]> git.proxmox.com Git - qemu.git/blob - target-i386/op_helper.c
softmmu_header: pass CPUState to tlb_fill
[qemu.git] / target-i386 / op_helper.c
1 /*
2 * i386 helpers
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <math.h>
21 #include "cpu.h"
22 #include "dyngen-exec.h"
23 #include "host-utils.h"
24 #include "ioport.h"
25 #include "qemu-common.h"
26 #include "qemu-log.h"
27 #include "cpu-defs.h"
28 #include "helper.h"
29
30 #if !defined(CONFIG_USER_ONLY)
31 #include "softmmu_exec.h"
32 #endif /* !defined(CONFIG_USER_ONLY) */
33
34 //#define DEBUG_PCALL
35
36 #ifdef DEBUG_PCALL
37 # define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
38 # define LOG_PCALL_STATE(env) \
39 log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP)
40 #else
41 # define LOG_PCALL(...) do { } while (0)
42 # define LOG_PCALL_STATE(env) do { } while (0)
43 #endif
44
45 /* n must be a constant to be efficient */
46 static inline target_long lshift(target_long x, int n)
47 {
48 if (n >= 0) {
49 return x << n;
50 } else {
51 return x >> (-n);
52 }
53 }
54
55 #define RC_MASK 0xc00
56 #define RC_NEAR 0x000
57 #define RC_DOWN 0x400
58 #define RC_UP 0x800
59 #define RC_CHOP 0xc00
60
61 #define MAXTAN 9223372036854775808.0
62
63 /* the following deal with x86 long double-precision numbers */
64 #define MAXEXPD 0x7fff
65 #define EXPBIAS 16383
66 #define EXPD(fp) (fp.l.upper & 0x7fff)
67 #define SIGND(fp) ((fp.l.upper) & 0x8000)
68 #define MANTD(fp) (fp.l.lower)
69 #define BIASEXPONENT(fp) fp.l.upper = (fp.l.upper & ~(0x7fff)) | EXPBIAS
70
71 static inline void fpush(void)
72 {
73 env->fpstt = (env->fpstt - 1) & 7;
74 env->fptags[env->fpstt] = 0; /* validate stack entry */
75 }
76
77 static inline void fpop(void)
78 {
79 env->fptags[env->fpstt] = 1; /* invvalidate stack entry */
80 env->fpstt = (env->fpstt + 1) & 7;
81 }
82
83 static inline floatx80 helper_fldt(target_ulong ptr)
84 {
85 CPU_LDoubleU temp;
86
87 temp.l.lower = ldq(ptr);
88 temp.l.upper = lduw(ptr + 8);
89 return temp.d;
90 }
91
92 static inline void helper_fstt(floatx80 f, target_ulong ptr)
93 {
94 CPU_LDoubleU temp;
95
96 temp.d = f;
97 stq(ptr, temp.l.lower);
98 stw(ptr + 8, temp.l.upper);
99 }
100
101 #define FPUS_IE (1 << 0)
102 #define FPUS_DE (1 << 1)
103 #define FPUS_ZE (1 << 2)
104 #define FPUS_OE (1 << 3)
105 #define FPUS_UE (1 << 4)
106 #define FPUS_PE (1 << 5)
107 #define FPUS_SF (1 << 6)
108 #define FPUS_SE (1 << 7)
109 #define FPUS_B (1 << 15)
110
111 #define FPUC_EM 0x3f
112
113 static inline uint32_t compute_eflags(void)
114 {
115 return env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
116 }
117
118 /* NOTE: CC_OP must be modified manually to CC_OP_EFLAGS */
119 static inline void load_eflags(int eflags, int update_mask)
120 {
121 CC_SRC = eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
122 DF = 1 - (2 * ((eflags >> 10) & 1));
123 env->eflags = (env->eflags & ~update_mask) |
124 (eflags & update_mask) | 0x2;
125 }
126
127 /* load efer and update the corresponding hflags. XXX: do consistency
128 checks with cpuid bits ? */
129 static inline void cpu_load_efer(CPUState *env, uint64_t val)
130 {
131 env->efer = val;
132 env->hflags &= ~(HF_LMA_MASK | HF_SVME_MASK);
133 if (env->efer & MSR_EFER_LMA) {
134 env->hflags |= HF_LMA_MASK;
135 }
136 if (env->efer & MSR_EFER_SVME) {
137 env->hflags |= HF_SVME_MASK;
138 }
139 }
140
141 #if 0
142 #define raise_exception_err(a, b)\
143 do {\
144 qemu_log("raise_exception line=%d\n", __LINE__);\
145 (raise_exception_err)(a, b);\
146 } while (0)
147 #endif
148
149 static void QEMU_NORETURN raise_exception_err(int exception_index,
150 int error_code);
151
152 static const uint8_t parity_table[256] = {
153 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
154 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
155 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
156 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
157 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
158 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
159 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
160 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
161 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
162 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
163 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
164 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
165 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
166 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
167 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
168 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
169 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
170 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
171 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
172 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
173 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
174 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
175 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
176 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
177 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
178 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
179 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
180 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
181 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
182 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
183 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
184 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
185 };
186
187 /* modulo 17 table */
188 static const uint8_t rclw_table[32] = {
189 0, 1, 2, 3, 4, 5, 6, 7,
190 8, 9,10,11,12,13,14,15,
191 16, 0, 1, 2, 3, 4, 5, 6,
192 7, 8, 9,10,11,12,13,14,
193 };
194
195 /* modulo 9 table */
196 static const uint8_t rclb_table[32] = {
197 0, 1, 2, 3, 4, 5, 6, 7,
198 8, 0, 1, 2, 3, 4, 5, 6,
199 7, 8, 0, 1, 2, 3, 4, 5,
200 6, 7, 8, 0, 1, 2, 3, 4,
201 };
202
203 #define floatx80_lg2 make_floatx80( 0x3ffd, 0x9a209a84fbcff799LL )
204 #define floatx80_l2e make_floatx80( 0x3fff, 0xb8aa3b295c17f0bcLL )
205 #define floatx80_l2t make_floatx80( 0x4000, 0xd49a784bcd1b8afeLL )
206
207 /* broken thread support */
208
209 static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
210
211 void helper_lock(void)
212 {
213 spin_lock(&global_cpu_lock);
214 }
215
216 void helper_unlock(void)
217 {
218 spin_unlock(&global_cpu_lock);
219 }
220
221 void helper_write_eflags(target_ulong t0, uint32_t update_mask)
222 {
223 load_eflags(t0, update_mask);
224 }
225
226 target_ulong helper_read_eflags(void)
227 {
228 uint32_t eflags;
229 eflags = helper_cc_compute_all(CC_OP);
230 eflags |= (DF & DF_MASK);
231 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
232 return eflags;
233 }
234
235 /* return non zero if error */
236 static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr,
237 int selector)
238 {
239 SegmentCache *dt;
240 int index;
241 target_ulong ptr;
242
243 if (selector & 0x4)
244 dt = &env->ldt;
245 else
246 dt = &env->gdt;
247 index = selector & ~7;
248 if ((index + 7) > dt->limit)
249 return -1;
250 ptr = dt->base + index;
251 *e1_ptr = ldl_kernel(ptr);
252 *e2_ptr = ldl_kernel(ptr + 4);
253 return 0;
254 }
255
256 static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
257 {
258 unsigned int limit;
259 limit = (e1 & 0xffff) | (e2 & 0x000f0000);
260 if (e2 & DESC_G_MASK)
261 limit = (limit << 12) | 0xfff;
262 return limit;
263 }
264
265 static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2)
266 {
267 return ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
268 }
269
270 static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2)
271 {
272 sc->base = get_seg_base(e1, e2);
273 sc->limit = get_seg_limit(e1, e2);
274 sc->flags = e2;
275 }
276
277 /* init the segment cache in vm86 mode. */
278 static inline void load_seg_vm(int seg, int selector)
279 {
280 selector &= 0xffff;
281 cpu_x86_load_seg_cache(env, seg, selector,
282 (selector << 4), 0xffff, 0);
283 }
284
285 static inline void get_ss_esp_from_tss(uint32_t *ss_ptr,
286 uint32_t *esp_ptr, int dpl)
287 {
288 int type, index, shift;
289
290 #if 0
291 {
292 int i;
293 printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
294 for(i=0;i<env->tr.limit;i++) {
295 printf("%02x ", env->tr.base[i]);
296 if ((i & 7) == 7) printf("\n");
297 }
298 printf("\n");
299 }
300 #endif
301
302 if (!(env->tr.flags & DESC_P_MASK))
303 cpu_abort(env, "invalid tss");
304 type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
305 if ((type & 7) != 1)
306 cpu_abort(env, "invalid tss type");
307 shift = type >> 3;
308 index = (dpl * 4 + 2) << shift;
309 if (index + (4 << shift) - 1 > env->tr.limit)
310 raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
311 if (shift == 0) {
312 *esp_ptr = lduw_kernel(env->tr.base + index);
313 *ss_ptr = lduw_kernel(env->tr.base + index + 2);
314 } else {
315 *esp_ptr = ldl_kernel(env->tr.base + index);
316 *ss_ptr = lduw_kernel(env->tr.base + index + 4);
317 }
318 }
319
320 /* XXX: merge with load_seg() */
321 static void tss_load_seg(int seg_reg, int selector)
322 {
323 uint32_t e1, e2;
324 int rpl, dpl, cpl;
325
326 if ((selector & 0xfffc) != 0) {
327 if (load_segment(&e1, &e2, selector) != 0)
328 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
329 if (!(e2 & DESC_S_MASK))
330 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
331 rpl = selector & 3;
332 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
333 cpl = env->hflags & HF_CPL_MASK;
334 if (seg_reg == R_CS) {
335 if (!(e2 & DESC_CS_MASK))
336 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
337 /* XXX: is it correct ? */
338 if (dpl != rpl)
339 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
340 if ((e2 & DESC_C_MASK) && dpl > rpl)
341 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
342 } else if (seg_reg == R_SS) {
343 /* SS must be writable data */
344 if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
345 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
346 if (dpl != cpl || dpl != rpl)
347 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
348 } else {
349 /* not readable code */
350 if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK))
351 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
352 /* if data or non conforming code, checks the rights */
353 if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) {
354 if (dpl < cpl || dpl < rpl)
355 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
356 }
357 }
358 if (!(e2 & DESC_P_MASK))
359 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
360 cpu_x86_load_seg_cache(env, seg_reg, selector,
361 get_seg_base(e1, e2),
362 get_seg_limit(e1, e2),
363 e2);
364 } else {
365 if (seg_reg == R_SS || seg_reg == R_CS)
366 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
367 }
368 }
369
370 #define SWITCH_TSS_JMP 0
371 #define SWITCH_TSS_IRET 1
372 #define SWITCH_TSS_CALL 2
373
374 /* XXX: restore CPU state in registers (PowerPC case) */
375 static void switch_tss(int tss_selector,
376 uint32_t e1, uint32_t e2, int source,
377 uint32_t next_eip)
378 {
379 int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i;
380 target_ulong tss_base;
381 uint32_t new_regs[8], new_segs[6];
382 uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap;
383 uint32_t old_eflags, eflags_mask;
384 SegmentCache *dt;
385 int index;
386 target_ulong ptr;
387
388 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
389 LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
390
391 /* if task gate, we read the TSS segment and we load it */
392 if (type == 5) {
393 if (!(e2 & DESC_P_MASK))
394 raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
395 tss_selector = e1 >> 16;
396 if (tss_selector & 4)
397 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
398 if (load_segment(&e1, &e2, tss_selector) != 0)
399 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
400 if (e2 & DESC_S_MASK)
401 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
402 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
403 if ((type & 7) != 1)
404 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
405 }
406
407 if (!(e2 & DESC_P_MASK))
408 raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
409
410 if (type & 8)
411 tss_limit_max = 103;
412 else
413 tss_limit_max = 43;
414 tss_limit = get_seg_limit(e1, e2);
415 tss_base = get_seg_base(e1, e2);
416 if ((tss_selector & 4) != 0 ||
417 tss_limit < tss_limit_max)
418 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
419 old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
420 if (old_type & 8)
421 old_tss_limit_max = 103;
422 else
423 old_tss_limit_max = 43;
424
425 /* read all the registers from the new TSS */
426 if (type & 8) {
427 /* 32 bit */
428 new_cr3 = ldl_kernel(tss_base + 0x1c);
429 new_eip = ldl_kernel(tss_base + 0x20);
430 new_eflags = ldl_kernel(tss_base + 0x24);
431 for(i = 0; i < 8; i++)
432 new_regs[i] = ldl_kernel(tss_base + (0x28 + i * 4));
433 for(i = 0; i < 6; i++)
434 new_segs[i] = lduw_kernel(tss_base + (0x48 + i * 4));
435 new_ldt = lduw_kernel(tss_base + 0x60);
436 new_trap = ldl_kernel(tss_base + 0x64);
437 } else {
438 /* 16 bit */
439 new_cr3 = 0;
440 new_eip = lduw_kernel(tss_base + 0x0e);
441 new_eflags = lduw_kernel(tss_base + 0x10);
442 for(i = 0; i < 8; i++)
443 new_regs[i] = lduw_kernel(tss_base + (0x12 + i * 2)) | 0xffff0000;
444 for(i = 0; i < 4; i++)
445 new_segs[i] = lduw_kernel(tss_base + (0x22 + i * 4));
446 new_ldt = lduw_kernel(tss_base + 0x2a);
447 new_segs[R_FS] = 0;
448 new_segs[R_GS] = 0;
449 new_trap = 0;
450 }
451 /* XXX: avoid a compiler warning, see
452 http://support.amd.com/us/Processor_TechDocs/24593.pdf
453 chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */
454 (void)new_trap;
455
456 /* NOTE: we must avoid memory exceptions during the task switch,
457 so we make dummy accesses before */
458 /* XXX: it can still fail in some cases, so a bigger hack is
459 necessary to valid the TLB after having done the accesses */
460
461 v1 = ldub_kernel(env->tr.base);
462 v2 = ldub_kernel(env->tr.base + old_tss_limit_max);
463 stb_kernel(env->tr.base, v1);
464 stb_kernel(env->tr.base + old_tss_limit_max, v2);
465
466 /* clear busy bit (it is restartable) */
467 if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) {
468 target_ulong ptr;
469 uint32_t e2;
470 ptr = env->gdt.base + (env->tr.selector & ~7);
471 e2 = ldl_kernel(ptr + 4);
472 e2 &= ~DESC_TSS_BUSY_MASK;
473 stl_kernel(ptr + 4, e2);
474 }
475 old_eflags = compute_eflags();
476 if (source == SWITCH_TSS_IRET)
477 old_eflags &= ~NT_MASK;
478
479 /* save the current state in the old TSS */
480 if (type & 8) {
481 /* 32 bit */
482 stl_kernel(env->tr.base + 0x20, next_eip);
483 stl_kernel(env->tr.base + 0x24, old_eflags);
484 stl_kernel(env->tr.base + (0x28 + 0 * 4), EAX);
485 stl_kernel(env->tr.base + (0x28 + 1 * 4), ECX);
486 stl_kernel(env->tr.base + (0x28 + 2 * 4), EDX);
487 stl_kernel(env->tr.base + (0x28 + 3 * 4), EBX);
488 stl_kernel(env->tr.base + (0x28 + 4 * 4), ESP);
489 stl_kernel(env->tr.base + (0x28 + 5 * 4), EBP);
490 stl_kernel(env->tr.base + (0x28 + 6 * 4), ESI);
491 stl_kernel(env->tr.base + (0x28 + 7 * 4), EDI);
492 for(i = 0; i < 6; i++)
493 stw_kernel(env->tr.base + (0x48 + i * 4), env->segs[i].selector);
494 } else {
495 /* 16 bit */
496 stw_kernel(env->tr.base + 0x0e, next_eip);
497 stw_kernel(env->tr.base + 0x10, old_eflags);
498 stw_kernel(env->tr.base + (0x12 + 0 * 2), EAX);
499 stw_kernel(env->tr.base + (0x12 + 1 * 2), ECX);
500 stw_kernel(env->tr.base + (0x12 + 2 * 2), EDX);
501 stw_kernel(env->tr.base + (0x12 + 3 * 2), EBX);
502 stw_kernel(env->tr.base + (0x12 + 4 * 2), ESP);
503 stw_kernel(env->tr.base + (0x12 + 5 * 2), EBP);
504 stw_kernel(env->tr.base + (0x12 + 6 * 2), ESI);
505 stw_kernel(env->tr.base + (0x12 + 7 * 2), EDI);
506 for(i = 0; i < 4; i++)
507 stw_kernel(env->tr.base + (0x22 + i * 4), env->segs[i].selector);
508 }
509
510 /* now if an exception occurs, it will occurs in the next task
511 context */
512
513 if (source == SWITCH_TSS_CALL) {
514 stw_kernel(tss_base, env->tr.selector);
515 new_eflags |= NT_MASK;
516 }
517
518 /* set busy bit */
519 if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) {
520 target_ulong ptr;
521 uint32_t e2;
522 ptr = env->gdt.base + (tss_selector & ~7);
523 e2 = ldl_kernel(ptr + 4);
524 e2 |= DESC_TSS_BUSY_MASK;
525 stl_kernel(ptr + 4, e2);
526 }
527
528 /* set the new CPU state */
529 /* from this point, any exception which occurs can give problems */
530 env->cr[0] |= CR0_TS_MASK;
531 env->hflags |= HF_TS_MASK;
532 env->tr.selector = tss_selector;
533 env->tr.base = tss_base;
534 env->tr.limit = tss_limit;
535 env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK;
536
537 if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) {
538 cpu_x86_update_cr3(env, new_cr3);
539 }
540
541 /* load all registers without an exception, then reload them with
542 possible exception */
543 env->eip = new_eip;
544 eflags_mask = TF_MASK | AC_MASK | ID_MASK |
545 IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK;
546 if (!(type & 8))
547 eflags_mask &= 0xffff;
548 load_eflags(new_eflags, eflags_mask);
549 /* XXX: what to do in 16 bit case ? */
550 EAX = new_regs[0];
551 ECX = new_regs[1];
552 EDX = new_regs[2];
553 EBX = new_regs[3];
554 ESP = new_regs[4];
555 EBP = new_regs[5];
556 ESI = new_regs[6];
557 EDI = new_regs[7];
558 if (new_eflags & VM_MASK) {
559 for(i = 0; i < 6; i++)
560 load_seg_vm(i, new_segs[i]);
561 /* in vm86, CPL is always 3 */
562 cpu_x86_set_cpl(env, 3);
563 } else {
564 /* CPL is set the RPL of CS */
565 cpu_x86_set_cpl(env, new_segs[R_CS] & 3);
566 /* first just selectors as the rest may trigger exceptions */
567 for(i = 0; i < 6; i++)
568 cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0);
569 }
570
571 env->ldt.selector = new_ldt & ~4;
572 env->ldt.base = 0;
573 env->ldt.limit = 0;
574 env->ldt.flags = 0;
575
576 /* load the LDT */
577 if (new_ldt & 4)
578 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
579
580 if ((new_ldt & 0xfffc) != 0) {
581 dt = &env->gdt;
582 index = new_ldt & ~7;
583 if ((index + 7) > dt->limit)
584 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
585 ptr = dt->base + index;
586 e1 = ldl_kernel(ptr);
587 e2 = ldl_kernel(ptr + 4);
588 if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
589 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
590 if (!(e2 & DESC_P_MASK))
591 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
592 load_seg_cache_raw_dt(&env->ldt, e1, e2);
593 }
594
595 /* load the segments */
596 if (!(new_eflags & VM_MASK)) {
597 tss_load_seg(R_CS, new_segs[R_CS]);
598 tss_load_seg(R_SS, new_segs[R_SS]);
599 tss_load_seg(R_ES, new_segs[R_ES]);
600 tss_load_seg(R_DS, new_segs[R_DS]);
601 tss_load_seg(R_FS, new_segs[R_FS]);
602 tss_load_seg(R_GS, new_segs[R_GS]);
603 }
604
605 /* check that EIP is in the CS segment limits */
606 if (new_eip > env->segs[R_CS].limit) {
607 /* XXX: different exception if CALL ? */
608 raise_exception_err(EXCP0D_GPF, 0);
609 }
610
611 #ifndef CONFIG_USER_ONLY
612 /* reset local breakpoints */
613 if (env->dr[7] & 0x55) {
614 for (i = 0; i < 4; i++) {
615 if (hw_breakpoint_enabled(env->dr[7], i) == 0x1)
616 hw_breakpoint_remove(env, i);
617 }
618 env->dr[7] &= ~0x55;
619 }
620 #endif
621 }
622
623 /* check if Port I/O is allowed in TSS */
624 static inline void check_io(int addr, int size)
625 {
626 int io_offset, val, mask;
627
628 /* TSS must be a valid 32 bit one */
629 if (!(env->tr.flags & DESC_P_MASK) ||
630 ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
631 env->tr.limit < 103)
632 goto fail;
633 io_offset = lduw_kernel(env->tr.base + 0x66);
634 io_offset += (addr >> 3);
635 /* Note: the check needs two bytes */
636 if ((io_offset + 1) > env->tr.limit)
637 goto fail;
638 val = lduw_kernel(env->tr.base + io_offset);
639 val >>= (addr & 7);
640 mask = (1 << size) - 1;
641 /* all bits must be zero to allow the I/O */
642 if ((val & mask) != 0) {
643 fail:
644 raise_exception_err(EXCP0D_GPF, 0);
645 }
646 }
647
648 void helper_check_iob(uint32_t t0)
649 {
650 check_io(t0, 1);
651 }
652
653 void helper_check_iow(uint32_t t0)
654 {
655 check_io(t0, 2);
656 }
657
658 void helper_check_iol(uint32_t t0)
659 {
660 check_io(t0, 4);
661 }
662
663 void helper_outb(uint32_t port, uint32_t data)
664 {
665 cpu_outb(port, data & 0xff);
666 }
667
668 target_ulong helper_inb(uint32_t port)
669 {
670 return cpu_inb(port);
671 }
672
673 void helper_outw(uint32_t port, uint32_t data)
674 {
675 cpu_outw(port, data & 0xffff);
676 }
677
678 target_ulong helper_inw(uint32_t port)
679 {
680 return cpu_inw(port);
681 }
682
683 void helper_outl(uint32_t port, uint32_t data)
684 {
685 cpu_outl(port, data);
686 }
687
688 target_ulong helper_inl(uint32_t port)
689 {
690 return cpu_inl(port);
691 }
692
693 static inline unsigned int get_sp_mask(unsigned int e2)
694 {
695 if (e2 & DESC_B_MASK)
696 return 0xffffffff;
697 else
698 return 0xffff;
699 }
700
701 static int exeption_has_error_code(int intno)
702 {
703 switch(intno) {
704 case 8:
705 case 10:
706 case 11:
707 case 12:
708 case 13:
709 case 14:
710 case 17:
711 return 1;
712 }
713 return 0;
714 }
715
716 #ifdef TARGET_X86_64
717 #define SET_ESP(val, sp_mask)\
718 do {\
719 if ((sp_mask) == 0xffff)\
720 ESP = (ESP & ~0xffff) | ((val) & 0xffff);\
721 else if ((sp_mask) == 0xffffffffLL)\
722 ESP = (uint32_t)(val);\
723 else\
724 ESP = (val);\
725 } while (0)
726 #else
727 #define SET_ESP(val, sp_mask) ESP = (ESP & ~(sp_mask)) | ((val) & (sp_mask))
728 #endif
729
730 /* in 64-bit machines, this can overflow. So this segment addition macro
731 * can be used to trim the value to 32-bit whenever needed */
732 #define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask))))
733
734 /* XXX: add a is_user flag to have proper security support */
735 #define PUSHW(ssp, sp, sp_mask, val)\
736 {\
737 sp -= 2;\
738 stw_kernel((ssp) + (sp & (sp_mask)), (val));\
739 }
740
741 #define PUSHL(ssp, sp, sp_mask, val)\
742 {\
743 sp -= 4;\
744 stl_kernel(SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val));\
745 }
746
747 #define POPW(ssp, sp, sp_mask, val)\
748 {\
749 val = lduw_kernel((ssp) + (sp & (sp_mask)));\
750 sp += 2;\
751 }
752
753 #define POPL(ssp, sp, sp_mask, val)\
754 {\
