]> git.proxmox.com Git - qemu.git/blob - target-i386/op_helper.c
target-i386: replace approx_rsqrt and approx_rcp by softfloat ops
[qemu.git] / target-i386 / op_helper.c
1 /*
2 * i386 helpers
3 *
4 * Copyright (c) 2003 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include "exec.h"
21 #include "exec-all.h"
22 #include "host-utils.h"
23 #include "ioport.h"
24
25 //#define DEBUG_PCALL
26
27
28 #ifdef DEBUG_PCALL
29 # define LOG_PCALL(...) qemu_log_mask(CPU_LOG_PCALL, ## __VA_ARGS__)
30 # define LOG_PCALL_STATE(env) \
31 log_cpu_state_mask(CPU_LOG_PCALL, (env), X86_DUMP_CCOP)
32 #else
33 # define LOG_PCALL(...) do { } while (0)
34 # define LOG_PCALL_STATE(env) do { } while (0)
35 #endif
36
37
38 #if 0
39 #define raise_exception_err(a, b)\
40 do {\
41 qemu_log("raise_exception line=%d\n", __LINE__);\
42 (raise_exception_err)(a, b);\
43 } while (0)
44 #endif
45
46 static const uint8_t parity_table[256] = {
47 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
48 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
49 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
50 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
51 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
52 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
53 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
54 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
55 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
56 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
57 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
58 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
59 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
60 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
61 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
62 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
63 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
64 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
65 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
66 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
67 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
68 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
69 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
70 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
71 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
72 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
73 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
74 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
75 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
76 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
77 CC_P, 0, 0, CC_P, 0, CC_P, CC_P, 0,
78 0, CC_P, CC_P, 0, CC_P, 0, 0, CC_P,
79 };
80
81 /* modulo 17 table */
82 static const uint8_t rclw_table[32] = {
83 0, 1, 2, 3, 4, 5, 6, 7,
84 8, 9,10,11,12,13,14,15,
85 16, 0, 1, 2, 3, 4, 5, 6,
86 7, 8, 9,10,11,12,13,14,
87 };
88
89 /* modulo 9 table */
90 static const uint8_t rclb_table[32] = {
91 0, 1, 2, 3, 4, 5, 6, 7,
92 8, 0, 1, 2, 3, 4, 5, 6,
93 7, 8, 0, 1, 2, 3, 4, 5,
94 6, 7, 8, 0, 1, 2, 3, 4,
95 };
96
97 static const CPU86_LDouble f15rk[7] =
98 {
99 0.00000000000000000000L,
100 1.00000000000000000000L,
101 3.14159265358979323851L, /*pi*/
102 0.30102999566398119523L, /*lg2*/
103 0.69314718055994530943L, /*ln2*/
104 1.44269504088896340739L, /*l2e*/
105 3.32192809488736234781L, /*l2t*/
106 };
107
108 /* broken thread support */
109
110 static spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED;
111
112 void helper_lock(void)
113 {
114 spin_lock(&global_cpu_lock);
115 }
116
117 void helper_unlock(void)
118 {
119 spin_unlock(&global_cpu_lock);
120 }
121
122 void helper_write_eflags(target_ulong t0, uint32_t update_mask)
123 {
124 load_eflags(t0, update_mask);
125 }
126
127 target_ulong helper_read_eflags(void)
128 {
129 uint32_t eflags;
130 eflags = helper_cc_compute_all(CC_OP);
131 eflags |= (DF & DF_MASK);
132 eflags |= env->eflags & ~(VM_MASK | RF_MASK);
133 return eflags;
134 }
135
136 /* return non zero if error */
137 static inline int load_segment(uint32_t *e1_ptr, uint32_t *e2_ptr,
138 int selector)
139 {
140 SegmentCache *dt;
141 int index;
142 target_ulong ptr;
143
144 if (selector & 0x4)
145 dt = &env->ldt;
146 else
147 dt = &env->gdt;
148 index = selector & ~7;
149 if ((index + 7) > dt->limit)
150 return -1;
151 ptr = dt->base + index;
152 *e1_ptr = ldl_kernel(ptr);
153 *e2_ptr = ldl_kernel(ptr + 4);
154 return 0;
155 }
156
157 static inline unsigned int get_seg_limit(uint32_t e1, uint32_t e2)
158 {
159 unsigned int limit;
160 limit = (e1 & 0xffff) | (e2 & 0x000f0000);
161 if (e2 & DESC_G_MASK)
162 limit = (limit << 12) | 0xfff;
163 return limit;
164 }
165
166 static inline uint32_t get_seg_base(uint32_t e1, uint32_t e2)
167 {
168 return ((e1 >> 16) | ((e2 & 0xff) << 16) | (e2 & 0xff000000));
169 }
170
171 static inline void load_seg_cache_raw_dt(SegmentCache *sc, uint32_t e1, uint32_t e2)
172 {
173 sc->base = get_seg_base(e1, e2);
174 sc->limit = get_seg_limit(e1, e2);
175 sc->flags = e2;
176 }
177
178 /* init the segment cache in vm86 mode. */
179 static inline void load_seg_vm(int seg, int selector)
180 {
181 selector &= 0xffff;
182 cpu_x86_load_seg_cache(env, seg, selector,
183 (selector << 4), 0xffff, 0);
184 }
185
186 static inline void get_ss_esp_from_tss(uint32_t *ss_ptr,
187 uint32_t *esp_ptr, int dpl)
188 {
189 int type, index, shift;
190
191 #if 0
192 {
193 int i;
194 printf("TR: base=%p limit=%x\n", env->tr.base, env->tr.limit);
195 for(i=0;i<env->tr.limit;i++) {
196 printf("%02x ", env->tr.base[i]);
197 if ((i & 7) == 7) printf("\n");
198 }
199 printf("\n");
200 }
201 #endif
202
203 if (!(env->tr.flags & DESC_P_MASK))
204 cpu_abort(env, "invalid tss");
205 type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
206 if ((type & 7) != 1)
207 cpu_abort(env, "invalid tss type");
208 shift = type >> 3;
209 index = (dpl * 4 + 2) << shift;
210 if (index + (4 << shift) - 1 > env->tr.limit)
211 raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
212 if (shift == 0) {
213 *esp_ptr = lduw_kernel(env->tr.base + index);
214 *ss_ptr = lduw_kernel(env->tr.base + index + 2);
215 } else {
216 *esp_ptr = ldl_kernel(env->tr.base + index);
217 *ss_ptr = lduw_kernel(env->tr.base + index + 4);
218 }
219 }
220
221 /* XXX: merge with load_seg() */
222 static void tss_load_seg(int seg_reg, int selector)
223 {
224 uint32_t e1, e2;
225 int rpl, dpl, cpl;
226
227 if ((selector & 0xfffc) != 0) {
228 if (load_segment(&e1, &e2, selector) != 0)
229 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
230 if (!(e2 & DESC_S_MASK))
231 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
232 rpl = selector & 3;
233 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
234 cpl = env->hflags & HF_CPL_MASK;
235 if (seg_reg == R_CS) {
236 if (!(e2 & DESC_CS_MASK))
237 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
238 /* XXX: is it correct ? */
239 if (dpl != rpl)
240 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
241 if ((e2 & DESC_C_MASK) && dpl > rpl)
242 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
243 } else if (seg_reg == R_SS) {
244 /* SS must be writable data */
245 if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
246 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
247 if (dpl != cpl || dpl != rpl)
248 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
249 } else {
250 /* not readable code */
251 if ((e2 & DESC_CS_MASK) && !(e2 & DESC_R_MASK))
252 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
253 /* if data or non conforming code, checks the rights */
254 if (((e2 >> DESC_TYPE_SHIFT) & 0xf) < 12) {
255 if (dpl < cpl || dpl < rpl)
256 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
257 }
258 }
259 if (!(e2 & DESC_P_MASK))
260 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
261 cpu_x86_load_seg_cache(env, seg_reg, selector,
262 get_seg_base(e1, e2),
263 get_seg_limit(e1, e2),
264 e2);
265 } else {
266 if (seg_reg == R_SS || seg_reg == R_CS)
267 raise_exception_err(EXCP0A_TSS, selector & 0xfffc);
268 }
269 }
270
271 #define SWITCH_TSS_JMP 0
272 #define SWITCH_TSS_IRET 1
273 #define SWITCH_TSS_CALL 2
274
275 /* XXX: restore CPU state in registers (PowerPC case) */
276 static void switch_tss(int tss_selector,
277 uint32_t e1, uint32_t e2, int source,
278 uint32_t next_eip)
279 {
280 int tss_limit, tss_limit_max, type, old_tss_limit_max, old_type, v1, v2, i;
281 target_ulong tss_base;
282 uint32_t new_regs[8], new_segs[6];
283 uint32_t new_eflags, new_eip, new_cr3, new_ldt, new_trap;
284 uint32_t old_eflags, eflags_mask;
285 SegmentCache *dt;
286 int index;
287 target_ulong ptr;
288
289 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
290 LOG_PCALL("switch_tss: sel=0x%04x type=%d src=%d\n", tss_selector, type, source);
291
292 /* if task gate, we read the TSS segment and we load it */
293 if (type == 5) {
294 if (!(e2 & DESC_P_MASK))
295 raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
296 tss_selector = e1 >> 16;
297 if (tss_selector & 4)
298 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
299 if (load_segment(&e1, &e2, tss_selector) != 0)
300 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
301 if (e2 & DESC_S_MASK)
302 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
303 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
304 if ((type & 7) != 1)
305 raise_exception_err(EXCP0D_GPF, tss_selector & 0xfffc);
306 }
307
308 if (!(e2 & DESC_P_MASK))
309 raise_exception_err(EXCP0B_NOSEG, tss_selector & 0xfffc);
310
311 if (type & 8)
312 tss_limit_max = 103;
313 else
314 tss_limit_max = 43;
315 tss_limit = get_seg_limit(e1, e2);
316 tss_base = get_seg_base(e1, e2);
317 if ((tss_selector & 4) != 0 ||
318 tss_limit < tss_limit_max)
319 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
320 old_type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
321 if (old_type & 8)
322 old_tss_limit_max = 103;
323 else
324 old_tss_limit_max = 43;
325
326 /* read all the registers from the new TSS */
327 if (type & 8) {
328 /* 32 bit */
329 new_cr3 = ldl_kernel(tss_base + 0x1c);
330 new_eip = ldl_kernel(tss_base + 0x20);
331 new_eflags = ldl_kernel(tss_base + 0x24);
332 for(i = 0; i < 8; i++)
333 new_regs[i] = ldl_kernel(tss_base + (0x28 + i * 4));
334 for(i = 0; i < 6; i++)
335 new_segs[i] = lduw_kernel(tss_base + (0x48 + i * 4));
336 new_ldt = lduw_kernel(tss_base + 0x60);
337 new_trap = ldl_kernel(tss_base + 0x64);
338 } else {
339 /* 16 bit */
340 new_cr3 = 0;
341 new_eip = lduw_kernel(tss_base + 0x0e);
342 new_eflags = lduw_kernel(tss_base + 0x10);
343 for(i = 0; i < 8; i++)
344 new_regs[i] = lduw_kernel(tss_base + (0x12 + i * 2)) | 0xffff0000;
345 for(i = 0; i < 4; i++)
346 new_segs[i] = lduw_kernel(tss_base + (0x22 + i * 4));
347 new_ldt = lduw_kernel(tss_base + 0x2a);
348 new_segs[R_FS] = 0;
349 new_segs[R_GS] = 0;
350 new_trap = 0;
351 }
352 /* XXX: avoid a compiler warning, see
353 http://support.amd.com/us/Processor_TechDocs/24593.pdf
354 chapters 12.2.5 and 13.2.4 on how to implement TSS Trap bit */
355 (void)new_trap;
356
357 /* NOTE: we must avoid memory exceptions during the task switch,
358 so we make dummy accesses before */
359 /* XXX: it can still fail in some cases, so a bigger hack is
360 necessary to valid the TLB after having done the accesses */
361
362 v1 = ldub_kernel(env->tr.base);
363 v2 = ldub_kernel(env->tr.base + old_tss_limit_max);
364 stb_kernel(env->tr.base, v1);
365 stb_kernel(env->tr.base + old_tss_limit_max, v2);
366
367 /* clear busy bit (it is restartable) */
368 if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_IRET) {
369 target_ulong ptr;
370 uint32_t e2;
371 ptr = env->gdt.base + (env->tr.selector & ~7);
372 e2 = ldl_kernel(ptr + 4);
373 e2 &= ~DESC_TSS_BUSY_MASK;
374 stl_kernel(ptr + 4, e2);
375 }
376 old_eflags = compute_eflags();
377 if (source == SWITCH_TSS_IRET)
378 old_eflags &= ~NT_MASK;
379
380 /* save the current state in the old TSS */
381 if (type & 8) {
382 /* 32 bit */
383 stl_kernel(env->tr.base + 0x20, next_eip);
384 stl_kernel(env->tr.base + 0x24, old_eflags);
385 stl_kernel(env->tr.base + (0x28 + 0 * 4), EAX);
386 stl_kernel(env->tr.base + (0x28 + 1 * 4), ECX);
387 stl_kernel(env->tr.base + (0x28 + 2 * 4), EDX);
388 stl_kernel(env->tr.base + (0x28 + 3 * 4), EBX);
389 stl_kernel(env->tr.base + (0x28 + 4 * 4), ESP);
390 stl_kernel(env->tr.base + (0x28 + 5 * 4), EBP);
391 stl_kernel(env->tr.base + (0x28 + 6 * 4), ESI);
392 stl_kernel(env->tr.base + (0x28 + 7 * 4), EDI);
393 for(i = 0; i < 6; i++)
394 stw_kernel(env->tr.base + (0x48 + i * 4), env->segs[i].selector);
395 } else {
396 /* 16 bit */
397 stw_kernel(env->tr.base + 0x0e, next_eip);
398 stw_kernel(env->tr.base + 0x10, old_eflags);
399 stw_kernel(env->tr.base + (0x12 + 0 * 2), EAX);
400 stw_kernel(env->tr.base + (0x12 + 1 * 2), ECX);
401 stw_kernel(env->tr.base + (0x12 + 2 * 2), EDX);
402 stw_kernel(env->tr.base + (0x12 + 3 * 2), EBX);
403 stw_kernel(env->tr.base + (0x12 + 4 * 2), ESP);
404 stw_kernel(env->tr.base + (0x12 + 5 * 2), EBP);
405 stw_kernel(env->tr.base + (0x12 + 6 * 2), ESI);
406 stw_kernel(env->tr.base + (0x12 + 7 * 2), EDI);
407 for(i = 0; i < 4; i++)
408 stw_kernel(env->tr.base + (0x22 + i * 4), env->segs[i].selector);
409 }
410
411 /* now if an exception occurs, it will occurs in the next task
412 context */
413
414 if (source == SWITCH_TSS_CALL) {
415 stw_kernel(tss_base, env->tr.selector);
416 new_eflags |= NT_MASK;
417 }
418
419 /* set busy bit */
420 if (source == SWITCH_TSS_JMP || source == SWITCH_TSS_CALL) {
421 target_ulong ptr;
422 uint32_t e2;
423 ptr = env->gdt.base + (tss_selector & ~7);
424 e2 = ldl_kernel(ptr + 4);
425 e2 |= DESC_TSS_BUSY_MASK;
426 stl_kernel(ptr + 4, e2);
427 }
428
429 /* set the new CPU state */
430 /* from this point, any exception which occurs can give problems */
431 env->cr[0] |= CR0_TS_MASK;
432 env->hflags |= HF_TS_MASK;
433 env->tr.selector = tss_selector;
434 env->tr.base = tss_base;
435 env->tr.limit = tss_limit;
436 env->tr.flags = e2 & ~DESC_TSS_BUSY_MASK;
437
438 if ((type & 8) && (env->cr[0] & CR0_PG_MASK)) {
439 cpu_x86_update_cr3(env, new_cr3);
440 }
441
442 /* load all registers without an exception, then reload them with
443 possible exception */
444 env->eip = new_eip;
445 eflags_mask = TF_MASK | AC_MASK | ID_MASK |
446 IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK;
447 if (!(type & 8))
448 eflags_mask &= 0xffff;
449 load_eflags(new_eflags, eflags_mask);
450 /* XXX: what to do in 16 bit case ? */
451 EAX = new_regs[0];
452 ECX = new_regs[1];
453 EDX = new_regs[2];
454 EBX = new_regs[3];
455 ESP = new_regs[4];
456 EBP = new_regs[5];
457 ESI = new_regs[6];
458 EDI = new_regs[7];
459 if (new_eflags & VM_MASK) {
460 for(i = 0; i < 6; i++)
461 load_seg_vm(i, new_segs[i]);
462 /* in vm86, CPL is always 3 */
463 cpu_x86_set_cpl(env, 3);
464 } else {
465 /* CPL is set the RPL of CS */
466 cpu_x86_set_cpl(env, new_segs[R_CS] & 3);
467 /* first just selectors as the rest may trigger exceptions */
468 for(i = 0; i < 6; i++)
469 cpu_x86_load_seg_cache(env, i, new_segs[i], 0, 0, 0);
470 }
471
472 env->ldt.selector = new_ldt & ~4;
473 env->ldt.base = 0;
474 env->ldt.limit = 0;
475 env->ldt.flags = 0;
476
477 /* load the LDT */
478 if (new_ldt & 4)
479 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
480
481 if ((new_ldt & 0xfffc) != 0) {
482 dt = &env->gdt;
483 index = new_ldt & ~7;
484 if ((index + 7) > dt->limit)
485 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
486 ptr = dt->base + index;
487 e1 = ldl_kernel(ptr);
488 e2 = ldl_kernel(ptr + 4);
489 if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
490 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
491 if (!(e2 & DESC_P_MASK))
492 raise_exception_err(EXCP0A_TSS, new_ldt & 0xfffc);
493 load_seg_cache_raw_dt(&env->ldt, e1, e2);
494 }
495
496 /* load the segments */
497 if (!(new_eflags & VM_MASK)) {
498 tss_load_seg(R_CS, new_segs[R_CS]);
499 tss_load_seg(R_SS, new_segs[R_SS]);
500 tss_load_seg(R_ES, new_segs[R_ES]);
501 tss_load_seg(R_DS, new_segs[R_DS]);
502 tss_load_seg(R_FS, new_segs[R_FS]);
503 tss_load_seg(R_GS, new_segs[R_GS]);
504 }
505
506 /* check that EIP is in the CS segment limits */
507 if (new_eip > env->segs[R_CS].limit) {
508 /* XXX: different exception if CALL ? */
509 raise_exception_err(EXCP0D_GPF, 0);
510 }
511
512 #ifndef CONFIG_USER_ONLY
513 /* reset local breakpoints */
514 if (env->dr[7] & 0x55) {
515 for (i = 0; i < 4; i++) {
516 if (hw_breakpoint_enabled(env->dr[7], i) == 0x1)
517 hw_breakpoint_remove(env, i);
518 }
519 env->dr[7] &= ~0x55;
520 }
521 #endif
522 }
523
524 /* check if Port I/O is allowed in TSS */
525 static inline void check_io(int addr, int size)
526 {
527 int io_offset, val, mask;
528
529 /* TSS must be a valid 32 bit one */
530 if (!(env->tr.flags & DESC_P_MASK) ||
531 ((env->tr.flags >> DESC_TYPE_SHIFT) & 0xf) != 9 ||
532 env->tr.limit < 103)
533 goto fail;
534 io_offset = lduw_kernel(env->tr.base + 0x66);
535 io_offset += (addr >> 3);
536 /* Note: the check needs two bytes */
537 if ((io_offset + 1) > env->tr.limit)
538 goto fail;
539 val = lduw_kernel(env->tr.base + io_offset);
540 val >>= (addr & 7);
541 mask = (1 << size) - 1;
542 /* all bits must be zero to allow the I/O */
543 if ((val & mask) != 0) {
544 fail:
545 raise_exception_err(EXCP0D_GPF, 0);
546 }
547 }
548
549 void helper_check_iob(uint32_t t0)
550 {
551 check_io(t0, 1);
552 }
553
554 void helper_check_iow(uint32_t t0)
555 {
556 check_io(t0, 2);
557 }
558
559 void helper_check_iol(uint32_t t0)
560 {
561 check_io(t0, 4);
562 }
563
564 void helper_outb(uint32_t port, uint32_t data)
565 {
566 cpu_outb(port, data & 0xff);
567 }
568
569 target_ulong helper_inb(uint32_t port)
570 {
571 return cpu_inb(port);
572 }
573
574 void helper_outw(uint32_t port, uint32_t data)
575 {
576 cpu_outw(port, data & 0xffff);
577 }
578
579 target_ulong helper_inw(uint32_t port)
580 {
581 return cpu_inw(port);
582 }
583
584 void helper_outl(uint32_t port, uint32_t data)
585 {
586 cpu_outl(port, data);
587 }
588
589 target_ulong helper_inl(uint32_t port)
590 {
591 return cpu_inl(port);
592 }
593
594 static inline unsigned int get_sp_mask(unsigned int e2)
595 {
596 if (e2 & DESC_B_MASK)
597 return 0xffffffff;
598 else
599 return 0xffff;
600 }
601
602 static int exeption_has_error_code(int intno)
603 {
604 switch(intno) {
605 case 8:
606 case 10:
607 case 11:
608 case 12:
609 case 13:
610 case 14:
611 case 17:
612 return 1;
613 }
614 return 0;
615 }
616
617 #ifdef TARGET_X86_64
618 #define SET_ESP(val, sp_mask)\
619 do {\
620 if ((sp_mask) == 0xffff)\
621 ESP = (ESP & ~0xffff) | ((val) & 0xffff);\
622 else if ((sp_mask) == 0xffffffffLL)\
623 ESP = (uint32_t)(val);\
624 else\
625 ESP = (val);\
626 } while (0)
627 #else
628 #define SET_ESP(val, sp_mask) ESP = (ESP & ~(sp_mask)) | ((val) & (sp_mask))
629 #endif
630
631 /* in 64-bit machines, this can overflow. So this segment addition macro
632 * can be used to trim the value to 32-bit whenever needed */
633 #define SEG_ADDL(ssp, sp, sp_mask) ((uint32_t)((ssp) + (sp & (sp_mask))))
634
635 /* XXX: add a is_user flag to have proper security support */
636 #define PUSHW(ssp, sp, sp_mask, val)\
637 {\
638 sp -= 2;\
639 stw_kernel((ssp) + (sp & (sp_mask)), (val));\
640 }
641
642 #define PUSHL(ssp, sp, sp_mask, val)\
643 {\
644 sp -= 4;\
645 stl_kernel(SEG_ADDL(ssp, sp, sp_mask), (uint32_t)(val));\
646 }
647
648 #define POPW(ssp, sp, sp_mask, val)\
649 {\
650 val = lduw_kernel((ssp) + (sp & (sp_mask)));\
651 sp += 2;\
652 }
653
654 #define POPL(ssp, sp, sp_mask, val)\
655 {\
656 val = (uint32_t)ldl_kernel(SEG_ADDL(ssp, sp, sp_mask));\
657 sp += 4;\
658 }
659
660 /* protected mode interrupt */
661 static void do_interrupt_protected(int intno, int is_int, int error_code,
662 unsigned int next_eip, int is_hw)
663 {
664 SegmentCache *dt;
665 target_ulong ptr, ssp;
666 int type, dpl, selector, ss_dpl, cpl;
667 int has_error_code, new_stack, shift;
668 uint32_t e1, e2, offset, ss = 0, esp, ss_e1 = 0, ss_e2 = 0;
669 uint32_t old_eip, sp_mask;
670
671 has_error_code = 0;
672 if (!is_int && !is_hw)
673 has_error_code = exeption_has_error_code(intno);
674 if (is_int)
675 old_eip = next_eip;
676 else
677 old_eip = env->eip;
678
679 dt = &env->idt;
680 if (intno * 8 + 7 > dt->limit)
681 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
