_t *dev_id)
2128 {
2129 struct kvm_assigned_pci_dev dev_data = {
2130 .segnr = dev_addr->domain,
2131 .busnr = dev_addr->bus,
2132 .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
2133 .flags = flags,
2134 };
2135 int ret;
2136
2137 dev_data.assigned_dev_id =
2138 (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
2139
2140 ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
2141 if (ret < 0) {
2142 return ret;
2143 }
2144
2145 *dev_id = dev_data.assigned_dev_id;
2146
2147 return 0;
2148 }
2149
2150 int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
2151 {
2152 struct kvm_assigned_pci_dev dev_data = {
2153 .assigned_dev_id = dev_id,
2154 };
2155
2156 return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
2157 }
2158
2159 static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
2160 uint32_t irq_type, uint32_t guest_irq)
2161 {
2162 struct kvm_assigned_irq assigned_irq = {
2163 .assigned_dev_id = dev_id,
2164 .guest_irq = guest_irq,
2165 .flags = irq_type,
2166 };
2167
2168 if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
2169 return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
2170 } else {
2171 return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
2172 }
2173 }
2174
2175 int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
2176 uint32_t guest_irq)
2177 {
2178 uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
2179 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
2180
2181 return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
2182 }
2183
2184 int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
2185 {
2186 struct kvm_assigned_pci_dev dev_data = {
2187 .assigned_dev_id = dev_id,
2188 .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
2189 };
2190
2191 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
2192 }
2193
2194 static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
2195 uint32_t type)
2196 {
2197 struct kvm_assigned_irq assigned_irq = {
2198 .assigned_dev_id = dev_id,
2199 .flags = type,
2200 };
2201
2202 return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
2203 }
2204
2205 int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
2206 {
2207 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
2208 (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
2209 }
2210
2211 int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
2212 {
2213 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
2214 KVM_DEV_IRQ_GUEST_MSI, virq);
2215 }
2216
2217 int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
2218 {
2219 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
2220 KVM_DEV_IRQ_HOST_MSI);
2221 }
2222
2223 bool kvm_device_msix_supported(KVMState *s)
2224 {
2225 /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
2226 * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
2227 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
2228 }
2229
2230 int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
2231 uint32_t nr_vectors)
2232 {
2233 struct kvm_assigned_msix_nr msix_nr = {
2234 .assigned_dev_id = dev_id,
2235 .entry_nr = nr_vectors,
2236 };
2237
2238 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
2239 }
2240
2241 int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
2242 int virq)
2243 {
2244 struct kvm_assigned_msix_entry msix_entry = {
2245 .assigned_dev_id = dev_id,
2246 .gsi = virq,
2247 .entry = vector,
2248 };
2249
2250 return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
2251 }
2252
2253 int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
2254 {
2255 return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
2256 KVM_DEV_IRQ_GUEST_MSIX, 0);
2257 }
2258
2259 int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
2260 {
2261 return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
2262 KVM_DEV_IRQ_HOST_MSIX);
2263 }