755 val = (uint32_t)ldl_kernel(SEG_ADDL(ssp, sp, sp_mask));\
756 sp += 4;\
757 }
758
759 /* protected mode interrupt */
760 static void do_interrupt_protected(int intno, int is_int, int error_code,
761 unsigned int next_eip, int is_hw)
762 {
763 SegmentCache *dt;
764 target_ulong ptr, ssp;
765 int type, dpl, selector, ss_dpl, cpl;
766 int has_error_code, new_stack, shift;
767 uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
768 uint32_t old_eip, sp_mask;
769
770 has_error_code = 0;
771 if (!is_int && !is_hw)
772 has_error_code = exeption_has_error_code(intno);
773 if (is_int)
774 old_eip = next_eip;
775 else
776 old_eip = env->eip;
777
778 dt = &env->idt;
779 if (intno * 8 + 7 > dt->limit)
780 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
781 ptr = dt->base + intno * 8;
782 e1 = ldl_kernel(ptr);
783 e2 = ldl_kernel(ptr + 4);
784 /* check gate type */
785 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
786 switch(type) {
787 case 5: /* task gate */
788 /* must do that check here to return the correct error code */
789 if (!(e2 & DESC_P_MASK))
790 raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
791 switch_tss(intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip);
792 if (has_error_code) {
793 int type;
794 uint32_t mask;
795 /* push the error code */
796 type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
797 shift = type >> 3;
798 if (env->segs[R_SS].flags & DESC_B_MASK)
799 mask = 0xffffffff;
800 else
801 mask = 0xffff;
802 esp = (ESP - (2 << shift)) & mask;
803 ssp = env->segs[R_SS].base + esp;
804 if (shift)
805 stl_kernel(ssp, error_code);
806 else
807 stw_kernel(ssp, error_code);
808 SET_ESP(esp, mask);
809 }
810 return;
811 case 6: /* 286 interrupt gate */
812 case 7: /* 286 trap gate */
813 case 14: /* 386 interrupt gate */
814 case 15: /* 386 trap gate */
815 break;
816 default:
817 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
818 break;
819 }
820 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
821 cpl = env->hflags & HF_CPL_MASK;
822 /* check privilege if software int */
823 if (is_int && dpl < cpl)
824 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
825 /* check valid bit */
826 if (!(e2 & DESC_P_MASK))
827 raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
828 selector = e1 >> 16;
829 offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
830 if ((selector & 0xfffc) == 0)
831 raise_exception_err(EXCP0D_GPF, 0);
832
833 if (load_segment(&e1, &e2, selector) != 0)
834 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
835 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
836 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
837 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
838 if (dpl > cpl)
839 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
840 if (!(e2 & DESC_P_MASK))
841 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
842 if (!(e2 & DESC_C_MASK) && dpl < cpl) {
843 /* to inner privilege */
844 get_ss_esp_from_tss(&ss, &esp, dpl);
845 if ((ss & 0xfffc) == 0)
846 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
847 if ((ss & 3) != dpl)
848 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
849 if (load_segment(&ss_e1, &ss_e2, ss) != 0)
850 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
851 ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
852 if (ss_dpl != dpl)
853 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
854 if (!(ss_e2 & DESC_S_MASK) ||
855 (ss_e2 & DESC_CS_MASK) ||
856 !(ss_e2 & DESC_W_MASK))
857 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
858 if (!(ss_e2 & DESC_P_MASK))
859 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
860 new_stack = 1;
861 sp_mask = get_sp_mask(ss_e2);
862 ssp = get_seg_base(ss_e1, ss_e2);
863 } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
864 /* to same privilege */
865 if (env->eflags & VM_MASK)
866 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
867 new_stack = 0;
868 sp_mask = get_sp_mask(env->segs[R_SS].flags);
869 ssp = env->segs[R_SS].base;
870 esp = ESP;
871 dpl = cpl;
872 } else {
873 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
874 new_stack = 0; /* avoid warning */
875 sp_mask = 0; /* avoid warning */
876 ssp = 0; /* avoid warning */
877 esp = 0; /* avoid warning */
878 }
879
880 shift = type >> 3;
881
882 #if 0
883 /* XXX: check that enough room is available */
884 push_size = 6 + (new_stack << 2) + (has_error_code << 1);
885 if (env->eflags & VM_MASK)
886 push_size += 8;
887 push_size <<= shift;
888 #endif
889 if (shift == 1) {
890 if (new_stack) {
891 if (env->eflags & VM_MASK) {
892 PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector);
893 PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector);
894 PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector);
895 PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector);
896 }
897 PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector);
898 PUSHL(ssp, esp, sp_mask, ESP);
899 }
900 PUSHL(ssp, esp, sp_mask, compute_eflags());
901 PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector);
902 PUSHL(ssp, esp, sp_mask, old_eip);
903 if (has_error_code) {
904 PUSHL(ssp, esp, sp_mask, error_code);
905 }
906 } else {
907 if (new_stack) {
908 if (env->eflags & VM_MASK) {
909 PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector);
910 PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector);
911 PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector);
912 PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector);
913 }
914 PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector);
915 PUSHW(ssp, esp, sp_mask, ESP);
916 }
917 PUSHW(ssp, esp, sp_mask, compute_eflags());
918 PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector);
919 PUSHW(ssp, esp, sp_mask, old_eip);
920 if (has_error_code) {
921 PUSHW(ssp, esp, sp_mask, error_code);
922 }
923 }
924
925 if (new_stack) {
926 if (env->eflags & VM_MASK) {
927 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0);
928 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0);
929 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0);
930 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0);
931 }
932 ss = (ss & ~3) | dpl;
933 cpu_x86_load_seg_cache(env, R_SS, ss,
934 ssp, get_seg_limit(ss_e1, ss_e2), ss_e2);
935 }
936 SET_ESP(esp, sp_mask);
937
938 selector = (selector & ~3) | dpl;
939 cpu_x86_load_seg_cache(env, R_CS, selector,
940 get_seg_base(e1, e2),
941 get_seg_limit(e1, e2),
942 e2);
943 cpu_x86_set_cpl(env, dpl);
944 env->eip = offset;
945
946 /* interrupt gate clear IF mask */
947 if ((type & 1) == 0) {
948 env->eflags &= ~IF_MASK;
949 }
950 env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
951 }
952
953 #ifdef TARGET_X86_64
954
955 #define PUSHQ(sp, val)\
956 {\
957 sp -= 8;\
958 stq_kernel(sp, (val));\
959 }
960
961 #define POPQ(sp, val)\
962 {\
963 val = ldq_kernel(sp);\
964 sp += 8;\
965 }
966
967 static inline target_ulong get_rsp_from_tss(int level)
968 {
969 int index;
970
971 #if 0
972 printf("TR: base=" TARGET_FMT_lx " limit=%x\n",
973 env->tr.base, env->tr.limit);
974 #endif
975
976 if (!(env->tr.flags & DESC_P_MASK))
977 cpu_abort(env, "invalid tss");
978 index = 8 * level + 4;
979 if ((index + 7) > env->tr.limit)
980 raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
981 return ldq_kernel(env->tr.base + index);
982 }
983
984 /* 64 bit interrupt */
985 static void do_interrupt64(int intno, int is_int, int error_code,
986 target_ulong next_eip, int is_hw)
987 {
988 SegmentCache *dt;
989 target_ulong ptr;
990 int type, dpl, selector, cpl, ist;
991 int has_error_code, new_stack;
992 uint32_t e1, e2, e3, ss;
993 target_ulong old_eip, esp, offset;
994
995 has_error_code = 0;
996 if (!is_int && !is_hw)
997 has_error_code = exeption_has_error_code(intno);
998 if (is_int)
999 old_eip = next_eip;
1000 else
1001 old_eip = env->eip;
1002
1003 dt = &env->idt;
1004 if (intno * 16 + 15 > dt->limit)
1005 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
1006 ptr = dt->base + intno * 16;
1007 e1 = ldl_kernel(ptr);
1008 e2 = ldl_kernel(ptr + 4);
1009 e3 = ldl_kernel(ptr + 8);
1010 /* check gate type */
1011 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
1012 switch(type) {
1013 case 14: /* 386 interrupt gate */
1014 case 15: /* 386 trap gate */
1015 break;
1016 default:
1017 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
1018 break;
1019 }
1020 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
1021 cpl = env->hflags & HF_CPL_MASK;
1022 /* check privilege if software int */
1023 if (is_int && dpl < cpl)
1024 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
1025 /* check valid bit */
1026 if (!(e2 & DESC_P_MASK))
1027 raise_exception_err(EXCP0B_NOSEG, intno * 16 + 2);
1028 selector = e1 >> 16;
1029 offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff);
1030 ist = e2 & 7;
1031 if ((selector & 0xfffc) == 0)
1032 raise_exception_err(EXCP0D_GPF, 0);
1033
1034 if (load_segment(&e1, &e2, selector) != 0)
1035 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1036 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
1037 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1038 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
1039 if (dpl > cpl)
1040 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1041 if (!(e2 & DESC_P_MASK))
1042 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
1043 if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK))
1044 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1045 if ((!(e2 & DESC_C_MASK) && dpl < cpl) || ist != 0) {
1046 /* to inner privilege */
1047 if (ist != 0)
1048 esp = get_rsp_from_tss(ist + 3);
1049 else
1050 esp = get_rsp_from_tss(dpl);
1051 esp &= ~0xfLL; /* align stack */
1052 ss = 0;
1053 new_stack = 1;
1054 } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
1055 /* to same privilege */
1056 if (env->eflags & VM_MASK)
1057 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1058 new_stack = 0;
1059 if (ist != 0)
1060 esp = get_rsp_from_tss(ist + 3);
1061 else
1062 esp = ESP;
1063 esp &= ~0xfLL; /* align stack */
1064 dpl = cpl;
1065 } else {
1066 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
1067 new_stack = 0; /* avoid warning */
1068 esp = 0; /* avoid warning */
1069 }
1070
1071 PUSHQ(esp, env->segs[R_SS].selector);
1072 PUSHQ(esp, ESP);
1073 PUSHQ(esp, compute_eflags());
1074 PUSHQ(esp, env->segs[R_CS].selector);
1075 PUSHQ(esp, old_eip);
1076 if (has_error_code) {
1077 PUSHQ(esp, error_code);
1078 }
1079
1080 if (new_stack) {
1081 ss = 0 | dpl;
1082 cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0);
1083 }
1084 ESP = esp;
1085
1086 selector = (selector & ~3) | dpl;
1087 cpu_x86_load_seg_cache(env, R_CS, selector,
1088 get_seg_base(e1, e2),
1089 get_seg_limit(e1, e2),
1090 e2);
1091 cpu_x86_set_cpl(env, dpl);
1092 env->eip = offset;
1093
1094 /* interrupt gate clear IF mask */
1095 if ((type & 1) == 0) {
1096 env->eflags &= ~IF_MASK;
1097 }
1098 env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
1099 }
1100 #endif
1101
1102 #ifdef TARGET_X86_64
1103 #if defined(CONFIG_USER_ONLY)
1104 void helper_syscall(int next_eip_addend)
1105 {
1106 env->exception_index = EXCP_SYSCALL;
1107 env->exception_next_eip = env->eip + next_eip_addend;
1108 cpu_loop_exit(env);
1109 }
1110 #else
1111 void helper_syscall(int next_eip_addend)
1112 {
1113 int selector;
1114
1115 if (!(env->efer & MSR_EFER_SCE)) {
1116 raise_exception_err(EXCP06_ILLOP, 0);
1117 }
1118 selector = (env->star >> 32) & 0xffff;
1119 if (env->hflags & HF_LMA_MASK) {
1120 int code64;
1121
1122 ECX = env->eip + next_eip_addend;
1123 env->regs[11] = compute_eflags();
1124
1125 code64 = env->hflags & HF_CS64_MASK;
1126
1127 cpu_x86_set_cpl(env, 0);
1128 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1129 0, 0xffffffff,
1130 DESC_G_MASK | DESC_P_MASK |
1131 DESC_S_MASK |
1132 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
1133 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1134 0, 0xffffffff,
1135 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1136 DESC_S_MASK |
1137 DESC_W_MASK | DESC_A_MASK);
1138 env->eflags &= ~env->fmask;
1139 load_eflags(env->eflags, 0);
1140 if (code64)
1141 env->eip = env->lstar;
1142 else
1143 env->eip = env->cstar;
1144 } else {
1145 ECX = (uint32_t)(env->eip + next_eip_addend);
1146
1147 cpu_x86_set_cpl(env, 0);
1148 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1149 0, 0xffffffff,
1150 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1151 DESC_S_MASK |
1152 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1153 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1154 0, 0xffffffff,
1155 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1156 DESC_S_MASK |
1157 DESC_W_MASK | DESC_A_MASK);
1158 env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
1159 env->eip = (uint32_t)env->star;
1160 }
1161 }
1162 #endif
1163 #endif
1164
1165 #ifdef TARGET_X86_64
1166 void helper_sysret(int dflag)
1167 {
1168 int cpl, selector;
1169
1170 if (!(env->efer & MSR_EFER_SCE)) {
1171 raise_exception_err(EXCP06_ILLOP, 0);
1172 }
1173 cpl = env->hflags & HF_CPL_MASK;
1174 if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) {
1175 raise_exception_err(EXCP0D_GPF, 0);
1176 }
1177 selector = (env->star >> 48) & 0xffff;
1178 if (env->hflags & HF_LMA_MASK) {
1179 if (dflag == 2) {
1180 cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
1181 0, 0xffffffff,
1182 DESC_G_MASK | DESC_P_MASK |
1183 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1184 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
1185 DESC_L_MASK);
1186 env->eip = ECX;
1187 } else {
1188 cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1189 0, 0xffffffff,
1190 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1191 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1192 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1193 env->eip = (uint32_t)ECX;
1194 }
1195 cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1196 0, 0xffffffff,
1197 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1198 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1199 DESC_W_MASK | DESC_A_MASK);
1200 load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK |
1201 IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK);
1202 cpu_x86_set_cpl(env, 3);
1203 } else {
1204 cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1205 0, 0xffffffff,
1206 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1207 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1208 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1209 env->eip = (uint32_t)ECX;
1210 cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1211 0, 0xffffffff,
1212 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1213 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1214 DESC_W_MASK | DESC_A_MASK);
1215 env->eflags |= IF_MASK;
1216 cpu_x86_set_cpl(env, 3);
1217 }
1218 }
1219 #endif
1220
1221 /* real mode interrupt */
1222 static void do_interrupt_real(int intno, int is_int, int error_code,
1223 unsigned int next_eip)
1224 {
1225 SegmentCache *dt;
1226 target_ulong ptr, ssp;
1227 int selector;
1228 uint32_t offset, esp;
1229 uint32_t old_cs, old_eip;
1230
1231 /* real mode (simpler !) */
1232 dt = &env->idt;
1233 if (intno * 4 + 3 > dt->limit)
1234 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
1235 ptr = dt->base + intno * 4;
1236 offset = lduw_kernel(ptr);
1237 selector = lduw_kernel(ptr + 2);
1238 esp = ESP;
1239 ssp = env->segs[R_SS].base;
1240 if (is_int)
1241 old_eip = next_eip;
1242 else
1243 old_eip = env->eip;
1244 old_cs = env->segs[R_CS].selector;
1245 /* XXX: use SS segment size ? */
1246 PUSHW(ssp, esp, 0xffff, compute_eflags());
1247 PUSHW(ssp, esp, 0xffff, old_cs);
1248 PUSHW(ssp, esp, 0xffff, old_eip);
1249
1250 /* update processor state */
1251 ESP = (ESP & ~0xffff) | (esp & 0xffff);
1252 env->eip = offset;
1253 env->segs[R_CS].selector = selector;
1254 env->segs[R_CS].base = (selector << 4);
1255 env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
1256 }
1257
1258 #if defined(CONFIG_USER_ONLY)
1259 /* fake user mode interrupt */
1260 static void do_interrupt_user(int intno, int is_int, int error_code,
1261 target_ulong next_eip)
1262 {
1263 SegmentCache *dt;
1264 target_ulong ptr;
1265 int dpl, cpl, shift;
1266 uint32_t e2;
1267
1268 dt = &env->idt;
1269 if (env->hflags & HF_LMA_MASK) {
1270 shift = 4;
1271 } else {
1272 shift = 3;
1273 }
1274 ptr = dt->base + (intno << shift);
1275 e2 = ldl_kernel(ptr + 4);
1276
1277 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
1278 cpl = env->hflags & HF_CPL_MASK;
1279 /* check privilege if software int */
1280 if (is_int && dpl < cpl)
1281 raise_exception_err(EXCP0D_GPF, (intno << shift) + 2);
1282
1283 /* Since we emulate only user space, we cannot do more than
1284 exiting the emulation with the suitable exception and error
1285 code */
1286 if (is_int)
1287 EIP = next_eip;
1288 }
1289
1290 #else
1291
1292 static void handle_even_inj(int intno, int is_int, int error_code,
1293 int is_hw, int rm)
1294 {
1295 uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1296 if (!(event_inj & SVM_EVTINJ_VALID)) {
1297 int type;
1298 if (is_int)
1299 type = SVM_EVTINJ_TYPE_SOFT;
1300 else
1301 type = SVM_EVTINJ_TYPE_EXEPT;
1302 event_inj = intno | type | SVM_EVTINJ_VALID;
1303 if (!rm && exeption_has_error_code(intno)) {
1304 event_inj |= SVM_EVTINJ_VALID_ERR;
1305 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code);
1306 }
1307 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj);
1308 }
1309 }
1310 #endif
1311
1312 /*
1313 * Begin execution of an interruption. is_int is TRUE if coming from
1314 * the int instruction. next_eip is the EIP value AFTER the interrupt
1315 * instruction. It is only relevant if is_int is TRUE.
1316 */
1317 static void do_interrupt_all(int intno, int is_int, int error_code,
1318 target_ulong next_eip, int is_hw)
1319 {
1320 if (qemu_loglevel_mask(CPU_LOG_INT)) {
1321 if ((env->cr[0] & CR0_PE_MASK)) {
1322 static int count;
1323 qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
1324 count, intno, error_code, is_int,
1325 env->hflags & HF_CPL_MASK,
1326 env->segs[R_CS].selector, EIP,
1327 (int)env->segs[R_CS].base + EIP,
1328 env->segs[R_SS].selector, ESP);
1329 if (intno == 0x0e) {
1330 qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
1331 } else {
1332 qemu_log(" EAX=" TARGET_FMT_lx, EAX);
1333 }
1334 qemu_log("\n");
1335 log_cpu_state(env, X86_DUMP_CCOP);
1336 #if 0
1337 {
1338 int i;
1339 target_ulong ptr;
1340 qemu_log(" code=");
1341 ptr = env->segs[R_CS].base + env->eip;
1342 for(i = 0; i < 16; i++) {
1343 qemu_log(" %02x", ldub(ptr + i));
1344 }
1345 qemu_log("\n");
1346 }
1347 #endif
1348 count++;
1349 }
1350 }
1351 if (env->cr[0] & CR0_PE_MASK) {
1352 #if !defined(CONFIG_USER_ONLY)
1353 if (env->hflags & HF_SVMI_MASK)
1354 handle_even_inj(intno, is_int, error_code, is_hw, 0);
1355 #endif
1356 #ifdef TARGET_X86_64
1357 if (env->hflags & HF_LMA_MASK) {
1358 do_interrupt64(intno, is_int, error_code, next_eip, is_hw);
1359 } else
1360 #endif
1361 {
1362 do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
1363 }
1364 } else {
1365 #if !defined(CONFIG_USER_ONLY)
1366 if (env->hflags & HF_SVMI_MASK)
1367 handle_even_inj(intno, is_int, error_code, is_hw, 1);
1368 #endif
1369 do_interrupt_real(intno, is_int, error_code, next_eip);
1370 }
1371
1372 #if !defined(CONFIG_USER_ONLY)
1373 if (env->hflags & HF_SVMI_MASK) {
1374 uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1375 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
1376 }
1377 #endif
1378 }
1379
1380 void do_interrupt(CPUState *env1)
1381 {
1382 CPUState *saved_env;
1383
1384 saved_env = env;
1385 env = env1;
1386 #if defined(CONFIG_USER_ONLY)
1387 /* if user mode only, we simulate a fake exception
1388 which will be handled outside the cpu execution
1389 loop */
1390 do_interrupt_user(env->exception_index,
1391 env->exception_is_int,
1392 env->error_code,
1393 env->exception_next_eip);
1394 /* successfully delivered */
1395 env->old_exception = -1;
1396 #else
1397 /* simulate a real cpu exception. On i386, it can
1398 trigger new exceptions, but we do not handle
1399 double or triple faults yet. */
1400 do_interrupt_all(env->exception_index,
1401 env->exception_is_int,
1402 env->error_code,
1403 env->exception_next_eip, 0);
1404 /* successfully delivered */
1405 env->old_exception = -1;
1406 #endif
1407 env = saved_env;
1408 }
1409
1410 void do_interrupt_x86_hardirq(CPUState *env1, int intno, int is_hw)
1411 {
1412 CPUState *saved_env;
1413
1414 saved_env = env;
1415 env = env1;
1416 do_interrupt_all(intno, 0, 0, 0, is_hw);
1417 env = saved_env;
1418 }
1419
1420 /* This should come from sysemu.h - if we could include it here... */
1421 void qemu_system_reset_request(void);
1422
1423 /*
1424 * Check nested exceptions and change to double or triple fault if
1425 * needed. It should only be called, if this is not an interrupt.
1426 * Returns the new exception number.
1427 */
1428 static int check_exception(int intno, int *error_code)
1429 {
1430 int first_contributory = env->old_exception == 0 ||
1431 (env->old_exception >= 10 &&
1432 env->old_exception <= 13);
1433 int second_contributory = intno == 0 ||
1434 (intno >= 10 && intno <= 13);
1435
1436 qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
1437 env->old_exception, intno);
1438
1439 #if !defined(CONFIG_USER_ONLY)
1440 if (env->old_exception == EXCP08_DBLE) {
1441 if (env->hflags & HF_SVMI_MASK)
1442 helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */
1443
1444 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1445
1446 qemu_system_reset_request();
1447 return EXCP_HLT;
1448 }
1449 #endif
1450
1451 if ((first_contributory && second_contributory)
1452 || (env->old_exception == EXCP0E_PAGE &&
1453 (second_contributory || (intno == EXCP0E_PAGE)))) {
1454 intno = EXCP08_DBLE;
1455 *error_code = 0;
1456 }
1457
1458 if (second_contributory || (intno == EXCP0E_PAGE) ||
1459 (intno == EXCP08_DBLE))
1460 env->old_exception = intno;
1461
1462 return intno;
1463 }
1464
1465 /*
1466 * Signal an interruption. It is executed in the main CPU loop.
1467 * is_int is TRUE if coming from the int instruction. next_eip is the
1468 * EIP value AFTER the interrupt instruction. It is only relevant if
1469 * is_int is TRUE.