682 ptr = dt->base + intno * 8;
683 e1 = ldl_kernel(ptr);
684 e2 = ldl_kernel(ptr + 4);
685 /* check gate type */
686 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
687 switch(type) {
688 case 5: /* task gate */
689 /* must do that check here to return the correct error code */
690 if (!(e2 & DESC_P_MASK))
691 raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
692 switch_tss(intno * 8, e1, e2, SWITCH_TSS_CALL, old_eip);
693 if (has_error_code) {
694 int type;
695 uint32_t mask;
696 /* push the error code */
697 type = (env->tr.flags >> DESC_TYPE_SHIFT) & 0xf;
698 shift = type >> 3;
699 if (env->segs[R_SS].flags & DESC_B_MASK)
700 mask = 0xffffffff;
701 else
702 mask = 0xffff;
703 esp = (ESP - (2 << shift)) & mask;
704 ssp = env->segs[R_SS].base + esp;
705 if (shift)
706 stl_kernel(ssp, error_code);
707 else
708 stw_kernel(ssp, error_code);
709 SET_ESP(esp, mask);
710 }
711 return;
712 case 6: /* 286 interrupt gate */
713 case 7: /* 286 trap gate */
714 case 14: /* 386 interrupt gate */
715 case 15: /* 386 trap gate */
716 break;
717 default:
718 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
719 break;
720 }
721 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
722 cpl = env->hflags & HF_CPL_MASK;
723 /* check privilege if software int */
724 if (is_int && dpl < cpl)
725 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
726 /* check valid bit */
727 if (!(e2 & DESC_P_MASK))
728 raise_exception_err(EXCP0B_NOSEG, intno * 8 + 2);
729 selector = e1 >> 16;
730 offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
731 if ((selector & 0xfffc) == 0)
732 raise_exception_err(EXCP0D_GPF, 0);
733
734 if (load_segment(&e1, &e2, selector) != 0)
735 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
736 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
737 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
738 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
739 if (dpl > cpl)
740 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
741 if (!(e2 & DESC_P_MASK))
742 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
743 if (!(e2 & DESC_C_MASK) && dpl < cpl) {
744 /* to inner privilege */
745 get_ss_esp_from_tss(&ss, &esp, dpl);
746 if ((ss & 0xfffc) == 0)
747 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
748 if ((ss & 3) != dpl)
749 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
750 if (load_segment(&ss_e1, &ss_e2, ss) != 0)
751 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
752 ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
753 if (ss_dpl != dpl)
754 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
755 if (!(ss_e2 & DESC_S_MASK) ||
756 (ss_e2 & DESC_CS_MASK) ||
757 !(ss_e2 & DESC_W_MASK))
758 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
759 if (!(ss_e2 & DESC_P_MASK))
760 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
761 new_stack = 1;
762 sp_mask = get_sp_mask(ss_e2);
763 ssp = get_seg_base(ss_e1, ss_e2);
764 } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
765 /* to same privilege */
766 if (env->eflags & VM_MASK)
767 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
768 new_stack = 0;
769 sp_mask = get_sp_mask(env->segs[R_SS].flags);
770 ssp = env->segs[R_SS].base;
771 esp = ESP;
772 dpl = cpl;
773 } else {
774 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
775 new_stack = 0; /* avoid warning */
776 sp_mask = 0; /* avoid warning */
777 ssp = 0; /* avoid warning */
778 esp = 0; /* avoid warning */
779 }
780
781 shift = type >> 3;
782
783 #if 0
784 /* XXX: check that enough room is available */
785 push_size = 6 + (new_stack << 2) + (has_error_code << 1);
786 if (env->eflags & VM_MASK)
787 push_size += 8;
788 push_size <<= shift;
789 #endif
790 if (shift == 1) {
791 if (new_stack) {
792 if (env->eflags & VM_MASK) {
793 PUSHL(ssp, esp, sp_mask, env->segs[R_GS].selector);
794 PUSHL(ssp, esp, sp_mask, env->segs[R_FS].selector);
795 PUSHL(ssp, esp, sp_mask, env->segs[R_DS].selector);
796 PUSHL(ssp, esp, sp_mask, env->segs[R_ES].selector);
797 }
798 PUSHL(ssp, esp, sp_mask, env->segs[R_SS].selector);
799 PUSHL(ssp, esp, sp_mask, ESP);
800 }
801 PUSHL(ssp, esp, sp_mask, compute_eflags());
802 PUSHL(ssp, esp, sp_mask, env->segs[R_CS].selector);
803 PUSHL(ssp, esp, sp_mask, old_eip);
804 if (has_error_code) {
805 PUSHL(ssp, esp, sp_mask, error_code);
806 }
807 } else {
808 if (new_stack) {
809 if (env->eflags & VM_MASK) {
810 PUSHW(ssp, esp, sp_mask, env->segs[R_GS].selector);
811 PUSHW(ssp, esp, sp_mask, env->segs[R_FS].selector);
812 PUSHW(ssp, esp, sp_mask, env->segs[R_DS].selector);
813 PUSHW(ssp, esp, sp_mask, env->segs[R_ES].selector);
814 }
815 PUSHW(ssp, esp, sp_mask, env->segs[R_SS].selector);
816 PUSHW(ssp, esp, sp_mask, ESP);
817 }
818 PUSHW(ssp, esp, sp_mask, compute_eflags());
819 PUSHW(ssp, esp, sp_mask, env->segs[R_CS].selector);
820 PUSHW(ssp, esp, sp_mask, old_eip);
821 if (has_error_code) {
822 PUSHW(ssp, esp, sp_mask, error_code);
823 }
824 }
825
826 if (new_stack) {
827 if (env->eflags & VM_MASK) {
828 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0, 0);
829 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0, 0);
830 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0, 0);
831 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0, 0);
832 }
833 ss = (ss & ~3) | dpl;
834 cpu_x86_load_seg_cache(env, R_SS, ss,
835 ssp, get_seg_limit(ss_e1, ss_e2), ss_e2);
836 }
837 SET_ESP(esp, sp_mask);
838
839 selector = (selector & ~3) | dpl;
840 cpu_x86_load_seg_cache(env, R_CS, selector,
841 get_seg_base(e1, e2),
842 get_seg_limit(e1, e2),
843 e2);
844 cpu_x86_set_cpl(env, dpl);
845 env->eip = offset;
846
847 /* interrupt gate clear IF mask */
848 if ((type & 1) == 0) {
849 env->eflags &= ~IF_MASK;
850 }
851 env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
852 }
853
854 #ifdef TARGET_X86_64
855
856 #define PUSHQ(sp, val)\
857 {\
858 sp -= 8;\
859 stq_kernel(sp, (val));\
860 }
861
862 #define POPQ(sp, val)\
863 {\
864 val = ldq_kernel(sp);\
865 sp += 8;\
866 }
867
868 static inline target_ulong get_rsp_from_tss(int level)
869 {
870 int index;
871
872 #if 0
873 printf("TR: base=" TARGET_FMT_lx " limit=%x\n",
874 env->tr.base, env->tr.limit);
875 #endif
876
877 if (!(env->tr.flags & DESC_P_MASK))
878 cpu_abort(env, "invalid tss");
879 index = 8 * level + 4;
880 if ((index + 7) > env->tr.limit)
881 raise_exception_err(EXCP0A_TSS, env->tr.selector & 0xfffc);
882 return ldq_kernel(env->tr.base + index);
883 }
884
885 /* 64 bit interrupt */
886 static void do_interrupt64(int intno, int is_int, int error_code,
887 target_ulong next_eip, int is_hw)
888 {
889 SegmentCache *dt;
890 target_ulong ptr;
891 int type, dpl, selector, cpl, ist;
892 int has_error_code, new_stack;
893 uint32_t e1, e2, e3, ss;
894 target_ulong old_eip, esp, offset;
895
896 has_error_code = 0;
897 if (!is_int && !is_hw)
898 has_error_code = exeption_has_error_code(intno);
899 if (is_int)
900 old_eip = next_eip;
901 else
902 old_eip = env->eip;
903
904 dt = &env->idt;
905 if (intno * 16 + 15 > dt->limit)
906 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
907 ptr = dt->base + intno * 16;
908 e1 = ldl_kernel(ptr);
909 e2 = ldl_kernel(ptr + 4);
910 e3 = ldl_kernel(ptr + 8);
911 /* check gate type */
912 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
913 switch(type) {
914 case 14: /* 386 interrupt gate */
915 case 15: /* 386 trap gate */
916 break;
917 default:
918 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
919 break;
920 }
921 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
922 cpl = env->hflags & HF_CPL_MASK;
923 /* check privilege if software int */
924 if (is_int && dpl < cpl)
925 raise_exception_err(EXCP0D_GPF, intno * 16 + 2);
926 /* check valid bit */
927 if (!(e2 & DESC_P_MASK))
928 raise_exception_err(EXCP0B_NOSEG, intno * 16 + 2);
929 selector = e1 >> 16;
930 offset = ((target_ulong)e3 << 32) | (e2 & 0xffff0000) | (e1 & 0x0000ffff);
931 ist = e2 & 7;
932 if ((selector & 0xfffc) == 0)
933 raise_exception_err(EXCP0D_GPF, 0);
934
935 if (load_segment(&e1, &e2, selector) != 0)
936 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
937 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
938 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
939 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
940 if (dpl > cpl)
941 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
942 if (!(e2 & DESC_P_MASK))
943 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
944 if (!(e2 & DESC_L_MASK) || (e2 & DESC_B_MASK))
945 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
946 if ((!(e2 & DESC_C_MASK) && dpl < cpl) || ist != 0) {
947 /* to inner privilege */
948 if (ist != 0)
949 esp = get_rsp_from_tss(ist + 3);
950 else
951 esp = get_rsp_from_tss(dpl);
952 esp &= ~0xfLL; /* align stack */
953 ss = 0;
954 new_stack = 1;
955 } else if ((e2 & DESC_C_MASK) || dpl == cpl) {
956 /* to same privilege */
957 if (env->eflags & VM_MASK)
958 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
959 new_stack = 0;
960 if (ist != 0)
961 esp = get_rsp_from_tss(ist + 3);
962 else
963 esp = ESP;
964 esp &= ~0xfLL; /* align stack */
965 dpl = cpl;
966 } else {
967 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
968 new_stack = 0; /* avoid warning */
969 esp = 0; /* avoid warning */
970 }
971
972 PUSHQ(esp, env->segs[R_SS].selector);
973 PUSHQ(esp, ESP);
974 PUSHQ(esp, compute_eflags());
975 PUSHQ(esp, env->segs[R_CS].selector);
976 PUSHQ(esp, old_eip);
977 if (has_error_code) {
978 PUSHQ(esp, error_code);
979 }
980
981 if (new_stack) {
982 ss = 0 | dpl;
983 cpu_x86_load_seg_cache(env, R_SS, ss, 0, 0, 0);
984 }
985 ESP = esp;
986
987 selector = (selector & ~3) | dpl;
988 cpu_x86_load_seg_cache(env, R_CS, selector,
989 get_seg_base(e1, e2),
990 get_seg_limit(e1, e2),
991 e2);
992 cpu_x86_set_cpl(env, dpl);
993 env->eip = offset;
994
995 /* interrupt gate clear IF mask */
996 if ((type & 1) == 0) {
997 env->eflags &= ~IF_MASK;
998 }
999 env->eflags &= ~(TF_MASK | VM_MASK | RF_MASK | NT_MASK);
1000 }
1001 #endif
1002
1003 #ifdef TARGET_X86_64
1004 #if defined(CONFIG_USER_ONLY)
1005 void helper_syscall(int next_eip_addend)
1006 {
1007 env->exception_index = EXCP_SYSCALL;
1008 env->exception_next_eip = env->eip + next_eip_addend;
1009 cpu_loop_exit();
1010 }
1011 #else
1012 void helper_syscall(int next_eip_addend)
1013 {
1014 int selector;
1015
1016 if (!(env->efer & MSR_EFER_SCE)) {
1017 raise_exception_err(EXCP06_ILLOP, 0);
1018 }
1019 selector = (env->star >> 32) & 0xffff;
1020 if (env->hflags & HF_LMA_MASK) {
1021 int code64;
1022
1023 ECX = env->eip + next_eip_addend;
1024 env->regs[11] = compute_eflags();
1025
1026 code64 = env->hflags & HF_CS64_MASK;
1027
1028 cpu_x86_set_cpl(env, 0);
1029 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1030 0, 0xffffffff,
1031 DESC_G_MASK | DESC_P_MASK |
1032 DESC_S_MASK |
1033 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
1034 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1035 0, 0xffffffff,
1036 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1037 DESC_S_MASK |
1038 DESC_W_MASK | DESC_A_MASK);
1039 env->eflags &= ~env->fmask;
1040 load_eflags(env->eflags, 0);
1041 if (code64)
1042 env->eip = env->lstar;
1043 else
1044 env->eip = env->cstar;
1045 } else {
1046 ECX = (uint32_t)(env->eip + next_eip_addend);
1047
1048 cpu_x86_set_cpl(env, 0);
1049 cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
1050 0, 0xffffffff,
1051 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1052 DESC_S_MASK |
1053 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1054 cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
1055 0, 0xffffffff,
1056 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1057 DESC_S_MASK |
1058 DESC_W_MASK | DESC_A_MASK);
1059 env->eflags &= ~(IF_MASK | RF_MASK | VM_MASK);
1060 env->eip = (uint32_t)env->star;
1061 }
1062 }
1063 #endif
1064 #endif
1065
1066 #ifdef TARGET_X86_64
1067 void helper_sysret(int dflag)
1068 {
1069 int cpl, selector;
1070
1071 if (!(env->efer & MSR_EFER_SCE)) {
1072 raise_exception_err(EXCP06_ILLOP, 0);
1073 }
1074 cpl = env->hflags & HF_CPL_MASK;
1075 if (!(env->cr[0] & CR0_PE_MASK) || cpl != 0) {
1076 raise_exception_err(EXCP0D_GPF, 0);
1077 }
1078 selector = (env->star >> 48) & 0xffff;
1079 if (env->hflags & HF_LMA_MASK) {
1080 if (dflag == 2) {
1081 cpu_x86_load_seg_cache(env, R_CS, (selector + 16) | 3,
1082 0, 0xffffffff,
1083 DESC_G_MASK | DESC_P_MASK |
1084 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1085 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK |
1086 DESC_L_MASK);
1087 env->eip = ECX;
1088 } else {
1089 cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1090 0, 0xffffffff,
1091 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1092 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1093 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1094 env->eip = (uint32_t)ECX;
1095 }
1096 cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1097 0, 0xffffffff,
1098 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1099 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1100 DESC_W_MASK | DESC_A_MASK);
1101 load_eflags((uint32_t)(env->regs[11]), TF_MASK | AC_MASK | ID_MASK |
1102 IF_MASK | IOPL_MASK | VM_MASK | RF_MASK | NT_MASK);
1103 cpu_x86_set_cpl(env, 3);
1104 } else {
1105 cpu_x86_load_seg_cache(env, R_CS, selector | 3,
1106 0, 0xffffffff,
1107 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1108 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1109 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
1110 env->eip = (uint32_t)ECX;
1111 cpu_x86_load_seg_cache(env, R_SS, selector + 8,
1112 0, 0xffffffff,
1113 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
1114 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
1115 DESC_W_MASK | DESC_A_MASK);
1116 env->eflags |= IF_MASK;
1117 cpu_x86_set_cpl(env, 3);
1118 }
1119 }
1120 #endif
1121
1122 /* real mode interrupt */
1123 static void do_interrupt_real(int intno, int is_int, int error_code,
1124 unsigned int next_eip)
1125 {
1126 SegmentCache *dt;
1127 target_ulong ptr, ssp;
1128 int selector;
1129 uint32_t offset, esp;
1130 uint32_t old_cs, old_eip;
1131
1132 /* real mode (simpler !) */
1133 dt = &env->idt;
1134 if (intno * 4 + 3 > dt->limit)
1135 raise_exception_err(EXCP0D_GPF, intno * 8 + 2);
1136 ptr = dt->base + intno * 4;
1137 offset = lduw_kernel(ptr);
1138 selector = lduw_kernel(ptr + 2);
1139 esp = ESP;
1140 ssp = env->segs[R_SS].base;
1141 if (is_int)
1142 old_eip = next_eip;
1143 else
1144 old_eip = env->eip;
1145 old_cs = env->segs[R_CS].selector;
1146 /* XXX: use SS segment size ? */
1147 PUSHW(ssp, esp, 0xffff, compute_eflags());
1148 PUSHW(ssp, esp, 0xffff, old_cs);
1149 PUSHW(ssp, esp, 0xffff, old_eip);
1150
1151 /* update processor state */
1152 ESP = (ESP & ~0xffff) | (esp & 0xffff);
1153 env->eip = offset;
1154 env->segs[R_CS].selector = selector;
1155 env->segs[R_CS].base = (selector << 4);
1156 env->eflags &= ~(IF_MASK | TF_MASK | AC_MASK | RF_MASK);
1157 }
1158
1159 /* fake user mode interrupt */
1160 void do_interrupt_user(int intno, int is_int, int error_code,
1161 target_ulong next_eip)
1162 {
1163 SegmentCache *dt;
1164 target_ulong ptr;
1165 int dpl, cpl, shift;
1166 uint32_t e2;
1167
1168 dt = &env->idt;
1169 if (env->hflags & HF_LMA_MASK) {
1170 shift = 4;
1171 } else {
1172 shift = 3;
1173 }
1174 ptr = dt->base + (intno << shift);
1175 e2 = ldl_kernel(ptr + 4);
1176
1177 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
1178 cpl = env->hflags & HF_CPL_MASK;
1179 /* check privilege if software int */
1180 if (is_int && dpl < cpl)
1181 raise_exception_err(EXCP0D_GPF, (intno << shift) + 2);
1182
1183 /* Since we emulate only user space, we cannot do more than
1184 exiting the emulation with the suitable exception and error
1185 code */
1186 if (is_int)
1187 EIP = next_eip;
1188 }
1189
1190 #if !defined(CONFIG_USER_ONLY)
1191 static void handle_even_inj(int intno, int is_int, int error_code,
1192 int is_hw, int rm)
1193 {
1194 uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1195 if (!(event_inj & SVM_EVTINJ_VALID)) {
1196 int type;
1197 if (is_int)
1198 type = SVM_EVTINJ_TYPE_SOFT;
1199 else
1200 type = SVM_EVTINJ_TYPE_EXEPT;
1201 event_inj = intno | type | SVM_EVTINJ_VALID;
1202 if (!rm && exeption_has_error_code(intno)) {
1203 event_inj |= SVM_EVTINJ_VALID_ERR;
1204 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err), error_code);
1205 }
1206 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj);
1207 }
1208 }
1209 #endif
1210
1211 /*
1212 * Begin execution of an interruption. is_int is TRUE if coming from
1213 * the int instruction. next_eip is the EIP value AFTER the interrupt
1214 * instruction. It is only relevant if is_int is TRUE.
1215 */
1216 void do_interrupt(int intno, int is_int, int error_code,
1217 target_ulong next_eip, int is_hw)
1218 {
1219 if (qemu_loglevel_mask(CPU_LOG_INT)) {
1220 if ((env->cr[0] & CR0_PE_MASK)) {
1221 static int count;
1222 qemu_log("%6d: v=%02x e=%04x i=%d cpl=%d IP=%04x:" TARGET_FMT_lx " pc=" TARGET_FMT_lx " SP=%04x:" TARGET_FMT_lx,
1223 count, intno, error_code, is_int,
1224 env->hflags & HF_CPL_MASK,
1225 env->segs[R_CS].selector, EIP,
1226 (int)env->segs[R_CS].base + EIP,
1227 env->segs[R_SS].selector, ESP);
1228 if (intno == 0x0e) {
1229 qemu_log(" CR2=" TARGET_FMT_lx, env->cr[2]);
1230 } else {
1231 qemu_log(" EAX=" TARGET_FMT_lx, EAX);
1232 }
1233 qemu_log("\n");
1234 log_cpu_state(env, X86_DUMP_CCOP);
1235 #if 0
1236 {
1237 int i;
1238 target_ulong ptr;
1239 qemu_log(" code=");
1240 ptr = env->segs[R_CS].base + env->eip;
1241 for(i = 0; i < 16; i++) {
1242 qemu_log(" %02x", ldub(ptr + i));
1243 }
1244 qemu_log("\n");
1245 }
1246 #endif
1247 count++;
1248 }
1249 }
1250 if (env->cr[0] & CR0_PE_MASK) {
1251 #if !defined(CONFIG_USER_ONLY)
1252 if (env->hflags & HF_SVMI_MASK)
1253 handle_even_inj(intno, is_int, error_code, is_hw, 0);
1254 #endif
1255 #ifdef TARGET_X86_64
1256 if (env->hflags & HF_LMA_MASK) {
1257 do_interrupt64(intno, is_int, error_code, next_eip, is_hw);
1258 } else
1259 #endif
1260 {
1261 do_interrupt_protected(intno, is_int, error_code, next_eip, is_hw);
1262 }
1263 } else {
1264 #if !defined(CONFIG_USER_ONLY)
1265 if (env->hflags & HF_SVMI_MASK)
1266 handle_even_inj(intno, is_int, error_code, is_hw, 1);
1267 #endif
1268 do_interrupt_real(intno, is_int, error_code, next_eip);
1269 }
1270
1271 #if !defined(CONFIG_USER_ONLY)
1272 if (env->hflags & HF_SVMI_MASK) {
1273 uint32_t event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
1274 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), event_inj & ~SVM_EVTINJ_VALID);
1275 }
1276 #endif
1277 }
1278
1279 /* This should come from sysemu.h - if we could include it here... */
1280 void qemu_system_reset_request(void);
1281
1282 /*
1283 * Check nested exceptions and change to double or triple fault if
1284 * needed. It should only be called, if this is not an interrupt.
1285 * Returns the new exception number.
1286 */
1287 static int check_exception(int intno, int *error_code)
1288 {
1289 int first_contributory = env->old_exception == 0 ||
1290 (env->old_exception >= 10 &&
1291 env->old_exception <= 13);
1292 int second_contributory = intno == 0 ||
1293 (intno >= 10 && intno <= 13);
1294
1295 qemu_log_mask(CPU_LOG_INT, "check_exception old: 0x%x new 0x%x\n",
1296 env->old_exception, intno);
1297
1298 #if !defined(CONFIG_USER_ONLY)
1299 if (env->old_exception == EXCP08_DBLE) {
1300 if (env->hflags & HF_SVMI_MASK)
1301 helper_vmexit(SVM_EXIT_SHUTDOWN, 0); /* does not return */
1302
1303 qemu_log_mask(CPU_LOG_RESET, "Triple fault\n");
1304
1305 qemu_system_reset_request();
1306 return EXCP_HLT;
1307 }
1308 #endif
1309
1310 if ((first_contributory && second_contributory)
1311 || (env->old_exception == EXCP0E_PAGE &&
1312 (second_contributory || (intno == EXCP0E_PAGE)))) {
1313 intno = EXCP08_DBLE;
1314 *error_code = 0;
1315 }
1316
1317 if (second_contributory || (intno == EXCP0E_PAGE) ||
1318 (intno == EXCP08_DBLE))
1319 env->old_exception = intno;
1320
1321 return intno;
1322 }
1323
1324 /*
1325 * Signal an interruption. It is executed in the main CPU loop.
1326 * is_int is TRUE if coming from the int instruction. next_eip is the
1327 * EIP value AFTER the interrupt instruction. It is only relevant if
1328 * is_int is TRUE.
1329 */
1330 static void QEMU_NORETURN raise_interrupt(int intno, int is_int, int error_code,
1331 int next_eip_addend)
1332 {
1333 if (!is_int) {
1334 helper_svm_check_intercept_param(SVM_EXIT_EXCP_BASE + intno, error_code);
1335 intno = check_exception(intno, &error_code);
1336 } else {
1337 helper_svm_check_intercept_param(SVM_EXIT_SWINT, 0);
1338 }
1339
1340 env->exception_index = intno;
1341 env->error_code = error_code;
1342 env->exception_is_int = is_int;
1343 env->exception_next_eip = env->eip + next_eip_addend;
1344 cpu_loop_exit();
1345 }
1346
1347 /* shortcuts to generate exceptions */
1348
1349 void raise_exception_err(int exception_index, int error_code)
1350 {
1351 raise_interrupt(exception_index, 0, error_code, 0);
1352 }
1353
1354 void raise_exception(int exception_index)
1355 {
1356 raise_interrupt(exception_index, 0, 0, 0);
1357 }
1358
1359 void raise_exception_env(int exception_index, CPUState *nenv)
1360 {
1361 env = nenv;
1362 raise_exception(exception_index);
1363 }
1364 /* SMM support */
1365
1366 #if defined(CONFIG_USER_ONLY)
1367
1368 void do_smm_enter(void)
1369 {
1370 }
1371
1372 void helper_rsm(void)
1373 {
1374 }
1375
1376 #else
1377
1378 #ifdef TARGET_X86_64
1379 #define SMM_REVISION_ID 0x00020064
1380 #else
1381 #define SMM_REVISION_ID 0x00020000
1382 #endif
1383
1384 void do_smm_enter(void)
1385 {
1386 target_ulong sm_state;
1387 SegmentCache *dt;
1388 int i, offset;
1389
1390 qemu_log_mask(CPU_LOG_INT, "SMM: enter\n");
1391 log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1392
1393 env->hflags |= HF_SMM_MASK;
1394 cpu_smm_update(env);
1395
1396 sm_state = env->smbase + 0x8000;
1397
1398 #ifdef TARGET_X86_64
1399 for(i = 0; i < 6; i++) {
1400 dt = &env->segs[i];
1401 offset = 0x7e00 + i * 16;
1402 stw_phys(sm_state + offset, dt->selector);
1403 stw_phys(sm_state + offset + 2, (dt->flags >> 8) & 0xf0ff);
1404 stl_phys(sm_state + offset + 4, dt->limit);
1405 stq_phys(sm_state + offset + 8, dt->base);
1406 }
1407
1408 stq_phys(sm_state + 0x7e68, env->gdt.base);
1409 stl_phys(sm_state + 0x7e64, env->gdt.limit);
1410
1411 stw_phys(sm_state + 0x7e70, env->ldt.selector);
1412 stq_phys(sm_state + 0x7e78, env->ldt.base);
1413 stl_phys(sm_state + 0x7e74, env->ldt.limit);
1414 stw_phys(sm_state + 0x7e72, (env->ldt.flags >> 8) & 0xf0ff);
1415
1416 stq_phys(sm_state + 0x7e88, env->idt.base);
1417 stl_phys(sm_state + 0x7e84, env->idt.limit);
1418
1419 stw_phys(sm_state + 0x7e90, env->tr.selector);
1420 stq_phys(sm_state + 0x7e98, env->tr.base);
1421 stl_phys(sm_state + 0x7e94, env->tr.limit);
1422 stw_phys(sm_state + 0x7e92, (env->tr.flags >> 8) & 0xf0ff);
1423
1424 stq_phys(sm_state + 0x7ed0, env->efer);
1425
1426 stq_phys(sm_state + 0x7ff8, EAX);
1427 stq_phys(sm_state + 0x7ff0, ECX);
1428 stq_phys(sm_state + 0x7fe8, EDX);
1429 stq_phys(sm_state + 0x7fe0, EBX);
1430 stq_phys(sm_state + 0x7fd8, ESP);
1431 stq_phys(sm_state + 0x7fd0, EBP);
1432 stq_phys(sm_state + 0x7fc8, ESI);
1433 stq_phys(sm_state + 0x7fc0, EDI);
1434 for(i = 8; i < 16; i++)
1435 stq_phys(sm_state + 0x7ff8 - i * 8, env->regs[i]);
1436 stq_phys(sm_state + 0x7f78, env->eip);
1437 stl_phys(sm_state + 0x7f70, compute_eflags());
1438 stl_phys(sm_state + 0x7f68, env->dr[6]);
1439 stl_phys(sm_state + 0x7f60, env->dr[7]);
1440
1441 stl_phys(sm_state + 0x7f48, env->cr[4]);
1442 stl_phys(sm_state + 0x7f50, env->cr[3]);
1443 stl_phys(sm_state + 0x7f58, env->cr[0]);
1444
1445 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1446 stl_phys(sm_state + 0x7f00, env->smbase);
1447 #else
1448 stl_phys(sm_state + 0x7ffc, env->cr[0]);
1449 stl_phys(sm_state + 0x7ff8, env->cr[3]);
1450 stl_phys(sm_state + 0x7ff4, compute_eflags());
1451 stl_phys(sm_state + 0x7ff0, env->eip);
1452 stl_phys(sm_state + 0x7fec, EDI);
1453 stl_phys(sm_state + 0x7fe8, ESI);
1454 stl_phys(sm_state + 0x7fe4, EBP);
1455 stl_phys(sm_state + 0x7fe0, ESP);
1456 stl_phys(sm_state + 0x7fdc, EBX);
1457 stl_phys(sm_state + 0x7fd8, EDX);
1458 stl_phys(sm_state + 0x7fd4, ECX);
1459 stl_phys(sm_state + 0x7fd0, EAX);
1460 stl_phys(sm_state + 0x7fcc, env->dr[6]);
1461 stl_phys(sm_state + 0x7fc8, env->dr[7]);
1462
1463 stl_phys(sm_state + 0x7fc4, env->tr.selector);
1464 stl_phys(sm_state + 0x7f64, env->tr.base);
1465 stl_phys(sm_state + 0x7f60, env->tr.limit);
1466 stl_phys(sm_state + 0x7f5c, (env->tr.flags >> 8) & 0xf0ff);
1467
1468 stl_phys(sm_state + 0x7fc0, env->ldt.selector);
1469 stl_phys(sm_state + 0x7f80, env->ldt.base);
1470 stl_phys(sm_state + 0x7f7c, env->ldt.limit);
1471 stl_phys(sm_state + 0x7f78, (env->ldt.flags >> 8) & 0xf0ff);
1472
1473 stl_phys(sm_state + 0x7f74, env->gdt.base);
1474 stl_phys(sm_state + 0x7f70, env->gdt.limit);
1475
1476 stl_phys(sm_state + 0x7f58, env->idt.base);
1477 stl_phys(sm_state + 0x7f54, env->idt.limit);
1478
1479 for(i = 0; i < 6; i++) {
1480 dt = &env->segs[i];
1481 if (i < 3)
1482 offset = 0x7f84 + i * 12;
1483 else
1484 offset = 0x7f2c + (i - 3) * 12;
1485 stl_phys(sm_state + 0x7fa8 + i * 4, dt->selector);
1486 stl_phys(sm_state + offset + 8, dt->base);
1487 stl_phys(sm_state + offset + 4, dt->limit);
1488 stl_phys(sm_state + offset, (dt->flags >> 8) & 0xf0ff);
1489 }
1490 stl_phys(sm_state + 0x7f14, env->cr[4]);
1491
1492 stl_phys(sm_state + 0x7efc, SMM_REVISION_ID);
1493 stl_phys(sm_state + 0x7ef8, env->smbase);
1494 #endif
1495 /* init SMM cpu state */
1496
1497 #ifdef TARGET_X86_64
1498 cpu_load_efer(env, 0);
1499 #endif
1500 load_eflags(0, ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1501 env->eip = 0x00008000;
1502 cpu_x86_load_seg_cache(env, R_CS, (env->smbase >> 4) & 0xffff, env->smbase,
1503 0xffffffff, 0);
1504 cpu_x86_load_seg_cache(env, R_DS, 0, 0, 0xffffffff, 0);
1505 cpu_x86_load_seg_cache(env, R_ES, 0, 0, 0xffffffff, 0);
1506 cpu_x86_load_seg_cache(env, R_SS, 0, 0, 0xffffffff, 0);
1507 cpu_x86_load_seg_cache(env, R_FS, 0, 0, 0xffffffff, 0);
1508 cpu_x86_load_seg_cache(env, R_GS, 0, 0, 0xffffffff, 0);
1509
1510 cpu_x86_update_cr0(env,
1511 env->cr[0] & ~(CR0_PE_MASK | CR0_EM_MASK | CR0_TS_MASK | CR0_PG_MASK));
1512 cpu_x86_update_cr4(env, 0);
1513 env->dr[7] = 0x00000400;
1514 CC_OP = CC_OP_EFLAGS;
1515 }
1516
1517 void helper_rsm(void)
1518 {
1519 target_ulong sm_state;
1520 int i, offset;
1521 uint32_t val;
1522
1523 sm_state = env->smbase + 0x8000;
1524 #ifdef TARGET_X86_64
1525 cpu_load_efer(env, ldq_phys(sm_state + 0x7ed0));
1526
1527 for(i = 0; i < 6; i++) {
1528 offset = 0x7e00 + i * 16;
1529 cpu_x86_load_seg_cache(env, i,
1530 lduw_phys(sm_state + offset),
1531 ldq_phys(sm_state + offset + 8),
1532 ldl_phys(sm_state + offset + 4),
1533 (lduw_phys(sm_state + offset + 2) & 0xf0ff) << 8);
1534 }
1535
1536 env->gdt.base = ldq_phys(sm_state + 0x7e68);
1537 env->gdt.limit = ldl_phys(sm_state + 0x7e64);
1538
1539 env->ldt.selector = lduw_phys(sm_state + 0x7e70);
1540 env->ldt.base = ldq_phys(sm_state + 0x7e78);
1541 env->ldt.limit = ldl_phys(sm_state + 0x7e74);
1542 env->ldt.flags = (lduw_phys(sm_state + 0x7e72) & 0xf0ff) << 8;
1543
1544 env->idt.base = ldq_phys(sm_state + 0x7e88);
1545 env->idt.limit = ldl_phys(sm_state + 0x7e84);
1546
1547 env->tr.selector = lduw_phys(sm_state + 0x7e90);
1548 env->tr.base = ldq_phys(sm_state + 0x7e98);
1549 env->tr.limit = ldl_phys(sm_state + 0x7e94);
1550 env->tr.flags = (lduw_phys(sm_state + 0x7e92) & 0xf0ff) << 8;
1551
1552 EAX = ldq_phys(sm_state + 0x7ff8);
1553 ECX = ldq_phys(sm_state + 0x7ff0);
1554 EDX = ldq_phys(sm_state + 0x7fe8);
1555 EBX = ldq_phys(sm_state + 0x7fe0);
1556 ESP = ldq_phys(sm_state + 0x7fd8);
1557 EBP = ldq_phys(sm_state + 0x7fd0);
1558 ESI = ldq_phys(sm_state + 0x7fc8);
1559 EDI = ldq_phys(sm_state + 0x7fc0);
1560 for(i = 8; i < 16; i++)
1561 env->regs[i] = ldq_phys(sm_state + 0x7ff8 - i * 8);
1562 env->eip = ldq_phys(sm_state + 0x7f78);
1563 load_eflags(ldl_phys(sm_state + 0x7f70),
1564 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1565 env->dr[6] = ldl_phys(sm_state + 0x7f68);
1566 env->dr[7] = ldl_phys(sm_state + 0x7f60);
1567
1568 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f48));
1569 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7f50));
1570 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7f58));
1571
1572 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1573 if (val & 0x20000) {
1574 env->smbase = ldl_phys(sm_state + 0x7f00) & ~0x7fff;
1575 }
1576 #else
1577 cpu_x86_update_cr0(env, ldl_phys(sm_state + 0x7ffc));
1578 cpu_x86_update_cr3(env, ldl_phys(sm_state + 0x7ff8));
1579 load_eflags(ldl_phys(sm_state + 0x7ff4),
1580 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
1581 env->eip = ldl_phys(sm_state + 0x7ff0);
1582 EDI = ldl_phys(sm_state + 0x7fec);
1583 ESI = ldl_phys(sm_state + 0x7fe8);
1584 EBP = ldl_phys(sm_state + 0x7fe4);
1585 ESP = ldl_phys(sm_state + 0x7fe0);
1586 EBX = ldl_phys(sm_state + 0x7fdc);
1587 EDX = ldl_phys(sm_state + 0x7fd8);
1588 ECX = ldl_phys(sm_state + 0x7fd4);
1589 EAX = ldl_phys(sm_state + 0x7fd0);
1590 env->dr[6] = ldl_phys(sm_state + 0x7fcc);
1591 env->dr[7] = ldl_phys(sm_state + 0x7fc8);
1592
1593 env->tr.selector = ldl_phys(sm_state + 0x7fc4) & 0xffff;
1594 env->tr.base = ldl_phys(sm_state + 0x7f64);
1595 env->tr.limit = ldl_phys(sm_state + 0x7f60);
1596 env->tr.flags = (ldl_phys(sm_state + 0x7f5c) & 0xf0ff) << 8;
1597
1598 env->ldt.selector = ldl_phys(sm_state + 0x7fc0) & 0xffff;
1599 env->ldt.base = ldl_phys(sm_state + 0x7f80);
1600 env->ldt.limit = ldl_phys(sm_state + 0x7f7c);
1601 env->ldt.flags = (ldl_phys(sm_state + 0x7f78) & 0xf0ff) << 8;
1602
1603 env->gdt.base = ldl_phys(sm_state + 0x7f74);
1604 env->gdt.limit = ldl_phys(sm_state + 0x7f70);
1605
1606 env->idt.base = ldl_phys(sm_state + 0x7f58);
1607 env->idt.limit = ldl_phys(sm_state + 0x7f54);
1608
1609 for(i = 0; i < 6; i++) {
1610 if (i < 3)
1611 offset = 0x7f84 + i * 12;
1612 else
1613 offset = 0x7f2c + (i - 3) * 12;
1614 cpu_x86_load_seg_cache(env, i,
1615 ldl_phys(sm_state + 0x7fa8 + i * 4) & 0xffff,
1616 ldl_phys(sm_state + offset + 8),
1617 ldl_phys(sm_state + offset + 4),
1618 (ldl_phys(sm_state + offset) & 0xf0ff) << 8);
1619 }
1620 cpu_x86_update_cr4(env, ldl_phys(sm_state + 0x7f14));
1621
1622 val = ldl_phys(sm_state + 0x7efc); /* revision ID */
1623 if (val & 0x20000) {
1624 env->smbase = ldl_phys(sm_state + 0x7ef8) & ~0x7fff;
1625 }
1626 #endif
1627 CC_OP = CC_OP_EFLAGS;
1628 env->hflags &= ~HF_SMM_MASK;
1629 cpu_smm_update(env);
1630
1631 qemu_log_mask(CPU_LOG_INT, "SMM: after RSM\n");
1632 log_cpu_state_mask(CPU_LOG_INT, env, X86_DUMP_CCOP);
1633 }
1634
1635 #endif /* !CONFIG_USER_ONLY */
1636
1637
1638 /* division, flags are undefined */
1639
1640 void helper_divb_AL(target_ulong t0)
1641 {
1642 unsigned int num, den, q, r;
1643
1644 num = (EAX & 0xffff);
1645 den = (t0 & 0xff);
1646 if (den == 0) {
1647 raise_exception(EXCP00_DIVZ);
1648 }
1649 q = (num / den);
1650 if (q > 0xff)
1651 raise_exception(EXCP00_DIVZ);
1652 q &= 0xff;
1653 r = (num % den) & 0xff;
1654 EAX = (EAX & ~0xffff) | (r << 8) | q;
1655 }
1656
1657 void helper_idivb_AL(target_ulong t0)
1658 {
1659 int num, den, q, r;
1660
1661 num = (int16_t)EAX;
1662 den = (int8_t)t0;
1663 if (den == 0) {
1664 raise_exception(EXCP00_DIVZ);
1665 }
1666 q = (num / den);
1667 if (q != (int8_t)q)
1668 raise_exception(EXCP00_DIVZ);
1669 q &= 0xff;
1670 r = (num % den) & 0xff;
1671 EAX = (EAX & ~0xffff) | (r << 8) | q;
1672 }
1673
1674 void helper_divw_AX(target_ulong t0)
1675 {
1676 unsigned int num, den, q, r;
1677
1678 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1679 den = (t0 & 0xffff);
1680 if (den == 0) {
1681 raise_exception(EXCP00_DIVZ);
1682 }
1683 q = (num / den);
1684 if (q > 0xffff)
1685 raise_exception(EXCP00_DIVZ);
1686 q &= 0xffff;
1687 r = (num % den) & 0xffff;
1688 EAX = (EAX & ~0xffff) | q;
1689 EDX = (EDX & ~0xffff) | r;
1690 }
1691
1692 void helper_idivw_AX(target_ulong t0)
1693 {
1694 int num, den, q, r;
1695
1696 num = (EAX & 0xffff) | ((EDX & 0xffff) << 16);
1697 den = (int16_t)t0;
1698 if (den == 0) {
1699 raise_exception(EXCP00_DIVZ);
1700 }
1701 q = (num / den);
1702 if (q != (int16_t)q)
1703 raise_exception(EXCP00_DIVZ);
1704 q &= 0xffff;
1705 r = (num % den) & 0xffff;
1706 EAX = (EAX & ~0xffff) | q;
1707 EDX = (EDX & ~0xffff) | r;
1708 }
1709
1710 void helper_divl_EAX(target_ulong t0)
1711 {
1712 unsigned int den, r;
1713 uint64_t num, q;
1714
1715 num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1716 den = t0;
1717 if (den == 0) {
1718 raise_exception(EXCP00_DIVZ);
1719 }
1720 q = (num / den);
1721 r = (num % den);
1722 if (q > 0xffffffff)
1723 raise_exception(EXCP00_DIVZ);
1724 EAX = (uint32_t)q;
1725 EDX = (uint32_t)r;
1726 }
1727
1728 void helper_idivl_EAX(target_ulong t0)
1729 {
1730 int den, r;
1731 int64_t num, q;
1732
1733 num = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
1734 den = t0;
1735 if (den == 0) {
1736 raise_exception(EXCP00_DIVZ);
1737 }
1738 q = (num / den);
1739 r = (num % den);
1740 if (q != (int32_t)q)
1741 raise_exception(EXCP00_DIVZ);
1742 EAX = (uint32_t)q;
1743 EDX = (uint32_t)r;
1744 }
1745
1746 /* bcd */
1747
1748 /* XXX: exception */
1749 void helper_aam(int base)
1750 {
1751 int al, ah;
1752 al = EAX & 0xff;
1753 ah = al / base;
1754 al = al % base;
1755 EAX = (EAX & ~0xffff) | al | (ah << 8);
1756 CC_DST = al;
1757 }
1758
1759 void helper_aad(int base)
1760 {
1761 int al, ah;
1762 al = EAX & 0xff;
1763 ah = (EAX >> 8) & 0xff;
1764 al = ((ah * base) + al) & 0xff;
1765 EAX = (EAX & ~0xffff) | al;
1766 CC_DST = al;
1767 }
1768
1769 void helper_aaa(void)
1770 {
1771 int icarry;
1772 int al, ah, af;
1773 int eflags;
1774
1775 eflags = helper_cc_compute_all(CC_OP);
1776 af = eflags & CC_A;
1777 al = EAX & 0xff;
1778 ah = (EAX >> 8) & 0xff;
1779
1780 icarry = (al > 0xf9);
1781 if (((al & 0x0f) > 9 ) || af) {
1782 al = (al + 6) & 0x0f;
1783 ah = (ah + 1 + icarry) & 0xff;
1784 eflags |= CC_C | CC_A;
1785 } else {
1786 eflags &= ~(CC_C | CC_A);
1787 al &= 0x0f;
1788 }
1789 EAX = (EAX & ~0xffff) | al | (ah << 8);
1790 CC_SRC = eflags;
1791 }
1792
1793 void helper_aas(void)
1794 {
1795 int icarry;
1796 int al, ah, af;
1797 int eflags;
1798
1799 eflags = helper_cc_compute_all(CC_OP);
1800 af = eflags & CC_A;
1801 al = EAX & 0xff;
1802 ah = (EAX >> 8) & 0xff;
1803
1804 icarry = (al < 6);
1805 if (((al & 0x0f) > 9 ) || af) {
1806 al = (al - 6) & 0x0f;
1807 ah = (ah - 1 - icarry) & 0xff;
1808 eflags |= CC_C | CC_A;
1809 } else {
1810 eflags &= ~(CC_C | CC_A);
1811 al &= 0x0f;
1812 }
1813 EAX = (EAX & ~0xffff) | al | (ah << 8);
1814 CC_SRC = eflags;
1815 }
1816
1817 void helper_daa(void)
1818 {
1819 int al, af, cf;
1820 int eflags;
1821
1822 eflags = helper_cc_compute_all(CC_OP);
1823 cf = eflags & CC_C;
1824 af = eflags & CC_A;
1825 al = EAX & 0xff;
1826
1827 eflags = 0;
1828 if (((al & 0x0f) > 9 ) || af) {
1829 al = (al + 6) & 0xff;
1830 eflags |= CC_A;
1831 }
1832 if ((al > 0x9f) || cf) {
1833 al = (al + 0x60) & 0xff;
1834 eflags |= CC_C;
1835 }
1836 EAX = (EAX & ~0xff) | al;
1837 /* well, speed is not an issue here, so we compute the flags by hand */
1838 eflags |= (al == 0) << 6; /* zf */
1839 eflags |= parity_table[al]; /* pf */
1840 eflags |= (al & 0x80); /* sf */
1841 CC_SRC = eflags;
1842 }
1843
1844 void helper_das(void)
1845 {
1846 int al, al1, af, cf;
1847 int eflags;
1848
1849 eflags = helper_cc_compute_all(CC_OP);
1850 cf = eflags & CC_C;
1851 af = eflags & CC_A;
1852 al = EAX & 0xff;
1853
1854 eflags = 0;
1855 al1 = al;
1856 if (((al & 0x0f) > 9 ) || af) {
1857 eflags |= CC_A;
1858 if (al < 6 || cf)
1859 eflags |= CC_C;
1860 al = (al - 6) & 0xff;
1861 }
1862 if ((al1 > 0x99) || cf) {
1863 al = (al - 0x60) & 0xff;
1864 eflags |= CC_C;
1865 }
1866 EAX = (EAX & ~0xff) | al;
1867 /* well, speed is not an issue here, so we compute the flags by hand */
1868 eflags |= (al == 0) << 6; /* zf */
1869 eflags |= parity_table[al]; /* pf */
1870 eflags |= (al & 0x80); /* sf */
1871 CC_SRC = eflags;
1872 }
1873
1874 void helper_into(int next_eip_addend)
1875 {
1876 int eflags;
1877 eflags = helper_cc_compute_all(CC_OP);
1878 if (eflags & CC_O) {
1879 raise_interrupt(EXCP04_INTO, 1, 0, next_eip_addend);
1880 }
1881 }
1882
1883 void helper_cmpxchg8b(target_ulong a0)
1884 {
1885 uint64_t d;
1886 int eflags;
1887
1888 eflags = helper_cc_compute_all(CC_OP);
1889 d = ldq(a0);
1890 if (d == (((uint64_t)EDX << 32) | (uint32_t)EAX)) {
1891 stq(a0, ((uint64_t)ECX << 32) | (uint32_t)EBX);
1892 eflags |= CC_Z;
1893 } else {
1894 /* always do the store */
1895 stq(a0, d);
1896 EDX = (uint32_t)(d >> 32);
1897 EAX = (uint32_t)d;
1898 eflags &= ~CC_Z;
1899 }
1900 CC_SRC = eflags;
1901 }
1902
1903 #ifdef TARGET_X86_64
1904 void helper_cmpxchg16b(target_ulong a0)
1905 {
1906 uint64_t d0, d1;
1907 int eflags;
1908
1909 if ((a0 & 0xf) != 0)
1910 raise_exception(EXCP0D_GPF);
1911 eflags = helper_cc_compute_all(CC_OP);
1912 d0 = ldq(a0);
1913 d1 = ldq(a0 + 8);
1914 if (d0 == EAX && d1 == EDX) {
1915 stq(a0, EBX);
1916 stq(a0 + 8, ECX);
1917 eflags |= CC_Z;
1918 } else {
1919 /* always do the store */
1920 stq(a0, d0);
1921 stq(a0 + 8, d1);
1922 EDX = d1;
1923 EAX = d0;
1924 eflags &= ~CC_Z;
1925 }
1926 CC_SRC = eflags;
1927 }
1928 #endif
1929
1930 void helper_single_step(void)
1931 {
1932 #ifndef CONFIG_USER_ONLY
1933 check_hw_breakpoints(env, 1);
1934 env->dr[6] |= DR6_BS;
1935 #endif
1936 raise_exception(EXCP01_DB);
1937 }
1938
1939 void helper_cpuid(void)
1940 {
1941 uint32_t eax, ebx, ecx, edx;
1942
1943 helper_svm_check_intercept_param(SVM_EXIT_CPUID, 0);
1944
1945 cpu_x86_cpuid(env, (uint32_t)EAX, (uint32_t)ECX, &eax, &ebx, &ecx, &edx);
1946 EAX = eax;
1947 EBX = ebx;
1948 ECX = ecx;
1949 EDX = edx;
1950 }
1951
1952 void helper_enter_level(int level, int data32, target_ulong t1)
1953 {
1954 target_ulong ssp;
1955 uint32_t esp_mask, esp, ebp;
1956
1957 esp_mask = get_sp_mask(env->segs[R_SS].flags);
1958 ssp = env->segs[R_SS].base;
1959 ebp = EBP;
1960 esp = ESP;
1961 if (data32) {
1962 /* 32 bit */
1963 esp -= 4;
1964 while (--level) {
1965 esp -= 4;
1966 ebp -= 4;
1967 stl(ssp + (esp & esp_mask), ldl(ssp + (ebp & esp_mask)));
1968 }
1969 esp -= 4;
1970 stl(ssp + (esp & esp_mask), t1);
1971 } else {
1972 /* 16 bit */
1973 esp -= 2;
1974 while (--level) {
1975 esp -= 2;
1976 ebp -= 2;
1977 stw(ssp + (esp & esp_mask), lduw(ssp + (ebp & esp_mask)));
1978 }
1979 esp -= 2;
1980 stw(ssp + (esp & esp_mask), t1);
1981 }
1982 }
1983
1984 #ifdef TARGET_X86_64
1985 void helper_enter64_level(int level, int data64, target_ulong t1)
1986 {
1987 target_ulong esp, ebp;
1988 ebp = EBP;
1989 esp = ESP;
1990
1991 if (data64) {
1992 /* 64 bit */
1993 esp -= 8;
1994 while (--level) {
1995 esp -= 8;
1996 ebp -= 8;
1997 stq(esp, ldq(ebp));
1998 }
1999 esp -= 8;
2000 stq(esp, t1);
2001 } else {
2002 /* 16 bit */
2003 esp -= 2;
2004 while (--level) {
2005 esp -= 2;
2006 ebp -= 2;
2007 stw(esp, lduw(ebp));
2008 }
2009 esp -= 2;
2010 stw(esp, t1);
2011 }
2012 }
2013 #endif
2014
2015 void helper_lldt(int selector)
2016 {
2017 SegmentCache *dt;