1470 */
1471 static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code,
1472 int next_eip_addend)
1473 {
1474 if (!is_int) {
1475 helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code);
1476 intno = check_exception(intno, &error_code);
1477 } else {
1478 helper_svm_check_intercept_param(SVM_EXIT_SWINT, 0);
1479 }
1480
1481 env->exception_index = intno;
1482 env->error_code = error_code;
1483 env->exception_is_int = is_int;
1484 env->exception_next_eip = env->eip + next_eip_addend;
1485 cpu_loop_exit(env);
1486 }
1487
1488 /* shortcuts to generate exceptions */
1489
1490 static void QEMU_NORETURN raise_exception_err(int exception_index,
1491 int error_code)
1492 {
1493 raise_interrupt(exception_index, 0, error_code, 0);
1494 }
1495
1496 void raise_exception_err_env(CPUState *nenv, int exception_index,
1497 int error_code)
1498 {
1499 env = nenv;
1500 raise_interrupt(exception_index, 0, error_code, 0);
1501 }
1502
1503 static void QEMU_NORETURN raise_exception(int exception_index)
1504 {
1505 raise_interrupt(exception_index, 0, 0, 0);
1506 }
1507
1508 void raise_exception_env(int exception_index, CPUState *nenv)
1509 {
1510 env = nenv;
1511 raise_exception(exception_index);
1512 }
1513 /* SMM support */
1514
1515 #if defined(CONFIG_USER_ONLY)
1516
1517 void do_smm_enter(CPUState *env1)
1518 {
1519 }
1520
1521 void helper_rsm(void)
1522 {
1523 }
1524
1525 #else
1526
1527 #ifdef TARGET_X86_64
1528 #define SMM_REVISION_ID 0x00020064
1529 #else
1530 #define SMM_REVISION_ID 0x00020000
1531 #endif
1532
1533 void do_smm_enter(CPUState *env1)
1534 {
1535 target_ulong sm_state;
1536 SegmentCache *dt;
1537 int i, offset;
1538 CPUState *saved_env;
1539
1540 saved_env = env;
1541 env = env1;
1542
1543 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
1544 log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1545
1546 env->hflags |= HF_SMM_MASK;
1547 cpu_smm_update(env);
1548
1549 sm_state = env->smbase + 0x8000;
1550
1551 #ifdef TARGET_X86_64
1552 for(i = 0; i < 6; i++) {
1553 dt = &env->segs[i];
1554 offset = 0x7e00 + i * 16;
1555 stw_phys(sm_state + offset, dt->selector);
1556 stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
1557 stl_phys(sm_state + offset + 4, dt->limit);
1558 stq_phys(sm_state + offset + 8, dt->base);
1559 }
1560
1561 stq_phys(sm_state + 0x7e68, env->gdt.base);
1562 stl_phys(sm_state + 0x7e64, env->gdt.limit);
1563
1564 stw_phys(sm_state + 0x7e70, env->ldt.selector);
1565 stq_phys(sm_state + 0x7e78, env->ldt.base);
1566 stl_phys(sm_state + 0x7e74, env->ldt.limit);
1567 stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
1568
1569 stq_phys(sm_state + 0x7e88, env->idt.base);
1570 stl_phys(sm_state + 0x7e84, env->idt.limit);
1571
1572 stw_phys(sm_state + 0x7e90, env->tr.selector);
1573 stq_phys(sm_state + 0x7e98, env->tr.base);
1574 stl_phys(sm_state + 0x7e94, env->tr.limit);
1575 stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
1576
1577 stq_phys(sm_state + 0x7ed0, env->efer);
1578
1579 stq_phys(sm_state + 0x7ff8, EAX);
1580 stq_phys(sm_state + 0x7ff0, ECX);
1581 stq_phys(sm_state + 0x7fe8, EDX);
1582 stq_phys(sm_state + 0x7fe0, EBX);
1583 stq_phys(sm_state + 0x7fd8, ESP);
1584 stq_phys(sm_state + 0x7fd0, EBP);
1585 stq_phys(sm_state + 0x7fc8, ESI);
1586 stq_phys(sm_state + 0x7fc0, EDI);
1587 for(i = 8; i < 16; i++)
1588 stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]);
1589 stq_phys(sm_state + 0x7f78, env->eip);
1590 stl_phys(sm_state + 0x7f70, compute_eflags());
1591 stl_phys(sm_state + 0x7f68, env->dr[6]);
1592 stl_phys(sm_state + 0x7f60, env->dr[7]);
1593
1594 stl_phys(sm_state + 0x7f48, env->cr[4]);
1595 stl_phys(sm_state + 0x7f50, env->cr[3]);
1596 stl_phys(sm_state + 0x7f58, env->cr[0]);
1597
1598 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1599 stl_phys(sm_state + 0x7f00, env->smbase);
1600 #else
1601 stl_phys(sm_state + 0x7ffc, env->cr[0]);
1602 stl_phys(sm_state + 0x7ff8, env->cr[3]);
1603 stl_phys(sm_state + 0x7ff4, compute_eflags());
1604 stl_phys(sm_state + 0x7ff0, env->eip);
1605 stl_phys(sm_state + 0x7fec, EDI);
1606 stl_phys(sm_state + 0x7fe8, ESI);
1607 stl_phys(sm_state + 0x7fe4, EBP);
1608 stl_phys(sm_state + 0x7fe0, ESP);
1609 stl_phys(sm_state + 0x7fdc, EBX);
1610 stl_phys(sm_state + 0x7fd8, EDX);
1611 stl_phys(sm_state + 0x7fd4, ECX);
1612 stl_phys(sm_state + 0x7fd0, EAX);
1613 stl_phys(sm_state + 0x7fcc, env->dr[6]);
1614 stl_phys(sm_state + 0x7fc8, env->dr[7]);
1615
1616 stl_phys(sm_state + 0x7fc4, env->tr.selector);
1617 stl_phys(sm_state + 0x7f64, env->tr.base);
1618 stl_phys(sm_state + 0x7f60, env->tr.limit);
1619 stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
1620
1621 stl_phys(sm_state + 0x7fc0, env->ldt.selector);
1622 stl_phys(sm_state + 0x7f80, env->ldt.base);
1623 stl_phys(sm_state + 0x7f7c, env->ldt.limit);
1624 stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
1625
1626 stl_phys(sm_state + 0x7f74, env->gdt.base);
1627 stl_phys(sm_state + 0x7f70, env->gdt.limit);
1628
1629 stl_phys(sm_state + 0x7f58, env->idt.base);
1630 stl_phys(sm_state + 0x7f54, env->idt.limit);
1631
1632 for(i = 0; i < 6; i++) {
1633 dt = &env->segs[i];
1634 if (i < 3)
1635 offset = 0x7f84 + i * 12;
1636 else
1637 offset = 0x7f2c + (i - 3) * 12;
1638 stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector);
1639 stl_phys(sm_state + offset + 8, dt->base);
1640 stl_phys(sm_state + offset + 4, dt->limit);
1641 stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff);
1642 }
1643 stl_phys(sm_state + 0x7f14, env->cr[4]);
1644
1645 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1646 stl_phys(sm_state + 0x7ef8, env->smbase);
1647 #endif
1648 /* init SMM cpu state */
1649
1650 #ifdef TARGET_X86_64
1651 cpu_load_efer(env, 0);
1652 #endif
1653 load_eflags(0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1654 env->eip = 0x00008000;
1655 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
1656 0xffffffff, 0);
1657 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
1658 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
1659 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
1660 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
1661 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
1662
1663 cpu_x86_update_cr0(env,
1664 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK));
1665 cpu_x86_update_cr4(env, 0);
1666 env->dr[7] = 0x00000400;
1667 CC_OP = CC_OP_EFLAGS;
1668 env = saved_env;
1669 }
1670
1671 void helper_rsm(void)
1672 {
1673 target_ulong sm_state;
1674 int i, offset;
1675 uint32_t val;
1676
1677 sm_state = env->smbase + 0x8000;
1678 #ifdef TARGET_X86_64
1679 cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0));
1680
1681 for(i = 0; i < 6; i++) {
1682 offset = 0x7e00 + i * 16;
1683 cpu_x86_load_seg_cache(env, i,
1684 lduw_phys(sm_state + offset),
1685 ldq_phys(sm_state + offset + 8),
1686 ldl_phys(sm_state + offset + 4),
1687 (lduw_phys(sm_state + offset + 2) & 0xf0ff) << 8);
1688 }
1689
1690 env->gdt.base = ldq_phys(sm_state + 0x7e68);
1691 env->gdt.limit = ldl_phys(sm_state + 0x7e64);
1692
1693 env->ldt.selector = lduw_phys(sm_state + 0x7e70);
1694 env->ldt.base = ldq_phys(sm_state + 0x7e78);
1695 env->ldt.limit = ldl_phys(sm_state + 0x7e74);
1696 env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8;
1697
1698 env->idt.base = ldq_phys(sm_state + 0x7e88);
1699 env->idt.limit = ldl_phys(sm_state + 0x7e84);
1700
1701 env->tr.selector = lduw_phys(sm_state + 0x7e90);
1702 env->tr.base = ldq_phys(sm_state + 0x7e98);
1703 env->tr.limit = ldl_phys(sm_state + 0x7e94);
1704 env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8;
1705
1706 EAX = ldq_phys(sm_state + 0x7ff8);
1707 ECX = ldq_phys(sm_state + 0x7ff0);
1708 EDX = ldq_phys(sm_state + 0x7fe8);
1709 EBX = ldq_phys(sm_state + 0x7fe0);
1710 ESP = ldq_phys(sm_state + 0x7fd8);
1711 EBP = ldq_phys(sm_state + 0x7fd0);
1712 ESI = ldq_phys(sm_state + 0x7fc8);
1713 EDI = ldq_phys(sm_state + 0x7fc0);
1714 for(i = 8; i < 16; i++)
1715 env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8);
1716 env->eip = ldq_phys(sm_state + 0x7f78);
1717 load_eflags(ldl_phys(sm_state + 0x7f70),
1718 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1719 env->dr[6] = ldl_phys(sm_state + 0x7f68);
1720 env->dr[7] = ldl_phys(sm_state + 0x7f60);
1721
1722 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48));
1723 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50));
1724 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58));
1725
1726 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1727 if (val & 0x20000) {
1728 env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff;
1729 }
1730 #else
1731 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc));
1732 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8));
1733 load_eflags(ldl_phys(sm_state + 0x7ff4),
1734 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1735 env->eip = ldl_phys(sm_state + 0x7ff0);
1736 EDI = ldl_phys(sm_state + 0x7fec);
1737 ESI = ldl_phys(sm_state + 0x7fe8);
1738 EBP = ldl_phys(sm_state + 0x7fe4);
1739 ESP = ldl_phys(sm_state + 0x7fe0);
1740 EBX = ldl_phys(sm_state + 0x7fdc);
1741 EDX = ldl_phys(sm_state + 0x7fd8);
1742 ECX = ldl_phys(sm_state + 0x7fd4);
1743 EAX = ldl_phys(sm_state + 0x7fd0);
1744 env->dr[6] = ldl_phys(sm_state + 0x7fcc);
1745 env->dr[7] = ldl_phys(sm_state + 0x7fc8);
1746
1747 env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff;
1748 env->tr.base = ldl_phys(sm_state + 0x7f64);
1749 env->tr.limit = ldl_phys(sm_state + 0x7f60);
1750 env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8;
1751
1752 env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff;
1753 env->ldt.base = ldl_phys(sm_state + 0x7f80);
1754 env->ldt.limit = ldl_phys(sm_state + 0x7f7c);
1755 env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8;
1756
1757 env->gdt.base = ldl_phys(sm_state + 0x7f74);
1758 env->gdt.limit = ldl_phys(sm_state + 0x7f70);
1759
1760 env->idt.base = ldl_phys(sm_state + 0x7f58);
1761 env->idt.limit = ldl_phys(sm_state + 0x7f54);
1762
1763 for(i = 0; i < 6; i++) {
1764 if (i < 3)
1765 offset = 0x7f84 + i * 12;
1766 else
1767 offset = 0x7f2c + (i - 3) * 12;
1768 cpu_x86_load_seg_cache(env, i,
1769 ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff,
1770 ldl_phys(sm_state + offset + 8),
1771 ldl_phys(sm_state + offset + 4),
1772 (ldl_phys(sm_state + offset) & 0xf0ff) << 8);
1773 }
1774 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14));
1775
1776 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1777 if (val & 0x20000) {
1778 env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff;
1779 }
1780 #endif
1781 CC_OP = CC_OP_EFLAGS;
1782 env->hflags &= ~HF_SMM_MASK;
1783 cpu_smm_update(env);
1784
1785 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
1786 log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1787 }
1788
1789 #endif /* !CONFIG_USER_ONLY */
1790
1791
1792 /* division, flags are undefined */
1793
1794 void helper_divb_AL(target_ulong t0)
1795 {
1796 unsigned int num, den, q, r;
1797
1798 num = (EAX & 0xffff);
1799 den = (t0 & 0xff);
1800 if (den == 0) {
1801 raise_exception(EXCP00_DIVZ);
1802 }
1803 q = (num / den);
1804 if (q > 0xff)
1805 raise_exception(EXCP00_DIVZ);
1806 q &= 0xff;
1807 r = (num % den) & 0xff;
1808 EAX = (EAX & ~0xffff) | (r << 8) | q;
1809 }
1810
1811 void helper_idivb_AL(target_ulong t0)
1812 {
1813 int num, den, q, r;
1814
1815 num = (int16_t)EAX;
1816 den = (int8_t)t0;
1817 if (den == 0) {
1818 raise_exception(EXCP00_DIVZ);
1819 }
1820 q = (num / den);
1821 if (q != (int8_t)q)
1822 raise_exception(EXCP00_DIVZ);
1823 q &= 0xff;
1824 r = (num % den) & 0xff;
1825 EAX = (EAX & ~0xffff) | (r << 8) | q;
1826 }
1827
1828 void helper_divw_AX(target_ulong t0)
1829 {
1830 unsigned int num, den, q, r;
1831
1832 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1833 den = (t0 & 0xffff);
1834 if (den == 0) {
1835 raise_exception(EXCP00_DIVZ);
1836 }
1837 q = (num / den);
1838 if (q > 0xffff)
1839 raise_exception(EXCP00_DIVZ);
1840 q &= 0xffff;
1841 r = (num % den) & 0xffff;
1842 EAX = (EAX & ~0xffff) | q;
1843 EDX = (EDX & ~0xffff) | r;
1844 }
1845
1846 void helper_idivw_AX(target_ulong t0)
1847 {
1848 int num, den, q, r;
1849
1850 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1851 den = (int16_t)t0;
1852 if (den == 0) {
1853 raise_exception(EXCP00_DIVZ);
1854 }
1855 q = (num / den);
1856 if (q != (int16_t)q)
1857 raise_exception(EXCP00_DIVZ);
1858 q &= 0xffff;
1859 r = (num % den) & 0xffff;
1860 EAX = (EAX & ~0xffff) | q;
1861 EDX = (EDX & ~0xffff) | r;
1862 }
1863
1864 void helper_divl_EAX(target_ulong t0)
1865 {
1866 unsigned int den, r;
1867 uint64_t num, q;
1868
1869 num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1870 den = t0;
1871 if (den == 0) {
1872 raise_exception(EXCP00_DIVZ);
1873 }
1874 q = (num / den);
1875 r = (num % den);
1876 if (q > 0xffffffff)
1877 raise_exception(EXCP00_DIVZ);
1878 EAX = (uint32_t)q;
1879 EDX = (uint32_t)r;
1880 }
1881
1882 void helper_idivl_EAX(target_ulong t0)
1883 {
1884 int den, r;
1885 int64_t num, q;
1886
1887 num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1888 den = t0;
1889 if (den == 0) {
1890 raise_exception(EXCP00_DIVZ);
1891 }
1892 q = (num / den);
1893 r = (num % den);
1894 if (q != (int32_t)q)
1895 raise_exception(EXCP00_DIVZ);
1896 EAX = (uint32_t)q;
1897 EDX = (uint32_t)r;
1898 }
1899
1900 /* bcd */
1901
1902 /* XXX: exception */
1903 void helper_aam(int base)
1904 {
1905 int al, ah;
1906 al = EAX & 0xff;
1907 ah = al / base;
1908 al = al % base;
1909 EAX = (EAX & ~0xffff) | al | (ah << 8);
1910 CC_DST = al;
1911 }
1912
1913 void helper_aad(int base)
1914 {
1915 int al, ah;
1916 al = EAX & 0xff;
1917 ah = (EAX >> 8) & 0xff;
1918 al = ((ah * base) + al) & 0xff;
1919 EAX = (EAX & ~0xffff) | al;
1920 CC_DST = al;
1921 }
1922
1923 void helper_aaa(void)
1924 {
1925 int icarry;
1926 int al, ah, af;
1927 int eflags;
1928
1929 eflags = helper_cc_compute_all(CC_OP);
1930 af = eflags & CC_A;
1931 al = EAX & 0xff;
1932 ah = (EAX >> 8) & 0xff;
1933
1934 icarry = (al > 0xf9);
1935 if (((al & 0x0f) > 9 ) || af) {
1936 al = (al + 6) & 0x0f;
1937 ah = (ah + 1 + icarry) & 0xff;
1938 eflags |= CC_C | CC_A;
1939 } else {
1940 eflags &= ~(CC_C | CC_A);
1941 al &= 0x0f;
1942 }
1943 EAX = (EAX & ~0xffff) | al | (ah << 8);
1944 CC_SRC = eflags;
1945 }
1946
1947 void helper_aas(void)
1948 {
1949 int icarry;
1950 int al, ah, af;
1951 int eflags;
1952
1953 eflags = helper_cc_compute_all(CC_OP);
1954 af = eflags & CC_A;
1955 al = EAX & 0xff;
1956 ah = (EAX >> 8) & 0xff;
1957
1958 icarry = (al < 6);
1959 if (((al & 0x0f) > 9 ) || af) {
1960 al = (al - 6) & 0x0f;
1961 ah = (ah - 1 - icarry) & 0xff;
1962 eflags |= CC_C | CC_A;
1963 } else {
1964 eflags &= ~(CC_C | CC_A);
1965 al &= 0x0f;
1966 }
1967 EAX = (EAX & ~0xffff) | al | (ah << 8);
1968 CC_SRC = eflags;
1969 }
1970
1971 void helper_daa(void)
1972 {
1973 int old_al, al, af, cf;
1974 int eflags;
1975
1976 eflags = helper_cc_compute_all(CC_OP);
1977 cf = eflags & CC_C;
1978 af = eflags & CC_A;
1979 old_al = al = EAX & 0xff;
1980
1981 eflags = 0;
1982 if (((al & 0x0f) > 9 ) || af) {
1983 al = (al + 6) & 0xff;
1984 eflags |= CC_A;
1985 }
1986 if ((old_al > 0x99) || cf) {
1987 al = (al + 0x60) & 0xff;
1988 eflags |= CC_C;
1989 }
1990 EAX = (EAX & ~0xff) | al;
1991 /* well, speed is not an issue here, so we compute the flags by hand */
1992 eflags |= (al == 0) << 6; /* zf */
1993 eflags |= parity_table[al]; /* pf */
1994 eflags |= (al & 0x80); /* sf */
1995 CC_SRC = eflags;
1996 }
1997
1998 void helper_das(void)
1999 {
2000 int al, al1, af, cf;
2001 int eflags;
2002
2003 eflags = helper_cc_compute_all(CC_OP);
2004 cf = eflags & CC_C;
2005 af = eflags & CC_A;
2006 al = EAX & 0xff;
2007
2008 eflags = 0;
2009 al1 = al;
2010 if (((al & 0x0f) > 9 ) || af) {
2011 eflags |= CC_A;
2012 if (al < 6 || cf)
2013 eflags |= CC_C;
2014 al = (al - 6) & 0xff;
2015 }
2016 if ((al1 > 0x99) || cf) {
2017 al = (al - 0x60) & 0xff;
2018 eflags |= CC_C;
2019 }
2020 EAX = (EAX & ~0xff) | al;
2021 /* well, speed is not an issue here, so we compute the flags by hand */
2022 eflags |= (al == 0) << 6; /* zf */
2023 eflags |= parity_table[al]; /* pf */
2024 eflags |= (al & 0x80); /* sf */
2025 CC_SRC = eflags;
2026 }
2027
2028 void helper_into(int next_eip_addend)
2029 {
2030 int eflags;
2031 eflags = helper_cc_compute_all(CC_OP);
2032 if (eflags & CC_O) {
2033 raise_interrupt(EXCP04_INTO, 1, 0, next_eip_addend);
2034 }
2035 }
2036
2037 void helper_cmpxchg8b(target_ulong a0)
2038 {
2039 uint64_t d;
2040 int eflags;
2041
2042 eflags = helper_cc_compute_all(CC_OP);
2043 d = ldq(a0);
2044 if (d == (((uint64_t)EDX << 32) | (uint32_t)EAX)) {
2045 stq(a0, ((uint64_t)ECX << 32) | (uint32_t)EBX);
2046 eflags |= CC_Z;
2047 } else {
2048 /* always do the store */
2049 stq(a0, d);
2050 EDX = (uint32_t)(d >> 32);
2051 EAX = (uint32_t)d;
2052 eflags &= ~CC_Z;
2053 }
2054 CC_SRC = eflags;
2055 }
2056
2057 #ifdef TARGET_X86_64
2058 void helper_cmpxchg16b(target_ulong a0)
2059 {
2060 uint64_t d0, d1;
2061 int eflags;
2062
2063 if ((a0 & 0xf) != 0)
2064 raise_exception(EXCP0D_GPF);
2065 eflags = helper_cc_compute_all(CC_OP);
2066 d0 = ldq(a0);
2067 d1 = ldq(a0 + 8);
2068 if (d0 == EAX && d1 == EDX) {
2069 stq(a0, EBX);
2070 stq(a0 + 8, ECX);
2071 eflags |= CC_Z;
2072 } else {
2073 /* always do the store */
2074 stq(a0, d0);
2075 stq(a0 + 8, d1);
2076 EDX = d1;
2077 EAX = d0;
2078 eflags &= ~CC_Z;
2079 }
2080 CC_SRC = eflags;
2081 }
2082 #endif
2083
2084 void helper_single_step(void)
2085 {
2086 #ifndef CONFIG_USER_ONLY
2087 check_hw_breakpoints(env, 1);
2088 env->dr[6] |= DR6_BS;
2089 #endif
2090 raise_exception(EXCP01_DB);
2091 }
2092
2093 void helper_cpuid(void)
2094 {
2095 uint32_t eax, ebx, ecx, edx;
2096
2097 helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0);
2098
2099 cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx);
2100 EAX = eax;
2101 EBX = ebx;
2102 ECX = ecx;
2103 EDX = edx;
2104 }
2105
2106 void helper_enter_level(int level, int data32, target_ulong t1)
2107 {
2108 target_ulong ssp;
2109 uint32_t esp_mask, esp, ebp;
2110
2111 esp_mask = get_sp_mask(env->segs[R_SS].flags);
2112 ssp = env->segs[R_SS].base;
2113 ebp = EBP;
2114 esp = ESP;
2115 if (data32) {
2116 /* 32 bit */
2117 esp -= 4;
2118 while (--level) {
2119 esp -= 4;
2120 ebp -= 4;
2121 stl(ssp + (esp & esp_mask), ldl(ssp + (ebp & esp_mask)));
2122 }
2123 esp -= 4;
2124 stl(ssp + (esp & esp_mask), t1);
2125 } else {
2126 /* 16 bit */
2127 esp -= 2;
2128 while (--level) {
2129 esp -= 2;
2130 ebp -= 2;
2131 stw(ssp + (esp & esp_mask), lduw(ssp + (ebp & esp_mask)));
2132 }
2133 esp -= 2;
2134 stw(ssp + (esp & esp_mask), t1);
2135 }
2136 }
2137
2138 #ifdef TARGET_X86_64
2139 void helper_enter64_level(int level, int data64, target_ulong t1)
2140 {
2141 target_ulong esp, ebp;
2142 ebp = EBP;
2143 esp = ESP;
2144
2145 if (data64) {
2146 /* 64 bit */
2147 esp -= 8;
2148 while (--level) {
2149 esp -= 8;
2150 ebp -= 8;
2151 stq(esp, ldq(ebp));
2152 }
2153 esp -= 8;
2154 stq(esp, t1);
2155 } else {
2156 /* 16 bit */
2157 esp -= 2;
2158 while (--level) {
2159 esp -= 2;
2160 ebp -= 2;
2161 stw(esp, lduw(ebp));
2162 }
2163 esp -= 2;
2164 stw(esp, t1);
2165 }
2166 }