2018 uint32_t e1, e2;
2019 int index, entry_limit;
2020 target_ulong ptr;
2021
2022 selector &= 0xffff;
2023 if ((selector & 0xfffc) == 0) {
2024 /* XXX: NULL selector case: invalid LDT */
2025 env->ldt.base = 0;
2026 env->ldt.limit = 0;
2027 } else {
2028 if (selector & 0x4)
2029 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2030 dt = &env->gdt;
2031 index = selector & ~7;
2032 #ifdef TARGET_X86_64
2033 if (env->hflags & HF_LMA_MASK)
2034 entry_limit = 15;
2035 else
2036 #endif
2037 entry_limit = 7;
2038 if ((index + entry_limit) > dt->limit)
2039 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2040 ptr = dt->base + index;
2041 e1 = ldl_kernel(ptr);
2042 e2 = ldl_kernel(ptr + 4);
2043 if ((e2 & DESC_S_MASK) || ((e2 >> DESC_TYPE_SHIFT) & 0xf) != 2)
2044 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2045 if (!(e2 & DESC_P_MASK))
2046 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2047 #ifdef TARGET_X86_64
2048 if (env->hflags & HF_LMA_MASK) {
2049 uint32_t e3;
2050 e3 = ldl_kernel(ptr + 8);
2051 load_seg_cache_raw_dt(&env->ldt, e1, e2);
2052 env->ldt.base |= (target_ulong)e3 << 32;
2053 } else
2054 #endif
2055 {
2056 load_seg_cache_raw_dt(&env->ldt, e1, e2);
2057 }
2058 }
2059 env->ldt.selector = selector;
2060 }
2061
2062 void helper_ltr(int selector)
2063 {
2064 SegmentCache *dt;
2065 uint32_t e1, e2;
2066 int index, type, entry_limit;
2067 target_ulong ptr;
2068
2069 selector &= 0xffff;
2070 if ((selector & 0xfffc) == 0) {
2071 /* NULL selector case: invalid TR */
2072 env->tr.base = 0;
2073 env->tr.limit = 0;
2074 env->tr.flags = 0;
2075 } else {
2076 if (selector & 0x4)
2077 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2078 dt = &env->gdt;
2079 index = selector & ~7;
2080 #ifdef TARGET_X86_64
2081 if (env->hflags & HF_LMA_MASK)
2082 entry_limit = 15;
2083 else
2084 #endif
2085 entry_limit = 7;
2086 if ((index + entry_limit) > dt->limit)
2087 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2088 ptr = dt->base + index;
2089 e1 = ldl_kernel(ptr);
2090 e2 = ldl_kernel(ptr + 4);
2091 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2092 if ((e2 & DESC_S_MASK) ||
2093 (type != 1 && type != 9))
2094 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2095 if (!(e2 & DESC_P_MASK))
2096 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2097 #ifdef TARGET_X86_64
2098 if (env->hflags & HF_LMA_MASK) {
2099 uint32_t e3, e4;
2100 e3 = ldl_kernel(ptr + 8);
2101 e4 = ldl_kernel(ptr + 12);
2102 if ((e4 >> DESC_TYPE_SHIFT) & 0xf)
2103 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2104 load_seg_cache_raw_dt(&env->tr, e1, e2);
2105 env->tr.base |= (target_ulong)e3 << 32;
2106 } else
2107 #endif
2108 {
2109 load_seg_cache_raw_dt(&env->tr, e1, e2);
2110 }
2111 e2 |= DESC_TSS_BUSY_MASK;
2112 stl_kernel(ptr + 4, e2);
2113 }
2114 env->tr.selector = selector;
2115 }
2116
2117 /* only works if protected mode and not VM86. seg_reg must be != R_CS */
2118 void helper_load_seg(int seg_reg, int selector)
2119 {
2120 uint32_t e1, e2;
2121 int cpl, dpl, rpl;
2122 SegmentCache *dt;
2123 int index;
2124 target_ulong ptr;
2125
2126 selector &= 0xffff;
2127 cpl = env->hflags & HF_CPL_MASK;
2128 if ((selector & 0xfffc) == 0) {
2129 /* null selector case */
2130 if (seg_reg == R_SS
2131 #ifdef TARGET_X86_64
2132 && (!(env->hflags & HF_CS64_MASK) || cpl == 3)
2133 #endif
2134 )
2135 raise_exception_err(EXCP0D_GPF, 0);
2136 cpu_x86_load_seg_cache(env, seg_reg, selector, 0, 0, 0);
2137 } else {
2138
2139 if (selector & 0x4)
2140 dt = &env->ldt;
2141 else
2142 dt = &env->gdt;
2143 index = selector & ~7;
2144 if ((index + 7) > dt->limit)
2145 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2146 ptr = dt->base + index;
2147 e1 = ldl_kernel(ptr);
2148 e2 = ldl_kernel(ptr + 4);
2149
2150 if (!(e2 & DESC_S_MASK))
2151 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2152 rpl = selector & 3;
2153 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2154 if (seg_reg == R_SS) {
2155 /* must be writable segment */
2156 if ((e2 & DESC_CS_MASK) || !(e2 & DESC_W_MASK))
2157 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2158 if (rpl != cpl || dpl != cpl)
2159 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2160 } else {
2161 /* must be readable segment */
2162 if ((e2 & (DESC_CS_MASK | DESC_R_MASK)) == DESC_CS_MASK)
2163 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2164
2165 if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2166 /* if not conforming code, test rights */
2167 if (dpl < cpl || dpl < rpl)
2168 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2169 }
2170 }
2171
2172 if (!(e2 & DESC_P_MASK)) {
2173 if (seg_reg == R_SS)
2174 raise_exception_err(EXCP0C_STACK, selector & 0xfffc);
2175 else
2176 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2177 }
2178
2179 /* set the access bit if not already set */
2180 if (!(e2 & DESC_A_MASK)) {
2181 e2 |= DESC_A_MASK;
2182 stl_kernel(ptr + 4, e2);
2183 }
2184
2185 cpu_x86_load_seg_cache(env, seg_reg, selector,
2186 get_seg_base(e1, e2),
2187 get_seg_limit(e1, e2),
2188 e2);
2189 #if 0
2190 qemu_log("load_seg: sel=0x%04x base=0x%08lx limit=0x%08lx flags=%08x\n",
2191 selector, (unsigned long)sc->base, sc->limit, sc->flags);
2192 #endif
2193 }
2194 }
2195
2196 /* protected mode jump */
2197 void helper_ljmp_protected(int new_cs, target_ulong new_eip,
2198 int next_eip_addend)
2199 {
2200 int gate_cs, type;
2201 uint32_t e1, e2, cpl, dpl, rpl, limit;
2202 target_ulong next_eip;
2203
2204 if ((new_cs & 0xfffc) == 0)
2205 raise_exception_err(EXCP0D_GPF, 0);
2206 if (load_segment(&e1, &e2, new_cs) != 0)
2207 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2208 cpl = env->hflags & HF_CPL_MASK;
2209 if (e2 & DESC_S_MASK) {
2210 if (!(e2 & DESC_CS_MASK))
2211 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2212 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2213 if (e2 & DESC_C_MASK) {
2214 /* conforming code segment */
2215 if (dpl > cpl)
2216 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2217 } else {
2218 /* non conforming code segment */
2219 rpl = new_cs & 3;
2220 if (rpl > cpl)
2221 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2222 if (dpl != cpl)
2223 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2224 }
2225 if (!(e2 & DESC_P_MASK))
2226 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2227 limit = get_seg_limit(e1, e2);
2228 if (new_eip > limit &&
2229 !(env->hflags & HF_LMA_MASK) && !(e2 & DESC_L_MASK))
2230 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2231 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2232 get_seg_base(e1, e2), limit, e2);
2233 EIP = new_eip;
2234 } else {
2235 /* jump to call or task gate */
2236 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2237 rpl = new_cs & 3;
2238 cpl = env->hflags & HF_CPL_MASK;
2239 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
2240 switch(type) {
2241 case 1: /* 286 TSS */
2242 case 9: /* 386 TSS */
2243 case 5: /* task gate */
2244 if (dpl < cpl || dpl < rpl)
2245 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2246 next_eip = env->eip + next_eip_addend;
2247 switch_tss(new_cs, e1, e2, SWITCH_TSS_JMP, next_eip);
2248 CC_OP = CC_OP_EFLAGS;
2249 break;
2250 case 4: /* 286 call gate */
2251 case 12: /* 386 call gate */
2252 if ((dpl < cpl) || (dpl < rpl))
2253 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2254 if (!(e2 & DESC_P_MASK))
2255 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2256 gate_cs = e1 >> 16;
2257 new_eip = (e1 & 0xffff);
2258 if (type == 12)
2259 new_eip |= (e2 & 0xffff0000);
2260 if (load_segment(&e1, &e2, gate_cs) != 0)
2261 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2262 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2263 /* must be code segment */
2264 if (((e2 & (DESC_S_MASK | DESC_CS_MASK)) !=
2265 (DESC_S_MASK | DESC_CS_MASK)))
2266 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2267 if (((e2 & DESC_C_MASK) && (dpl > cpl)) ||
2268 (!(e2 & DESC_C_MASK) && (dpl != cpl)))
2269 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2270 if (!(e2 & DESC_P_MASK))
2271 raise_exception_err(EXCP0D_GPF, gate_cs & 0xfffc);
2272 limit = get_seg_limit(e1, e2);
2273 if (new_eip > limit)
2274 raise_exception_err(EXCP0D_GPF, 0);
2275 cpu_x86_load_seg_cache(env, R_CS, (gate_cs & 0xfffc) | cpl,
2276 get_seg_base(e1, e2), limit, e2);
2277 EIP = new_eip;
2278 break;
2279 default:
2280 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2281 break;
2282 }
2283 }
2284 }
2285
2286 /* real mode call */
2287 void helper_lcall_real(int new_cs, target_ulong new_eip1,
2288 int shift, int next_eip)
2289 {
2290 int new_eip;
2291 uint32_t esp, esp_mask;
2292 target_ulong ssp;
2293
2294 new_eip = new_eip1;
2295 esp = ESP;
2296 esp_mask = get_sp_mask(env->segs[R_SS].flags);
2297 ssp = env->segs[R_SS].base;
2298 if (shift) {
2299 PUSHL(ssp, esp, esp_mask, env->segs[R_CS].selector);
2300 PUSHL(ssp, esp, esp_mask, next_eip);
2301 } else {
2302 PUSHW(ssp, esp, esp_mask, env->segs[R_CS].selector);
2303 PUSHW(ssp, esp, esp_mask, next_eip);
2304 }
2305
2306 SET_ESP(esp, esp_mask);
2307 env->eip = new_eip;
2308 env->segs[R_CS].selector = new_cs;
2309 env->segs[R_CS].base = (new_cs << 4);
2310 }
2311
2312 /* protected mode call */
2313 void helper_lcall_protected(int new_cs, target_ulong new_eip,
2314 int shift, int next_eip_addend)
2315 {
2316 int new_stack, i;
2317 uint32_t e1, e2, cpl, dpl, rpl, selector, offset, param_count;
2318 uint32_t ss = 0, ss_e1 = 0, ss_e2 = 0, sp, type, ss_dpl, sp_mask;
2319 uint32_t val, limit, old_sp_mask;
2320 target_ulong ssp, old_ssp, next_eip;
2321
2322 next_eip = env->eip + next_eip_addend;
2323 LOG_PCALL("lcall %04x:%08x s=%d\n", new_cs, (uint32_t)new_eip, shift);
2324 LOG_PCALL_STATE(env);
2325 if ((new_cs & 0xfffc) == 0)
2326 raise_exception_err(EXCP0D_GPF, 0);
2327 if (load_segment(&e1, &e2, new_cs) != 0)
2328 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2329 cpl = env->hflags & HF_CPL_MASK;
2330 LOG_PCALL("desc=%08x:%08x\n", e1, e2);
2331 if (e2 & DESC_S_MASK) {
2332 if (!(e2 & DESC_CS_MASK))
2333 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2334 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2335 if (e2 & DESC_C_MASK) {
2336 /* conforming code segment */
2337 if (dpl > cpl)
2338 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2339 } else {
2340 /* non conforming code segment */
2341 rpl = new_cs & 3;
2342 if (rpl > cpl)
2343 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2344 if (dpl != cpl)
2345 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2346 }
2347 if (!(e2 & DESC_P_MASK))
2348 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2349
2350 #ifdef TARGET_X86_64
2351 /* XXX: check 16/32 bit cases in long mode */
2352 if (shift == 2) {
2353 target_ulong rsp;
2354 /* 64 bit case */
2355 rsp = ESP;
2356 PUSHQ(rsp, env->segs[R_CS].selector);
2357 PUSHQ(rsp, next_eip);
2358 /* from this point, not restartable */
2359 ESP = rsp;
2360 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2361 get_seg_base(e1, e2),
2362 get_seg_limit(e1, e2), e2);
2363 EIP = new_eip;
2364 } else
2365 #endif
2366 {
2367 sp = ESP;
2368 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2369 ssp = env->segs[R_SS].base;
2370 if (shift) {
2371 PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2372 PUSHL(ssp, sp, sp_mask, next_eip);
2373 } else {
2374 PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2375 PUSHW(ssp, sp, sp_mask, next_eip);
2376 }
2377
2378 limit = get_seg_limit(e1, e2);
2379 if (new_eip > limit)
2380 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2381 /* from this point, not restartable */
2382 SET_ESP(sp, sp_mask);
2383 cpu_x86_load_seg_cache(env, R_CS, (new_cs & 0xfffc) | cpl,
2384 get_seg_base(e1, e2), limit, e2);
2385 EIP = new_eip;
2386 }
2387 } else {
2388 /* check gate type */
2389 type = (e2 >> DESC_TYPE_SHIFT) & 0x1f;
2390 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2391 rpl = new_cs & 3;
2392 switch(type) {
2393 case 1: /* available 286 TSS */
2394 case 9: /* available 386 TSS */
2395 case 5: /* task gate */
2396 if (dpl < cpl || dpl < rpl)
2397 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2398 switch_tss(new_cs, e1, e2, SWITCH_TSS_CALL, next_eip);
2399 CC_OP = CC_OP_EFLAGS;
2400 return;
2401 case 4: /* 286 call gate */
2402 case 12: /* 386 call gate */
2403 break;
2404 default:
2405 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2406 break;
2407 }
2408 shift = type >> 3;
2409
2410 if (dpl < cpl || dpl < rpl)
2411 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2412 /* check valid bit */
2413 if (!(e2 & DESC_P_MASK))
2414 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2415 selector = e1 >> 16;
2416 offset = (e2 & 0xffff0000) | (e1 & 0x0000ffff);
2417 param_count = e2 & 0x1f;
2418 if ((selector & 0xfffc) == 0)
2419 raise_exception_err(EXCP0D_GPF, 0);
2420
2421 if (load_segment(&e1, &e2, selector) != 0)
2422 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2423 if (!(e2 & DESC_S_MASK) || !(e2 & (DESC_CS_MASK)))
2424 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2425 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2426 if (dpl > cpl)
2427 raise_exception_err(EXCP0D_GPF, selector & 0xfffc);
2428 if (!(e2 & DESC_P_MASK))
2429 raise_exception_err(EXCP0B_NOSEG, selector & 0xfffc);
2430
2431 if (!(e2 & DESC_C_MASK) && dpl < cpl) {
2432 /* to inner privilege */
2433 get_ss_esp_from_tss(&ss, &sp, dpl);
2434 LOG_PCALL("new ss:esp=%04x:%08x param_count=%d ESP=" TARGET_FMT_lx "\n",
2435 ss, sp, param_count, ESP);
2436 if ((ss & 0xfffc) == 0)
2437 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2438 if ((ss & 3) != dpl)
2439 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2440 if (load_segment(&ss_e1, &ss_e2, ss) != 0)
2441 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2442 ss_dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2443 if (ss_dpl != dpl)
2444 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2445 if (!(ss_e2 & DESC_S_MASK) ||
2446 (ss_e2 & DESC_CS_MASK) ||
2447 !(ss_e2 & DESC_W_MASK))
2448 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2449 if (!(ss_e2 & DESC_P_MASK))
2450 raise_exception_err(EXCP0A_TSS, ss & 0xfffc);
2451
2452 // push_size = ((param_count * 2) + 8) << shift;
2453
2454 old_sp_mask = get_sp_mask(env->segs[R_SS].flags);
2455 old_ssp = env->segs[R_SS].base;
2456
2457 sp_mask = get_sp_mask(ss_e2);
2458 ssp = get_seg_base(ss_e1, ss_e2);
2459 if (shift) {
2460 PUSHL(ssp, sp, sp_mask, env->segs[R_SS].selector);
2461 PUSHL(ssp, sp, sp_mask, ESP);
2462 for(i = param_count - 1; i >= 0; i--) {
2463 val = ldl_kernel(old_ssp + ((ESP + i * 4) & old_sp_mask));
2464 PUSHL(ssp, sp, sp_mask, val);
2465 }
2466 } else {
2467 PUSHW(ssp, sp, sp_mask, env->segs[R_SS].selector);
2468 PUSHW(ssp, sp, sp_mask, ESP);
2469 for(i = param_count - 1; i >= 0; i--) {
2470 val = lduw_kernel(old_ssp + ((ESP + i * 2) & old_sp_mask));
2471 PUSHW(ssp, sp, sp_mask, val);
2472 }
2473 }
2474 new_stack = 1;
2475 } else {
2476 /* to same privilege */
2477 sp = ESP;
2478 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2479 ssp = env->segs[R_SS].base;
2480 // push_size = (4 << shift);
2481 new_stack = 0;
2482 }
2483
2484 if (shift) {
2485 PUSHL(ssp, sp, sp_mask, env->segs[R_CS].selector);
2486 PUSHL(ssp, sp, sp_mask, next_eip);
2487 } else {
2488 PUSHW(ssp, sp, sp_mask, env->segs[R_CS].selector);
2489 PUSHW(ssp, sp, sp_mask, next_eip);
2490 }
2491
2492 /* from this point, not restartable */
2493
2494 if (new_stack) {
2495 ss = (ss & ~3) | dpl;
2496 cpu_x86_load_seg_cache(env, R_SS, ss,
2497 ssp,
2498 get_seg_limit(ss_e1, ss_e2),
2499 ss_e2);
2500 }
2501
2502 selector = (selector & ~3) | dpl;
2503 cpu_x86_load_seg_cache(env, R_CS, selector,
2504 get_seg_base(e1, e2),
2505 get_seg_limit(e1, e2),
2506 e2);
2507 cpu_x86_set_cpl(env, dpl);
2508 SET_ESP(sp, sp_mask);
2509 EIP = offset;
2510 }
2511 }
2512
2513 /* real and vm86 mode iret */
2514 void helper_iret_real(int shift)
2515 {
2516 uint32_t sp, new_cs, new_eip, new_eflags, sp_mask;
2517 target_ulong ssp;
2518 int eflags_mask;
2519
2520 sp_mask = 0xffff; /* XXXX: use SS segment size ? */
2521 sp = ESP;
2522 ssp = env->segs[R_SS].base;
2523 if (shift == 1) {
2524 /* 32 bits */
2525 POPL(ssp, sp, sp_mask, new_eip);
2526 POPL(ssp, sp, sp_mask, new_cs);
2527 new_cs &= 0xffff;
2528 POPL(ssp, sp, sp_mask, new_eflags);
2529 } else {
2530 /* 16 bits */
2531 POPW(ssp, sp, sp_mask, new_eip);
2532 POPW(ssp, sp, sp_mask, new_cs);
2533 POPW(ssp, sp, sp_mask, new_eflags);
2534 }
2535 ESP = (ESP & ~sp_mask) | (sp & sp_mask);
2536 env->segs[R_CS].selector = new_cs;
2537 env->segs[R_CS].base = (new_cs << 4);
2538 env->eip = new_eip;
2539 if (env->eflags & VM_MASK)
2540 eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | RF_MASK | NT_MASK;
2541 else
2542 eflags_mask = TF_MASK | AC_MASK | ID_MASK | IF_MASK | IOPL_MASK | RF_MASK | NT_MASK;
2543 if (shift == 0)
2544 eflags_mask &= 0xffff;
2545 load_eflags(new_eflags, eflags_mask);
2546 env->hflags2 &= ~HF2_NMI_MASK;
2547 }
2548
2549 static inline void validate_seg(int seg_reg, int cpl)
2550 {
2551 int dpl;
2552 uint32_t e2;
2553
2554 /* XXX: on x86_64, we do not want to nullify FS and GS because
2555 they may still contain a valid base. I would be interested to
2556 know how a real x86_64 CPU behaves */
2557 if ((seg_reg == R_FS || seg_reg == R_GS) &&
2558 (env->segs[seg_reg].selector & 0xfffc) == 0)
2559 return;
2560
2561 e2 = env->segs[seg_reg].flags;
2562 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2563 if (!(e2 & DESC_CS_MASK) || !(e2 & DESC_C_MASK)) {
2564 /* data or non conforming code segment */
2565 if (dpl < cpl) {
2566 cpu_x86_load_seg_cache(env, seg_reg, 0, 0, 0, 0);
2567 }
2568 }
2569 }
2570
2571 /* protected mode iret */
2572 static inline void helper_ret_protected(int shift, int is_iret, int addend)
2573 {
2574 uint32_t new_cs, new_eflags, new_ss;
2575 uint32_t new_es, new_ds, new_fs, new_gs;
2576 uint32_t e1, e2, ss_e1, ss_e2;
2577 int cpl, dpl, rpl, eflags_mask, iopl;
2578 target_ulong ssp, sp, new_eip, new_esp, sp_mask;
2579
2580 #ifdef TARGET_X86_64
2581 if (shift == 2)
2582 sp_mask = -1;
2583 else
2584 #endif
2585 sp_mask = get_sp_mask(env->segs[R_SS].flags);
2586 sp = ESP;
2587 ssp = env->segs[R_SS].base;
2588 new_eflags = 0; /* avoid warning */
2589 #ifdef TARGET_X86_64
2590 if (shift == 2) {
2591 POPQ(sp, new_eip);
2592 POPQ(sp, new_cs);
2593 new_cs &= 0xffff;
2594 if (is_iret) {
2595 POPQ(sp, new_eflags);
2596 }
2597 } else
2598 #endif
2599 if (shift == 1) {
2600 /* 32 bits */
2601 POPL(ssp, sp, sp_mask, new_eip);
2602 POPL(ssp, sp, sp_mask, new_cs);
2603 new_cs &= 0xffff;
2604 if (is_iret) {
2605 POPL(ssp, sp, sp_mask, new_eflags);
2606 if (new_eflags & VM_MASK)
2607 goto return_to_vm86;
2608 }
2609 } else {
2610 /* 16 bits */
2611 POPW(ssp, sp, sp_mask, new_eip);
2612 POPW(ssp, sp, sp_mask, new_cs);
2613 if (is_iret)
2614 POPW(ssp, sp, sp_mask, new_eflags);
2615 }
2616 LOG_PCALL("lret new %04x:" TARGET_FMT_lx " s=%d addend=0x%x\n",
2617 new_cs, new_eip, shift, addend);
2618 LOG_PCALL_STATE(env);
2619 if ((new_cs & 0xfffc) == 0)
2620 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2621 if (load_segment(&e1, &e2, new_cs) != 0)
2622 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2623 if (!(e2 & DESC_S_MASK) ||
2624 !(e2 & DESC_CS_MASK))
2625 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2626 cpl = env->hflags & HF_CPL_MASK;
2627 rpl = new_cs & 3;
2628 if (rpl < cpl)
2629 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2630 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
2631 if (e2 & DESC_C_MASK) {
2632 if (dpl > rpl)
2633 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2634 } else {
2635 if (dpl != rpl)
2636 raise_exception_err(EXCP0D_GPF, new_cs & 0xfffc);
2637 }
2638 if (!(e2 & DESC_P_MASK))
2639 raise_exception_err(EXCP0B_NOSEG, new_cs & 0xfffc);
2640
2641 sp += addend;
2642 if (rpl == cpl && (!(env->hflags & HF_CS64_MASK) ||
2643 ((env->hflags & HF_CS64_MASK) && !is_iret))) {
2644 /* return to same privilege level */
2645 cpu_x86_load_seg_cache(env, R_CS, new_cs,
2646 get_seg_base(e1, e2),
2647 get_seg_limit(e1, e2),
2648 e2);
2649 } else {
2650 /* return to different privilege level */
2651 #ifdef TARGET_X86_64
2652 if (shift == 2) {
2653 POPQ(sp, new_esp);
2654 POPQ(sp, new_ss);
2655 new_ss &= 0xffff;
2656 } else
2657 #endif
2658 if (shift == 1) {
2659 /* 32 bits */
2660 POPL(ssp, sp, sp_mask, new_esp);
2661 POPL(ssp, sp, sp_mask, new_ss);
2662 new_ss &= 0xffff;
2663 } else {
2664 /* 16 bits */
2665 POPW(ssp, sp, sp_mask, new_esp);
2666 POPW(ssp, sp, sp_mask, new_ss);
2667 }
2668 LOG_PCALL("new ss:esp=%04x:" TARGET_FMT_lx "\n",
2669 new_ss, new_esp);
2670 if ((new_ss & 0xfffc) == 0) {
2671 #ifdef TARGET_X86_64
2672 /* NULL ss is allowed in long mode if cpl != 3*/
2673 /* XXX: test CS64 ? */
2674 if ((env->hflags & HF_LMA_MASK) && rpl != 3) {
2675 cpu_x86_load_seg_cache(env, R_SS, new_ss,
2676 0, 0xffffffff,
2677 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2678 DESC_S_MASK | (rpl << DESC_DPL_SHIFT) |
2679 DESC_W_MASK | DESC_A_MASK);
2680 ss_e2 = DESC_B_MASK; /* XXX: should not be needed ? */
2681 } else
2682 #endif
2683 {
2684 raise_exception_err(EXCP0D_GPF, 0);
2685 }
2686 } else {
2687 if ((new_ss & 3) != rpl)
2688 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2689 if (load_segment(&ss_e1, &ss_e2, new_ss) != 0)
2690 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2691 if (!(ss_e2 & DESC_S_MASK) ||
2692 (ss_e2 & DESC_CS_MASK) ||
2693 !(ss_e2 & DESC_W_MASK))
2694 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2695 dpl = (ss_e2 >> DESC_DPL_SHIFT) & 3;
2696 if (dpl != rpl)
2697 raise_exception_err(EXCP0D_GPF, new_ss & 0xfffc);
2698 if (!(ss_e2 & DESC_P_MASK))
2699 raise_exception_err(EXCP0B_NOSEG, new_ss & 0xfffc);
2700 cpu_x86_load_seg_cache(env, R_SS, new_ss,
2701 get_seg_base(ss_e1, ss_e2),
2702 get_seg_limit(ss_e1, ss_e2),
2703 ss_e2);
2704 }
2705
2706 cpu_x86_load_seg_cache(env, R_CS, new_cs,
2707 get_seg_base(e1, e2),
2708 get_seg_limit(e1, e2),
2709 e2);
2710 cpu_x86_set_cpl(env, rpl);
2711 sp = new_esp;
2712 #ifdef TARGET_X86_64
2713 if (env->hflags & HF_CS64_MASK)
2714 sp_mask = -1;
2715 else
2716 #endif
2717 sp_mask = get_sp_mask(ss_e2);
2718
2719 /* validate data segments */
2720 validate_seg(R_ES, rpl);
2721 validate_seg(R_DS, rpl);
2722 validate_seg(R_FS, rpl);
2723 validate_seg(R_GS, rpl);
2724
2725 sp += addend;
2726 }
2727 SET_ESP(sp, sp_mask);
2728 env->eip = new_eip;
2729 if (is_iret) {
2730 /* NOTE: 'cpl' is the _old_ CPL */
2731 eflags_mask = TF_MASK | AC_MASK | ID_MASK | RF_MASK | NT_MASK;
2732 if (cpl == 0)
2733 eflags_mask |= IOPL_MASK;
2734 iopl = (env->eflags >> IOPL_SHIFT) & 3;
2735 if (cpl <= iopl)
2736 eflags_mask |= IF_MASK;
2737 if (shift == 0)
2738 eflags_mask &= 0xffff;
2739 load_eflags(new_eflags, eflags_mask);
2740 }
2741 return;
2742
2743 return_to_vm86:
2744 POPL(ssp, sp, sp_mask, new_esp);
2745 POPL(ssp, sp, sp_mask, new_ss);
2746 POPL(ssp, sp, sp_mask, new_es);
2747 POPL(ssp, sp, sp_mask, new_ds);
2748 POPL(ssp, sp, sp_mask, new_fs);
2749 POPL(ssp, sp, sp_mask, new_gs);
2750
2751 /* modify processor state */
2752 load_eflags(new_eflags, TF_MASK | AC_MASK | ID_MASK |
2753 IF_MASK | IOPL_MASK | VM_MASK | NT_MASK | VIF_MASK | VIP_MASK);
2754 load_seg_vm(R_CS, new_cs & 0xffff);
2755 cpu_x86_set_cpl(env, 3);
2756 load_seg_vm(R_SS, new_ss & 0xffff);
2757 load_seg_vm(R_ES, new_es & 0xffff);
2758 load_seg_vm(R_DS, new_ds & 0xffff);
2759 load_seg_vm(R_FS, new_fs & 0xffff);
2760 load_seg_vm(R_GS, new_gs & 0xffff);
2761
2762 env->eip = new_eip & 0xffff;
2763 ESP = new_esp;
2764 }
2765
2766 void helper_iret_protected(int shift, int next_eip)
2767 {
2768 int tss_selector, type;
2769 uint32_t e1, e2;
2770
2771 /* specific case for TSS */
2772 if (env->eflags & NT_MASK) {
2773 #ifdef TARGET_X86_64
2774 if (env->hflags & HF_LMA_MASK)
2775 raise_exception_err(EXCP0D_GPF, 0);
2776 #endif
2777 tss_selector = lduw_kernel(env->tr.base + 0);
2778 if (tss_selector & 4)
2779 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2780 if (load_segment(&e1, &e2, tss_selector) != 0)
2781 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2782 type = (e2 >> DESC_TYPE_SHIFT) & 0x17;
2783 /* NOTE: we check both segment and busy TSS */
2784 if (type != 3)
2785 raise_exception_err(EXCP0A_TSS, tss_selector & 0xfffc);
2786 switch_tss(tss_selector, e1, e2, SWITCH_TSS_IRET, next_eip);
2787 } else {
2788 helper_ret_protected(shift, 1, 0);
2789 }
2790 env->hflags2 &= ~HF2_NMI_MASK;
2791 }
2792
2793 void helper_lret_protected(int shift, int addend)
2794 {
2795 helper_ret_protected(shift, 0, addend);
2796 }
2797
2798 void helper_sysenter(void)
2799 {
2800 if (env->sysenter_cs == 0) {
2801 raise_exception_err(EXCP0D_GPF, 0);
2802 }
2803 env->eflags &= ~(VM_MASK | IF_MASK | RF_MASK);
2804 cpu_x86_set_cpl(env, 0);
2805
2806 #ifdef TARGET_X86_64
2807 if (env->hflags & HF_LMA_MASK) {
2808 cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2809 0, 0xffffffff,
2810 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2811 DESC_S_MASK |
2812 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
2813 } else
2814 #endif
2815 {
2816 cpu_x86_load_seg_cache(env, R_CS, env->sysenter_cs & 0xfffc,
2817 0, 0xffffffff,
2818 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2819 DESC_S_MASK |
2820 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
2821 }
2822 cpu_x86_load_seg_cache(env, R_SS, (env->sysenter_cs + 8) & 0xfffc,
2823 0, 0xffffffff,
2824 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2825 DESC_S_MASK |
2826 DESC_W_MASK | DESC_A_MASK);
2827 ESP = env->sysenter_esp;
2828 EIP = env->sysenter_eip;
2829 }
2830
2831 void helper_sysexit(int dflag)
2832 {
2833 int cpl;
2834
2835 cpl = env->hflags & HF_CPL_MASK;
2836 if (env->sysenter_cs == 0 || cpl != 0) {
2837 raise_exception_err(EXCP0D_GPF, 0);
2838 }
2839 cpu_x86_set_cpl(env, 3);
2840 #ifdef TARGET_X86_64
2841 if (dflag == 2) {
2842 cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 32) & 0xfffc) | 3,
2843 0, 0xffffffff,
2844 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2845 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2846 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
2847 cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 40) & 0xfffc) | 3,
2848 0, 0xffffffff,
2849 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2850 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2851 DESC_W_MASK | DESC_A_MASK);
2852 } else
2853 #endif
2854 {
2855 cpu_x86_load_seg_cache(env, R_CS, ((env->sysenter_cs + 16) & 0xfffc) | 3,
2856 0, 0xffffffff,
2857 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2858 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2859 DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
2860 cpu_x86_load_seg_cache(env, R_SS, ((env->sysenter_cs + 24) & 0xfffc) | 3,
2861 0, 0xffffffff,
2862 DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
2863 DESC_S_MASK | (3 << DESC_DPL_SHIFT) |
2864 DESC_W_MASK | DESC_A_MASK);
2865 }
2866 ESP = ECX;
2867 EIP = EDX;
2868 }
2869
2870 #if defined(CONFIG_USER_ONLY)
2871 target_ulong helper_read_crN(int reg)
2872 {
2873 return 0;
2874 }
2875
2876 void helper_write_crN(int reg, target_ulong t0)
2877 {
2878 }
2879
2880 void helper_movl_drN_T0(int reg, target_ulong t0)
2881 {
2882 }
2883 #else
2884 target_ulong helper_read_crN(int reg)
2885 {
2886 target_ulong val;
2887
2888 helper_svm_check_intercept_param(SVM_EXIT_READ_CR0 + reg, 0);
2889 switch(reg) {
2890 default:
2891 val = env->cr[reg];
2892 break;
2893 case 8:
2894 if (!(env->hflags2 & HF2_VINTR_MASK)) {
2895 val = cpu_get_apic_tpr(env->apic_state);
2896 } else {
2897 val = env->v_tpr;
2898 }
2899 break;
2900 }
2901 return val;
2902 }
2903
2904 void helper_write_crN(int reg, target_ulong t0)
2905 {
2906 helper_svm_check_intercept_param(SVM_EXIT_WRITE_CR0 + reg, 0);
2907 switch(reg) {
2908 case 0:
2909 cpu_x86_update_cr0(env, t0);
2910 break;
2911 case 3:
2912 cpu_x86_update_cr3(env, t0);
2913 break;
2914 case 4:
2915 cpu_x86_update_cr4(env, t0);
2916 break;
2917 case 8:
2918 if (!(env->hflags2 & HF2_VINTR_MASK)) {
2919 cpu_set_apic_tpr(env->apic_state, t0);
2920 }
2921 env->v_tpr = t0 & 0x0f;
2922 break;
2923 default:
2924 env->cr[reg] = t0;
2925 break;
2926 }
2927 }
2928
2929 void helper_movl_drN_T0(int reg, target_ulong t0)
2930 {
2931 int i;
2932
2933 if (reg < 4) {
2934 hw_breakpoint_remove(env, reg);
2935 env->dr[reg] = t0;
2936 hw_breakpoint_insert(env, reg);
2937 } else if (reg == 7) {
2938 for (i = 0; i < 4; i++)
2939 hw_breakpoint_remove(env, i);
2940 env->dr[7] = t0;
2941 for (i = 0; i < 4; i++)
2942 hw_breakpoint_insert(env, i);
2943 } else
2944 env->dr[reg] = t0;
2945 }
2946 #endif
2947
2948 void helper_lmsw(target_ulong t0)
2949 {
2950 /* only 4 lower bits of CR0 are modified. PE cannot be set to zero
2951 if already set to one. */
2952 t0 = (env->cr[0] & ~0xe) | (t0 & 0xf);
2953 helper_write_crN(0, t0);
2954 }
2955
2956 void helper_clts(void)
2957 {
2958 env->cr[0] &= ~CR0_TS_MASK;
2959 env->hflags &= ~HF_TS_MASK;
2960 }
2961
2962 void helper_invlpg(target_ulong addr)
2963 {
2964 helper_svm_check_intercept_param(SVM_EXIT_INVLPG, 0);
2965 tlb_flush_page(env, addr);
2966 }
2967
2968 void helper_rdtsc(void)
2969 {
2970 uint64_t val;
2971
2972 if ((env->cr[4] & CR4_TSD_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
2973 raise_exception(EXCP0D_GPF);
2974 }
2975 helper_svm_check_intercept_param(SVM_EXIT_RDTSC, 0);
2976
2977 val = cpu_get_tsc(env) + env->tsc_offset;
2978 EAX = (uint32_t)(val);
2979 EDX = (uint32_t)(val >> 32);
2980 }
2981
2982 void helper_rdtscp(void)
2983 {
2984 helper_rdtsc();
2985 ECX = (uint32_t)(env->tsc_aux);
2986 }
2987
2988 void helper_rdpmc(void)
2989 {
2990 if ((env->cr[4] & CR4_PCE_MASK) && ((env->hflags & HF_CPL_MASK) != 0)) {
2991 raise_exception(EXCP0D_GPF);
2992 }
2993 helper_svm_check_intercept_param(SVM_EXIT_RDPMC, 0);
2994
2995 /* currently unimplemented */
2996 raise_exception_err(EXCP06_ILLOP, 0);
2997 }
2998
2999 #if defined(CONFIG_USER_ONLY)
3000 void helper_wrmsr(void)
3001 {
3002 }
3003
3004 void helper_rdmsr(void)
3005 {
3006 }
3007 #else
3008 void helper_wrmsr(void)
3009 {
3010 uint64_t val;
3011
3012 helper_svm_check_intercept_param(SVM_EXIT_MSR, 1);
3013
3014 val = ((uint32_t)EAX) | ((uint64_t)((uint32_t)EDX) << 32);
3015
3016 switch((uint32_t)ECX) {
3017 case MSR_IA32_SYSENTER_CS:
3018 env->sysenter_cs = val & 0xffff;
3019 break;
3020 case MSR_IA32_SYSENTER_ESP:
3021 env->sysenter_esp = val;
3022 break;
3023 case MSR_IA32_SYSENTER_EIP:
3024 env->sysenter_eip = val;
3025 break;
3026 case MSR_IA32_APICBASE:
3027 cpu_set_apic_base(env->apic_state, val);
3028 break;
3029 case MSR_EFER:
3030 {
3031 uint64_t update_mask;
3032 update_mask = 0;
3033 if (env->cpuid_ext2_features & CPUID_EXT2_SYSCALL)
3034 update_mask |= MSR_EFER_SCE;
3035 if (env->cpuid_ext2_features & CPUID_EXT2_LM)
3036 update_mask |= MSR_EFER_LME;
3037 if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3038 update_mask |= MSR_EFER_FFXSR;
3039 if (env->cpuid_ext2_features & CPUID_EXT2_NX)
3040 update_mask |= MSR_EFER_NXE;
3041 if (env->cpuid_ext3_features & CPUID_EXT3_SVM)
3042 update_mask |= MSR_EFER_SVME;
3043 if (env->cpuid_ext2_features & CPUID_EXT2_FFXSR)
3044 update_mask |= MSR_EFER_FFXSR;
3045 cpu_load_efer(env, (env->efer & ~update_mask) |
3046 (val & update_mask));
3047 }
3048 break;
3049 case MSR_STAR:
3050 env->star = val;
3051 break;
3052 case MSR_PAT:
3053 env->pat = val;
3054 break;
3055 case MSR_VM_HSAVE_PA:
3056 env->vm_hsave = val;
3057 break;
3058 #ifdef TARGET_X86_64
3059 case MSR_LSTAR:
3060 env->lstar = val;
3061 break;
3062 case MSR_CSTAR:
3063 env->cstar = val;
3064 break;
3065 case MSR_FMASK:
3066 env->fmask = val;
3067 break;
3068 case MSR_FSBASE:
3069 env->segs[R_FS].base = val;
3070 break;
3071 case MSR_GSBASE:
3072 env->segs[R_GS].base = val;
3073 break;
3074 case MSR_KERNELGSBASE:
3075 env->kernelgsbase = val;
3076 break;
3077 #endif
3078 case MSR_MTRRphysBase(0):
3079 case MSR_MTRRphysBase(1):
3080 case MSR_MTRRphysBase(2):
3081 case MSR_MTRRphysBase(3):
3082 case MSR_MTRRphysBase(4):
3083 case MSR_MTRRphysBase(5):
3084 case MSR_MTRRphysBase(6):
3085 case MSR_MTRRphysBase(7):
3086 env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base = val;
3087 break;
3088 case MSR_MTRRphysMask(0):
3089 case MSR_MTRRphysMask(1):
3090 case MSR_MTRRphysMask(2):
3091 case MSR_MTRRphysMask(3):
3092 case MSR_MTRRphysMask(4):
3093 case MSR_MTRRphysMask(5):
3094 case MSR_MTRRphysMask(6):
3095 case MSR_MTRRphysMask(7):
3096 env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask = val;
3097 break;
3098 case MSR_MTRRfix64K_00000:
3099 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix64K_00000] = val;
3100 break;
3101 case MSR_MTRRfix16K_80000:
3102 case MSR_MTRRfix16K_A0000:
3103 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1] = val;
3104 break;
3105 case MSR_MTRRfix4K_C0000:
3106 case MSR_MTRRfix4K_C8000:
3107 case MSR_MTRRfix4K_D0000:
3108 case MSR_MTRRfix4K_D8000:
3109 case MSR_MTRRfix4K_E0000:
3110 case MSR_MTRRfix4K_E8000:
3111 case MSR_MTRRfix4K_F0000:
3112 case MSR_MTRRfix4K_F8000:
3113 env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3] = val;
3114 break;
3115 case MSR_MTRRdefType:
3116 env->mtrr_deftype = val;
3117 break;
3118 case MSR_MCG_STATUS:
3119 env->mcg_status = val;
3120 break;
3121 case MSR_MCG_CTL:
3122 if ((env->mcg_cap & MCG_CTL_P)
3123 && (val == 0 || val == ~(uint64_t)0))
3124 env->mcg_ctl = val;
3125 break;
3126 case MSR_TSC_AUX:
3127 env->tsc_aux = val;
3128 break;
3129 default:
3130 if ((uint32_t)ECX >= MSR_MC0_CTL
3131 && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3132 uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3133 if ((offset & 0x3) != 0
3134 || (val == 0 || val == ~(uint64_t)0))
3135 env->mce_banks[offset] = val;
3136 break;
3137 }
3138 /* XXX: exception ? */
3139 break;
3140 }
3141 }
3142
3143 void helper_rdmsr(void)
3144 {
3145 uint64_t val;
3146
3147 helper_svm_check_intercept_param(SVM_EXIT_MSR, 0);
3148
3149 switch((uint32_t)ECX) {
3150 case MSR_IA32_SYSENTER_CS:
3151 val = env->sysenter_cs;
3152 break;
3153 case MSR_IA32_SYSENTER_ESP:
3154 val = env->sysenter_esp;
3155 break;
3156 case MSR_IA32_SYSENTER_EIP:
3157 val = env->sysenter_eip;
3158 break;
3159 case MSR_IA32_APICBASE:
3160 val = cpu_get_apic_base(env->apic_state);
3161 break;
3162 case MSR_EFER:
3163 val = env->efer;
3164 break;
3165 case MSR_STAR:
3166 val = env->star;
3167 break;
3168 case MSR_PAT:
3169 val = env->pat;
3170 break;
3171 case MSR_VM_HSAVE_PA:
3172 val = env->vm_hsave;
3173 break;
3174 case MSR_IA32_PERF_STATUS:
3175 /* tsc_increment_by_tick */
3176 val = 1000ULL;
3177 /* CPU multiplier */
3178 val |= (((uint64_t)4ULL) << 40);
3179 break;
3180 #ifdef TARGET_X86_64
3181 case MSR_LSTAR:
3182 val = env->lstar;
3183 break;
3184 case MSR_CSTAR:
3185 val = env->cstar;
3186 break;
3187 case MSR_FMASK:
3188 val = env->fmask;
3189 break;
3190 case MSR_FSBASE:
3191 val = env->segs[R_FS].base;
3192 break;
3193 case MSR_GSBASE:
3194 val = env->segs[R_GS].base;
3195 break;
3196 case MSR_KERNELGSBASE:
3197 val = env->kernelgsbase;
3198 break;
3199 case MSR_TSC_AUX:
3200 val = env->tsc_aux;
3201 break;
3202 #endif
3203 case MSR_MTRRphysBase(0):
3204 case MSR_MTRRphysBase(1):
3205 case MSR_MTRRphysBase(2):
3206 case MSR_MTRRphysBase(3):
3207 case MSR_MTRRphysBase(4):
3208 case MSR_MTRRphysBase(5):
3209 case MSR_MTRRphysBase(6):
3210 case MSR_MTRRphysBase(7):
3211 val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysBase(0)) / 2].base;
3212 break;
3213 case MSR_MTRRphysMask(0):
3214 case MSR_MTRRphysMask(1):
3215 case MSR_MTRRphysMask(2):
3216 case MSR_MTRRphysMask(3):
3217 case MSR_MTRRphysMask(4):
3218 case MSR_MTRRphysMask(5):
3219 case MSR_MTRRphysMask(6):
3220 case MSR_MTRRphysMask(7):
3221 val = env->mtrr_var[((uint32_t)ECX - MSR_MTRRphysMask(0)) / 2].mask;
3222 break;
3223 case MSR_MTRRfix64K_00000:
3224 val = env->mtrr_fixed[0];
3225 break;
3226 case MSR_MTRRfix16K_80000:
3227 case MSR_MTRRfix16K_A0000:
3228 val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix16K_80000 + 1];
3229 break;
3230 case MSR_MTRRfix4K_C0000:
3231 case MSR_MTRRfix4K_C8000:
3232 case MSR_MTRRfix4K_D0000:
3233 case MSR_MTRRfix4K_D8000:
3234 case MSR_MTRRfix4K_E0000:
3235 case MSR_MTRRfix4K_E8000:
3236 case MSR_MTRRfix4K_F0000:
3237 case MSR_MTRRfix4K_F8000:
3238 val = env->mtrr_fixed[(uint32_t)ECX - MSR_MTRRfix4K_C0000 + 3];
3239 break;
3240 case MSR_MTRRdefType:
3241 val = env->mtrr_deftype;
3242 break;
3243 case MSR_MTRRcap:
3244 if (env->cpuid_features & CPUID_MTRR)
3245 val = MSR_MTRRcap_VCNT | MSR_MTRRcap_FIXRANGE_SUPPORT | MSR_MTRRcap_WC_SUPPORTED;
3246 else
3247 /* XXX: exception ? */
3248 val = 0;
3249 break;
3250 case MSR_MCG_CAP:
3251 val = env->mcg_cap;
3252 break;
3253 case MSR_MCG_CTL:
3254 if (env->mcg_cap & MCG_CTL_P)
3255 val = env->mcg_ctl;
3256 else
3257 val = 0;
3258 break;
3259 case MSR_MCG_STATUS:
3260 val = env->mcg_status;
3261 break;
3262 default:
3263 if ((uint32_t)ECX >= MSR_MC0_CTL
3264 && (uint32_t)ECX < MSR_MC0_CTL + (4 * env->mcg_cap & 0xff)) {
3265 uint32_t offset = (uint32_t)ECX - MSR_MC0_CTL;
3266 val = env->mce_banks[offset];
3267 break;
3268 }
3269 /* XXX: exception ? */
3270 val = 0;
3271 break;
3272 }
3273 EAX = (uint32_t)(val);
3274 EDX = (uint32_t)(val >> 32);
3275 }
3276 #endif
3277
3278 target_ulong helper_lsl(target_ulong selector1)
3279 {
3280 unsigned int limit;
3281 uint32_t e1, e2, eflags, selector;
3282 int rpl, dpl, cpl, type;
3283
3284 selector = selector1 & 0xffff;
3285 eflags = helper_cc_compute_all(CC_OP);
3286 if ((selector & 0xfffc) == 0)
3287 goto fail;
3288 if (load_segment(&e1, &e2, selector) != 0)
3289 goto fail;
3290 rpl = selector & 3;
3291 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3292 cpl = env->hflags & HF_CPL_MASK;