2167 #endif
2168
2169 void helper_lldt(int selector)
2170 {
2171 SegmentCache *dt;
2172 uint32_t e1, e2;
2173 int index, entry_limit;
2174 target_ulong ptr;
2175
2176 selector &= 0xffff;
2177 if ((selector & 0xfffc) == 0) {
2178 /* XXX: NULL selector case: invalid LDT */
2179 env->ldt.base = 0;
2180 env->ldt.limit = 0;
2181 } else {
2182 if (selector & 0x4)
2183 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2184 dt = &env->gdt;
2185 index = selector & ~7;
2186 #ifdef TARGET_X86_64
2187 if (env->hflags & HF_LMA_MASK)
2188 entry_limit = 15;
2189 else
2190 #endif
2191 entry_limit = 7;
2192 if ((index + entry_limit) > dt->limit)
2193 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2194 ptr = dt->base + index;
2195 e1 = ldl_kernel(ptr);
2196 e2 = ldl_kernel(ptr + 4);
2197 if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
2198 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2199 if (!(e2 & DESC_P_MASK))
2200 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2201 #ifdef TARGET_X86_64
2202 if (env->hflags & HF_LMA_MASK) {
2203 uint32_t e3;
2204 e3 = ldl_kernel(ptr + 8);
2205 load_seg_cache_raw_dt(&env->ldt, e1, e2);
2206 env->ldt.base |= (target_ulong)e3 << 32;
2207 } else
2208 #endif
2209 {
2210 load_seg_cache_raw_dt(&env->ldt, e1, e2);
2211 }
2212 }
2213 env->ldt.selector = selector;
2214 }
2215
2216 void helper_ltr(int selector)
2217 {
2218 SegmentCache *dt;
2219 uint32_t e1, e2;
2220 int index, type, entry_limit;
2221 target_ulong ptr;
2222
2223 selector &= 0xffff;
2224 if ((selector & 0xfffc) == 0) {
2225 /* NULL selector case: invalid TR */
2226 env->tr.base = 0;
2227 env->tr.limit = 0;
2228 env->tr.flags = 0;
2229 } else {
2230 if (selector & 0x4)
2231 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2232 dt = &env->gdt;
2233 index = selector & ~7;
2234 #ifdef TARGET_X86_64
2235 if (env->hflags & HF_LMA_MASK)
2236 entry_limit = 15;
2237 else
2238 #endif
2239 entry_limit = 7;
2240 if ((index + entry_limit) > dt->limit)
2241 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2242 ptr = dt->base + index;
2243 e1 = ldl_kernel(ptr);
2244 e2 = ldl_kernel(ptr + 4);
2245 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2246 if ((e2 & DESC_S_MASK) ||
2247 (type != 1 && type != 9))
2248 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2249 if (!(e2 & DESC_P_MASK))
2250 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2251 #ifdef TARGET_X86_64
2252 if (env->hflags & HF_LMA_MASK) {
2253 uint32_t e3, e4;
2254 e3 = ldl_kernel(ptr + 8);
2255 e4 = ldl_kernel(ptr + 12);
2256 if ((e4 >> DESC_TYPE_SHIFT) & 0xf)
2257 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2258 load_seg_cache_raw_dt(&env->tr, e1, e2);
2259 env->tr.base |= (target_ulong)e3 << 32;
2260 } else
2261 #endif
2262 {
2263 load_seg_cache_raw_dt(&env->tr, e1, e2);
2264 }
2265 e2 |= DESC_TSS_BUSY_MASK;
2266 stl_kernel(ptr + 4, e2);
2267 }
2268 env->tr.selector = selector;
2269 }
2270
2271 /* only works if protected mode and not VM86. seg_reg must be != R_CS */
2272 void helper_load_seg(int seg_reg, int selector)
2273 {
2274 uint32_t e1, e2;
2275 int cpl, dpl, rpl;
2276 SegmentCache *dt;
2277 int index;
2278 target_ulong ptr;
2279
2280 selector &= 0xffff;
2281 cpl = env->hflags & HF_CPL_MASK;
2282 if ((selector & 0xfffc) == 0) {
2283 /* null selector case */
2284 if (seg_reg == R_SS
2285 #ifdef TARGET_X86_64
2286 && (!(env->hflags & HF_CS64_MASK) || cpl == 3)
2287 #endif
2288 )
2289 raise_exception_err(EXCP0D_GPF, 0);
2290 cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0);
2291 } else {
2292
2293 if (selector & 0x4)
2294 dt = &env->ldt;
2295 else
2296 dt = &env->gdt;
2297 index = selector & ~7;
2298 if ((index + 7) > dt->limit)
2299 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2300 ptr = dt->base + index;
2301 e1 = ldl_kernel(ptr);
2302 e2 = ldl_kernel(ptr + 4);
2303
2304 if (!(e2 & DESC_S_MASK))
2305 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2306 rpl = selector & 3;
2307 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2308 if (seg_reg == R_SS) {
2309 /* must be writable segment */
2310 if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
2311 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2312 if (rpl != cpl || dpl != cpl)
2313 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2314 } else {
2315 /* must be readable segment */
2316 if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK)
2317 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2318
2319 if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2320 /* if not conforming code, test rights */
2321 if (dpl < cpl || dpl < rpl)
2322 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2323 }
2324 }
2325
2326 if (!(e2 & DESC_P_MASK)) {
2327 if (seg_reg == R_SS)
2328 raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
2329 else
2330 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2331 }
2332
2333 /* set the access bit if not already set */
2334 if (!(e2 & DESC_A_MASK)) {
2335 e2 |= DESC_A_MASK;
2336 stl_kernel(ptr + 4, e2);
2337 }
2338
2339 cpu_x86_load_seg_cache(env, seg_reg, selector,
2340 get_seg_base(e1, e2),
2341 get_seg_limit(e1, e2),
2342 e2);
2343 #if 0
2344 qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
2345 selector, (unsigned long)sc->base, sc->limit, sc->flags);
2346 #endif
2347 }
2348 }
2349
2350 /* protected mode jump */
2351 void helper_ljmp_protected(int new_cs, target_ulong new_eip,
2352 int next_eip_addend)
2353 {
2354 int gate_cs, type;
2355 uint32_t e1, e2, cpl, dpl, rpl, limit;
2356 target_ulong next_eip;
2357
2358 if ((new_cs & 0xfffc) == 0)
2359 raise_exception_err(EXCP0D_GPF, 0);
2360 if (load_segment(&e1, &e2, new_cs) != 0)
2361 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2362 cpl = env->hflags & HF_CPL_MASK;
2363 if (e2 & DESC_S_MASK) {
2364 if (!(e2 & DESC_CS_MASK))
2365 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2366 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2367 if (e2 & DESC_C_MASK) {
2368 /* conforming code segment */
2369 if (dpl > cpl)
2370 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2371 } else {
2372 /* non conforming code segment */
2373 rpl = new_cs & 3;
2374 if (rpl > cpl)
2375 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2376 if (dpl != cpl)
2377 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2378 }
2379 if (!(e2 & DESC_P_MASK))
2380 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2381 limit = get_seg_limit(e1, e2);
2382 if (new_eip > limit &&
2383 !(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK))
2384 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2385 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2386 get_seg_base(e1, e2), limit, e2);
2387 EIP = new_eip;
2388 } else {
2389 /* jump to call or task gate */
2390 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2391 rpl = new_cs & 3;
2392 cpl = env->hflags & HF_CPL_MASK;
2393 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2394 switch(type) {
2395 case 1: /* 286 TSS */
2396 case 9: /* 386 TSS */
2397 case 5: /* task gate */
2398 if (dpl < cpl || dpl < rpl)
2399 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2400 next_eip = env->eip + next_eip_addend;
2401 switch_tss(new_cs, e1, e2, SWITCH_TSS_JMP, next_eip);
2402 CC_OP = CC_OP_EFLAGS;
2403 break;
2404 case 4: /* 286 call gate */
2405 case 12: /* 386 call gate */
2406 if ((dpl < cpl) || (dpl < rpl))
2407 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2408 if (!(e2 & DESC_P_MASK))
2409 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2410 gate_cs = e1 >> 16;
2411 new_eip = (e1 & 0xffff);
2412 if (type == 12)
2413 new_eip |= (e2 & 0xffff0000);
2414 if (load_segment(&e1, &e2, gate_cs) != 0)
2415 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2416 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2417 /* must be code segment */
2418 if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) !=
2419 (DESC_S_MASK | DESC_CS_MASK)))
2420 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2421 if (((e2 & DESC_C_MASK) && (dpl > cpl)) ||
2422 (!(e2 & DESC_C_MASK) && (dpl != cpl)))
2423 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2424 if (!(e2 & DESC_P_MASK))
2425 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2426 limit = get_seg_limit(e1, e2);
2427 if (new_eip > limit)
2428 raise_exception_err(EXCP0D_GPF, 0);
2429 cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl,
2430 get_seg_base(e1, e2), limit, e2);
2431 EIP = new_eip;
2432 break;
2433 default:
2434 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2435 break;
2436 }
2437 }
2438 }
2439
2440 /* real mode call */
2441 void helper_lcall_real(int new_cs, target_ulong new_eip1,
2442 int shift, int next_eip)
2443 {
2444 int new_eip;
2445 uint32_t esp, esp_mask;
2446 target_ulong ssp;
2447
2448 new_eip = new_eip1;
2449 esp = ESP;
2450 esp_mask = get_sp_mask(env->segs[R_SS].flags);
2451 ssp = env->segs[R_SS].base;
2452 if (shift) {
2453 PUSHL(ssp, esp, esp_mask, env->segs[R_CS].selector);
2454 PUSHL(ssp, esp, esp_mask, next_eip);
2455 } else {
2456 PUSHW(ssp, esp, esp_mask, env->segs[R_CS].selector);
2457 PUSHW(ssp, esp, esp_mask, next_eip);
2458 }
2459
2460 SET_ESP(esp, esp_mask);
2461 env->eip = new_eip;
2462 env->segs[R_CS].selector = new_cs;
2463 env->segs[R_CS].base = (new_cs << 4);
2464 }
2465
2466 /* protected mode call */
2467 void helper_lcall_protected(int new_cs, target_ulong new_eip,
2468 int shift, int next_eip_addend)
2469 {
2470 int new_stack, i;
2471 uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
2472 uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
2473 uint32_t val, limit, old_sp_mask;
2474 target_ulong ssp, old_ssp, next_eip;
2475
2476 next_eip = env->eip + next_eip_addend;
2477 LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
2478 LOG_PCALL_STATE(env);
2479 if ((new_cs & 0xfffc) == 0)
2480 raise_exception_err(EXCP0D_GPF, 0);
2481 if (load_segment(&e1, &e2, new_cs) != 0)
2482 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2483 cpl = env->hflags & HF_CPL_MASK;
2484 LOG_PCALL("desc=%08x:%08x\n", e1, e2);
2485 if (e2 & DESC_S_MASK) {
2486 if (!(e2 & DESC_CS_MASK))
2487 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2488 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2489 if (e2 & DESC_C_MASK) {
2490 /* conforming code segment */
2491 if (dpl > cpl)
2492 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2493 } else {
2494 /* non conforming code segment */
2495 rpl = new_cs & 3;
2496 if (rpl > cpl)
2497 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2498 if (dpl != cpl)
2499 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2500 }
2501 if (!(e2 & DESC_P_MASK))
2502 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2503
2504 #ifdef TARGET_X86_64
2505 /* XXX: check 16/32 bit cases in long mode */
2506 if (shift == 2) {
2507 target_ulong rsp;
2508 /* 64 bit case */
2509 rsp = ESP;
2510 PUSHQ(rsp, env->segs[R_CS].selector);
2511 PUSHQ(rsp, next_eip);
2512 /* from this point, not restartable */
2513 ESP = rsp;
2514 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2515 get_seg_base(e1, e2),
2516 get_seg_limit(e1, e2), e2);
2517 EIP = new_eip;
2518 } else
2519 #endif
2520 {
2521 sp = ESP;
2522 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2523 ssp = env->segs[R_SS].base;
2524 if (shift) {
2525 PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2526 PUSHL(ssp, sp, sp_mask, next_eip);
2527 } else {
2528 PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2529 PUSHW(ssp, sp, sp_mask, next_eip);
2530 }
2531
2532 limit = get_seg_limit(e1, e2);
2533 if (new_eip > limit)
2534 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2535 /* from this point, not restartable */
2536 SET_ESP(sp, sp_mask);
2537 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2538 get_seg_base(e1, e2), limit, e2);
2539 EIP = new_eip;
2540 }
2541 } else {
2542 /* check gate type */
2543 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
2544 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2545 rpl = new_cs & 3;
2546 switch(type) {
2547 case 1: /* available 286 TSS */
2548 case 9: /* available 386 TSS */
2549 case 5: /* task gate */
2550 if (dpl < cpl || dpl < rpl)
2551 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2552 switch_tss(new_cs, e1, e2, SWITCH_TSS_CALL, next_eip);
2553 CC_OP = CC_OP_EFLAGS;
2554 return;
2555 case 4: /* 286 call gate */
2556 case 12: /* 386 call gate */
2557 break;
2558 default:
2559 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2560 break;
2561 }
2562 shift = type >> 3;
2563
2564 if (dpl < cpl || dpl < rpl)
2565 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2566 /* check valid bit */
2567 if (!(e2 & DESC_P_MASK))
2568 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2569 selector = e1 >> 16;
2570 offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
2571 param_count = e2 & 0x1f;
2572 if ((selector & 0xfffc) == 0)
2573 raise_exception_err(EXCP0D_GPF, 0);
2574
2575 if (load_segment(&e1, &e2, selector) != 0)
2576 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2577 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
2578 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2579 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2580 if (dpl > cpl)
2581 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2582 if (!(e2 & DESC_P_MASK))
2583 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2584
2585 if (!(e2 & DESC_C_MASK) && dpl < cpl) {
2586 /* to inner privilege */
2587 get_ss_esp_from_tss(&ss, &sp, dpl);
2588 LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
2589 ss, sp, param_count, ESP);
2590 if ((ss & 0xfffc) == 0)
2591 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2592 if ((ss & 3) != dpl)
2593 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2594 if (load_segment(&ss_e1, &ss_e2, ss) != 0)
2595 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2596 ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2597 if (ss_dpl != dpl)
2598 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2599 if (!(ss_e2 & DESC_S_MASK) ||
2600 (ss_e2 & DESC_CS_MASK) ||
2601 !(ss_e2 & DESC_W_MASK))
2602 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2603 if (!(ss_e2 & DESC_P_MASK))
2604 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2605
2606 // push_size = ((param_count * 2) + 8) << shift;
2607
2608 old_sp_mask = get_sp_mask(env->segs[R_SS].flags);
2609 old_ssp = env->segs[R_SS].base;
2610
2611 sp_mask = get_sp_mask(ss_e2);
2612 ssp = get_seg_base(ss_e1, ss_e2);
2613 if (shift) {
2614 PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
2615 PUSHL(ssp, sp, sp_mask, ESP);
2616 for(i = param_count - 1; i >= 0; i--) {
2617 val = ldl_kernel(old_ssp + ((ESP + i * 4) & old_sp_mask));
2618 PUSHL(ssp, sp, sp_mask, val);
2619 }
2620 } else {
2621 PUSHW(ssp, sp, sp_mask, env->segs[R_SS].selector);
2622 PUSHW(ssp, sp, sp_mask, ESP);
2623 for(i = param_count - 1; i >= 0; i--) {
2624 val = lduw_kernel(old_ssp + ((ESP + i * 2) & old_sp_mask));
2625 PUSHW(ssp, sp, sp_mask, val);
2626 }
2627 }
2628 new_stack = 1;
2629 } else {
2630 /* to same privilege */
2631 sp = ESP;
2632 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2633 ssp = env->segs[R_SS].base;
2634 // push_size = (4 << shift);
2635 new_stack = 0;
2636 }
2637
2638 if (shift) {
2639 PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2640 PUSHL(ssp, sp, sp_mask, next_eip);
2641 } else {
2642 PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2643 PUSHW(ssp, sp, sp_mask, next_eip);
2644 }
2645
2646 /* from this point, not restartable */
2647
2648 if (new_stack) {
2649 ss = (ss & ~3) | dpl;
2650 cpu_x86_load_seg_cache(env, R_SS, ss,
2651 ssp,
2652 get_seg_limit(ss_e1, ss_e2),
2653 ss_e2);
2654 }
2655
2656 selector = (selector & ~3) | dpl;
2657 cpu_x86_load_seg_cache(env, R_CS, selector,
2658 get_seg_base(e1, e2),
2659 get_seg_limit(e1, e2),
2660 e2);
2661 cpu_x86_set_cpl(env, dpl);
2662 SET_ESP(sp, sp_mask);
2663 EIP = offset;
2664 }
2665 }
2666
2667 /* real and vm86 mode iret */
2668 void helper_iret_real(int shift)
2669 {
2670 uint32_t sp, new_cs, new_eip, new_eflags, sp_mask;
2671 target_ulong ssp;
2672 int eflags_mask;
2673
2674 sp_mask = 0xffff; /* XXXX: use SS segment size ? */
2675 sp = ESP;
2676 ssp = env->segs[R_SS].base;
2677 if (shift == 1) {
2678 /* 32 bits */
2679 POPL(ssp, sp, sp_mask, new_eip);
2680 POPL(ssp, sp, sp_mask, new_cs);
2681 new_cs &= 0xffff;
2682 POPL(ssp, sp, sp_mask, new_eflags);
2683 } else {
2684 /* 16 bits */
2685 POPW(ssp, sp, sp_mask, new_eip);
2686 POPW(ssp, sp, sp_mask, new_cs);
2687 POPW(ssp, sp, sp_mask, new_eflags);
2688 }
2689 ESP = (ESP & ~sp_mask) | (sp & sp_mask);
2690 env->segs[R_CS].selector = new_cs;
2691 env->segs[R_CS].base = (new_cs << 4);
2692 env->eip = new_eip;
2693 if (env->eflags & VM_MASK)
2694 eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK;
2695 else
2696 eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK;
2697 if (shift == 0)
2698 eflags_mask &= 0xffff;
2699 load_eflags(new_eflags, eflags_mask);
2700 env->hflags2 &= ~HF2_NMI_MASK;
2701 }
2702
2703 static inline void validate_seg(int seg_reg, int cpl)
2704 {
2705 int dpl;
2706 uint32_t e2;
2707
2708 /* XXX: on x86_64, we do not want to nullify FS and GS because
2709 they may still contain a valid base. I would be interested to
2710 know how a real x86_64 CPU behaves */
2711 if ((seg_reg == R_FS || seg_reg == R_GS) &&
2712 (env->segs[seg_reg].selector & 0xfffc) == 0)
2713 return;
2714
2715 e2 = env->segs[seg_reg].flags;
2716 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2717 if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2718 /* data or non conforming code segment */
2719 if (dpl < cpl) {
2720 cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0);
2721 }
2722 }
2723 }
2724
2725 /* protected mode iret */
2726 static inline void helper_ret_protected(int shift, int is_iret, int addend)
2727 {
2728 uint32_t new_cs, new_eflags, new_ss;
2729 uint32_t new_es, new_ds, new_fs, new_gs;
2730 uint32_t e1, e2, ss_e1, ss_e2;
2731 int cpl, dpl, rpl, eflags_mask, iopl;
2732 target_ulong ssp, sp, new_eip, new_esp, sp_mask;
2733
2734 #ifdef TARGET_X86_64
2735 if (shift == 2)
2736 sp_mask = -1;
2737 else
2738 #endif
2739 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2740 sp = ESP;
2741 ssp = env->segs[R_SS].base;
2742 new_eflags = 0; /* avoid warning */
2743 #ifdef TARGET_X86_64
2744 if (shift == 2) {
2745 POPQ(sp, new_eip);
2746 POPQ(sp, new_cs);
2747 new_cs &= 0xffff;
2748 if (is_iret) {
2749 POPQ(sp, new_eflags);
2750 }
2751 } else
2752 #endif
2753 if (shift == 1) {
2754 /* 32 bits */
2755 POPL(ssp, sp, sp_mask, new_eip);
2756 POPL(ssp, sp, sp_mask, new_cs);
2757 new_cs &= 0xffff;
2758 if (is_iret) {
2759 POPL(ssp, sp, sp_mask, new_eflags);
2760 if (new_eflags & VM_MASK)
2761 goto return_to_vm86;
2762 }
2763 } else {
2764 /* 16 bits */
2765 POPW(ssp, sp, sp_mask, new_eip);
2766 POPW(ssp, sp, sp_mask, new_cs);
2767 if (is_iret)
2768 POPW(ssp, sp, sp_mask, new_eflags);
2769 }
2770 LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
2771 new_cs, new_eip, shift, addend);
2772 LOG_PCALL_STATE(env);
2773 if ((new_cs & 0xfffc) == 0)
2774 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2775 if (load_segment(&e1, &e2, new_cs) != 0)
2776 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2777 if (!(e2 & DESC_S_MASK) ||
2778 !(e2 & DESC_CS_MASK))
2779 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2780 cpl = env->hflags & HF_CPL_MASK;
2781 rpl = new_cs & 3;
2782 if (rpl < cpl)
2783 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2784 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2785 if (e2 & DESC_C_MASK) {
2786 if (dpl > rpl)
2787 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2788 } else {
2789 if (dpl != rpl)
2790 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2791 }
2792 if (!(e2 & DESC_P_MASK))
2793 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2794
2795 sp += addend;
2796 if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) ||
2797 ((env->hflags & HF_CS64_MASK) && !is_iret))) {
2798 /* return to same privilege level */
2799 cpu_x86_load_seg_cache(env, R_CS, new_cs,
2800 get_seg_base(e1, e2),
2801 get_seg_limit(e1, e2),
2802 e2);
2803 } else {
2804 /* return to different privilege level */
2805 #ifdef TARGET_X86_64
2806 if (shift == 2) {
2807 POPQ(sp, new_esp);
2808 POPQ(sp, new_ss);
2809 new_ss &= 0xffff;
2810 } else
2811 #endif
2812 if (shift == 1) {
2813 /* 32 bits */
2814 POPL(ssp, sp, sp_mask, new_esp);
2815 POPL(ssp, sp, sp_mask, new_ss);
2816 new_ss &= 0xffff;
2817 } else {
2818 /* 16 bits */
2819 POPW(ssp, sp, sp_mask, new_esp);
2820 POPW(ssp, sp, sp_mask, new_ss);
2821 }
2822 LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
2823 new_ss, new_esp);
2824 if ((new_ss & 0xfffc) == 0) {
2825 #ifdef TARGET_X86_64
2826 /* NULL ss is allowed in long mode if cpl != 3*/
2827 /* XXX: test CS64 ? */
2828 if ((env->hflags & HF_LMA_MASK) && rpl != 3) {
2829 cpu_x86_load_seg_cache(env, R_SS, new_ss,
2830 0, 0xffffffff,
2831 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2832 DESC_S_MASK | (rpl << DESC_DPL_SHIFT) |
2833 DESC_W_MASK | DESC_A_MASK);
2834 ss_e2 = DESC_B_MASK; /* XXX: should not be needed ? */
2835 } else
2836 #endif
2837 {
2838 raise_exception_err(EXCP0D_GPF, 0);
2839 }
2840 } else {
2841 if ((new_ss & 3) != rpl)
2842 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2843 if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
2844 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2845 if (!(ss_e2 & DESC_S_MASK) ||
2846 (ss_e2 & DESC_CS_MASK) ||
2847 !(ss_e2 & DESC_W_MASK))
2848 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2849 dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2850 if (dpl != rpl)
2851 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2852 if (!(ss_e2 & DESC_P_MASK))
2853 raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
2854 cpu_x86_load_seg_cache(env, R_SS, new_ss,
2855 get_seg_base(ss_e1, ss_e2),
2856 get_seg_limit(ss_e1, ss_e2),
2857 ss_e2);
2858 }
2859
2860 cpu_x86_load_seg_cache(env, R_CS, new_cs,
2861 get_seg_base(e1, e2),
2862 get_seg_limit(e1, e2),
2863 e2);
2864 cpu_x86_set_cpl(env, rpl);
2865 sp = new_esp;
2866 #ifdef TARGET_X86_64
2867 if (env->hflags & HF_CS64_MASK)
2868 sp_mask = -1;
2869 else
2870 #endif
2871 sp_mask = get_sp_mask(ss_e2);
2872
2873 /* validate data segments */
2874 validate_seg(R_ES, rpl);
2875 validate_seg(R_DS, rpl);
2876 validate_seg(R_FS, rpl);
2877 validate_seg(R_GS, rpl);
2878
2879 sp += addend;
2880 }
2881 SET_ESP(sp, sp_mask);
2882 env->eip = new_eip;
2883 if (is_iret) {
2884 /* NOTE: 'cpl' is the _old_ CPL */
2885 eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK;
2886 if (cpl == 0)
2887 eflags_mask |= IOPL_MASK;
2888 iopl = (env->eflags >> IOPL_SHIFT) & 3;
2889 if (cpl <= iopl)
2890 eflags_mask |= IF_MASK;
2891 if (shift == 0)
2892 eflags_mask &= 0xffff;
2893 load_eflags(new_eflags, eflags_mask);
2894 }
2895 return;
2896
2897 return_to_vm86:
2898 POPL(ssp, sp, sp_mask, new_esp);
2899 POPL(ssp, sp, sp_mask, new_ss);
2900 POPL(ssp, sp, sp_mask, new_es);
2901 POPL(ssp, sp, sp_mask, new_ds);
2902 POPL(ssp, sp, sp_mask, new_fs);
2903 POPL(ssp, sp, sp_mask, new_gs);
2904
2905 /* modify processor state */
2906 load_eflags(new_eflags, TF_MASK | AC_MASK | ID_MASK |
2907 IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK);
2908 load_seg_vm(R_CS, new_cs & 0xffff);
2909 cpu_x86_set_cpl(env, 3);
2910 load_seg_vm(R_SS, new_ss & 0xffff);
2911 load_seg_vm(R_ES, new_es & 0xffff);
2912 load_seg_vm(R_DS, new_ds & 0xffff);
2913 load_seg_vm(R_FS, new_fs & 0xffff);
2914 load_seg_vm(R_GS, new_gs & 0xffff);
2915
2916 env->eip = new_eip & 0xffff;
2917 ESP = new_esp;
2918 }
2919
2920 void helper_iret_protected(int shift, int next_eip)
2921 {
2922 int tss_selector, type;
2923 uint32_t e1, e2;
2924
2925 /* specific case for TSS */
2926 if (env->eflags & NT_MASK) {
2927 #ifdef TARGET_X86_64
2928 if (env->hflags & HF_LMA_MASK)
2929 raise_exception_err(EXCP0D_GPF, 0);
2930 #endif
2931 tss_selector = lduw_kernel(env->tr.base + 0);
2932 if (tss_selector & 4)
2933 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2934 if (load_segment(&e1, &e2, tss_selector) != 0)
2935 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2936 type = (e2 >> DESC_TYPE_SHIFT) & 0x17;
2937 /* NOTE: we check both segment and busy TSS */
2938 if (type != 3)
2939 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2940 switch_tss(tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip);
2941 } else {
2942 helper_ret_protected(shift, 1, 0);
2943 }
2944 env->hflags2 &= ~HF2_NMI_MASK;
2945 }
2946
2947 void helper_lret_protected(int shift, int addend)
2948 {
2949 helper_ret_protected(shift, 0, addend);
2950 }
2951
2952 void helper_sysenter(void)
2953 {
2954 if (env->sysenter_cs == 0) {
2955 raise_exception_err(EXCP0D_GPF, 0);
2956 }
2957 env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
2958 cpu_x86_set_cpl(env, 0);
2959
2960 #ifdef TARGET_X86_64
2961 if (env->hflags & HF_LMA_MASK) {
2962 cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2963 0, 0xffffffff,
2964 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2965 DESC_S_MASK |
2966 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
2967 } else
2968 #endif
2969 {
2970 cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2971 0, 0xffffffff,
2972 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2973 DESC_S_MASK |
2974 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
2975 }
2976 cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
2977 0, 0xffffffff,
2978 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2979 DESC_S_MASK |
2980 DESC_W_MASK | DESC_A_MASK);
2981 ESP = env->sysenter_esp;
2982 EIP = env->sysenter_eip;
2983 }
2984
2985 void helper_sysexit(int dflag)
2986 {
2987 int cpl;
2988
2989 cpl = env->hflags & HF_CPL_MASK;
2990 if (env->sysenter_cs == 0 || cpl != 0) {
2991 raise_exception_err(EXCP0D_GPF, 0);
2992 }
2993 cpu_x86_set_cpl(env, 3);
2994 #ifdef TARGET_X86_64
2995 if (dflag == 2) {
2996 cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3,
2997 0, 0xffffffff,
2998 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2999 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
3000 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
3001 cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3,
3002 0, 0xffffffff,
3003 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
3004 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
3005 DESC_W_MASK | DESC_A_MASK);
3006 } else
3007 #endif
3008 {
3009 cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3,
3010 0, 0xffffffff,
3011 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
3012 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
3013 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
3014 cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3,
3015 0, 0xffffffff,
3016 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
3017 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
3018 DESC_W_MASK | DESC_A_MASK);
3019 }
3020 ESP = ECX;
3021 EIP = EDX;
3022 }
3023
3024 #if defined(CONFIG_USER_ONLY)
3025 target_ulong helper_read_crN(int reg)
3026 {
3027 return 0;
3028 }
3029
3030 void helper_write_crN(int reg, target_ulong t0)
3031 {
3032 }
3033
3034 void helper_movl_drN_T0(int reg, target_ulong t0)
3035 {
3036 }
3037 #else
3038 target_ulong helper_read_crN(int reg)
3039 {
3040 target_ulong val;
3041
3042 helper_svm_check_intercept_param(SVM_EXIT_READ_CR0 + reg, 0);
3043 switch(reg) {
3044 default:
3045 val = env->cr[reg];
3046 break;
3047 case 8:
3048 if (!(env->hflags2 & HF2_VINTR_MASK)) {
3049 val = cpu_get_apic_tpr(env->apic_state);
3050 } else {
3051 val = env->v_tpr;
3052 }
3053 break;
3054 }
3055 return val;
3056 }
3057
3058 void helper_write_crN(int reg, target_ulong t0)
3059 {
3060 helper_svm_check_intercept_param(SVM_EXIT_WRITE_CR0 + reg, 0);
3061 switch(reg) {
3062 case 0:
3063 cpu_x86_update_cr0(env, t0);
3064 break;
3065 case 3:
3066 cpu_x86_update_cr3(env, t0);
3067 break;
3068 case 4:
3069 cpu_x86_update_cr4(env, t0);
3070 break;
3071 case 8:
3072 if (!(env->hflags2 & HF2_VINTR_MASK)) {
3073 cpu_set_apic_tpr(env->apic_state, t0);
3074 }
3075 env->v_tpr = t0 & 0x0f;
3076 break;
3077 default:
3078 env->cr[reg] = t0;
3079 break;
3080 }
3081 }
3082
3083 void helper_movl_drN_T0(int reg, target_ulong t0)
3084 {
3085 int i;
3086
3087 if (reg < 4) {
3088 hw_breakpoint_remove(env, reg);
3089 env->dr[reg] = t0;
3090 hw_breakpoint_insert(env, reg);
3091 } else if (reg == 7) {
3092 for (i = 0; i < 4; i++)
3093 hw_breakpoint_remove(env, i);
3094 env->dr[7] = t0;
3095 for (i = 0; i < 4; i++)
3096 hw_breakpoint_insert(env, i);
3097 } else
3098 env->dr[reg] = t0;
3099 }
3100 #endif
3101
3102 void helper_lmsw(target_ulong t0)
3103 {
3104 /* only 4 lower bits of CR0 are modified. PE cannot be set to zero
3105 if already set to one. */
3106 t0 = (env->cr[0] & ~0xe) | (t0 & 0xf);
3107 helper_write_crN(0, t0);
3108 }
3109
3110 void helper_clts(void)
3111 {
3112 env->cr[0] &= ~CR0_TS_MASK;
3113 env->hflags &= ~HF_TS_MASK;
3114 }
3115
3116 void helper_invlpg(target_ulong addr)
3117 {
3118 helper_svm_check_intercept_param(SVM_EXIT_INVLPG, 0);
3119 tlb_flush_page(env, addr);
3120 }
3121
3122 void helper_rdtsc(void)
3123 {
3124 uint64_t val;
3125
3126 if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
3127 raise_exception(EXCP0D_GPF);
3128 }
3129 helper_svm_check_intercept_param(SVM_EXIT_RDTSC, 0);
3130
3131 val = cpu_get_tsc(env) + env->tsc_offset;
3132 EAX = (uint32_t)(val);
3133 EDX = (uint32_t)(val >> 32);
3134 }
3135
3136 void helper_rdtscp(void)
3137 {
3138 helper_rdtsc();
3139 ECX = (uint32_t)(env->tsc_aux);
3140 }
3141
3142 void helper_rdpmc(void)
3143 {
3144 if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
3145 raise_exception(EXCP0D_GPF);
3146 }
3147 helper_svm_check_intercept_param(SVM_EXIT_RDPMC, 0);
3148
3149 /* currently unimplemented */
3150 raise_exception_err(EXCP06_ILLOP, 0);
3151 }
3152
3153 #if defined(CONFIG_USER_ONLY)
3154 void helper_wrmsr(void)
3155 {
3156 }
3157
3158 void helper_rdmsr(void)
3159 {
3160 }
3161 #else
3162 void helper_wrmsr(void)
3163 {
3164 uint64_t val;
3165
3166 helper_svm_check_intercept_param(SVM_EXIT_MSR, 1);
3167
3168 val = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
3169
3170 switch((uint32_t)ECX) {
3171 case MSR_IA32_SYSENTER_CS:
3172 env->sysenter_cs = val & 0xffff;
3173 break;
3174 case MSR_IA32_SYSENTER_ESP:
3175 env->sysenter_esp = val;
3176 break;
3177 case MSR_IA32_SYSENTER_EIP:
3178 env->sysenter_eip = val;
3179 break;
3180 case MSR_IA32_APICBASE:
3181 cpu_set_apic_base(env->apic_state, val);
3182 break;
3183 case MSR_EFER:
3184 {
3185 uint64_t update_mask;
3186 update_mask = 0;
3187 if (env->cpuid_ext2_features & CPUID_EXT2_SYSCALL)
3188 update_mask |= MSR_EFER_SCE;
3189 if (env->cpuid_ext2_features & CPUID_EXT2_LM)
3190 update_mask |= MSR_EFER_LME;
3191 if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3192 update_mask |= MSR_EFER_FFXSR;
3193 if (env->cpuid_ext2_features & CPUID_EXT2_NX)
3194 update_mask |= MSR_EFER_NXE;
3195 if (env->cpuid_ext3_features & CPUID_EXT3_SVM)
3196 update_mask |= MSR_EFER_SVME;
3197 if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3198 update_mask |= MSR_EFER_FFXSR;
3199 cpu_load_efer(env, (env->efer & ~update_mask) |
3200 (val & update_mask));
3201 }
3202 break;
3203 case MSR_STAR:
3204 env->star = val;
3205 break;
3206 case MSR_PAT:
3207 env->pat = val;
3208 break;
3209 case MSR_VM_HSAVE_PA:
3210 env->vm_hsave = val;
3211 break;
3212 #ifdef TARGET_X86_64
3213 case MSR_LSTAR:
3214 env->lstar = val;
3215 break;
3216 case MSR_CSTAR:
3217 env->cstar = val;
3218 break;
3219 case MSR_FMASK:
3220 env->fmask = val;
3221 break;
3222 case MSR_FSBASE:
3223 env->segs[R_FS].base = val;
3224 break;
3225 case MSR_GSBASE:
3226 env->segs[R_GS].base = val;
3227 break;
3228 case MSR_KERNELGSBASE:
3229 env->kernelgsbase = val;
3230 break;
3231 #endif
3232 case MSR_MTRRphysBase(0):
3233 case MSR_MTRRphysBase(1):
3234 case MSR_MTRRphysBase(2):
3235 case MSR_MTRRphysBase(3):
3236 case MSR_MTRRphysBase(4):
3237 case MSR_MTRRphysBase(5):
3238 case MSR_MTRRphysBase(6):
3239 case MSR_MTRRphysBase(7):
3240 env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val;
3241 break;
3242 case MSR_MTRRphysMask(0):
3243 case MSR_MTRRphysMask(1):
3244 case MSR_MTRRphysMask(2):
3245 case MSR_MTRRphysMask(3):
3246 case MSR_MTRRphysMask(4):
3247 case MSR_MTRRphysMask(5):
3248 case MSR_MTRRphysMask(6):
3249 case MSR_MTRRphysMask(7):
3250 env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val;
3251 break;
3252 case MSR_MTRRfix64K_00000:
3253 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val;
3254 break;
3255 case MSR_MTRRfix16K_80000:
3256 case MSR_MTRRfix16K_A0000:
3257 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val;
3258 break;
3259 case MSR_MTRRfix4K_C0000:
3260 case MSR_MTRRfix4K_C8000:
3261 case MSR_MTRRfix4K_D0000:
3262 case MSR_MTRRfix4K_D8000:
3263 case MSR_MTRRfix4K_E0000:
3264 case MSR_MTRRfix4K_E8000:
3265 case MSR_MTRRfix4K_F0000:
3266 case MSR_MTRRfix4K_F8000:
3267 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val;
3268 break;
3269 case MSR_MTRRdefType:
3270 env->mtrr_deftype = val;
3271 break;
3272 case MSR_MCG_STATUS:
3273 env->mcg_status = val;
3274 break;
3275 case MSR_MCG_CTL:
3276 if ((env->mcg_cap & MCG_CTL_P)
3277 && (val == 0 || val == ~(uint64_t)0))
3278 env->mcg_ctl = val;
3279 break;
3280 case MSR_TSC_AUX:
3281 env->tsc_aux = val;
3282 break;
3283 default:
3284 if ((uint32_t)ECX >= MSR_MC0_CTL
3285 && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3286 uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3287 if ((offset & 0x3) != 0
3288 || (val == 0 || val == ~(uint64_t)0))
3289 env->mce_banks[offset] = val;
3290 break;
3291 }
3292 /* XXX: exception ? */
3293 break;
3294 }
3295 }
3296
3297 void helper_rdmsr(void)
3298 {
3299 uint64_t val;
3300
3301 helper_svm_check_intercept_param(SVM_EXIT_MSR, 0);
3302
3303 switch((uint32_t)ECX) {
3304 case MSR_IA32_SYSENTER_CS:
3305 val = env->sysenter_cs;
3306 break;
3307 case MSR_IA32_SYSENTER_ESP:
3308 val = env->sysenter_esp;
3309 break;
3310 case MSR_IA32_SYSENTER_EIP:
3311 val = env->sysenter_eip;
3312 break;
3313 case MSR_IA32_APICBASE:
3314 val = cpu_get_apic_base(env->apic_state);
3315 break;
3316 case MSR_EFER:
3317 val = env->efer;
3318 break;
3319 case MSR_STAR:
3320 val = env->star;
3321 break;
3322 case MSR_PAT:
3323 val = env->pat;
3324 break;
3325 case MSR_VM_HSAVE_PA:
3326 val = env->vm_hsave;
3327 break;
3328 case MSR_IA32_PERF_STATUS:
3329 /* tsc_increment_by_tick */
3330 val = 1000ULL;
3331 /* CPU multiplier */
3332 val |= (((uint64_t)4ULL) << 40);
3333 break;
3334 #ifdef TARGET_X86_64
3335 case MSR_LSTAR:
3336 val = env->lstar;
3337 break;
3338 case MSR_CSTAR:
3339 val = env->cstar;
3340 break;
3341 case MSR_FMASK:
3342 val = env->fmask;
3343 break;
3344 case MSR_FSBASE:
3345 val = env->segs[R_FS].base;
3346 break;
3347 case MSR_GSBASE:
3348 val = env->segs[R_GS].base;
3349 break;
3350 case MSR_KERNELGSBASE:
3351 val = env->kernelgsbase;
3352 break;
3353 case MSR_TSC_AUX:
3354 val = env->tsc_aux;
3355 break;
3356 #endif
3357 case MSR_MTRRphysBase(0):
3358 case MSR_MTRRphysBase(1):
3359 case MSR_MTRRphysBase(2):
3360 case MSR_MTRRphysBase(3):
3361 case MSR_MTRRphysBase(4):
3362 case MSR_MTRRphysBase(5):
3363 case MSR_MTRRphysBase(6):
3364 case MSR_MTRRphysBase(7):
3365 val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base;
3366 break;
3367 case MSR_MTRRphysMask(0):
3368 case MSR_MTRRphysMask(1):
3369 case MSR_MTRRphysMask(2):
3370 case MSR_MTRRphysMask(3):
3371 case MSR_MTRRphysMask(4):
3372 case MSR_MTRRphysMask(5):
3373 case MSR_MTRRphysMask(6):
3374 case MSR_MTRRphysMask(7):
3375 val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask;
3376 break;
3377 case MSR_MTRRfix64K_00000:
3378 val = env->mtrr_fixed[0];
3379 break;
3380 case MSR_MTRRfix16K_80000:
3381 case MSR_MTRRfix16K_A0000:
3382 val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1];
3383 break;
3384 case MSR_MTRRfix4K_C0000:
3385 case MSR_MTRRfix4K_C8000:
3386 case MSR_MTRRfix4K_D0000:
3387 case MSR_MTRRfix4K_D8000:
3388 case MSR_MTRRfix4K_E0000:
3389 case MSR_MTRRfix4K_E8000:
3390 case MSR_MTRRfix4K_F0000:
3391 case MSR_MTRRfix4K_F8000:
3392 val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3];
3393 break;
3394 case MSR_MTRRdefType:
3395 val = env->mtrr_deftype;
3396 break;
3397 case MSR_MTRRcap:
3398 if (env->cpuid_features & CPUID_MTRR)
3399 val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED;
3400 else
3401 /* XXX: exception ? */
3402 val = 0;
3403 break;
3404 case MSR_MCG_CAP:
3405 val = env->mcg_cap;
3406 break;
3407 case MSR_MCG_CTL:
3408 if (env->mcg_cap & MCG_CTL_P)
3409 val = env->mcg_ctl;
3410 else
3411 val = 0;
3412 break;
3413 case MSR_MCG_STATUS:
3414 val = env->mcg_status;
3415 break;
3416 default:
3417 if ((uint32_t)ECX >= MSR_MC0_CTL
3418 && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3419 uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3420 val = env->mce_banks[offset];
3421 break;
3422 }
3423 /* XXX: exception ? */
3424 val = 0;
3425 break;
3426 }
3427 EAX = (uint32_t)(val);
3428 EDX = (uint32_t)(val >> 32);
3429 }
3430 #endif
3431
3432 target_ulong helper_lsl(target_ulong selector1)
3433 {
3434 unsigned int limit;
3435 uint32_t e1, e2, eflags, selector;
3436 int rpl, dpl, cpl, type;
3437
3438 selector = selector1 & 0xffff;
3439 eflags = helper_cc_compute_all(CC_OP);
3440 if ((selector & 0xfffc) == 0)
3441 goto fail;
3442 if (load_segment(&e1, &e2, selector) != 0)
3443 goto fail;
3444 rpl = selector & 3;
3445 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3446 cpl = env->hflags & HF_CPL_MASK;
3447 if (e2 & DESC_S_MASK) {
3448 if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3449 /* conforming */
3450 } else {
3451 if (dpl < cpl || dpl < rpl)
3452 goto fail;
3453 }
3454 } else {
3455 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3456 switch(type) {
3457 case 1:
3458 case 2:
3459 case 3:
3460 case 9:
3461 case 11:
3462 break;
3463 default:
3464 goto fail;
3465 }
3466 if (dpl < cpl || dpl < rpl) {
3467 fail:
3468 CC_SRC = eflags & ~CC_Z;
3469 return 0;
3470 }
3471 }
3472 limit = get_seg_limit(e1, e2);
3473 CC_SRC = eflags | CC_Z;
3474 return limit;
3475 }
3476
3477 target_ulong helper_lar(target_ulong selector1)