3293 if (e2 & DESC_S_MASK) {
3294 if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3295 /* conforming */
3296 } else {
3297 if (dpl < cpl || dpl < rpl)
3298 goto fail;
3299 }
3300 } else {
3301 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3302 switch(type) {
3303 case 1:
3304 case 2:
3305 case 3:
3306 case 9:
3307 case 11:
3308 break;
3309 default:
3310 goto fail;
3311 }
3312 if (dpl < cpl || dpl < rpl) {
3313 fail:
3314 CC_SRC = eflags & ~CC_Z;
3315 return 0;
3316 }
3317 }
3318 limit = get_seg_limit(e1, e2);
3319 CC_SRC = eflags | CC_Z;
3320 return limit;
3321 }
3322
3323 target_ulong helper_lar(target_ulong selector1)
3324 {
3325 uint32_t e1, e2, eflags, selector;
3326 int rpl, dpl, cpl, type;
3327
3328 selector = selector1 & 0xffff;
3329 eflags = helper_cc_compute_all(CC_OP);
3330 if ((selector & 0xfffc) == 0)
3331 goto fail;
3332 if (load_segment(&e1, &e2, selector) != 0)
3333 goto fail;
3334 rpl = selector & 3;
3335 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3336 cpl = env->hflags & HF_CPL_MASK;
3337 if (e2 & DESC_S_MASK) {
3338 if ((e2 & DESC_CS_MASK) && (e2 & DESC_C_MASK)) {
3339 /* conforming */
3340 } else {
3341 if (dpl < cpl || dpl < rpl)
3342 goto fail;
3343 }
3344 } else {
3345 type = (e2 >> DESC_TYPE_SHIFT) & 0xf;
3346 switch(type) {
3347 case 1:
3348 case 2:
3349 case 3:
3350 case 4:
3351 case 5:
3352 case 9:
3353 case 11:
3354 case 12:
3355 break;
3356 default:
3357 goto fail;
3358 }
3359 if (dpl < cpl || dpl < rpl) {
3360 fail:
3361 CC_SRC = eflags & ~CC_Z;
3362 return 0;
3363 }
3364 }
3365 CC_SRC = eflags | CC_Z;
3366 return e2 & 0x00f0ff00;
3367 }
3368
3369 void helper_verr(target_ulong selector1)
3370 {
3371 uint32_t e1, e2, eflags, selector;
3372 int rpl, dpl, cpl;
3373
3374 selector = selector1 & 0xffff;
3375 eflags = helper_cc_compute_all(CC_OP);
3376 if ((selector & 0xfffc) == 0)
3377 goto fail;
3378 if (load_segment(&e1, &e2, selector) != 0)
3379 goto fail;
3380 if (!(e2 & DESC_S_MASK))
3381 goto fail;
3382 rpl = selector & 3;
3383 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3384 cpl = env->hflags & HF_CPL_MASK;
3385 if (e2 & DESC_CS_MASK) {
3386 if (!(e2 & DESC_R_MASK))
3387 goto fail;
3388 if (!(e2 & DESC_C_MASK)) {
3389 if (dpl < cpl || dpl < rpl)
3390 goto fail;
3391 }
3392 } else {
3393 if (dpl < cpl || dpl < rpl) {
3394 fail:
3395 CC_SRC = eflags & ~CC_Z;
3396 return;
3397 }
3398 }
3399 CC_SRC = eflags | CC_Z;
3400 }
3401
3402 void helper_verw(target_ulong selector1)
3403 {
3404 uint32_t e1, e2, eflags, selector;
3405 int rpl, dpl, cpl;
3406
3407 selector = selector1 & 0xffff;
3408 eflags = helper_cc_compute_all(CC_OP);
3409 if ((selector & 0xfffc) == 0)
3410 goto fail;
3411 if (load_segment(&e1, &e2, selector) != 0)
3412 goto fail;
3413 if (!(e2 & DESC_S_MASK))
3414 goto fail;
3415 rpl = selector & 3;
3416 dpl = (e2 >> DESC_DPL_SHIFT) & 3;
3417 cpl = env->hflags & HF_CPL_MASK;
3418 if (e2 & DESC_CS_MASK) {
3419 goto fail;
3420 } else {
3421 if (dpl < cpl || dpl < rpl)
3422 goto fail;
3423 if (!(e2 & DESC_W_MASK)) {
3424 fail:
3425 CC_SRC = eflags & ~CC_Z;
3426 return;
3427 }
3428 }
3429 CC_SRC = eflags | CC_Z;
3430 }
3431
3432 /* x87 FPU helpers */
3433
3434 static void fpu_set_exception(int mask)
3435 {
3436 env->fpus |= mask;
3437 if (env->fpus & (~env->fpuc & FPUC_EM))
3438 env->fpus |= FPUS_SE | FPUS_B;
3439 }
3440
3441 static inline CPU86_LDouble helper_fdiv(CPU86_LDouble a, CPU86_LDouble b)
3442 {
3443 if (floatx_is_zero(b)) {
3444 fpu_set_exception(FPUS_ZE);
3445 }
3446 return floatx_div(a, b, &env->fp_status);
3447 }
3448
3449 static void fpu_raise_exception(void)
3450 {
3451 if (env->cr[0] & CR0_NE_MASK) {
3452 raise_exception(EXCP10_COPR);
3453 }
3454 #if !defined(CONFIG_USER_ONLY)
3455 else {
3456 cpu_set_ferr(env);
3457 }
3458 #endif
3459 }
3460
3461 void helper_flds_FT0(uint32_t val)
3462 {
3463 union {
3464 float32 f;
3465 uint32_t i;
3466 } u;
3467 u.i = val;
3468 FT0 = float32_to_floatx(u.f, &env->fp_status);
3469 }
3470
3471 void helper_fldl_FT0(uint64_t val)
3472 {
3473 union {
3474 float64 f;
3475 uint64_t i;
3476 } u;
3477 u.i = val;
3478 FT0 = float64_to_floatx(u.f, &env->fp_status);
3479 }
3480
3481 void helper_fildl_FT0(int32_t val)
3482 {
3483 FT0 = int32_to_floatx(val, &env->fp_status);
3484 }
3485
3486 void helper_flds_ST0(uint32_t val)
3487 {
3488 int new_fpstt;
3489 union {
3490 float32 f;
3491 uint32_t i;
3492 } u;
3493 new_fpstt = (env->fpstt - 1) & 7;
3494 u.i = val;
3495 env->fpregs[new_fpstt].d = float32_to_floatx(u.f, &env->fp_status);
3496 env->fpstt = new_fpstt;
3497 env->fptags[new_fpstt] = 0; /* validate stack entry */
3498 }
3499
3500 void helper_fldl_ST0(uint64_t val)
3501 {
3502 int new_fpstt;
3503 union {
3504 float64 f;
3505 uint64_t i;
3506 } u;
3507 new_fpstt = (env->fpstt - 1) & 7;
3508 u.i = val;
3509 env->fpregs[new_fpstt].d = float64_to_floatx(u.f, &env->fp_status);
3510 env->fpstt = new_fpstt;
3511 env->fptags[new_fpstt] = 0; /* validate stack entry */
3512 }
3513
3514 void helper_fildl_ST0(int32_t val)
3515 {
3516 int new_fpstt;
3517 new_fpstt = (env->fpstt - 1) & 7;
3518 env->fpregs[new_fpstt].d = int32_to_floatx(val, &env->fp_status);
3519 env->fpstt = new_fpstt;
3520 env->fptags[new_fpstt] = 0; /* validate stack entry */
3521 }
3522
3523 void helper_fildll_ST0(int64_t val)
3524 {
3525 int new_fpstt;
3526 new_fpstt = (env->fpstt - 1) & 7;
3527 env->fpregs[new_fpstt].d = int64_to_floatx(val, &env->fp_status);
3528 env->fpstt = new_fpstt;
3529 env->fptags[new_fpstt] = 0; /* validate stack entry */
3530 }
3531
3532 uint32_t helper_fsts_ST0(void)
3533 {
3534 union {
3535 float32 f;
3536 uint32_t i;
3537 } u;
3538 u.f = floatx_to_float32(ST0, &env->fp_status);
3539 return u.i;
3540 }
3541
3542 uint64_t helper_fstl_ST0(void)
3543 {
3544 union {
3545 float64 f;
3546 uint64_t i;
3547 } u;
3548 u.f = floatx_to_float64(ST0, &env->fp_status);
3549 return u.i;
3550 }
3551
3552 int32_t helper_fist_ST0(void)
3553 {
3554 int32_t val;
3555 val = floatx_to_int32(ST0, &env->fp_status);
3556 if (val != (int16_t)val)
3557 val = -32768;
3558 return val;
3559 }
3560
3561 int32_t helper_fistl_ST0(void)
3562 {
3563 int32_t val;
3564 val = floatx_to_int32(ST0, &env->fp_status);
3565 return val;
3566 }
3567
3568 int64_t helper_fistll_ST0(void)
3569 {
3570 int64_t val;
3571 val = floatx_to_int64(ST0, &env->fp_status);
3572 return val;
3573 }
3574
3575 int32_t helper_fistt_ST0(void)
3576 {
3577 int32_t val;
3578 val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
3579 if (val != (int16_t)val)
3580 val = -32768;
3581 return val;
3582 }
3583
3584 int32_t helper_fisttl_ST0(void)
3585 {
3586 int32_t val;
3587 val = floatx_to_int32_round_to_zero(ST0, &env->fp_status);
3588 return val;
3589 }
3590
3591 int64_t helper_fisttll_ST0(void)
3592 {
3593 int64_t val;
3594 val = floatx_to_int64_round_to_zero(ST0, &env->fp_status);
3595 return val;
3596 }
3597
3598 void helper_fldt_ST0(target_ulong ptr)
3599 {
3600 int new_fpstt;
3601 new_fpstt = (env->fpstt - 1) & 7;
3602 env->fpregs[new_fpstt].d = helper_fldt(ptr);
3603 env->fpstt = new_fpstt;
3604 env->fptags[new_fpstt] = 0; /* validate stack entry */
3605 }
3606
3607 void helper_fstt_ST0(target_ulong ptr)
3608 {
3609 helper_fstt(ST0, ptr);
3610 }
3611
3612 void helper_fpush(void)
3613 {
3614 fpush();
3615 }
3616
3617 void helper_fpop(void)
3618 {
3619 fpop();
3620 }
3621
3622 void helper_fdecstp(void)
3623 {
3624 env->fpstt = (env->fpstt - 1) & 7;
3625 env->fpus &= (~0x4700);
3626 }
3627
3628 void helper_fincstp(void)
3629 {
3630 env->fpstt = (env->fpstt + 1) & 7;
3631 env->fpus &= (~0x4700);
3632 }
3633
3634 /* FPU move */
3635
3636 void helper_ffree_STN(int st_index)
3637 {
3638 env->fptags[(env->fpstt + st_index) & 7] = 1;
3639 }
3640
3641 void helper_fmov_ST0_FT0(void)
3642 {
3643 ST0 = FT0;
3644 }
3645
3646 void helper_fmov_FT0_STN(int st_index)
3647 {
3648 FT0 = ST(st_index);
3649 }
3650
3651 void helper_fmov_ST0_STN(int st_index)
3652 {
3653 ST0 = ST(st_index);
3654 }
3655
3656 void helper_fmov_STN_ST0(int st_index)
3657 {
3658 ST(st_index) = ST0;
3659 }
3660
3661 void helper_fxchg_ST0_STN(int st_index)
3662 {
3663 CPU86_LDouble tmp;
3664 tmp = ST(st_index);
3665 ST(st_index) = ST0;
3666 ST0 = tmp;
3667 }
3668
3669 /* FPU operations */
3670
3671 static const int fcom_ccval[4] = {0x0100, 0x4000, 0x0000, 0x4500};
3672
3673 void helper_fcom_ST0_FT0(void)
3674 {
3675 int ret;
3676
3677 ret = floatx_compare(ST0, FT0, &env->fp_status);
3678 env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret + 1];
3679 }
3680
3681 void helper_fucom_ST0_FT0(void)
3682 {
3683 int ret;
3684
3685 ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
3686 env->fpus = (env->fpus & ~0x4500) | fcom_ccval[ret+ 1];
3687 }
3688
3689 static const int fcomi_ccval[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
3690
3691 void helper_fcomi_ST0_FT0(void)
3692 {
3693 int eflags;
3694 int ret;
3695
3696 ret = floatx_compare(ST0, FT0, &env->fp_status);
3697 eflags = helper_cc_compute_all(CC_OP);
3698 eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3699 CC_SRC = eflags;
3700 }
3701
3702 void helper_fucomi_ST0_FT0(void)
3703 {
3704 int eflags;
3705 int ret;
3706
3707 ret = floatx_compare_quiet(ST0, FT0, &env->fp_status);
3708 eflags = helper_cc_compute_all(CC_OP);
3709 eflags = (eflags & ~(CC_Z | CC_P | CC_C)) | fcomi_ccval[ret + 1];
3710 CC_SRC = eflags;
3711 }
3712
3713 void helper_fadd_ST0_FT0(void)
3714 {
3715 ST0 = floatx_add(ST0, FT0, &env->fp_status);
3716 }
3717
3718 void helper_fmul_ST0_FT0(void)
3719 {
3720 ST0 = floatx_mul(ST0, FT0, &env->fp_status);
3721 }
3722
3723 void helper_fsub_ST0_FT0(void)
3724 {
3725 ST0 = floatx_sub(ST0, FT0, &env->fp_status);
3726 }
3727
3728 void helper_fsubr_ST0_FT0(void)
3729 {
3730 ST0 = floatx_sub(FT0, ST0, &env->fp_status);
3731 }
3732
3733 void helper_fdiv_ST0_FT0(void)
3734 {
3735 ST0 = helper_fdiv(ST0, FT0);
3736 }
3737
3738 void helper_fdivr_ST0_FT0(void)
3739 {
3740 ST0 = helper_fdiv(FT0, ST0);
3741 }
3742
3743 /* fp operations between STN and ST0 */
3744
3745 void helper_fadd_STN_ST0(int st_index)
3746 {
3747 ST(st_index) = floatx_add(ST(st_index), ST0, &env->fp_status);
3748 }
3749
3750 void helper_fmul_STN_ST0(int st_index)
3751 {
3752 ST(st_index) = floatx_mul(ST(st_index), ST0, &env->fp_status);
3753 }
3754
3755 void helper_fsub_STN_ST0(int st_index)
3756 {
3757 ST(st_index) = floatx_sub(ST(st_index), ST0, &env->fp_status);
3758 }
3759
3760 void helper_fsubr_STN_ST0(int st_index)
3761 {
3762 ST(st_index) = floatx_sub(ST0, ST(st_index), &env->fp_status);
3763 }
3764
3765 void helper_fdiv_STN_ST0(int st_index)
3766 {
3767 CPU86_LDouble *p;
3768 p = &ST(st_index);
3769 *p = helper_fdiv(*p, ST0);
3770 }
3771
3772 void helper_fdivr_STN_ST0(int st_index)
3773 {
3774 CPU86_LDouble *p;
3775 p = &ST(st_index);
3776 *p = helper_fdiv(ST0, *p);
3777 }
3778
3779 /* misc FPU operations */
3780 void helper_fchs_ST0(void)
3781 {
3782 ST0 = floatx_chs(ST0);
3783 }
3784
3785 void helper_fabs_ST0(void)
3786 {
3787 ST0 = floatx_abs(ST0);
3788 }
3789
3790 void helper_fld1_ST0(void)
3791 {
3792 ST0 = f15rk[1];
3793 }
3794
3795 void helper_fldl2t_ST0(void)
3796 {
3797 ST0 = f15rk[6];
3798 }
3799
3800 void helper_fldl2e_ST0(void)
3801 {
3802 ST0 = f15rk[5];
3803 }
3804
3805 void helper_fldpi_ST0(void)
3806 {
3807 ST0 = f15rk[2];
3808 }
3809
3810 void helper_fldlg2_ST0(void)
3811 {
3812 ST0 = f15rk[3];
3813 }
3814
3815 void helper_fldln2_ST0(void)
3816 {
3817 ST0 = f15rk[4];
3818 }
3819
3820 void helper_fldz_ST0(void)
3821 {
3822 ST0 = f15rk[0];
3823 }
3824
3825 void helper_fldz_FT0(void)
3826 {
3827 FT0 = f15rk[0];
3828 }
3829
3830 uint32_t helper_fnstsw(void)
3831 {
3832 return (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
3833 }
3834
3835 uint32_t helper_fnstcw(void)
3836 {
3837 return env->fpuc;
3838 }
3839
3840 static void update_fp_status(void)
3841 {
3842 int rnd_type;
3843
3844 /* set rounding mode */
3845 switch(env->fpuc & RC_MASK) {
3846 default:
3847 case RC_NEAR:
3848 rnd_type = float_round_nearest_even;
3849 break;
3850 case RC_DOWN:
3851 rnd_type = float_round_down;
3852 break;
3853 case RC_UP:
3854 rnd_type = float_round_up;
3855 break;
3856 case RC_CHOP:
3857 rnd_type = float_round_to_zero;
3858 break;
3859 }
3860 set_float_rounding_mode(rnd_type, &env->fp_status);
3861 #ifdef FLOATX80
3862 switch((env->fpuc >> 8) & 3) {
3863 case 0:
3864 rnd_type = 32;
3865 break;
3866 case 2:
3867 rnd_type = 64;
3868 break;
3869 case 3:
3870 default:
3871 rnd_type = 80;
3872 break;
3873 }
3874 set_floatx80_rounding_precision(rnd_type, &env->fp_status);
3875 #endif
3876 }
3877
3878 void helper_fldcw(uint32_t val)
3879 {
3880 env->fpuc = val;
3881 update_fp_status();
3882 }
3883
3884 void helper_fclex(void)
3885 {
3886 env->fpus &= 0x7f00;
3887 }
3888
3889 void helper_fwait(void)
3890 {
3891 if (env->fpus & FPUS_SE)
3892 fpu_raise_exception();
3893 }
3894
3895 void helper_fninit(void)
3896 {
3897 env->fpus = 0;
3898 env->fpstt = 0;
3899 env->fpuc = 0x37f;
3900 env->fptags[0] = 1;
3901 env->fptags[1] = 1;
3902 env->fptags[2] = 1;
3903 env->fptags[3] = 1;
3904 env->fptags[4] = 1;
3905 env->fptags[5] = 1;
3906 env->fptags[6] = 1;
3907 env->fptags[7] = 1;
3908 }
3909
3910 /* BCD ops */
3911
3912 void helper_fbld_ST0(target_ulong ptr)
3913 {
3914 CPU86_LDouble tmp;
3915 uint64_t val;
3916 unsigned int v;
3917 int i;
3918
3919 val = 0;
3920 for(i = 8; i >= 0; i--) {
3921 v = ldub(ptr + i);
3922 val = (val * 100) + ((v >> 4) * 10) + (v & 0xf);
3923 }
3924 tmp = int64_to_floatx(val, &env->fp_status);
3925 if (ldub(ptr + 9) & 0x80) {
3926 floatx_chs(tmp);
3927 }
3928 fpush();
3929 ST0 = tmp;
3930 }
3931
3932 void helper_fbst_ST0(target_ulong ptr)
3933 {
3934 int v;
3935 target_ulong mem_ref, mem_end;
3936 int64_t val;
3937
3938 val = floatx_to_int64(ST0, &env->fp_status);
3939 mem_ref = ptr;
3940 mem_end = mem_ref + 9;
3941 if (val < 0) {
3942 stb(mem_end, 0x80);
3943 val = -val;
3944 } else {
3945 stb(mem_end, 0x00);
3946 }
3947 while (mem_ref < mem_end) {
3948 if (val == 0)
3949 break;
3950 v = val % 100;
3951 val = val / 100;
3952 v = ((v / 10) << 4) | (v % 10);
3953 stb(mem_ref++, v);
3954 }
3955 while (mem_ref < mem_end) {
3956 stb(mem_ref++, 0);
3957 }
3958 }
3959
3960 void helper_f2xm1(void)
3961 {
3962 ST0 = pow(2.0,ST0) - 1.0;
3963 }
3964
3965 void helper_fyl2x(void)
3966 {
3967 CPU86_LDouble fptemp;
3968
3969 fptemp = ST0;
3970 if (fptemp>0.0){
3971 fptemp = log(fptemp)/log(2.0); /* log2(ST) */
3972 ST1 *= fptemp;
3973 fpop();
3974 } else {
3975 env->fpus &= (~0x4700);
3976 env->fpus |= 0x400;
3977 }
3978 }
3979
3980 void helper_fptan(void)
3981 {
3982 CPU86_LDouble fptemp;
3983
3984 fptemp = ST0;
3985 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
3986 env->fpus |= 0x400;
3987 } else {
3988 ST0 = tan(fptemp);
3989 fpush();
3990 ST0 = 1.0;
3991 env->fpus &= (~0x400); /* C2 <-- 0 */
3992 /* the above code is for |arg| < 2**52 only */
3993 }
3994 }
3995
3996 void helper_fpatan(void)
3997 {
3998 CPU86_LDouble fptemp, fpsrcop;
3999
4000 fpsrcop = ST1;
4001 fptemp = ST0;
4002 ST1 = atan2(fpsrcop,fptemp);
4003 fpop();
4004 }
4005
4006 void helper_fxtract(void)
4007 {
4008 CPU86_LDoubleU temp;
4009
4010 temp.d = ST0;
4011
4012 if (floatx_is_zero(ST0)) {
4013 /* Easy way to generate -inf and raising division by 0 exception */
4014 ST0 = floatx_div(floatx_chs(floatx_one), floatx_zero, &env->fp_status);
4015 fpush();
4016 ST0 = temp.d;
4017 } else {
4018 int expdif;
4019
4020 expdif = EXPD(temp) - EXPBIAS;
4021 /*DP exponent bias*/
4022 ST0 = int32_to_floatx(expdif, &env->fp_status);
4023 fpush();
4024 BIASEXPONENT(temp);
4025 ST0 = temp.d;
4026 }
4027 }
4028
4029 void helper_fprem1(void)
4030 {
4031 CPU86_LDouble dblq, fpsrcop, fptemp;
4032 CPU86_LDoubleU fpsrcop1, fptemp1;
4033 int expdif;
4034 signed long long int q;
4035
4036 if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
4037 ST0 = 0.0 / 0.0; /* NaN */
4038 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4039 return;
4040 }
4041
4042 fpsrcop = ST0;
4043 fptemp = ST1;
4044 fpsrcop1.d = fpsrcop;
4045 fptemp1.d = fptemp;
4046 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4047
4048 if (expdif < 0) {
4049 /* optimisation? taken from the AMD docs */
4050 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4051 /* ST0 is unchanged */
4052 return;
4053 }
4054
4055 if (expdif < 53) {
4056 dblq = fpsrcop / fptemp;
4057 /* round dblq towards nearest integer */
4058 dblq = rint(dblq);
4059 ST0 = fpsrcop - fptemp * dblq;
4060
4061 /* convert dblq to q by truncating towards zero */
4062 if (dblq < 0.0)
4063 q = (signed long long int)(-dblq);
4064 else
4065 q = (signed long long int)dblq;
4066
4067 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4068 /* (C0,C3,C1) <-- (q2,q1,q0) */
4069 env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
4070 env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4071 env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
4072 } else {
4073 env->fpus |= 0x400; /* C2 <-- 1 */
4074 fptemp = pow(2.0, expdif - 50);
4075 fpsrcop = (ST0 / ST1) / fptemp;
4076 /* fpsrcop = integer obtained by chopping */
4077 fpsrcop = (fpsrcop < 0.0) ?
4078 -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4079 ST0 -= (ST1 * fpsrcop * fptemp);
4080 }
4081 }
4082
4083 void helper_fprem(void)
4084 {
4085 CPU86_LDouble dblq, fpsrcop, fptemp;
4086 CPU86_LDoubleU fpsrcop1, fptemp1;
4087 int expdif;
4088 signed long long int q;
4089
4090 if (isinf(ST0) || isnan(ST0) || isnan(ST1) || (ST1 == 0.0)) {
4091 ST0 = 0.0 / 0.0; /* NaN */
4092 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4093 return;
4094 }
4095
4096 fpsrcop = (CPU86_LDouble)ST0;
4097 fptemp = (CPU86_LDouble)ST1;
4098 fpsrcop1.d = fpsrcop;
4099 fptemp1.d = fptemp;
4100 expdif = EXPD(fpsrcop1) - EXPD(fptemp1);
4101
4102 if (expdif < 0) {
4103 /* optimisation? taken from the AMD docs */
4104 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4105 /* ST0 is unchanged */
4106 return;
4107 }
4108
4109 if ( expdif < 53 ) {
4110 dblq = fpsrcop/*ST0*/ / fptemp/*ST1*/;
4111 /* round dblq towards zero */
4112 dblq = (dblq < 0.0) ? ceil(dblq) : floor(dblq);
4113 ST0 = fpsrcop/*ST0*/ - fptemp * dblq;
4114
4115 /* convert dblq to q by truncating towards zero */
4116 if (dblq < 0.0)
4117 q = (signed long long int)(-dblq);
4118 else
4119 q = (signed long long int)dblq;
4120
4121 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4122 /* (C0,C3,C1) <-- (q2,q1,q0) */
4123 env->fpus |= (q & 0x4) << (8 - 2); /* (C0) <-- q2 */
4124 env->fpus |= (q & 0x2) << (14 - 1); /* (C3) <-- q1 */
4125 env->fpus |= (q & 0x1) << (9 - 0); /* (C1) <-- q0 */
4126 } else {
4127 int N = 32 + (expdif % 32); /* as per AMD docs */
4128 env->fpus |= 0x400; /* C2 <-- 1 */
4129 fptemp = pow(2.0, (double)(expdif - N));
4130 fpsrcop = (ST0 / ST1) / fptemp;
4131 /* fpsrcop = integer obtained by chopping */
4132 fpsrcop = (fpsrcop < 0.0) ?