3478 {
3479 uint32_t e1, e2, eflags, selector;
3480 int rpl, dpl, cpl, type;
3481
3482 selector = selector1 & 0xffff;
3483 eflags = helper_cc_compute_all(CC_OP);
3484 if ((selector & 0xfffc) == 0)
3485 goto fail;
3486 if (load_segment(&e1, &e2, selector) != 0)
3487 goto fail;
3488 rpl = selector & 3;
3489 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3490 cpl = env->hflags & HF_CPL_MASK;
3491 if (e2 & DESC_S_MASK) {
3492 if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3493 /* conforming */
3494 } else {
3495 if (dpl < cpl || dpl < rpl)
3496 goto fail;
3497 }
3498 } else {
3499 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3500 switch(type) {
3501 case 1:
3502 case 2:
3503 case 3:
3504 case 4:
3505 case 5:
3506 case 9:
3507 case 11:
3508 case 12:
3509 break;
3510 default:
3511 goto fail;
3512 }
3513 if (dpl < cpl || dpl < rpl) {
3514 fail:
3515 CC_SRC = eflags & ~CC_Z;
3516 return 0;
3517 }
3518 }
3519 CC_SRC = eflags | CC_Z;
3520 return e2 & 0x00f0ff00;
3521 }
3522
3523 void helper_verr(target_ulong selector1)
3524 {
3525 uint32_t e1, e2, eflags, selector;
3526 int rpl, dpl, cpl;
3527
3528 selector = selector1 & 0xffff;
3529 eflags = helper_cc_compute_all(CC_OP);
3530 if ((selector & 0xfffc) == 0)
3531 goto fail;
3532 if (load_segment(&e1, &e2, selector) != 0)
3533 goto fail;
3534 if (!(e2 & DESC_S_MASK))
3535 goto fail;
3536 rpl = selector & 3;
3537 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3538 cpl = env->hflags & HF_CPL_MASK;
3539 if (e2 & DESC_CS_MASK) {
3540 if (!(e2 & DESC_R_MASK))
3541 goto fail;
3542 if (!(e2 & DESC_C_MASK)) {
3543 if (dpl < cpl || dpl < rpl)
3544 goto fail;
3545 }
3546 } else {
3547 if (dpl < cpl || dpl < rpl) {
3548 fail:
3549 CC_SRC = eflags & ~CC_Z;
3550 return;
3551 }
3552 }
3553 CC_SRC = eflags | CC_Z;
3554 }
3555
3556 void helper_verw(target_ulong selector1)
3557 {
3558 uint32_t e1, e2, eflags, selector;
3559 int rpl, dpl, cpl;
3560
3561 selector = selector1 & 0xffff;
3562 eflags = helper_cc_compute_all(CC_OP);
3563 if ((selector & 0xfffc) == 0)
3564 goto fail;
3565 if (load_segment(&e1, &e2, selector) != 0)
3566 goto fail;
3567 if (!(e2 & DESC_S_MASK))
3568 goto fail;
3569 rpl = selector & 3;
3570 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3571 cpl = env->hflags & HF_CPL_MASK;
3572 if (e2 & DESC_CS_MASK) {
3573 goto fail;
3574 } else {
3575 if (dpl < cpl || dpl < rpl)
3576 goto fail;
3577 if (!(e2 & DESC_W_MASK)) {
3578 fail:
3579 CC_SRC = eflags & ~CC_Z;
3580 return;
3581 }
3582 }
3583 CC_SRC = eflags | CC_Z;
3584 }
3585
3586 /* x87 FPU helpers */
3587
3588 static inline double floatx80_to_double(floatx80 a)
3589 {
3590 union {
3591 float64 f64;
3592 double d;
3593 } u;
3594
3595 u.f64 = floatx80_to_float64(a, &env->fp_status);
3596 return u.d;
3597 }
3598
3599 static inline floatx80 double_to_floatx80(double a)
3600 {
3601 union {
3602 float64 f64;
3603 double d;
3604 } u;
3605
3606 u.d = a;
3607 return float64_to_floatx80(u.f64, &env->fp_status);
3608 }
3609
3610 static void fpu_set_exception(int mask)
3611 {
3612 env->fpus |= mask;
3613 if (env->fpus & (~env->fpuc & FPUC_EM))
3614 env->fpus |= FPUS_SE | FPUS_B;
3615 }
3616
3617 static inline floatx80 helper_fdiv(floatx80 a, floatx80 b)
3618 {
3619 if (floatx80_is_zero(b)) {
3620 fpu_set_exception(FPUS_ZE);
3621 }
3622 return floatx80_div(a, b, &env->fp_status);
3623 }
3624
3625 static void fpu_raise_exception(void)
3626 {
3627 if (env->cr[0] & CR0_NE_MASK) {
3628 raise_exception(EXCP10_COPR);
3629 }
3630 #if !defined(CONFIG_USER_ONLY)
3631 else {
3632 cpu_set_ferr(env);
3633 }
3634 #endif
3635 }
3636
3637 void helper_flds_FT0(uint32_t val)
3638 {
3639 union {
3640 float32 f;
3641 uint32_t i;
3642 } u;
3643 u.i = val;
3644 FT0 = float32_to_floatx80(u.f, &env->fp_status);
3645 }
3646
3647 void helper_fldl_FT0(uint64_t val)
3648 {
3649 union {
3650 float64 f;
3651 uint64_t i;
3652 } u;
3653 u.i = val;
3654 FT0 = float64_to_floatx80(u.f, &env->fp_status);
3655 }
3656
3657 void helper_fildl_FT0(int32_t val)
3658 {
3659 FT0 = int32_to_floatx80(val, &env->fp_status);
3660 }
3661
3662 void helper_flds_ST0(uint32_t val)
3663 {
3664 int new_fpstt;
3665 union {
3666 float32 f;
3667 uint32_t i;
3668 } u;
3669 new_fpstt = (env->fpstt - 1) & 7;
3670 u.i = val;
3671 env->fpregs[new_fpstt].d = float32_to_floatx80(u.f, &env->fp_status);
3672 env->fpstt = new_fpstt;
3673 env->fptags[new_fpstt] = 0; /* validate stack entry */
3674 }
3675
3676 void helper_fldl_ST0(uint64_t val)
3677 {
3678 int new_fpstt;
3679 union {
3680 float64 f;
3681 uint64_t i;
3682 } u;
3683 new_fpstt = (env->fpstt - 1) & 7;
3684 u.i = val;
3685 env->fpregs[new_fpstt].d = float64_to_floatx80(u.f, &env->fp_status);
3686 env->fpstt = new_fpstt;
3687 env->fptags[new_fpstt] = 0; /* validate stack entry */
3688 }
3689
3690 void helper_fildl_ST0(int32_t val)
3691 {
3692 int new_fpstt;
3693 new_fpstt = (env->fpstt - 1) & 7;
3694 env->fpregs[new_fpstt].d = int32_to_floatx80(val, &env->fp_status);
3695 env->fpstt = new_fpstt;
3696 env->fptags[new_fpstt] = 0; /* validate stack entry */
3697 }
3698
3699 void helper_fildll_ST0(int64_t val)
3700 {
3701 int new_fpstt;
3702 new_fpstt = (env->fpstt - 1) & 7;
3703 env->fpregs[new_fpstt].d = int64_to_floatx80(val, &env->fp_status);
3704 env->fpstt = new_fpstt;
3705 env->fptags[new_fpstt] = 0; /* validate stack entry */
3706 }
3707
3708 uint32_t helper_fsts_ST0(void)
3709 {
3710 union {
3711 float32 f;
3712 uint32_t i;
3713 } u;
3714 u.f = floatx80_to_float32(ST0, &env->fp_status);
3715 return u.i;
3716 }
3717
3718 uint64_t helper_fstl_ST0(void)
3719 {
3720 union {
3721 float64 f;
3722 uint64_t i;
3723 } u;
3724 u.f = floatx80_to_float64(ST0, &env->fp_status);
3725 return u.i;
3726 }
3727
3728 int32_t helper_fist_ST0(void)
3729 {
3730 int32_t val;
3731 val = floatx80_to_int32(ST0, &env->fp_status);
3732 if (val != (int16_t)val)
3733 val = -32768;
3734 return val;
3735 }
3736
3737 int32_t helper_fistl_ST0(void)
3738 {
3739 int32_t val;
3740 val = floatx80_to_int32(ST0, &env->fp_status);
3741 return val;
3742 }
3743
3744 int64_t helper_fistll_ST0(void)
3745 {
3746 int64_t val;
3747 val = floatx80_to_int64(ST0, &env->fp_status);
3748 return val;
3749 }
3750
3751 int32_t helper_fistt_ST0(void)
3752 {
3753 int32_t val;
3754 val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
3755 if (val != (int16_t)val)
3756 val = -32768;
3757 return val;
3758 }
3759
3760 int32_t helper_fisttl_ST0(void)
3761 {
3762 int32_t val;
3763 val = floatx80_to_int32_round_to_zero(ST0, &env->fp_status);
3764 return val;
3765 }
3766
3767 int64_t helper_fisttll_ST0(void)
3768 {
3769 int64_t val;
3770 val = floatx80_to_int64_round_to_zero(ST0, &env->fp_status);
3771 return val;
3772 }
3773
3774 void helper_fldt_ST0(target_ulong ptr)
3775 {
3776 int new_fpstt;
3777 new_fpstt = (env->fpstt - 1) & 7;
3778 env->fpregs[new_fpstt].d = helper_fldt(ptr);
3779 env->fpstt = new_fpstt;
3780 env->fptags[new_fpstt] = 0; /* validate stack entry */
3781 }
3782
3783 void helper_fstt_ST0(target_ulong ptr)
3784 {
3785 helper_fstt(ST0, ptr);
3786 }
3787
3788 void helper_fpush(void)
3789 {
3790 fpush();
3791 }
3792
3793 void helper_fpop(void)
3794 {
3795 fpop();
3796 }
3797
3798 void helper_fdecstp(void)
3799 {
3800 env->fpstt = (env->fpstt - 1) & 7;
3801 env->fpus &= (~0x4700);
3802 }
3803
3804 void helper_fincstp(void)
3805 {
3806 env->fpstt = (env->fpstt + 1) & 7;
3807 env->fpus &= (~0x4700);
3808 }
3809
3810 /* FPU move */
3811
3812 void helper_ffree_STN(int st_index)
3813 {
3814 env->fptags[(env->fpstt + st_index) & 7] = 1;
3815 }
3816
3817 void helper_fmov_ST0_FT0(void)
3818 {
3819 ST0 = FT0;
3820 }
3821
3822 void helper_fmov_FT0_STN(int st_index)
3823 {
3824 FT0 = ST(st_index);
3825 }
3826
3827 void helper_fmov_ST0_STN(int st_index)
3828 {
3829 ST0 = ST(st_index);
3830 }
3831
3832 void helper_fmov_STN_ST0(int st_index)
3833 {
3834 ST(st_index) = ST0;
3835 }
3836
3837 void helper_fxchg_ST0_STN(int st_index)
3838 {
3839 floatx80 tmp;
3840 tmp = ST(st_index);
3841 ST(st_index) = ST0;
3842 ST0 = tmp;
3843 }
3844
3845 /* FPU operations */
3846
3847 static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
3848
3849 void helper_fcom_ST0_FT0(void)
3850 {
3851 int ret;
3852
3853 ret = floatx80_compare(ST0, FT0, &env->fp_status);
3854 env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
3855 }
3856
3857 void helper_fucom_ST0_FT0(void)
3858 {
3859 int ret;
3860
3861 ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
3862 env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
3863 }
3864
3865 static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
3866
3867 void helper_fcomi_ST0_FT0(void)
3868 {
3869 int eflags;
3870 int ret;
3871
3872 ret = floatx80_compare(ST0, FT0, &env->fp_status);
3873 eflags = helper_cc_compute_all(CC_OP);
3874 eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3875 CC_SRC = eflags;
3876 }
3877
3878 void helper_fucomi_ST0_FT0(void)
3879 {
3880 int eflags;
3881 int ret;
3882
3883 ret = floatx80_compare_quiet(ST0, FT0, &env->fp_status);
3884 eflags = helper_cc_compute_all(CC_OP);
3885 eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3886 CC_SRC = eflags;
3887 }
3888
3889 void helper_fadd_ST0_FT0(void)
3890 {
3891 ST0 = floatx80_add(ST0, FT0, &env->fp_status);
3892 }
3893
3894 void helper_fmul_ST0_FT0(void)
3895 {
3896 ST0 = floatx80_mul(ST0, FT0, &env->fp_status);
3897 }
3898
3899 void helper_fsub_ST0_FT0(void)
3900 {
3901 ST0 = floatx80_sub(ST0, FT0, &env->fp_status);
3902 }
3903
3904 void helper_fsubr_ST0_FT0(void)
3905 {
3906 ST0 = floatx80_sub(FT0, ST0, &env->fp_status);
3907 }
3908
3909 void helper_fdiv_ST0_FT0(void)
3910 {
3911 ST0 = helper_fdiv(ST0, FT0);
3912 }
3913
3914 void helper_fdivr_ST0_FT0(void)
3915 {
3916 ST0 = helper_fdiv(FT0, ST0);
3917 }
3918
3919 /* fp operations between STN and ST0 */
3920
3921 void helper_fadd_STN_ST0(int st_index)
3922 {
3923 ST(st_index) = floatx80_add(ST(st_index), ST0, &env->fp_status);
3924 }
3925
3926 void helper_fmul_STN_ST0(int st_index)
3927 {
3928 ST(st_index) = floatx80_mul(ST(st_index), ST0, &env->fp_status);
3929 }
3930
3931 void helper_fsub_STN_ST0(int st_index)
3932 {
3933 ST(st_index) = floatx80_sub(ST(st_index), ST0, &env->fp_status);
3934 }
3935
3936 void helper_fsubr_STN_ST0(int st_index)
3937 {
3938 ST(st_index) = floatx80_sub(ST0, ST(st_index), &env->fp_status);
3939 }
3940
3941 void helper_fdiv_STN_ST0(int st_index)
3942 {
3943 floatx80 *p;
3944 p = &ST(st_index);
3945 *p = helper_fdiv(*p, ST0);
3946 }
3947
3948 void helper_fdivr_STN_ST0(int st_index)
3949 {
3950 floatx80 *p;
3951 p = &ST(st_index);
3952 *p = helper_fdiv(ST0, *p);
3953 }
3954
3955 /* misc FPU operations */
3956 void helper_fchs_ST0(void)
3957 {
3958 ST0 = floatx80_chs(ST0);
3959 }
3960
3961 void helper_fabs_ST0(void)
3962 {
3963 ST0 = floatx80_abs(ST0);
3964 }
3965
3966 void helper_fld1_ST0(void)
3967 {
3968 ST0 = floatx80_one;
3969 }
3970
3971 void helper_fldl2t_ST0(void)
3972 {
3973 ST0 = floatx80_l2t;
3974 }
3975
3976 void helper_fldl2e_ST0(void)
3977 {
3978 ST0 = floatx80_l2e;
3979 }
3980
3981 void helper_fldpi_ST0(void)
3982 {
3983 ST0 = floatx80_pi;
3984 }
3985
3986 void helper_fldlg2_ST0(void)
3987 {
3988 ST0 = floatx80_lg2;
3989 }
3990
3991 void helper_fldln2_ST0(void)
3992 {
3993 ST0 = floatx80_ln2;
3994 }
3995
3996 void helper_fldz_ST0(void)
3997 {
3998 ST0 = floatx80_zero;
3999 }
4000
4001 void helper_fldz_FT0(void)
4002 {
4003 FT0 = floatx80_zero;
4004 }
4005
4006 uint32_t helper_fnstsw(void)
4007 {
4008 return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4009 }
4010
4011 uint32_t helper_fnstcw(void)
4012 {
4013 return env->fpuc;
4014 }
4015
4016 static void update_fp_status(void)
4017 {
4018 int rnd_type;
4019
4020 /* set rounding mode */
4021 switch(env->fpuc & RC_MASK) {
4022 default:
4023 case RC_NEAR:
4024 rnd_type = float_round_nearest_even;
4025 break;
4026 case RC_DOWN:
4027 rnd_type = float_round_down;
4028 break;
4029 case RC_UP:
4030 rnd_type = float_round_up;
4031 break;
4032 case RC_CHOP:
4033 rnd_type = float_round_to_zero;
4034 break;
4035 }
4036 set_float_rounding_mode(rnd_type, &env->fp_status);
4037 switch((env->fpuc >> 8) & 3) {
4038 case 0:
4039 rnd_type = 32;
4040 break;
4041 case 2:
4042 rnd_type = 64;
4043 break;
4044 case 3:
4045 default:
4046 rnd_type = 80;
4047 break;
4048 }
4049 set_floatx80_rounding_precision(rnd_type, &env->fp_status);
4050 }
4051
4052 void helper_fldcw(uint32_t val)
4053 {
4054 env->fpuc = val;
4055 update_fp_status();
4056 }
4057
4058 void helper_fclex(void)
4059 {
4060 env->fpus &= 0x7f00;
4061 }
4062
4063 void helper_fwait(void)
4064 {
4065 if (env->fpus & FPUS_SE)
4066 fpu_raise_exception();
4067 }
4068
4069 void helper_fninit(void)
4070 {
4071 env->fpus = 0;
4072 env->fpstt = 0;
4073 env->fpuc = 0x37f;
4074 env->fptags[0] = 1;
4075 env->fptags[1] = 1;
4076 env->fptags[2] = 1;
4077 env->fptags[3] = 1;
4078 env->fptags[4] = 1;
4079 env->fptags[5] = 1;
4080 env->fptags[6] = 1;
4081 env->fptags[7] = 1;
4082 }
4083
4084 /* BCD ops */
4085
4086 void helper_fbld_ST0(target_ulong ptr)
4087 {
4088 floatx80 tmp;
4089 uint64_t val;
4090 unsigned int v;
4091 int i;
4092
4093 val = 0;
4094 for(i = 8; i >= 0; i--) {
4095 v = ldub(ptr + i);
4096 val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
4097 }
4098 tmp = int64_to_floatx80(val, &env->fp_status);
4099 if (ldub(ptr + 9) & 0x80) {
4100 floatx80_chs(tmp);
4101 }
4102 fpush();
4103 ST0 = tmp;
4104 }
4105
4106 void helper_fbst_ST0(target_ulong ptr)
4107 {
4108 int v;
4109 target_ulong mem_ref, mem_end;
4110 int64_t val;
4111
4112 val = floatx80_to_int64(ST0, &env->fp_status);
4113 mem_ref = ptr;
4114 mem_end = mem_ref + 9;
4115 if (val < 0) {
4116 stb(mem_end, 0x80);
4117 val = -val;
4118 } else {
4119 stb(mem_end, 0x00);
4120 }
4121 while (mem_ref < mem_end) {
4122 if (val == 0)
4123 break;
4124 v = val % 100;
4125 val = val / 100;
4126 v = ((v / 10) << 4) | (v % 10);
4127 stb(mem_ref++, v);
4128 }
4129 while (mem_ref < mem_end) {
4130 stb(mem_ref++, 0);
4131 }
4132 }
4133
4134 void helper_f2xm1(void)
4135 {
4136 double val = floatx80_to_double(ST0);
4137 val = pow(2.0, val) - 1.0;
4138 ST0 = double_to_floatx80(val);
4139 }
4140
4141 void helper_fyl2x(void)
4142 {
4143 double fptemp = floatx80_to_double(ST0);
4144
4145 if (fptemp>0.0){
4146 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
4147 fptemp *= floatx80_to_double(ST1);
4148 ST1 = double_to_floatx80(fptemp);
4149 fpop();
4150 } else {
4151 env->fpus &= (~0x4700);
4152 env->fpus |= 0x400;
4153 }
4154 }
4155
4156 void helper_fptan(void)
4157 {
4158 double fptemp = floatx80_to_double(ST0);
4159
4160 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4161 env->fpus |= 0x400;
4162 } else {
4163 fptemp = tan(fptemp);
4164 ST0 = double_to_floatx80(fptemp);
4165 fpush();
4166 ST0 = floatx80_one;
4167 env->fpus &= (~0x400); /* C2 <-- 0 */
4168 /* the above code is for |arg| < 2**52 only */
4169 }
4170 }
4171
4172 void helper_fpatan(void)
4173 {
4174 double fptemp, fpsrcop;
4175
4176 fpsrcop = floatx80_to_double(ST1);
4177 fptemp = floatx80_to_double(ST0);
4178 ST1 = double_to_floatx80(atan2(fpsrcop, fptemp));
4179 fpop();
4180 }
4181
4182 void helper_fxtract(void)
4183 {
4184 CPU_LDoubleU temp;
4185
4186 temp.d = ST0;
4187
4188 if (floatx80_is_zero(ST0)) {
4189 /* Easy way to generate -inf and raising division by 0 exception */
4190 ST0 = floatx80_div(floatx80_chs(floatx80_one), floatx80_zero, &env->fp_status);
4191 fpush();
4192 ST0 = temp.d;
4193 } else {
4194 int expdif;
4195
4196 expdif = EXPD(temp) - EXPBIAS;
4197 /*DP exponent bias*/
4198 ST0 = int32_to_floatx80(expdif, &env->fp_status);
4199 fpush();
4200 BIASEXPONENT(temp);
4201 ST0 = temp.d;
4202 }
4203 }
4204
4205 void helper_fprem1(void)
4206 {
4207 double st0, st1, dblq, fpsrcop, fptemp;
4208 CPU_LDoubleU fpsrcop1, fptemp1;
4209 int expdif;
4210 signed long long int q;
4211
4212 st0 = floatx80_to_double(ST0);
4213 st1 = floatx80_to_double(ST1);
4214
4215 if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
4216 ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
4217 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4218 return;
4219 }
4220
4221 fpsrcop = st0;
4222 fptemp = st1;
4223 fpsrcop1.d = ST0;
4224 fptemp1.d = ST1;
4225 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4226
4227 if (expdif < 0) {
4228 /* optimisation? taken from the AMD docs */
4229 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4230 /* ST0 is unchanged */
4231 return;
4232 }
4233
4234 if (expdif < 53) {
4235 dblq = fpsrcop / fptemp;
4236 /* round dblq towards nearest integer */
4237 dblq = rint(dblq);
4238 st0 = fpsrcop - fptemp * dblq;
4239
4240 /* convert dblq to q by truncating towards zero */
4241 if (dblq < 0.0)
4242 q = (signed long long int)(-dblq);
4243 else
4244 q = (signed long long int)dblq;
4245
4246 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4247 /* (C0,C3,C1) <-- (q2,q1,q0) */
4248 env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
4249 env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4250 env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
4251 } else {
4252 env->fpus |= 0x400; /* C2 <-- 1 */
4253 fptemp = pow(2.0, expdif - 50);
4254 fpsrcop = (st0 / st1) / fptemp;
4255 /* fpsrcop = integer obtained by chopping */
4256 fpsrcop = (fpsrcop < 0.0) ?
4257 -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4258 st0 -= (st1 * fpsrcop * fptemp);
4259 }
4260 ST0 = double_to_floatx80(st0);
4261 }
4262
4263 void helper_fprem(void)
4264 {
4265 double st0, st1, dblq, fpsrcop, fptemp;
4266 CPU_LDoubleU fpsrcop1, fptemp1;
4267 int expdif;
4268 signed long long int q;
4269
4270 st0 = floatx80_to_double(ST0);
4271 st1 = floatx80_to_double(ST1);
4272
4273 if (isinf(st0) || isnan(st0) || isnan(st1) || (st1 == 0.0)) {
4274 ST0 = double_to_floatx80(0.0 / 0.0); /* NaN */
4275 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4276 return;
4277 }
4278
4279 fpsrcop = st0;
4280 fptemp = st1;
4281 fpsrcop1.d = ST0;
4282 fptemp1.d = ST1;
4283 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4284
4285 if (expdif < 0) {
4286 /* optimisation? taken from the AMD docs */
4287 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4288 /* ST0 is unchanged */
4289 return;
4290 }
4291
4292 if ( expdif < 53 ) {
4293 dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/;
4294 /* round dblq towards zero */
4295 dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
4296 st0 = fpsrcop/*ST0*/ - fptemp * dblq;
4297
4298 /* convert dblq to q by truncating towards zero */
4299 if (dblq < 0.0)
4300 q = (signed long long int)(-dblq);
4301 else
4302 q = (signed long long int)dblq;
4303
4304 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4305 /* (C0,C3,C1) <-- (q2,q1,q0) */
4306 env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
4307 env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4308 env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
4309 } else {
4310 int N = 32 + (expdif % 32); /* as per AMD docs */
4311 env->fpus |= 0x400; /* C2 <-- 1 */
4312 fptemp = pow(2.0, (double)(expdif - N));
4313 fpsrcop = (st0 / st1) / fptemp;
4314 /* fpsrcop = integer obtained by chopping */
4315 fpsrcop = (fpsrcop < 0.0) ?