4133 -(floor(fabs(fpsrcop))) : floor(fpsrcop);
4134 ST0 -= (ST1 * fpsrcop * fptemp);
4135 }
4136 }
4137
4138 void helper_fyl2xp1(void)
4139 {
4140 CPU86_LDouble fptemp;
4141
4142 fptemp = ST0;
4143 if ((fptemp+1.0)>0.0) {
4144 fptemp = log(fptemp+1.0) / log(2.0); /* log2(ST+1.0) */
4145 ST1 *= fptemp;
4146 fpop();
4147 } else {
4148 env->fpus &= (~0x4700);
4149 env->fpus |= 0x400;
4150 }
4151 }
4152
4153 void helper_fsqrt(void)
4154 {
4155 if (floatx_is_neg(ST0)) {
4156 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4157 env->fpus |= 0x400;
4158 }
4159 ST0 = floatx_sqrt(ST0, &env->fp_status);
4160 }
4161
4162 void helper_fsincos(void)
4163 {
4164 CPU86_LDouble fptemp;
4165
4166 fptemp = ST0;
4167 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4168 env->fpus |= 0x400;
4169 } else {
4170 ST0 = sin(fptemp);
4171 fpush();
4172 ST0 = cos(fptemp);
4173 env->fpus &= (~0x400); /* C2 <-- 0 */
4174 /* the above code is for |arg| < 2**63 only */
4175 }
4176 }
4177
4178 void helper_frndint(void)
4179 {
4180 ST0 = floatx_round_to_int(ST0, &env->fp_status);
4181 }
4182
4183 void helper_fscale(void)
4184 {
4185 if (floatx_is_any_nan(ST1)) {
4186 ST0 = ST1;
4187 } else {
4188 int n = floatx_to_int32_round_to_zero(ST1, &env->fp_status);
4189 ST0 = floatx_scalbn(ST0, n, &env->fp_status);
4190 }
4191 }
4192
4193 void helper_fsin(void)
4194 {
4195 CPU86_LDouble fptemp;
4196
4197 fptemp = ST0;
4198 if ((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4199 env->fpus |= 0x400;
4200 } else {
4201 ST0 = sin(fptemp);
4202 env->fpus &= (~0x400); /* C2 <-- 0 */
4203 /* the above code is for |arg| < 2**53 only */
4204 }
4205 }
4206
4207 void helper_fcos(void)
4208 {
4209 CPU86_LDouble fptemp;
4210
4211 fptemp = ST0;
4212 if((fptemp > MAXTAN)||(fptemp < -MAXTAN)) {
4213 env->fpus |= 0x400;
4214 } else {
4215 ST0 = cos(fptemp);
4216 env->fpus &= (~0x400); /* C2 <-- 0 */
4217 /* the above code is for |arg5 < 2**63 only */
4218 }
4219 }
4220
4221 void helper_fxam_ST0(void)
4222 {
4223 CPU86_LDoubleU temp;
4224 int expdif;
4225
4226 temp.d = ST0;
4227
4228 env->fpus &= (~0x4700); /* (C3,C2,C1,C0) <-- 0000 */
4229 if (SIGND(temp))
4230 env->fpus |= 0x200; /* C1 <-- 1 */
4231
4232 /* XXX: test fptags too */
4233 expdif = EXPD(temp);
4234 if (expdif == MAXEXPD) {
4235 #ifdef USE_X86LDOUBLE
4236 if (MANTD(temp) == 0x8000000000000000ULL)
4237 #else
4238 if (MANTD(temp) == 0)
4239 #endif
4240 env->fpus |= 0x500 /*Infinity*/;
4241 else
4242 env->fpus |= 0x100 /*NaN*/;
4243 } else if (expdif == 0) {
4244 if (MANTD(temp) == 0)
4245 env->fpus |= 0x4000 /*Zero*/;
4246 else
4247 env->fpus |= 0x4400 /*Denormal*/;
4248 } else {
4249 env->fpus |= 0x400;
4250 }
4251 }
4252
4253 void helper_fstenv(target_ulong ptr, int data32)
4254 {
4255 int fpus, fptag, exp, i;
4256 uint64_t mant;
4257 CPU86_LDoubleU tmp;
4258
4259 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4260 fptag = 0;
4261 for (i=7; i>=0; i--) {
4262 fptag <<= 2;
4263 if (env->fptags[i]) {
4264 fptag |= 3;
4265 } else {
4266 tmp.d = env->fpregs[i].d;
4267 exp = EXPD(tmp);
4268 mant = MANTD(tmp);
4269 if (exp == 0 && mant == 0) {
4270 /* zero */
4271 fptag |= 1;
4272 } else if (exp == 0 || exp == MAXEXPD
4273 #ifdef USE_X86LDOUBLE
4274 || (mant & (1LL << 63)) == 0
4275 #endif
4276 ) {
4277 /* NaNs, infinity, denormal */
4278 fptag |= 2;
4279 }
4280 }
4281 }
4282 if (data32) {
4283 /* 32 bit */
4284 stl(ptr, env->fpuc);
4285 stl(ptr + 4, fpus);
4286 stl(ptr + 8, fptag);
4287 stl(ptr + 12, 0); /* fpip */
4288 stl(ptr + 16, 0); /* fpcs */
4289 stl(ptr + 20, 0); /* fpoo */
4290 stl(ptr + 24, 0); /* fpos */
4291 } else {
4292 /* 16 bit */
4293 stw(ptr, env->fpuc);
4294 stw(ptr + 2, fpus);
4295 stw(ptr + 4, fptag);
4296 stw(ptr + 6, 0);
4297 stw(ptr + 8, 0);
4298 stw(ptr + 10, 0);
4299 stw(ptr + 12, 0);
4300 }
4301 }
4302
4303 void helper_fldenv(target_ulong ptr, int data32)
4304 {
4305 int i, fpus, fptag;
4306
4307 if (data32) {
4308 env->fpuc = lduw(ptr);
4309 fpus = lduw(ptr + 4);
4310 fptag = lduw(ptr + 8);
4311 }
4312 else {
4313 env->fpuc = lduw(ptr);
4314 fpus = lduw(ptr + 2);
4315 fptag = lduw(ptr + 4);
4316 }
4317 env->fpstt = (fpus >> 11) & 7;
4318 env->fpus = fpus & ~0x3800;
4319 for(i = 0;i < 8; i++) {
4320 env->fptags[i] = ((fptag & 3) == 3);
4321 fptag >>= 2;
4322 }
4323 }
4324
4325 void helper_fsave(target_ulong ptr, int data32)
4326 {
4327 CPU86_LDouble tmp;
4328 int i;
4329
4330 helper_fstenv(ptr, data32);
4331
4332 ptr += (14 << data32);
4333 for(i = 0;i < 8; i++) {
4334 tmp = ST(i);
4335 helper_fstt(tmp, ptr);
4336 ptr += 10;
4337 }
4338
4339 /* fninit */
4340 env->fpus = 0;
4341 env->fpstt = 0;
4342 env->fpuc = 0x37f;
4343 env->fptags[0] = 1;
4344 env->fptags[1] = 1;
4345 env->fptags[2] = 1;
4346 env->fptags[3] = 1;
4347 env->fptags[4] = 1;
4348 env->fptags[5] = 1;
4349 env->fptags[6] = 1;
4350 env->fptags[7] = 1;
4351 }
4352
4353 void helper_frstor(target_ulong ptr, int data32)
4354 {
4355 CPU86_LDouble tmp;
4356 int i;
4357
4358 helper_fldenv(ptr, data32);
4359 ptr += (14 << data32);
4360
4361 for(i = 0;i < 8; i++) {
4362 tmp = helper_fldt(ptr);
4363 ST(i) = tmp;
4364 ptr += 10;
4365 }
4366 }
4367
4368 void helper_fxsave(target_ulong ptr, int data64)
4369 {
4370 int fpus, fptag, i, nb_xmm_regs;
4371 CPU86_LDouble tmp;
4372 target_ulong addr;
4373
4374 /* The operand must be 16 byte aligned */
4375 if (ptr & 0xf) {
4376 raise_exception(EXCP0D_GPF);
4377 }
4378
4379 fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
4380 fptag = 0;
4381 for(i = 0; i < 8; i++) {
4382 fptag |= (env->fptags[i] << i);
4383 }
4384 stw(ptr, env->fpuc);
4385 stw(ptr + 2, fpus);
4386 stw(ptr + 4, fptag ^ 0xff);
4387 #ifdef TARGET_X86_64
4388 if (data64) {
4389 stq(ptr + 0x08, 0); /* rip */
4390 stq(ptr + 0x10, 0); /* rdp */
4391 } else
4392 #endif
4393 {
4394 stl(ptr + 0x08, 0); /* eip */
4395 stl(ptr + 0x0c, 0); /* sel */
4396 stl(ptr + 0x10, 0); /* dp */
4397 stl(ptr + 0x14, 0); /* sel */
4398 }
4399
4400 addr = ptr + 0x20;
4401 for(i = 0;i < 8; i++) {
4402 tmp = ST(i);
4403 helper_fstt(tmp, addr);
4404 addr += 16;
4405 }
4406
4407 if (env->cr[4] & CR4_OSFXSR_MASK) {
4408 /* XXX: finish it */
4409 stl(ptr + 0x18, env->mxcsr); /* mxcsr */
4410 stl(ptr + 0x1c, 0x0000ffff); /* mxcsr_mask */
4411 if (env->hflags & HF_CS64_MASK)
4412 nb_xmm_regs = 16;
4413 else
4414 nb_xmm_regs = 8;
4415 addr = ptr + 0xa0;
4416 /* Fast FXSAVE leaves out the XMM registers */
4417 if (!(env->efer & MSR_EFER_FFXSR)
4418 || (env->hflags & HF_CPL_MASK)
4419 || !(env->hflags & HF_LMA_MASK)) {
4420 for(i = 0; i < nb_xmm_regs; i++) {
4421 stq(addr, env->xmm_regs[i].XMM_Q(0));
4422 stq(addr + 8, env->xmm_regs[i].XMM_Q(1));
4423 addr += 16;
4424 }
4425 }
4426 }
4427 }
4428
4429 void helper_fxrstor(target_ulong ptr, int data64)
4430 {
4431 int i, fpus, fptag, nb_xmm_regs;
4432 CPU86_LDouble tmp;
4433 target_ulong addr;
4434
4435 /* The operand must be 16 byte aligned */
4436 if (ptr & 0xf) {
4437 raise_exception(EXCP0D_GPF);
4438 }
4439
4440 env->fpuc = lduw(ptr);
4441 fpus = lduw(ptr + 2);
4442 fptag = lduw(ptr + 4);
4443 env->fpstt = (fpus >> 11) & 7;
4444 env->fpus = fpus & ~0x3800;
4445 fptag ^= 0xff;
4446 for(i = 0;i < 8; i++) {
4447 env->fptags[i] = ((fptag >> i) & 1);
4448 }
4449
4450 addr = ptr + 0x20;
4451 for(i = 0;i < 8; i++) {
4452 tmp = helper_fldt(addr);
4453 ST(i) = tmp;
4454 addr += 16;
4455 }
4456
4457 if (env->cr[4] & CR4_OSFXSR_MASK) {
4458 /* XXX: finish it */
4459 env->mxcsr = ldl(ptr + 0x18);
4460 //ldl(ptr + 0x1c);
4461 if (env->hflags & HF_CS64_MASK)
4462 nb_xmm_regs = 16;
4463 else
4464 nb_xmm_regs = 8;
4465 addr = ptr + 0xa0;
4466 /* Fast FXRESTORE leaves out the XMM registers */
4467 if (!(env->efer & MSR_EFER_FFXSR)
4468 || (env->hflags & HF_CPL_MASK)
4469 || !(env->hflags & HF_LMA_MASK)) {
4470 for(i = 0; i < nb_xmm_regs; i++) {
4471 env->xmm_regs[i].XMM_Q(0) = ldq(addr);
4472 env->xmm_regs[i].XMM_Q(1) = ldq(addr + 8);
4473 addr += 16;
4474 }
4475 }
4476 }
4477 }
4478
4479 #ifndef USE_X86LDOUBLE
4480
4481 void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
4482 {
4483 CPU86_LDoubleU temp;
4484 int e;
4485
4486 temp.d = f;
4487 /* mantissa */
4488 *pmant = (MANTD(temp) << 11) | (1LL << 63);
4489 /* exponent + sign */
4490 e = EXPD(temp) - EXPBIAS + 16383;
4491 e |= SIGND(temp) >> 16;
4492 *pexp = e;
4493 }
4494
4495 CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
4496 {
4497 CPU86_LDoubleU temp;
4498 int e;
4499 uint64_t ll;
4500
4501 /* XXX: handle overflow ? */
4502 e = (upper & 0x7fff) - 16383 + EXPBIAS; /* exponent */
4503 e |= (upper >> 4) & 0x800; /* sign */
4504 ll = (mant >> 11) & ((1LL << 52) - 1);
4505 #ifdef __arm__
4506 temp.l.upper = (e << 20) | (ll >> 32);
4507 temp.l.lower = ll;
4508 #else
4509 temp.ll = ll | ((uint64_t)e << 52);
4510 #endif
4511 return temp.d;
4512 }
4513
4514 #else
4515
4516 void cpu_get_fp80(uint64_t *pmant, uint16_t *pexp, CPU86_LDouble f)
4517 {
4518 CPU86_LDoubleU temp;
4519
4520 temp.d = f;
4521 *pmant = temp.l.lower;
4522 *pexp = temp.l.upper;
4523 }
4524
4525 CPU86_LDouble cpu_set_fp80(uint64_t mant, uint16_t upper)
4526 {
4527 CPU86_LDoubleU temp;
4528
4529 temp.l.upper = upper;
4530 temp.l.lower = mant;
4531 return temp.d;
4532 }
4533 #endif
4534
4535 #ifdef TARGET_X86_64
4536
4537 //#define DEBUG_MULDIV
4538
4539 static void add128(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b)
4540 {
4541 *plow += a;
4542 /* carry test */
4543 if (*plow < a)
4544 (*phigh)++;
4545 *phigh += b;
4546 }
4547
4548 static void neg128(uint64_t *plow, uint64_t *phigh)
4549 {
4550 *plow = ~ *plow;
4551 *phigh = ~ *phigh;
4552 add128(plow, phigh, 1, 0);
4553 }
4554
4555 /* return TRUE if overflow */
4556 static int div64(uint64_t *plow, uint64_t *phigh, uint64_t b)
4557 {
4558 uint64_t q, r, a1, a0;
4559 int i, qb, ab;
4560
4561 a0 = *plow;
4562 a1 = *phigh;
4563 if (a1 == 0) {
4564 q = a0 / b;
4565 r = a0 % b;
4566 *plow = q;
4567 *phigh = r;
4568 } else {
4569 if (a1 >= b)
4570 return 1;
4571 /* XXX: use a better algorithm */
4572 for(i = 0; i < 64; i++) {
4573 ab = a1 >> 63;
4574 a1 = (a1 << 1) | (a0 >> 63);
4575 if (ab || a1 >= b) {
4576 a1 -= b;
4577 qb = 1;
4578 } else {
4579 qb = 0;
4580 }
4581 a0 = (a0 << 1) | qb;
4582 }
4583 #if defined(DEBUG_MULDIV)
4584 printf("div: 0x%016" PRIx64 "%016" PRIx64 " / 0x%016" PRIx64 ": q=0x%016" PRIx64 " r=0x%016" PRIx64 "\n",
4585 *phigh, *plow, b, a0, a1);
4586 #endif
4587 *plow = a0;
4588 *phigh = a1;
4589 }
4590 return 0;
4591 }
4592
4593 /* return TRUE if overflow */
4594 static int idiv64(uint64_t *plow, uint64_t *phigh, int64_t b)
4595 {
4596 int sa, sb;
4597 sa = ((int64_t)*phigh < 0);
4598 if (sa)
4599 neg128(plow, phigh);
4600 sb = (b < 0);
4601 if (sb)
4602 b = -b;
4603 if (div64(plow, phigh, b) != 0)
4604 return 1;
4605 if (sa ^ sb) {
4606 if (*plow > (1ULL << 63))
4607 return 1;
4608 *plow = - *plow;
4609 } else {
4610 if (*plow >= (1ULL << 63))
4611 return 1;
4612 }
4613 if (sa)
4614 *phigh = - *phigh;
4615 return 0;
4616 }
4617
4618 void helper_mulq_EAX_T0(target_ulong t0)
4619 {
4620 uint64_t r0, r1;
4621
4622 mulu64(&r0, &r1, EAX, t0);
4623 EAX = r0;
4624 EDX = r1;
4625 CC_DST = r0;
4626 CC_SRC = r1;
4627 }
4628
4629 void helper_imulq_EAX_T0(target_ulong t0)
4630 {
4631 uint64_t r0, r1;
4632
4633 muls64(&r0, &r1, EAX, t0);
4634 EAX = r0;
4635 EDX = r1;
4636 CC_DST = r0;
4637 CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4638 }
4639
4640 target_ulong helper_imulq_T0_T1(target_ulong t0, target_ulong t1)
4641 {
4642 uint64_t r0, r1;
4643
4644 muls64(&r0, &r1, t0, t1);
4645 CC_DST = r0;
4646 CC_SRC = ((int64_t)r1 != ((int64_t)r0 >> 63));
4647 return r0;
4648 }
4649
4650 void helper_divq_EAX(target_ulong t0)
4651 {
4652 uint64_t r0, r1;
4653 if (t0 == 0) {
4654 raise_exception(EXCP00_DIVZ);
4655 }
4656 r0 = EAX;
4657 r1 = EDX;
4658 if (div64(&r0, &r1, t0))
4659 raise_exception(EXCP00_DIVZ);
4660 EAX = r0;
4661 EDX = r1;
4662 }
4663
4664 void helper_idivq_EAX(target_ulong t0)
4665 {
4666 uint64_t r0, r1;
4667 if (t0 == 0) {
4668 raise_exception(EXCP00_DIVZ);
4669 }
4670 r0 = EAX;
4671 r1 = EDX;
4672 if (idiv64(&r0, &r1, t0))
4673 raise_exception(EXCP00_DIVZ);
4674 EAX = r0;
4675 EDX = r1;
4676 }
4677 #endif
4678
4679 static void do_hlt(void)
4680 {
4681 env->hflags &= ~HF_INHIBIT_IRQ_MASK; /* needed if sti is just before */
4682 env->halted = 1;
4683 env->exception_index = EXCP_HLT;
4684 cpu_loop_exit();
4685 }
4686
4687 void helper_hlt(int next_eip_addend)
4688 {
4689 helper_svm_check_intercept_param(SVM_EXIT_HLT, 0);
4690 EIP += next_eip_addend;
4691
4692 do_hlt();
4693 }
4694
4695 void helper_monitor(target_ulong ptr)
4696 {
4697 if ((uint32_t)ECX != 0)
4698 raise_exception(EXCP0D_GPF);
4699 /* XXX: store address ? */
4700 helper_svm_check_intercept_param(SVM_EXIT_MONITOR, 0);
4701 }
4702
4703 void helper_mwait(int next_eip_addend)
4704 {
4705 if ((uint32_t)ECX != 0)
4706 raise_exception(EXCP0D_GPF);
4707 helper_svm_check_intercept_param(SVM_EXIT_MWAIT, 0);
4708 EIP += next_eip_addend;
4709
4710 /* XXX: not complete but not completely erroneous */
4711 if (env->cpu_index != 0 || env->next_cpu != NULL) {
4712 /* more than one CPU: do not sleep because another CPU may
4713 wake this one */
4714 } else {
4715 do_hlt();
4716 }
4717 }
4718
4719 void helper_debug(void)
4720 {
4721 env->exception_index = EXCP_DEBUG;
4722 cpu_loop_exit();
4723 }
4724
4725 void helper_reset_rf(void)
4726 {
4727 env->eflags &= ~RF_MASK;
4728 }
4729
4730 void helper_raise_interrupt(int intno, int next_eip_addend)
4731 {
4732 raise_interrupt(intno, 1, 0, next_eip_addend);
4733 }
4734
4735 void helper_raise_exception(int exception_index)
4736 {
4737 raise_exception(exception_index);
4738 }
4739
4740 void helper_cli(void)
4741 {
4742 env->eflags &= ~IF_MASK;
4743 }
4744
4745 void helper_sti(void)
4746 {
4747 env->eflags |= IF_MASK;
4748 }
4749
4750 #if 0
4751 /* vm86plus instructions */
4752 void helper_cli_vm(void)
4753 {
4754 env->eflags &= ~VIF_MASK;
4755 }
4756
4757 void helper_sti_vm(void)
4758 {
4759 env->eflags |= VIF_MASK;
4760 if (env->eflags & VIP_MASK) {
4761 raise_exception(EXCP0D_GPF);
4762 }
4763 }
4764 #endif
4765
4766 void helper_set_inhibit_irq(void)
4767 {
4768 env->hflags |= HF_INHIBIT_IRQ_MASK;
4769 }
4770
4771 void helper_reset_inhibit_irq(void)
4772 {
4773 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
4774 }
4775
4776 void helper_boundw(target_ulong a0, int v)
4777 {
4778 int low, high;
4779 low = ldsw(a0);
4780 high = ldsw(a0 + 2);
4781 v = (int16_t)v;
4782 if (v < low || v > high) {
4783 raise_exception(EXCP05_BOUND);
4784 }
4785 }
4786
4787 void helper_boundl(target_ulong a0, int v)
4788 {
4789 int low, high;
4790 low = ldl(a0);
4791 high = ldl(a0 + 4);
4792 if (v < low || v > high) {
4793 raise_exception(EXCP05_BOUND);
4794 }
4795 }
4796
4797 #if !defined(CONFIG_USER_ONLY)
4798
4799 #define MMUSUFFIX _mmu
4800
4801 #define SHIFT 0
4802 #include "softmmu_template.h"
4803
4804 #define SHIFT 1
4805 #include "softmmu_template.h"
4806
4807 #define SHIFT 2
4808 #include "softmmu_template.h"
4809
4810 #define SHIFT 3
4811 #include "softmmu_template.h"
4812
4813 #endif
4814
4815 #if !defined(CONFIG_USER_ONLY)
4816 /* try to fill the TLB and return an exception if error. If retaddr is
4817 NULL, it means that the function was called in C code (i.e. not
4818 from generated code or from helper.c) */
4819 /* XXX: fix it to restore all registers */
4820 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4821 {
4822 TranslationBlock *tb;
4823 int ret;
4824 unsigned long pc;
4825 CPUX86State *saved_env;
4826
4827 /* XXX: hack to restore env in all cases, even if not called from
4828 generated code */
4829 saved_env = env;
4830 env = cpu_single_env;
4831
4832 ret = cpu_x86_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4833 if (ret) {
4834 if (retaddr) {
4835 /* now we have a real cpu fault */
4836 pc = (unsigned long)retaddr;
4837 tb = tb_find_pc(pc);
4838 if (tb) {
4839 /* the PC is inside the translated code. It means that we have
4840 a virtual CPU fault */
4841 cpu_restore_state(tb, env, pc);
4842 }
4843 }
4844 raise_exception_err(env->exception_index, env->error_code);
4845 }
4846 env = saved_env;
4847 }
4848 #endif
4849
4850 /* Secure Virtual Machine helpers */
4851
4852 #if defined(CONFIG_USER_ONLY)
4853
4854 void helper_vmrun(int aflag, int next_eip_addend)
4855 {
4856 }
4857 void helper_vmmcall(void)
4858 {
4859 }
4860 void helper_vmload(int aflag)
4861 {
4862 }
4863 void helper_vmsave(int aflag)
4864 {
4865 }
4866 void helper_stgi(void)
4867 {
4868 }
4869 void helper_clgi(void)
4870 {
4871 }
4872 void helper_skinit(void)
4873 {
4874 }
4875 void helper_invlpga(int aflag)
4876 {
4877 }
4878 void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
4879 {
4880 }
4881 void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
4882 {
4883 }
4884
4885 void helper_svm_check_io(uint32_t port, uint32_t param,
4886 uint32_t next_eip_addend)
4887 {
4888 }
4889 #else
4890
4891 static inline void svm_save_seg(target_phys_addr_t addr,
4892 const SegmentCache *sc)
4893 {
4894 stw_phys(addr + offsetof(struct vmcb_seg, selector),
4895 sc->selector);
4896 stq_phys(addr + offsetof(struct vmcb_seg, base),
4897 sc->base);
4898 stl_phys(addr + offsetof(struct vmcb_seg, limit),
4899 sc->limit);
4900 stw_phys(addr + offsetof(struct vmcb_seg, attrib),
4901 ((sc->flags >> 8) & 0xff) | ((sc->flags >> 12) & 0x0f00));
4902 }
4903
4904 static inline void svm_load_seg(target_phys_addr_t addr, SegmentCache *sc)
4905 {
4906 unsigned int flags;
4907
4908 sc->selector = lduw_phys(addr + offsetof(struct vmcb_seg, selector));
4909 sc->base = ldq_phys(addr + offsetof(struct vmcb_seg, base));
4910 sc->limit = ldl_phys(addr + offsetof(struct vmcb_seg, limit));
4911 flags = lduw_phys(addr + offsetof(struct vmcb_seg, attrib));
4912 sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12);
4913 }
4914
4915 static inline void svm_load_seg_cache(target_phys_addr_t addr,
4916 CPUState *env, int seg_reg)
4917 {
4918 SegmentCache sc1, *sc = &sc1;
4919 svm_load_seg(addr, sc);
4920 cpu_x86_load_seg_cache(env, seg_reg, sc->selector,
4921 sc->base, sc->limit, sc->flags);
4922 }
4923
4924 void helper_vmrun(int aflag, int next_eip_addend)
4925 {
4926 target_ulong addr;
4927 uint32_t event_inj;
4928 uint32_t int_ctl;
4929
4930 helper_svm_check_intercept_param(SVM_EXIT_VMRUN, 0);
4931
4932 if (aflag == 2)
4933 addr = EAX;
4934 else
4935 addr = (uint32_t)EAX;
4936
4937 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr);
4938
4939 env->vm_vmcb = addr;
4940
4941 /* save the current CPU state in the hsave page */
4942 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
4943 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
4944
4945 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base), env->idt.base);
4946 stl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
4947
4948 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]);
4949 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]);
4950 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]);
4951 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]);
4952 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]);
4953 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]);
4954
4955 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer);
4956 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags), compute_eflags());
4957
4958 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.es),
4959 &env->segs[R_ES]);
4960 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.cs),
4961 &env->segs[R_CS]);
4962 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ss),
4963 &env->segs[R_SS]);
4964 svm_save_seg(env->vm_hsave + offsetof(struct vmcb, save.ds),
4965 &env->segs[R_DS]);
4966
4967 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip),
4968 EIP + next_eip_addend);
4969 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp), ESP);
4970 stq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax), EAX);
4971
4972 /* load the interception bitmaps so we do not need to access the
4973 vmcb in svm mode */
4974 env->intercept = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept));
4975 env->intercept_cr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_read));
4976 env->intercept_cr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_cr_write));
4977 env->intercept_dr_read = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_read));
4978 env->intercept_dr_write = lduw_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_dr_write));
4979 env->intercept_exceptions = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.intercept_exceptions));
4980
4981 /* enable intercepts */
4982 env->hflags |= HF_SVMI_MASK;
4983
4984 env->tsc_offset = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.tsc_offset));
4985
4986 env->gdt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base));
4987 env->gdt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit));
4988
4989 env->idt.base = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base));
4990 env->idt.limit = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit));
4991
4992 /* clear exit_info_2 so we behave like the real hardware */
4993 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0);
4994
4995 cpu_x86_update_cr0(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0)));
4996 cpu_x86_update_cr4(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4)));
4997 cpu_x86_update_cr3(env, ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3)));
4998 env->cr[2] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2));
4999 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
5000 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
5001 if (int_ctl & V_INTR_MASKING_MASK) {
5002 env->v_tpr = int_ctl & V_TPR_MASK;
5003 env->hflags2 |= HF2_VINTR_MASK;
5004 if (env->eflags & IF_MASK)
5005 env->hflags2 |= HF2_HIF_MASK;
5006 }
5007
5008 cpu_load_efer(env,
5009 ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer)));
5010 env->eflags = 0;
5011 load_eflags(ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags)),
5012 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
5013 CC_OP = CC_OP_EFLAGS;
5014