4316 -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4317 st0 -= (st1 * fpsrcop * fptemp);
4318 }
4319 ST0 = double_to_floatx80(st0);
4320 }
4321
4322 void helper_fyl2xp1(void)
4323 {
4324 double fptemp = floatx80_to_double(ST0);
4325
4326 if ((fptemp+1.0)>0.0) {
4327 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
4328 fptemp *= floatx80_to_double(ST1);
4329 ST1 = double_to_floatx80(fptemp);
4330 fpop();
4331 } else {
4332 env->fpus &= (~0x4700);
4333 env->fpus |= 0x400;
4334 }
4335 }
4336
4337 void helper_fsqrt(void)
4338 {
4339 if (floatx80_is_neg(ST0)) {
4340 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4341 env->fpus |= 0x400;
4342 }
4343 ST0 = floatx80_sqrt(ST0, &env->fp_status);
4344 }
4345
4346 void helper_fsincos(void)
4347 {
4348 double fptemp = floatx80_to_double(ST0);
4349
4350 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4351 env->fpus |= 0x400;
4352 } else {
4353 ST0 = double_to_floatx80(sin(fptemp));
4354 fpush();
4355 ST0 = double_to_floatx80(cos(fptemp));
4356 env->fpus &= (~0x400); /* C2 <-- 0 */
4357 /* the above code is for |arg| < 2**63 only */
4358 }
4359 }
4360
4361 void helper_frndint(void)
4362 {
4363 ST0 = floatx80_round_to_int(ST0, &env->fp_status);
4364 }
4365
4366 void helper_fscale(void)
4367 {
4368 if (floatx80_is_any_nan(ST1)) {
4369 ST0 = ST1;
4370 } else {
4371 int n = floatx80_to_int32_round_to_zero(ST1, &env->fp_status);
4372 ST0 = floatx80_scalbn(ST0, n, &env->fp_status);
4373 }
4374 }
4375
4376 void helper_fsin(void)
4377 {
4378 double fptemp = floatx80_to_double(ST0);
4379
4380 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4381 env->fpus |= 0x400;
4382 } else {
4383 ST0 = double_to_floatx80(sin(fptemp));
4384 env->fpus &= (~0x400); /* C2 <-- 0 */
4385 /* the above code is for |arg| < 2**53 only */
4386 }
4387 }
4388
4389 void helper_fcos(void)
4390 {
4391 double fptemp = floatx80_to_double(ST0);
4392
4393 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4394 env->fpus |= 0x400;
4395 } else {
4396 ST0 = double_to_floatx80(cos(fptemp));
4397 env->fpus &= (~0x400); /* C2 <-- 0 */
4398 /* the above code is for |arg5 < 2**63 only */
4399 }
4400 }
4401
4402 void helper_fxam_ST0(void)
4403 {
4404 CPU_LDoubleU temp;
4405 int expdif;
4406
4407 temp.d = ST0;
4408
4409 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4410 if (SIGND(temp))
4411 env->fpus |= 0x200; /* C1 <-- 1 */
4412
4413 /* XXX: test fptags too */
4414 expdif = EXPD(temp);
4415 if (expdif == MAXEXPD) {
4416 if (MANTD(temp) == 0x8000000000000000ULL)
4417 env->fpus |= 0x500 /*Infinity*/;
4418 else
4419 env->fpus |= 0x100 /*NaN*/;
4420 } else if (expdif == 0) {
4421 if (MANTD(temp) == 0)
4422 env->fpus |= 0x4000 /*Zero*/;
4423 else
4424 env->fpus |= 0x4400 /*Denormal*/;
4425 } else {
4426 env->fpus |= 0x400;
4427 }
4428 }
4429
4430 void helper_fstenv(target_ulong ptr, int data32)
4431 {
4432 int fpus, fptag, exp, i;
4433 uint64_t mant;
4434 CPU_LDoubleU tmp;
4435
4436 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4437 fptag = 0;
4438 for (i=7; i>=0; i--) {
4439 fptag <<= 2;
4440 if (env->fptags[i]) {
4441 fptag |= 3;
4442 } else {
4443 tmp.d = env->fpregs[i].d;
4444 exp = EXPD(tmp);
4445 mant = MANTD(tmp);
4446 if (exp == 0 && mant == 0) {
4447 /* zero */
4448 fptag |= 1;
4449 } else if (exp == 0 || exp == MAXEXPD
4450 || (mant & (1LL << 63)) == 0
4451 ) {
4452 /* NaNs, infinity, denormal */
4453 fptag |= 2;
4454 }
4455 }
4456 }
4457 if (data32) {
4458 /* 32 bit */
4459 stl(ptr, env->fpuc);
4460 stl(ptr + 4, fpus);
4461 stl(ptr + 8, fptag);
4462 stl(ptr + 12, 0); /* fpip */
4463 stl(ptr + 16, 0); /* fpcs */
4464 stl(ptr + 20, 0); /* fpoo */
4465 stl(ptr + 24, 0); /* fpos */
4466 } else {
4467 /* 16 bit */
4468 stw(ptr, env->fpuc);
4469 stw(ptr + 2, fpus);
4470 stw(ptr + 4, fptag);
4471 stw(ptr + 6, 0);
4472 stw(ptr + 8, 0);
4473 stw(ptr + 10, 0);
4474 stw(ptr + 12, 0);
4475 }
4476 }
4477
4478 void helper_fldenv(target_ulong ptr, int data32)
4479 {
4480 int i, fpus, fptag;
4481
4482 if (data32) {
4483 env->fpuc = lduw(ptr);
4484 fpus = lduw(ptr + 4);
4485 fptag = lduw(ptr + 8);
4486 }
4487 else {
4488 env->fpuc = lduw(ptr);
4489 fpus = lduw(ptr + 2);
4490 fptag = lduw(ptr + 4);
4491 }
4492 env->fpstt = (fpus >> 11) & 7;
4493 env->fpus = fpus & ~0x3800;
4494 for(i = 0;i < 8; i++) {
4495 env->fptags[i] = ((fptag & 3) == 3);
4496 fptag >>= 2;
4497 }
4498 }
4499
4500 void helper_fsave(target_ulong ptr, int data32)
4501 {
4502 floatx80 tmp;
4503 int i;
4504
4505 helper_fstenv(ptr, data32);
4506
4507 ptr += (14 << data32);
4508 for(i = 0;i < 8; i++) {
4509 tmp = ST(i);
4510 helper_fstt(tmp, ptr);
4511 ptr += 10;
4512 }
4513
4514 /* fninit */
4515 env->fpus = 0;
4516 env->fpstt = 0;
4517 env->fpuc = 0x37f;
4518 env->fptags[0] = 1;
4519 env->fptags[1] = 1;
4520 env->fptags[2] = 1;
4521 env->fptags[3] = 1;
4522 env->fptags[4] = 1;
4523 env->fptags[5] = 1;
4524 env->fptags[6] = 1;
4525 env->fptags[7] = 1;
4526 }
4527
4528 void helper_frstor(target_ulong ptr, int data32)
4529 {
4530 floatx80 tmp;
4531 int i;
4532
4533 helper_fldenv(ptr, data32);
4534 ptr += (14 << data32);
4535
4536 for(i = 0;i < 8; i++) {
4537 tmp = helper_fldt(ptr);
4538 ST(i) = tmp;
4539 ptr += 10;
4540 }
4541 }
4542
4543
4544 #if defined(CONFIG_USER_ONLY)
4545 void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
4546 {
4547 CPUX86State *saved_env;
4548
4549 saved_env = env;
4550 env = s;
4551 if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
4552 selector &= 0xffff;
4553 cpu_x86_load_seg_cache(env, seg_reg, selector,
4554 (selector << 4), 0xffff, 0);
4555 } else {
4556 helper_load_seg(seg_reg, selector);
4557 }
4558 env = saved_env;
4559 }
4560
4561 void cpu_x86_fsave(CPUX86State *s, target_ulong ptr, int data32)
4562 {
4563 CPUX86State *saved_env;
4564
4565 saved_env = env;
4566 env = s;
4567
4568 helper_fsave(ptr, data32);
4569
4570 env = saved_env;
4571 }
4572
4573 void cpu_x86_frstor(CPUX86State *s, target_ulong ptr, int data32)
4574 {
4575 CPUX86State *saved_env;
4576
4577 saved_env = env;
4578 env = s;
4579
4580 helper_frstor(ptr, data32);
4581
4582 env = saved_env;
4583 }
4584 #endif
4585
4586 void helper_fxsave(target_ulong ptr, int data64)
4587 {
4588 int fpus, fptag, i, nb_xmm_regs;
4589 floatx80 tmp;
4590 target_ulong addr;
4591
4592 /* The operand must be 16 byte aligned */
4593 if (ptr & 0xf) {
4594 raise_exception(EXCP0D_GPF);
4595 }
4596
4597 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4598 fptag = 0;
4599 for(i = 0; i < 8; i++) {
4600 fptag |= (env->fptags[i] << i);
4601 }
4602 stw(ptr, env->fpuc);
4603 stw(ptr + 2, fpus);
4604 stw(ptr + 4, fptag ^ 0xff);
4605 #ifdef TARGET_X86_64
4606 if (data64) {
4607 stq(ptr + 0x08, 0); /* rip */
4608 stq(ptr + 0x10, 0); /* rdp */
4609 } else
4610 #endif
4611 {
4612 stl(ptr + 0x08, 0); /* eip */
4613 stl(ptr + 0x0c, 0); /* sel */
4614 stl(ptr + 0x10, 0); /* dp */
4615 stl(ptr + 0x14, 0); /* sel */
4616 }
4617
4618 addr = ptr + 0x20;
4619 for(i = 0;i < 8; i++) {
4620 tmp = ST(i);
4621 helper_fstt(tmp, addr);
4622 addr += 16;
4623 }
4624
4625 if (env->cr[4] & CR4_OSFXSR_MASK) {
4626 /* XXX: finish it */
4627 stl(ptr + 0x18, env->mxcsr); /* mxcsr */
4628 stl(ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */
4629 if (env->hflags & HF_CS64_MASK)
4630 nb_xmm_regs = 16;
4631 else
4632 nb_xmm_regs = 8;
4633 addr = ptr + 0xa0;
4634 /* Fast FXSAVE leaves out the XMM registers */
4635 if (!(env->efer & MSR_EFER_FFXSR)
4636 || (env->hflags & HF_CPL_MASK)
4637 || !(env->hflags & HF_LMA_MASK)) {
4638 for(i = 0; i < nb_xmm_regs; i++) {
4639 stq(addr, env->xmm_regs[i].XMM_Q(0));
4640 stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
4641 addr += 16;
4642 }
4643 }
4644 }
4645 }
4646
4647 void helper_fxrstor(target_ulong ptr, int data64)
4648 {
4649 int i, fpus, fptag, nb_xmm_regs;
4650 floatx80 tmp;
4651 target_ulong addr;
4652
4653 /* The operand must be 16 byte aligned */
4654 if (ptr & 0xf) {
4655 raise_exception(EXCP0D_GPF);
4656 }
4657
4658 env->fpuc = lduw(ptr);
4659 fpus = lduw(ptr + 2);
4660 fptag = lduw(ptr + 4);
4661 env->fpstt = (fpus >> 11) & 7;
4662 env->fpus = fpus & ~0x3800;
4663 fptag ^= 0xff;
4664 for(i = 0;i < 8; i++) {
4665 env->fptags[i] = ((fptag >> i) & 1);
4666 }
4667
4668 addr = ptr + 0x20;
4669 for(i = 0;i < 8; i++) {
4670 tmp = helper_fldt(addr);
4671 ST(i) = tmp;
4672 addr += 16;
4673 }
4674
4675 if (env->cr[4] & CR4_OSFXSR_MASK) {
4676 /* XXX: finish it */
4677 env->mxcsr = ldl(ptr + 0x18);
4678 //ldl(ptr + 0x1c);
4679 if (env->hflags & HF_CS64_MASK)
4680 nb_xmm_regs = 16;
4681 else
4682 nb_xmm_regs = 8;
4683 addr = ptr + 0xa0;
4684 /* Fast FXRESTORE leaves out the XMM registers */
4685 if (!(env->efer & MSR_EFER_FFXSR)
4686 || (env->hflags & HF_CPL_MASK)
4687 || !(env->hflags & HF_LMA_MASK)) {
4688 for(i = 0; i < nb_xmm_regs; i++) {
4689 env->xmm_regs[i].XMM_Q(0) = ldq(addr);
4690 env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
4691 addr += 16;
4692 }
4693 }
4694 }
4695 }
4696
4697 void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, floatx80 f)
4698 {
4699 CPU_LDoubleU temp;
4700
4701 temp.d = f;
4702 *pmant = temp.l.lower;
4703 *pexp = temp.l.upper;
4704 }
4705
4706 floatx80 cpu_set_fp80(uint64_t mant, uint16_t upper)
4707 {
4708 CPU_LDoubleU temp;
4709
4710 temp.l.upper = upper;
4711 temp.l.lower = mant;
4712 return temp.d;
4713 }
4714
4715 #ifdef TARGET_X86_64
4716
4717 //#define DEBUG_MULDIV
4718
4719 static void add128(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
4720 {
4721 *plow += a;
4722 /* carry test */
4723 if (*plow < a)
4724 (*phigh)++;
4725 *phigh += b;
4726 }
4727
4728 static void neg128(uint64_t *plow, uint64_t *phigh)
4729 {
4730 *plow = ~ *plow;
4731 *phigh = ~ *phigh;
4732 add128(plow, phigh, 1, 0);
4733 }
4734
4735 /* return TRUE if overflow */
4736 static int div64(uint64_t *plow, uint64_t *phigh, uint64_t b)
4737 {
4738 uint64_t q, r, a1, a0;
4739 int i, qb, ab;
4740
4741 a0 = *plow;
4742 a1 = *phigh;
4743 if (a1 == 0) {
4744 q = a0 / b;
4745 r = a0 % b;
4746 *plow = q;
4747 *phigh = r;
4748 } else {
4749 if (a1 >= b)
4750 return 1;
4751 /* XXX: use a better algorithm */
4752 for(i = 0; i < 64; i++) {
4753 ab = a1 >> 63;
4754 a1 = (a1 << 1) | (a0 >> 63);
4755 if (ab || a1 >= b) {
4756 a1 -= b;
4757 qb = 1;
4758 } else {
4759 qb = 0;
4760 }
4761 a0 = (a0 << 1) | qb;
4762 }
4763 #if defined(DEBUG_MULDIV)
4764 printf("div: 0x%016" PRIx64 "%016" PRIx64 " / 0x%016" PRIx64 ": q=0x%016" PRIx64 " r=0x%016" PRIx64 "\n",
4765 *phigh, *plow, b, a0, a1);
4766 #endif
4767 *plow = a0;
4768 *phigh = a1;
4769 }
4770 return 0;
4771 }
4772
4773 /* return TRUE if overflow */
4774 static int idiv64(uint64_t *plow, uint64_t *phigh, int64_t b)
4775 {
4776 int sa, sb;
4777 sa = ((int64_t)*phigh < 0);
4778 if (sa)
4779 neg128(plow, phigh);
4780 sb = (b < 0);
4781 if (sb)
4782 b = -b;
4783 if (div64(plow, phigh, b) != 0)
4784 return 1;
4785 if (sa ^ sb) {
4786 if (*plow > (1ULL << 63))
4787 return 1;
4788 *plow = - *plow;
4789 } else {
4790 if (*plow >= (1ULL << 63))
4791 return 1;
4792 }
4793 if (sa)
4794 *phigh = - *phigh;
4795 return 0;
4796 }
4797
4798 void helper_mulq_EAX_T0(target_ulong t0)
4799 {
4800 uint64_t r0, r1;
4801
4802 mulu64(&r0, &r1, EAX, t0);
4803 EAX = r0;
4804 EDX = r1;
4805 CC_DST = r0;
4806 CC_SRC = r1;
4807 }
4808
4809 void helper_imulq_EAX_T0(target_ulong t0)
4810 {
4811 uint64_t r0, r1;
4812
4813 muls64(&r0, &r1, EAX, t0);
4814 EAX = r0;
4815 EDX = r1;
4816 CC_DST = r0;
4817 CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4818 }
4819
4820 target_ulong helper_imulq_T0_T1(target_ulong t0, target_ulong t1)
4821 {
4822 uint64_t r0, r1;
4823
4824 muls64(&r0, &r1, t0, t1);
4825 CC_DST = r0;
4826 CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4827 return r0;
4828 }
4829
4830 void helper_divq_EAX(target_ulong t0)
4831 {
4832 uint64_t r0, r1;
4833 if (t0 == 0) {
4834 raise_exception(EXCP00_DIVZ);
4835 }
4836 r0 = EAX;
4837 r1 = EDX;
4838 if (div64(&r0, &r1, t0))
4839 raise_exception(EXCP00_DIVZ);
4840 EAX = r0;
4841 EDX = r1;
4842 }
4843
4844 void helper_idivq_EAX(target_ulong t0)
4845 {
4846 uint64_t r0, r1;
4847 if (t0 == 0) {
4848 raise_exception(EXCP00_DIVZ);
4849 }
4850 r0 = EAX;
4851 r1 = EDX;
4852 if (idiv64(&r0, &r1, t0))
4853 raise_exception(EXCP00_DIVZ);
4854 EAX = r0;
4855 EDX = r1;
4856 }
4857 #endif
4858
4859 static void do_hlt(void)
4860 {
4861 env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
4862 env->halted = 1;
4863 env->exception_index = EXCP_HLT;
4864 cpu_loop_exit(env);
4865 }
4866
4867 void helper_hlt(int next_eip_addend)
4868 {
4869 helper_svm_check_intercept_param(SVM_EXIT_HLT, 0);
4870 EIP += next_eip_addend;
4871
4872 do_hlt();
4873 }
4874
4875 void helper_monitor(target_ulong ptr)
4876 {
4877 if ((uint32_t)ECX != 0)
4878 raise_exception(EXCP0D_GPF);
4879 /* XXX: store address ? */
4880 helper_svm_check_intercept_param(SVM_EXIT_MONITOR, 0);
4881 }
4882
4883 void helper_mwait(int next_eip_addend)
4884 {
4885 if ((uint32_t)ECX != 0)
4886 raise_exception(EXCP0D_GPF);
4887 helper_svm_check_intercept_param(SVM_EXIT_MWAIT, 0);
4888 EIP += next_eip_addend;
4889
4890 /* XXX: not complete but not completely erroneous */
4891 if (env->cpu_index != 0 || env->next_cpu != NULL) {
4892 /* more than one CPU: do not sleep because another CPU may
4893 wake this one */
4894 } else {
4895 do_hlt();
4896 }
4897 }
4898
4899 void helper_debug(void)
4900 {
4901 env->exception_index = EXCP_DEBUG;
4902 cpu_loop_exit(env);
4903 }
4904
4905 void helper_reset_rf(void)
4906 {
4907 env->eflags &= ~RF_MASK;
4908 }
4909
4910 void helper_raise_interrupt(int intno, int next_eip_addend)
4911 {
4912 raise_interrupt(intno, 1, 0, next_eip_addend);
4913 }
4914
4915 void helper_raise_exception(int exception_index)
4916 {
4917 raise_exception(exception_index);
4918 }
4919
4920 void helper_cli(void)
4921 {
4922 env->eflags &= ~IF_MASK;
4923 }
4924
4925 void helper_sti(void)
4926 {
4927 env->eflags |= IF_MASK;
4928 }
4929
4930 #if 0
4931 /* vm86plus instructions */
4932 void helper_cli_vm(void)
4933 {
4934 env->eflags &= ~VIF_MASK;
4935 }
4936
4937 void helper_sti_vm(void)
4938 {
4939 env->eflags |= VIF_MASK;
4940 if (env->eflags & VIP_MASK) {
4941 raise_exception(EXCP0D_GPF);
4942 }
4943 }
4944 #endif
4945
4946 void helper_set_inhibit_irq(void)
4947 {
4948 env->hflags |= HF_INHIBIT_IRQ_MASK;
4949 }
4950
4951 void helper_reset_inhibit_irq(void)
4952 {
4953 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
4954 }
4955
4956 void helper_boundw(target_ulong a0, int v)
4957 {
4958 int low, high;
4959 low = ldsw(a0);
4960 high = ldsw(a0 + 2);
4961 v = (int16_t)v;
4962 if (v < low || v > high) {
4963 raise_exception(EXCP05_BOUND);
4964 }
4965 }
4966
4967 void helper_boundl(target_ulong a0, int v)
4968 {
4969 int low, high;
4970 low = ldl(a0);
4971 high = ldl(a0 + 4);
4972 if (v < low || v > high) {
4973 raise_exception(EXCP05_BOUND);
4974 }
4975 }
4976
4977 #if !defined(CONFIG_USER_ONLY)
4978
4979 #define MMUSUFFIX _mmu
4980
4981 #define SHIFT 0
4982 #include "softmmu_template.h"
4983
4984 #define SHIFT 1
4985 #include "softmmu_template.h"
4986
4987 #define SHIFT 2
4988 #include "softmmu_template.h"
4989
4990 #define SHIFT 3
4991 #include "softmmu_template.h"
4992
4993 #endif
4994
4995 #if !defined(CONFIG_USER_ONLY)
4996 /* try to fill the TLB and return an exception if error. If retaddr is
4997 NULL, it means that the function was called in C code (i.e. not
4998 from generated code or from helper.c) */
4999 /* XXX: fix it to restore all registers */
5000 void tlb_fill(CPUState *env1, target_ulong addr, int is_write, int mmu_idx,
5001 void *retaddr)
5002 {
5003 TranslationBlock *tb;
5004 int ret;
5005 unsigned long pc;
5006 CPUX86State *saved_env;
5007
5008 saved_env = env;
5009 env = env1;
5010
5011 ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx);
5012 if (ret) {
5013 if (retaddr) {
5014 /* now we have a real cpu fault */
5015 pc = (unsigned long)retaddr;
5016 tb = tb_find_pc(pc);
5017 if (tb) {
5018 /* the PC is inside the translated code. It means that we have
5019 a virtual CPU fault */
5020 cpu_restore_state(tb, env, pc);
5021 }
5022 }
5023 raise_exception_err(env->exception_index, env->error_code);
5024 }
5025 env = saved_env;
5026 }
5027 #endif
5028
5029 /* Secure Virtual Machine helpers */
5030
5031 #if defined(CONFIG_USER_ONLY)
5032
5033 void helper_vmrun(int aflag, int next_eip_addend)
5034 {
5035 }
5036 void helper_vmmcall(void)
5037 {
5038 }
5039 void helper_vmload(int aflag)
5040 {
5041 }
5042 void helper_vmsave(int aflag)
5043 {
5044 }
5045 void helper_stgi(void)
5046 {
5047 }
5048 void helper_clgi(void)
5049 {
5050 }
5051 void helper_skinit(void)
5052 {
5053 }
5054 void helper_invlpga(int aflag)
5055 {
5056 }
5057 void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
5058 {
5059 }
5060 void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
5061 {
5062 }
5063
5064 void svm_check_intercept(CPUState *env1, uint32_t type)
5065 {
5066 }
5067
5068 void helper_svm_check_io(uint32_t port, uint32_t param,
5069 uint32_t next_eip_addend)
5070 {
5071 }
5072 #else
5073
5074 static inline void svm_save_seg(target_phys_addr_t addr,
5075 const SegmentCache *sc)
5076 {
5077 stw_phys(addr + offsetof(struct vmcb_seg, selector),
5078 sc->selector);
5079 stq_phys(addr + offsetof(struct vmcb_seg, base),
5080 sc->base);
5081 stl_phys(addr + offsetof(struct vmcb_seg, limit),
5082 sc->limit);
5083 stw_phys(addr + offsetof(struct vmcb_seg, attrib),
5084 ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
5085 }
5086
5087 static inline void svm_load_seg(target_phys_addr_t addr, SegmentCache *sc)
5088 {
5089 unsigned int flags;
5090
5091 sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector));
5092 sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base));
5093 sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit));
5094 flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib));
5095 sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
5096 }
5097
5098 static inline void svm_load_seg_cache(target_phys_addr_t addr,
5099 CPUState *env, int seg_reg)
5100 {
5101 SegmentCache sc1, *sc = &sc1;
5102 svm_load_seg(addr, sc);
5103 cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
5104 sc->base, sc->limit, sc->flags);
5105 }
5106
5107 void helper_vmrun(int aflag, int next_eip_addend)
5108 {
5109 target_ulong addr;
5110 uint32_t event_inj;
5111 uint32_t int_ctl;
5112
5113 helper_svm_check_intercept_param(SVM_EXIT_VMRUN, 0);
5114
5115 if (aflag == 2)
5116 addr = EAX;
5117 else
5118 addr = (uint32_t)EAX;
5119
5120 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
5121
5122 env->vm_vmcb = addr;
5123
5124 /* save the current CPU state in the hsave page */
5125 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
5126 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
5127
5128 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base);
5129 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
5130
5131 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
5132 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
5133 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
5134 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
5135 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
5136 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
5137
5138 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
5139 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags());
5140
5141 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.es),
5142 &env->segs[R_ES]);
5143 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.cs),
5144 &env->segs[R_CS]);
5145 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ss),
5146 &env->segs[R_SS]);
5147 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ds),
5148 &env->segs[R_DS]);
5149
5150 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip),
5151 EIP + next_eip_addend);
5152 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP);
5153 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX);
5154
5155 /* load the interception bitmaps so we do not need to access the
5156 vmcb in svm mode */
5157 env->intercept = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept));
5158 env->intercept_cr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read));
5159 env->intercept_cr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write));
5160 env->intercept_dr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read));
5161 env->intercept_dr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write));
5162 env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions));
5163
5164 /* enable intercepts */
5165 env->hflags |= HF_SVMI_MASK;
5166
5167 env->tsc_offset = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset));
5168
5169 env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base));
5170 env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit));
5171
5172 env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base));
5173 env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit));
5174
5175 /* clear exit_info_2 so we behave like the real hardware */
5176 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
5177
5178 cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0)));
5179 cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4)));
5180 cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3)));
5181 env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
5182 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
5183 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
5184 if (int_ctl & V_INTR_MASKING_MASK) {
5185 env->v_tpr = int_ctl & V_TPR_MASK;
5186 env->hflags2 |= HF2_VINTR_MASK;
5187 if (env->eflags & IF_MASK)
5188 env->hflags2 |= HF2_HIF_MASK;
5189 }
5190
5191 cpu_load_efer(env,
5192 ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer)));
5193 env->eflags = 0;
5194 load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)),
5195 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
5196 CC_OP = CC_OP_EFLAGS;
5197
5198 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.es),
5199 env, R_ES);
5200 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.cs),
5201 env, R_CS);
5202 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ss),
5203 env, R_SS);
5204 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ds),
5205 env, R_DS);
5206
5207 EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
5208 env->eip = EIP;
5209 ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
5210 EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
5211 env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
5212 env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
5213 cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl)));
5214
5215 /* FIXME: guest state consistency checks */
5216
5217 switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
5218 case TLB_CONTROL_DO_NOTHING:
5219 break;
5220 case TLB_CONTROL_FLUSH_ALL_ASID:
5221 /* FIXME: this is not 100% correct but should work for now */
5222 tlb_flush(env, 1);
5223 break;
5224 }
5225
5226 env->hflags2 |= HF2_GIF_MASK;
5227
5228 if (int_ctl & V_IRQ_MASK) {
5229 env->interrupt_request |= CPU_INTERRUPT_VIRQ;
5230 }
5231
5232 /* maybe we need to inject an event */
5233 event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
5234 if (event_inj & SVM_EVTINJ_VALID) {
5235 uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
5236 uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
5237 uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
5238
5239 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
5240 /* FIXME: need to implement valid_err */
5241 switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
5242 case SVM_EVTINJ_TYPE_INTR:
5243 env->exception_index = vector;
5244 env->error_code = event_inj_err;
5245 env->exception_is_int = 0;
5246 env->exception_next_eip = -1;
5247 qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
5248 /* XXX: is it always correct ? */
5249 do_interrupt_all(vector, 0, 0, 0, 1);
5250 break;
5251 case SVM_EVTINJ_TYPE_NMI:
5252 env->exception_index = EXCP02_NMI;
5253 env->error_code = event_inj_err;
5254 env->exception_is_int = 0;
5255 env->exception_next_eip = EIP;
5256 qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
5257 cpu_loop_exit(env);
5258 break;
5259 case SVM_EVTINJ_TYPE_EXEPT:
5260 env->exception_index = vector;
5261 env->error_code = event_inj_err;
5262 env->exception_is_int = 0;
5263 env->exception_next_eip = -1;
5264 qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
5265 cpu_loop_exit(env);
5266 break;
5267 case SVM_EVTINJ_TYPE_SOFT:
5268 env->exception_index = vector;
5269 env->error_code = event_inj_err;
5270 env->exception_is_int = 1;
5271 env->exception_next_eip = EIP;
5272 qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
5273 cpu_loop_exit(env);
5274 break;
5275 }
5276 qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index, env->error_code);
5277 }
5278 }
5279
5280 void helper_vmmcall(void)
5281 {
5282 helper_svm_check_intercept_param(SVM_EXIT_VMMCALL, 0);
5283 raise_exception(EXCP06_ILLOP);
5284 }
5285
5286 void helper_vmload(int aflag)
5287 {
5288 target_ulong addr;
5289 helper_svm_check_intercept_param(SVM_EXIT_VMLOAD, 0);
5290
5291 if (aflag == 2)
5292 addr = EAX;
5293 else
5294 addr = (uint32_t)EAX;
5295
5296 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
5297 addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
5298 env->segs[R_FS].base);
5299
5300 svm_load_seg_cache(addr + offsetof(struct vmcb, save.fs),
5301 env, R_FS);
5302 svm_load_seg_cache(addr + offsetof(struct vmcb, save.gs),
5303 env, R_GS);
5304 svm_load_seg(addr + offsetof(struct vmcb, save.tr),
5305 &env->tr);
5306 svm_load_seg(addr + offsetof(struct vmcb, save.ldtr),
5307 &env->ldt);
5308
5309 #ifdef TARGET_X86_64
5310 env->kernelgsbase = ldq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base));
5311 env->lstar = ldq_phys(addr + offsetof(struct vmcb, save.lstar));
5312 env->cstar = ldq_phys(addr + offsetof(struct vmcb, save.cstar));
5313 env->fmask = ldq_phys(addr + offsetof(struct vmcb, save.sfmask));
5314 #endif
5315 env->star = ldq_phys(addr + offsetof(struct vmcb, save.star));
5316 env->sysenter_cs = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_cs));
5317 env->sysenter_esp = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_esp));
5318 env->sysenter_eip = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_eip));
5319 }
5320
5321 void helper_vmsave(int aflag)
5322 {
5323 target_ulong addr;
5324 helper_svm_check_intercept_param(SVM_EXIT_VMSAVE, 0);
5325
5326 if (aflag == 2)
5327 addr = EAX;
5328 else
5329 addr = (uint32_t)EAX;
5330
5331 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
5332 addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
5333 env->segs[R_FS].base);
5334
5335 svm_save_seg(addr + offsetof(struct vmcb, save.fs),
5336 &env->segs[R_FS]);
5337 svm_save_seg(addr + offsetof(struct vmcb, save.gs),
5338 &env->segs[R_GS]);
5339 svm_save_seg(addr + offsetof(struct vmcb, save.tr),
5340 &env->tr);
5341 svm_save_seg(addr + offsetof(struct vmcb, save.ldtr),
5342 &env->ldt);
5343
5344 #ifdef TARGET_X86_64
5345 stq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase);
5346 stq_phys(addr + offsetof(struct vmcb, save.lstar), env->lstar);
5347 stq_phys(addr + offsetof(struct vmcb, save.cstar), env->cstar);
5348 stq_phys(addr + offsetof(struct vmcb, save.sfmask), env->fmask);
5349 #endif
5350 stq_phys(addr + offsetof(struct vmcb, save.star), env->star);
5351 stq_phys(addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
5352 stq_phys(addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp);
5353 stq_phys(addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip);
5354 }
5355
5356 void helper_stgi(void)
5357 {
5358 helper_svm_check_intercept_param(SVM_EXIT_STGI, 0);
5359 env->hflags2 |= HF2_GIF_MASK;
5360 }
5361
5362 void helper_clgi(void)
5363 {
5364 helper_svm_check_intercept_param(SVM_EXIT_CLGI, 0);
5365 env->hflags2 &= ~HF2_GIF_MASK;
5366 }
5367
5368 void helper_skinit(void)
5369 {
5370 helper_svm_check_intercept_param(SVM_EXIT_SKINIT, 0);
5371 /* XXX: not implemented */
5372 raise_exception(EXCP06_ILLOP);
5373 }
5374
5375 void helper_invlpga(int aflag)
5376 {
5377 target_ulong addr;
5378 helper_svm_check_intercept_param(SVM_EXIT_INVLPGA, 0);
5379
5380 if (aflag == 2)
5381 addr = EAX;
5382 else
5383 addr = (uint32_t)EAX;
5384
5385 /* XXX: could use the ASID to see if it is needed to do the
5386 flush */
5387 tlb_flush_page(env, addr);
5388 }
5389
5390 void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
5391 {
5392 if (likely(!(env->hflags & HF_SVMI_MASK)))
5393 return;
5394 switch(type) {
5395 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
5396 if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
5397 helper_vmexit(type, param);
5398 }
5399 break;
5400 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
5401 if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
5402 helper_vmexit(type, param);
5403 }
5404 break;
5405 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
5406 if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
5407 helper_vmexit(type, param);
5408 }
5409 break;
5410 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
5411 if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
5412 helper_vmexit(type, param);
5413 }
5414 break;
5415 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
5416 if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
5417 helper_vmexit(type, param);
5418 }
5419 break;
5420 case SVM_EXIT_MSR:
5421 if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
5422 /* FIXME: this should be read in at vmrun (faster this way?) */
5423 uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa));
5424 uint32_t t0, t1;
5425 switch((uint32_t)ECX) {
5426 case 0 ... 0x1fff:
5427 t0 = (ECX * 2) % 8;
5428 t1 = (ECX * 2) / 8;
5429 break;
5430 case 0xc0000000 ... 0xc0001fff:
5431 t0 = (8192 + ECX - 0xc0000000) * 2;
5432 t1 = (t0 / 8);
5433 t0 %= 8;
5434 break;
5435 case 0xc0010000 ... 0xc0011fff:
5436 t0 = (16384 + ECX - 0xc0010000) * 2;
5437 t1 = (t0 / 8);
5438 t0 %= 8;
5439 break;
5440 default:
5441 helper_vmexit(type, param);
5442 t0 = 0;
5443 t1 = 0;
5444 break;
5445 }
5446 if (ldub_phys(addr + t1) & ((1 << param) << t0))
5447 helper_vmexit(type, param);
5448 }
5449 break;
5450 default:
5451 if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
5452 helper_vmexit(type, param);
5453 }
5454 break;
5455 }
5456 }
5457
5458 void svm_check_intercept(CPUState *env1, uint32_t type)
5459 {
5460 CPUState *saved_env;
5461
5462 saved_env = env;
5463 env = env1;
5464 helper_svm_check_intercept_param(type, 0);
5465 env = saved_env;
5466 }
5467
5468 void helper_svm_check_io(uint32_t port, uint32_t param,
5469 uint32_t next_eip_addend)
5470 {
5471 if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
5472 /* FIXME: this should be read in at vmrun (faster this way?) */
5473 uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa));
5474 uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
5475 if(lduw_phys(addr + port / 8) & (mask << (port & 7))) {
5476 /* next EIP */
5477 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
5478 env->eip + next_eip_addend);
5479 helper_vmexit(SVM_EXIT_IOIO, param | (port << 16));
5480 }
5481 }
5482 }
5483
5484 /* Note: currently only 32 bits of exit_code are used */
5485 void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
5486 {
5487 uint32_t int_ctl;
5488
5489 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n",
5490 exit_code, exit_info_1,
5491 ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)),
5492 EIP);
5493
5494 if(env->hflags & HF_INHIBIT_IRQ_MASK) {
5495 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK);
5496 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
5497 } else {
5498 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
5499 }
5500
5501 /* Save the VM state in the vmcb */
5502 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.es),
5503 &env->segs[R_ES]);
5504 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.cs),
5505 &env->segs[R_CS]);
5506 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ss),
5507 &env->segs[R_SS]);
5508 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ds),
5509 &env->segs[R_DS]);
5510
5511 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
5512 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
5513
5514 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base);
5515 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
5516
5517 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
5518 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
5519 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
5520 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
5521 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
5522
5523 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
5524 int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
5525 int_ctl |= env->v_tpr & V_TPR_MASK;
5526 if (env->interrupt_request & CPU_INTERRUPT_VIRQ)
5527 int_ctl |= V_IRQ_MASK;
5528 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
5529
5530 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags), compute_eflags());
5531 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip);
5532 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp), ESP);
5533 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax), EAX);
5534 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
5535 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
5536 stb_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK);
5537
5538 /* Reload the host state from vm_hsave */
5539 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
5540 env->hflags &= ~HF_SVMI_MASK;
5541 env->intercept = 0;
5542 env->intercept_exceptions = 0;
5543 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
5544 env->tsc_offset = 0;
5545
5546 env->gdt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base));
5547 env->gdt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit));
5548
5549 env->idt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base));
5550 env->idt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit));
5551
5552 cpu_x86_update_cr0(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK);
5553 cpu_x86_update_cr4(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4)));
5554 cpu_x86_update_cr3(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3)));
5555 /* we need to set the efer after the crs so the hidden flags get
5556 set properly */
5557 cpu_load_efer(env,
5558 ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer)));
5559 env->eflags = 0;
5560 load_eflags(ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags)),
5561 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
5562 CC_OP = CC_OP_EFLAGS;
5563
5564 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.es),
5565 env, R_ES);
5566 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.cs),
5567 env, R_CS);
5568 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ss),
5569 env, R_SS);
5570 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ds),
5571 env, R_DS);
5572
5573 EIP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip));
5574 ESP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp));
5575 EAX = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax));
5576
5577 env->dr[6] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6));
5578 env->dr[7] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7));
5579
5580 /* other setups */
5581 cpu_x86_set_cpl(env, 0);
5582 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code);
5583 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1);
5584
5585 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
5586 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)));
5587 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
5588 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)));
5589 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
5590
5591 env->hflags2 &= ~HF2_GIF_MASK;
5592 /* FIXME: Resets the current ASID register to zero (host ASID). */
5593
5594 /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
5595
5596 /* Clears the TSC_OFFSET inside the processor. */
5597
5598 /* If the host is in PAE mode, the processor reloads the host's PDPEs
5599 from the page table indicated the host's CR3. If the PDPEs contain
5600 illegal state, the processor causes a shutdown. */
5601
5602 /* Forces CR0.PE = 1, RFLAGS.VM = 0. */
5603 env->cr[0] |= CR0_PE_MASK;
5604 env->eflags &= ~VM_MASK;
5605
5606 /* Disables all breakpoints in the host DR7 register. */
5607
5608 /* Checks the reloaded host state for consistency. */
5609
5610 /* If the host's rIP reloaded by #VMEXIT is outside the limit of the
5611 host's code segment or non-canonical (in the case of long mode), a
5612 #GP fault is delivered inside the host.) */
5613
5614 /* remove any pending exception */
5615 env->exception_index = -1;
5616 env->error_code = 0;
5617 env->old_exception = -1;
5618
5619 cpu_loop_exit(env);
5620 }
5621
5622 #endif
5623
5624 /* MMX/SSE */
5625 /* XXX: optimize by storing fptt and fptags in the static cpu state */
5626 void helper_enter_mmx(void)
5627 {
5628 env->fpstt = 0;
5629 *(uint32_t *)(env->fptags) = 0;
5630 *(uint32_t *)(env->fptags + 4) = 0;
5631 }
5632
5633 void helper_emms(void)
5634 {
5635 /* set to empty state */
5636 *(uint32_t *)(env->fptags) = 0x01010101;
5637 *(uint32_t *)(env->fptags + 4) = 0x01010101;
5638 }
5639
5640 /* XXX: suppress */
5641 void helper_movq(void *d, void *s)
5642 {
5643 *(uint64_t *)d = *(uint64_t *)s;
5644 }
5645
5646 #define SHIFT 0
5647 #include "ops_sse.h"
5648
5649 #define SHIFT 1
5650 #include "ops_sse.h"
5651
5652 #define SHIFT 0
5653 #include "helper_template.h"
5654 #undef SHIFT
5655
5656 #define SHIFT 1
5657 #include "helper_template.h"
5658 #undef SHIFT
5659
5660 #define SHIFT 2
5661 #include "helper_template.h"
5662 #undef SHIFT
5663
5664 #ifdef TARGET_X86_64
5665
5666 #define SHIFT 3
5667 #include "helper_template.h"
5668 #undef SHIFT
5669
5670 #endif
5671
5672 /* bit operations */
5673 target_ulong helper_bsf(target_ulong t0)
5674 {
5675 int count;
5676 target_ulong res;
5677
5678 res = t0;
5679 count = 0;
5680 while ((res & 1) == 0) {
5681 count++;
5682 res >>= 1;
5683 }
5684 return count;
5685 }
5686
5687 target_ulong helper_lzcnt(target_ulong t0, int wordsize)
5688 {
5689 int count;
5690 target_ulong res, mask;
5691
5692 if (wordsize > 0 && t0 == 0) {
5693 return wordsize;
5694 }
5695 res = t0;
5696 count = TARGET_LONG_BITS - 1;
5697 mask = (target_ulong)1 << (TARGET_LONG_BITS - 1);
5698 while ((res & mask) == 0) {
5699 count--;
5700 res <<= 1;
5701 }
5702 if (wordsize > 0) {
5703 return wordsize - 1 - count;
5704 }
5705 return count;
5706 }
5707
5708 target_ulong helper_bsr(target_ulong t0)
5709 {
5710 return helper_lzcnt(t0, 0);
5711 }
5712
5713 static int compute_all_eflags(void)
5714 {
5715 return CC_SRC;
5716 }
5717
5718 static int compute_c_eflags(void)
5719 {
5720 return CC_SRC & CC_C;
5721 }
5722
5723 uint32_t helper_cc_compute_all(int op)
5724 {
5725 switch (op) {
5726 default: /* should never happen */ return 0;
5727
5728 case CC_OP_EFLAGS: return compute_all_eflags();
5729
5730 case CC_OP_MULB: return compute_all_mulb();
5731 case CC_OP_MULW: return compute_all_mulw();
5732 case CC_OP_MULL: return compute_all_mull();
5733
5734 case CC_OP_ADDB: return compute_all_addb();
5735 case CC_OP_ADDW: return compute_all_addw();
5736 case CC_OP_ADDL: return compute_all_addl();
5737
5738 case CC_OP_ADCB: return compute_all_adcb();
5739 case CC_OP_ADCW: return compute_all_adcw();
5740 case CC_OP_ADCL: return compute_all_adcl();
5741
5742 case CC_OP_SUBB: return compute_all_subb();
5743 case CC_OP_SUBW: return compute_all_subw();
5744 case CC_OP_SUBL: return compute_all_subl();
5745
5746 case CC_OP_SBBB: return compute_all_sbbb();
5747 case CC_OP_SBBW: return compute_all_sbbw();
5748 case CC_OP_SBBL: return compute_all_sbbl();
5749
5750 case CC_OP_LOGICB: return compute_all_logicb();
5751 case CC_OP_LOGICW: return compute_all_logicw();
5752 case CC_OP_LOGICL: return compute_all_logicl();
5753
5754 case CC_OP_INCB: return compute_all_incb();
5755 case CC_OP_INCW: return compute_all_incw();
5756 case CC_OP_INCL: return compute_all_incl();
5757
5758 case CC_OP_DECB: return compute_all_decb();
5759 case CC_OP_DECW: return compute_all_decw();
5760 case CC_OP_DECL: return compute_all_decl();
5761
5762 case CC_OP_SHLB: return compute_all_shlb();
5763 case CC_OP_SHLW: return compute_all_shlw();
5764 case CC_OP_SHLL: return compute_all_shll();
5765
5766 case CC_OP_SARB: return compute_all_sarb();
5767 case CC_OP_SARW: return compute_all_sarw();
5768 case CC_OP_SARL: return compute_all_sarl();
5769
5770 #ifdef TARGET_X86_64
5771 case CC_OP_MULQ: return compute_all_mulq();
5772
5773 case CC_OP_ADDQ: return compute_all_addq();
5774
5775 case CC_OP_ADCQ: return compute_all_adcq();
5776
5777 case CC_OP_SUBQ: return compute_all_subq();
5778
5779 case CC_OP_SBBQ: return compute_all_sbbq();
5780
5781 case CC_OP_LOGICQ: return compute_all_logicq();
5782
5783 case CC_OP_INCQ: return compute_all_incq();
5784
5785 case CC_OP_DECQ: return compute_all_decq();
5786
5787 case CC_OP_SHLQ: return compute_all_shlq();
5788
5789 case CC_OP_SARQ: return compute_all_sarq();
5790 #endif
5791 }
5792 }
5793
5794 uint32_t cpu_cc_compute_all(CPUState *env1, int op)
5795 {
5796 CPUState *saved_env;
5797 uint32_t ret;
5798
5799 saved_env = env;
5800 env = env1;
5801 ret = helper_cc_compute_all(op);
5802 env = saved_env;
5803 return ret;
5804 }
5805
5806 uint32_t helper_cc_compute_c(int op)
5807 {
5808 switch (op) {
5809 default: /* should never happen */ return 0;
5810
5811 case CC_OP_EFLAGS: return compute_c_eflags();
5812
5813 case CC_OP_MULB: return compute_c_mull();
5814 case CC_OP_MULW: return compute_c_mull();
5815 case CC_OP_MULL: return compute_c_mull();
5816
5817 case CC_OP_ADDB: return compute_c_addb();
5818 case CC_OP_ADDW: return compute_c_addw();
5819 case CC_OP_ADDL: return compute_c_addl();
5820
5821 case CC_OP_ADCB: return compute_c_adcb();
5822 case CC_OP_ADCW: return compute_c_adcw();
5823 case CC_OP_ADCL: return compute_c_adcl();
5824
5825 case CC_OP_SUBB: return compute_c_subb();
5826 case CC_OP_SUBW: return compute_c_subw();
5827 case CC_OP_SUBL: return compute_c_subl();
5828
5829 case CC_OP_SBBB: return compute_c_sbbb();
5830 case CC_OP_SBBW: return compute_c_sbbw();
5831 case CC_OP_SBBL: return compute_c_sbbl();
5832
5833 case CC_OP_LOGICB: return compute_c_logicb();
5834 case CC_OP_LOGICW: return compute_c_logicw();
5835 case CC_OP_LOGICL: return compute_c_logicl();
5836
5837 case CC_OP_INCB: return compute_c_incl();
5838 case CC_OP_INCW: return compute_c_incl();
5839 case CC_OP_INCL: return compute_c_incl();
5840
5841 case CC_OP_DECB: return compute_c_incl();
5842 case CC_OP_DECW: return compute_c_incl();
5843 case CC_OP_DECL: return compute_c_incl();
5844
5845 case CC_OP_SHLB: return compute_c_shlb();
5846 case CC_OP_SHLW: return compute_c_shlw();
5847 case CC_OP_SHLL: return compute_c_shll();
5848
5849 case CC_OP_SARB: return compute_c_sarl();
5850 case CC_OP_SARW: return compute_c_sarl();
5851 case CC_OP_SARL: return compute_c_sarl();
5852
5853 #ifdef TARGET_X86_64
5854 case CC_OP_MULQ: return compute_c_mull();
5855
5856 case CC_OP_ADDQ: return compute_c_addq();
5857
5858 case CC_OP_ADCQ: return compute_c_adcq();
5859
5860 case CC_OP_SUBQ: return compute_c_subq();
5861
5862 case CC_OP_SBBQ: return compute_c_sbbq();
5863
5864 case CC_OP_LOGICQ: return compute_c_logicq();
5865
5866 case CC_OP_INCQ: return compute_c_incl();
5867
5868 case CC_OP_DECQ: return compute_c_incl();
5869
5870 case CC_OP_SHLQ: return compute_c_shlq();
5871
5872 case CC_OP_SARQ: return compute_c_sarl();
5873 #endif
5874 }
5875 }