5015 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.es),
5016 env, R_ES);
5017 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.cs),
5018 env, R_CS);
5019 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ss),
5020 env, R_SS);
5021 svm_load_seg_cache(env->vm_vmcb + offsetof(struct vmcb, save.ds),
5022 env, R_DS);
5023
5024 EIP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip));
5025 env->eip = EIP;
5026 ESP = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp));
5027 EAX = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax));
5028 env->dr[7] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7));
5029 env->dr[6] = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6));
5030 cpu_x86_set_cpl(env, ldub_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl)));
5031
5032 /* FIXME: guest state consistency checks */
5033
5034 switch(ldub_phys(env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) {
5035 case TLB_CONTROL_DO_NOTHING:
5036 break;
5037 case TLB_CONTROL_FLUSH_ALL_ASID:
5038 /* FIXME: this is not 100% correct but should work for now */
5039 tlb_flush(env, 1);
5040 break;
5041 }
5042
5043 env->hflags2 |= HF2_GIF_MASK;
5044
5045 if (int_ctl & V_IRQ_MASK) {
5046 env->interrupt_request |= CPU_INTERRUPT_VIRQ;
5047 }
5048
5049 /* maybe we need to inject an event */
5050 event_inj = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj));
5051 if (event_inj & SVM_EVTINJ_VALID) {
5052 uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK;
5053 uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR;
5054 uint32_t event_inj_err = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err));
5055
5056 qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err);
5057 /* FIXME: need to implement valid_err */
5058 switch (event_inj & SVM_EVTINJ_TYPE_MASK) {
5059 case SVM_EVTINJ_TYPE_INTR:
5060 env->exception_index = vector;
5061 env->error_code = event_inj_err;
5062 env->exception_is_int = 0;
5063 env->exception_next_eip = -1;
5064 qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR");
5065 /* XXX: is it always correct ? */
5066 do_interrupt(vector, 0, 0, 0, 1);
5067 break;
5068 case SVM_EVTINJ_TYPE_NMI:
5069 env->exception_index = EXCP02_NMI;
5070 env->error_code = event_inj_err;
5071 env->exception_is_int = 0;
5072 env->exception_next_eip = EIP;
5073 qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI");
5074 cpu_loop_exit();
5075 break;
5076 case SVM_EVTINJ_TYPE_EXEPT:
5077 env->exception_index = vector;
5078 env->error_code = event_inj_err;
5079 env->exception_is_int = 0;
5080 env->exception_next_eip = -1;
5081 qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT");
5082 cpu_loop_exit();
5083 break;
5084 case SVM_EVTINJ_TYPE_SOFT:
5085 env->exception_index = vector;
5086 env->error_code = event_inj_err;
5087 env->exception_is_int = 1;
5088 env->exception_next_eip = EIP;
5089 qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT");
5090 cpu_loop_exit();
5091 break;
5092 }
5093 qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", env->exception_index, env->error_code);
5094 }
5095 }
5096
5097 void helper_vmmcall(void)
5098 {
5099 helper_svm_check_intercept_param(SVM_EXIT_VMMCALL, 0);
5100 raise_exception(EXCP06_ILLOP);
5101 }
5102
5103 void helper_vmload(int aflag)
5104 {
5105 target_ulong addr;
5106 helper_svm_check_intercept_param(SVM_EXIT_VMLOAD, 0);
5107
5108 if (aflag == 2)
5109 addr = EAX;
5110 else
5111 addr = (uint32_t)EAX;
5112
5113 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmload! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
5114 addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
5115 env->segs[R_FS].base);
5116
5117 svm_load_seg_cache(addr + offsetof(struct vmcb, save.fs),
5118 env, R_FS);
5119 svm_load_seg_cache(addr + offsetof(struct vmcb, save.gs),
5120 env, R_GS);
5121 svm_load_seg(addr + offsetof(struct vmcb, save.tr),
5122 &env->tr);
5123 svm_load_seg(addr + offsetof(struct vmcb, save.ldtr),
5124 &env->ldt);
5125
5126 #ifdef TARGET_X86_64
5127 env->kernelgsbase = ldq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base));
5128 env->lstar = ldq_phys(addr + offsetof(struct vmcb, save.lstar));
5129 env->cstar = ldq_phys(addr + offsetof(struct vmcb, save.cstar));
5130 env->fmask = ldq_phys(addr + offsetof(struct vmcb, save.sfmask));
5131 #endif
5132 env->star = ldq_phys(addr + offsetof(struct vmcb, save.star));
5133 env->sysenter_cs = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_cs));
5134 env->sysenter_esp = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_esp));
5135 env->sysenter_eip = ldq_phys(addr + offsetof(struct vmcb, save.sysenter_eip));
5136 }
5137
5138 void helper_vmsave(int aflag)
5139 {
5140 target_ulong addr;
5141 helper_svm_check_intercept_param(SVM_EXIT_VMSAVE, 0);
5142
5143 if (aflag == 2)
5144 addr = EAX;
5145 else
5146 addr = (uint32_t)EAX;
5147
5148 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmsave! " TARGET_FMT_lx "\nFS: %016" PRIx64 " | " TARGET_FMT_lx "\n",
5149 addr, ldq_phys(addr + offsetof(struct vmcb, save.fs.base)),
5150 env->segs[R_FS].base);
5151
5152 svm_save_seg(addr + offsetof(struct vmcb, save.fs),
5153 &env->segs[R_FS]);
5154 svm_save_seg(addr + offsetof(struct vmcb, save.gs),
5155 &env->segs[R_GS]);
5156 svm_save_seg(addr + offsetof(struct vmcb, save.tr),
5157 &env->tr);
5158 svm_save_seg(addr + offsetof(struct vmcb, save.ldtr),
5159 &env->ldt);
5160
5161 #ifdef TARGET_X86_64
5162 stq_phys(addr + offsetof(struct vmcb, save.kernel_gs_base), env->kernelgsbase);
5163 stq_phys(addr + offsetof(struct vmcb, save.lstar), env->lstar);
5164 stq_phys(addr + offsetof(struct vmcb, save.cstar), env->cstar);
5165 stq_phys(addr + offsetof(struct vmcb, save.sfmask), env->fmask);
5166 #endif
5167 stq_phys(addr + offsetof(struct vmcb, save.star), env->star);
5168 stq_phys(addr + offsetof(struct vmcb, save.sysenter_cs), env->sysenter_cs);
5169 stq_phys(addr + offsetof(struct vmcb, save.sysenter_esp), env->sysenter_esp);
5170 stq_phys(addr + offsetof(struct vmcb, save.sysenter_eip), env->sysenter_eip);
5171 }
5172
5173 void helper_stgi(void)
5174 {
5175 helper_svm_check_intercept_param(SVM_EXIT_STGI, 0);
5176 env->hflags2 |= HF2_GIF_MASK;
5177 }
5178
5179 void helper_clgi(void)
5180 {
5181 helper_svm_check_intercept_param(SVM_EXIT_CLGI, 0);
5182 env->hflags2 &= ~HF2_GIF_MASK;
5183 }
5184
5185 void helper_skinit(void)
5186 {
5187 helper_svm_check_intercept_param(SVM_EXIT_SKINIT, 0);
5188 /* XXX: not implemented */
5189 raise_exception(EXCP06_ILLOP);
5190 }
5191
5192 void helper_invlpga(int aflag)
5193 {
5194 target_ulong addr;
5195 helper_svm_check_intercept_param(SVM_EXIT_INVLPGA, 0);
5196
5197 if (aflag == 2)
5198 addr = EAX;
5199 else
5200 addr = (uint32_t)EAX;
5201
5202 /* XXX: could use the ASID to see if it is needed to do the
5203 flush */
5204 tlb_flush_page(env, addr);
5205 }
5206
5207 void helper_svm_check_intercept_param(uint32_t type, uint64_t param)
5208 {
5209 if (likely(!(env->hflags & HF_SVMI_MASK)))
5210 return;
5211 switch(type) {
5212 case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8:
5213 if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) {
5214 helper_vmexit(type, param);
5215 }
5216 break;
5217 case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8:
5218 if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) {
5219 helper_vmexit(type, param);
5220 }
5221 break;
5222 case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7:
5223 if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) {
5224 helper_vmexit(type, param);
5225 }
5226 break;
5227 case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7:
5228 if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) {
5229 helper_vmexit(type, param);
5230 }
5231 break;
5232 case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31:
5233 if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) {
5234 helper_vmexit(type, param);
5235 }
5236 break;
5237 case SVM_EXIT_MSR:
5238 if (env->intercept & (1ULL << (SVM_EXIT_MSR - SVM_EXIT_INTR))) {
5239 /* FIXME: this should be read in at vmrun (faster this way?) */
5240 uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.msrpm_base_pa));
5241 uint32_t t0, t1;
5242 switch((uint32_t)ECX) {
5243 case 0 ... 0x1fff:
5244 t0 = (ECX * 2) % 8;
5245 t1 = (ECX * 2) / 8;
5246 break;
5247 case 0xc0000000 ... 0xc0001fff:
5248 t0 = (8192 + ECX - 0xc0000000) * 2;
5249 t1 = (t0 / 8);
5250 t0 %= 8;
5251 break;
5252 case 0xc0010000 ... 0xc0011fff:
5253 t0 = (16384 + ECX - 0xc0010000) * 2;
5254 t1 = (t0 / 8);
5255 t0 %= 8;
5256 break;
5257 default:
5258 helper_vmexit(type, param);
5259 t0 = 0;
5260 t1 = 0;
5261 break;
5262 }
5263 if (ldub_phys(addr + t1) & ((1 << param) << t0))
5264 helper_vmexit(type, param);
5265 }
5266 break;
5267 default:
5268 if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) {
5269 helper_vmexit(type, param);
5270 }
5271 break;
5272 }
5273 }
5274
5275 void helper_svm_check_io(uint32_t port, uint32_t param,
5276 uint32_t next_eip_addend)
5277 {
5278 if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) {
5279 /* FIXME: this should be read in at vmrun (faster this way?) */
5280 uint64_t addr = ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.iopm_base_pa));
5281 uint16_t mask = (1 << ((param >> 4) & 7)) - 1;
5282 if(lduw_phys(addr + port / 8) & (mask << (port & 7))) {
5283 /* next EIP */
5284 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2),
5285 env->eip + next_eip_addend);
5286 helper_vmexit(SVM_EXIT_IOIO, param | (port << 16));
5287 }
5288 }
5289 }
5290
5291 /* Note: currently only 32 bits of exit_code are used */
5292 void helper_vmexit(uint32_t exit_code, uint64_t exit_info_1)
5293 {
5294 uint32_t int_ctl;
5295
5296 qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" PRIx64 ", " TARGET_FMT_lx ")!\n",
5297 exit_code, exit_info_1,
5298 ldq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2)),
5299 EIP);
5300
5301 if(env->hflags & HF_INHIBIT_IRQ_MASK) {
5302 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), SVM_INTERRUPT_SHADOW_MASK);
5303 env->hflags &= ~HF_INHIBIT_IRQ_MASK;
5304 } else {
5305 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0);
5306 }
5307
5308 /* Save the VM state in the vmcb */
5309 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.es),
5310 &env->segs[R_ES]);
5311 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.cs),
5312 &env->segs[R_CS]);
5313 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ss),
5314 &env->segs[R_SS]);
5315 svm_save_seg(env->vm_vmcb + offsetof(struct vmcb, save.ds),
5316 &env->segs[R_DS]);
5317
5318 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), env->gdt.base);
5319 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), env->gdt.limit);
5320
5321 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), env->idt.base);
5322 stl_phys(env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), env->idt.limit);
5323
5324 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer);
5325 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]);
5326 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]);
5327 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]);
5328 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]);
5329
5330 int_ctl = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl));
5331 int_ctl &= ~(V_TPR_MASK | V_IRQ_MASK);
5332 int_ctl |= env->v_tpr & V_TPR_MASK;
5333 if (env->interrupt_request & CPU_INTERRUPT_VIRQ)
5334 int_ctl |= V_IRQ_MASK;
5335 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), int_ctl);
5336
5337 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rflags), compute_eflags());
5338 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rip), env->eip);
5339 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rsp), ESP);
5340 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.rax), EAX);
5341 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]);
5342 stq_phys(env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]);
5343 stb_phys(env->vm_vmcb + offsetof(struct vmcb, save.cpl), env->hflags & HF_CPL_MASK);
5344
5345 /* Reload the host state from vm_hsave */
5346 env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK);
5347 env->hflags &= ~HF_SVMI_MASK;
5348 env->intercept = 0;
5349 env->intercept_exceptions = 0;
5350 env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
5351 env->tsc_offset = 0;
5352
5353 env->gdt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.base));
5354 env->gdt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit));
5355
5356 env->idt.base = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.base));
5357 env->idt.limit = ldl_phys(env->vm_hsave + offsetof(struct vmcb, save.idtr.limit));
5358
5359 cpu_x86_update_cr0(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr0)) | CR0_PE_MASK);
5360 cpu_x86_update_cr4(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr4)));
5361 cpu_x86_update_cr3(env, ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.cr3)));
5362 /* we need to set the efer after the crs so the hidden flags get
5363 set properly */
5364 cpu_load_efer(env,
5365 ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.efer)));
5366 env->eflags = 0;
5367 load_eflags(ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rflags)),
5368 ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK));
5369 CC_OP = CC_OP_EFLAGS;
5370
5371 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.es),
5372 env, R_ES);
5373 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.cs),
5374 env, R_CS);
5375 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ss),
5376 env, R_SS);
5377 svm_load_seg_cache(env->vm_hsave + offsetof(struct vmcb, save.ds),
5378 env, R_DS);
5379
5380 EIP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rip));
5381 ESP = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rsp));
5382 EAX = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.rax));
5383
5384 env->dr[6] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr6));
5385 env->dr[7] = ldq_phys(env->vm_hsave + offsetof(struct vmcb, save.dr7));
5386
5387 /* other setups */
5388 cpu_x86_set_cpl(env, 0);
5389 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_code), exit_code);
5390 stq_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_info_1), exit_info_1);
5391
5392 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info),
5393 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj)));
5394 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err),
5395 ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj_err)));
5396 stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0);
5397
5398 env->hflags2 &= ~HF2_GIF_MASK;
5399 /* FIXME: Resets the current ASID register to zero (host ASID). */
5400
5401 /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */
5402
5403 /* Clears the TSC_OFFSET inside the processor. */
5404
5405 /* If the host is in PAE mode, the processor reloads the host's PDPEs
5406 from the page table indicated the host's CR3. If the PDPEs contain
5407 illegal state, the processor causes a shutdown. */
5408
5409 /* Forces CR0.PE = 1, RFLAGS.VM = 0. */
5410 env->cr[0] |= CR0_PE_MASK;
5411 env->eflags &= ~VM_MASK;
5412
5413 /* Disables all breakpoints in the host DR7 register. */
5414
5415 /* Checks the reloaded host state for consistency. */
5416
5417 /* If the host's rIP reloaded by #VMEXIT is outside the limit of the
5418 host's code segment or non-canonical (in the case of long mode), a
5419 #GP fault is delivered inside the host.) */
5420
5421 /* remove any pending exception */
5422 env->exception_index = -1;
5423 env->error_code = 0;
5424 env->old_exception = -1;
5425
5426 cpu_loop_exit();
5427 }
5428
5429 #endif
5430
5431 /* MMX/SSE */
5432 /* XXX: optimize by storing fptt and fptags in the static cpu state */
5433 void helper_enter_mmx(void)
5434 {
5435 env->fpstt = 0;
5436 *(uint32_t *)(env->fptags) = 0;
5437 *(uint32_t *)(env->fptags + 4) = 0;
5438 }
5439
5440 void helper_emms(void)
5441 {
5442 /* set to empty state */
5443 *(uint32_t *)(env->fptags) = 0x01010101;
5444 *(uint32_t *)(env->fptags + 4) = 0x01010101;
5445 }
5446
5447 /* XXX: suppress */
5448 void helper_movq(void *d, void *s)
5449 {
5450 *(uint64_t *)d = *(uint64_t *)s;
5451 }
5452
5453 #define SHIFT 0
5454 #include "ops_sse.h"
5455
5456 #define SHIFT 1
5457 #include "ops_sse.h"
5458
5459 #define SHIFT 0
5460 #include "helper_template.h"
5461 #undef SHIFT
5462
5463 #define SHIFT 1
5464 #include "helper_template.h"
5465 #undef SHIFT
5466
5467 #define SHIFT 2
5468 #include "helper_template.h"
5469 #undef SHIFT
5470
5471 #ifdef TARGET_X86_64
5472
5473 #define SHIFT 3
5474 #include "helper_template.h"
5475 #undef SHIFT
5476
5477 #endif
5478
5479 /* bit operations */
5480 target_ulong helper_bsf(target_ulong t0)
5481 {
5482 int count;
5483 target_ulong res;
5484
5485 res = t0;
5486 count = 0;
5487 while ((res & 1) == 0) {
5488 count++;
5489 res >>= 1;
5490 }
5491 return count;
5492 }
5493
5494 target_ulong helper_lzcnt(target_ulong t0, int wordsize)
5495 {
5496 int count;
5497 target_ulong res, mask;
5498
5499 if (wordsize > 0 && t0 == 0) {
5500 return wordsize;
5501 }
5502 res = t0;
5503 count = TARGET_LONG_BITS - 1;
5504 mask = (target_ulong)1 << (TARGET_LONG_BITS - 1);
5505 while ((res & mask) == 0) {
5506 count--;
5507 res <<= 1;
5508 }
5509 if (wordsize > 0) {
5510 return wordsize - 1 - count;
5511 }
5512 return count;
5513 }
5514
5515 target_ulong helper_bsr(target_ulong t0)
5516 {
5517 return helper_lzcnt(t0, 0);
5518 }
5519
5520 static int compute_all_eflags(void)
5521 {
5522 return CC_SRC;
5523 }
5524
5525 static int compute_c_eflags(void)
5526 {
5527 return CC_SRC & CC_C;
5528 }
5529
5530 uint32_t helper_cc_compute_all(int op)
5531 {
5532 switch (op) {
5533 default: /* should never happen */ return 0;
5534
5535 case CC_OP_EFLAGS: return compute_all_eflags();
5536
5537 case CC_OP_MULB: return compute_all_mulb();
5538 case CC_OP_MULW: return compute_all_mulw();
5539 case CC_OP_MULL: return compute_all_mull();
5540
5541 case CC_OP_ADDB: return compute_all_addb();
5542 case CC_OP_ADDW: return compute_all_addw();
5543 case CC_OP_ADDL: return compute_all_addl();
5544
5545 case CC_OP_ADCB: return compute_all_adcb();
5546 case CC_OP_ADCW: return compute_all_adcw();
5547 case CC_OP_ADCL: return compute_all_adcl();
5548
5549 case CC_OP_SUBB: return compute_all_subb();
5550 case CC_OP_SUBW: return compute_all_subw();
5551 case CC_OP_SUBL: return compute_all_subl();
5552
5553 case CC_OP_SBBB: return compute_all_sbbb();
5554 case CC_OP_SBBW: return compute_all_sbbw();
5555 case CC_OP_SBBL: return compute_all_sbbl();
5556
5557 case CC_OP_LOGICB: return compute_all_logicb();
5558 case CC_OP_LOGICW: return compute_all_logicw();
5559 case CC_OP_LOGICL: return compute_all_logicl();
5560
5561 case CC_OP_INCB: return compute_all_incb();
5562 case CC_OP_INCW: return compute_all_incw();
5563 case CC_OP_INCL: return compute_all_incl();
5564
5565 case CC_OP_DECB: return compute_all_decb();
5566 case CC_OP_DECW: return compute_all_decw();
5567 case CC_OP_DECL: return compute_all_decl();
5568
5569 case CC_OP_SHLB: return compute_all_shlb();
5570 case CC_OP_SHLW: return compute_all_shlw();
5571 case CC_OP_SHLL: return compute_all_shll();
5572
5573 case CC_OP_SARB: return compute_all_sarb();
5574 case CC_OP_SARW: return compute_all_sarw();
5575 case CC_OP_SARL: return compute_all_sarl();
5576
5577 #ifdef TARGET_X86_64
5578 case CC_OP_MULQ: return compute_all_mulq();
5579
5580 case CC_OP_ADDQ: return compute_all_addq();
5581
5582 case CC_OP_ADCQ: return compute_all_adcq();
5583
5584 case CC_OP_SUBQ: return compute_all_subq();
5585
5586 case CC_OP_SBBQ: return compute_all_sbbq();
5587
5588 case CC_OP_LOGICQ: return compute_all_logicq();
5589
5590 case CC_OP_INCQ: return compute_all_incq();
5591
5592 case CC_OP_DECQ: return compute_all_decq();
5593
5594 case CC_OP_SHLQ: return compute_all_shlq();
5595
5596 case CC_OP_SARQ: return compute_all_sarq();
5597 #endif
5598 }
5599 }
5600
5601 uint32_t helper_cc_compute_c(int op)
5602 {
5603 switch (op) {
5604 default: /* should never happen */ return 0;
5605
5606 case CC_OP_EFLAGS: return compute_c_eflags();
5607
5608 case CC_OP_MULB: return compute_c_mull();
5609 case CC_OP_MULW: return compute_c_mull();
5610 case CC_OP_MULL: return compute_c_mull();
5611
5612 case CC_OP_ADDB: return compute_c_addb();
5613 case CC_OP_ADDW: return compute_c_addw();
5614 case CC_OP_ADDL: return compute_c_addl();
5615
5616 case CC_OP_ADCB: return compute_c_adcb();
5617 case CC_OP_ADCW: return compute_c_adcw();
5618 case CC_OP_ADCL: return compute_c_adcl();
5619
5620 case CC_OP_SUBB: return compute_c_subb();
5621 case CC_OP_SUBW: return compute_c_subw();
5622 case CC_OP_SUBL: return compute_c_subl();
5623
5624 case CC_OP_SBBB: return compute_c_sbbb();
5625 case CC_OP_SBBW: return compute_c_sbbw();
5626 case CC_OP_SBBL: return compute_c_sbbl();
5627
5628 case CC_OP_LOGICB: return compute_c_logicb();
5629 case CC_OP_LOGICW: return compute_c_logicw();
5630 case CC_OP_LOGICL: return compute_c_logicl();
5631
5632 case CC_OP_INCB: return compute_c_incl();
5633 case CC_OP_INCW: return compute_c_incl();
5634 case CC_OP_INCL: return compute_c_incl();
5635
5636 case CC_OP_DECB: return compute_c_incl();
5637 case CC_OP_DECW: return compute_c_incl();
5638 case CC_OP_DECL: return compute_c_incl();
5639
5640 case CC_OP_SHLB: return compute_c_shlb();
5641 case CC_OP_SHLW: return compute_c_shlw();
5642 case CC_OP_SHLL: return compute_c_shll();
5643
5644 case CC_OP_SARB: return compute_c_sarl();
5645 case CC_OP_SARW: return compute_c_sarl();
5646 case CC_OP_SARL: return compute_c_sarl();
5647
5648 #ifdef TARGET_X86_64
5649 case CC_OP_MULQ: return compute_c_mull();
5650
5651 case CC_OP_ADDQ: return compute_c_addq();
5652
5653 case CC_OP_ADCQ: return compute_c_adcq();
5654
5655 case CC_OP_SUBQ: return compute_c_subq();
5656
5657 case CC_OP_SBBQ: return compute_c_sbbq();
5658
5659 case CC_OP_LOGICQ: return compute_c_logicq();
5660
5661 case CC_OP_INCQ: return compute_c_incl();
5662
5663 case CC_OP_DECQ: return compute_c_incl();
5664
5665 case CC_OP_SHLQ: return compute_c_shlq();
5666
5667 case CC_OP_SARQ: return compute_c_sarl();
5668 #endif
5669 }
5670 }