]> git.proxmox.com Git - qemu.git/blob - target-i386/ops_sse.h
find -type f | xargs sed -i 's/[\t ]$//g' # on most files
[qemu.git] / target-i386 / ops_sse.h
1 /*
2 * MMX/SSE/SSE2/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #if SHIFT == 0
21 #define Reg MMXReg
22 #define XMM_ONLY(x...)
23 #define B(n) MMX_B(n)
24 #define W(n) MMX_W(n)
25 #define L(n) MMX_L(n)
26 #define Q(n) q
27 #define SUFFIX _mmx
28 #else
29 #define Reg XMMReg
30 #define XMM_ONLY(x...) x
31 #define B(n) XMM_B(n)
32 #define W(n) XMM_W(n)
33 #define L(n) XMM_L(n)
34 #define Q(n) XMM_Q(n)
35 #define SUFFIX _xmm
36 #endif
37
38 void OPPROTO glue(op_psrlw, SUFFIX)(void)
39 {
40 Reg *d, *s;
41 int shift;
42
43 d = (Reg *)((char *)env + PARAM1);
44 s = (Reg *)((char *)env + PARAM2);
45
46 if (s->Q(0) > 15) {
47 d->Q(0) = 0;
48 #if SHIFT == 1
49 d->Q(1) = 0;
50 #endif
51 } else {
52 shift = s->B(0);
53 d->W(0) >>= shift;
54 d->W(1) >>= shift;
55 d->W(2) >>= shift;
56 d->W(3) >>= shift;
57 #if SHIFT == 1
58 d->W(4) >>= shift;
59 d->W(5) >>= shift;
60 d->W(6) >>= shift;
61 d->W(7) >>= shift;
62 #endif
63 }
64 FORCE_RET();
65 }
66
67 void OPPROTO glue(op_psraw, SUFFIX)(void)
68 {
69 Reg *d, *s;
70 int shift;
71
72 d = (Reg *)((char *)env + PARAM1);
73 s = (Reg *)((char *)env + PARAM2);
74
75 if (s->Q(0) > 15) {
76 shift = 15;
77 } else {
78 shift = s->B(0);
79 }
80 d->W(0) = (int16_t)d->W(0) >> shift;
81 d->W(1) = (int16_t)d->W(1) >> shift;
82 d->W(2) = (int16_t)d->W(2) >> shift;
83 d->W(3) = (int16_t)d->W(3) >> shift;
84 #if SHIFT == 1
85 d->W(4) = (int16_t)d->W(4) >> shift;
86 d->W(5) = (int16_t)d->W(5) >> shift;
87 d->W(6) = (int16_t)d->W(6) >> shift;
88 d->W(7) = (int16_t)d->W(7) >> shift;
89 #endif
90 }
91
92 void OPPROTO glue(op_psllw, SUFFIX)(void)
93 {
94 Reg *d, *s;
95 int shift;
96
97 d = (Reg *)((char *)env + PARAM1);
98 s = (Reg *)((char *)env + PARAM2);
99
100 if (s->Q(0) > 15) {
101 d->Q(0) = 0;
102 #if SHIFT == 1
103 d->Q(1) = 0;
104 #endif
105 } else {
106 shift = s->B(0);
107 d->W(0) <<= shift;
108 d->W(1) <<= shift;
109 d->W(2) <<= shift;
110 d->W(3) <<= shift;
111 #if SHIFT == 1
112 d->W(4) <<= shift;
113 d->W(5) <<= shift;
114 d->W(6) <<= shift;
115 d->W(7) <<= shift;
116 #endif
117 }
118 FORCE_RET();
119 }
120
121 void OPPROTO glue(op_psrld, SUFFIX)(void)
122 {
123 Reg *d, *s;
124 int shift;
125
126 d = (Reg *)((char *)env + PARAM1);
127 s = (Reg *)((char *)env + PARAM2);
128
129 if (s->Q(0) > 31) {
130 d->Q(0) = 0;
131 #if SHIFT == 1
132 d->Q(1) = 0;
133 #endif
134 } else {
135 shift = s->B(0);
136 d->L(0) >>= shift;
137 d->L(1) >>= shift;
138 #if SHIFT == 1
139 d->L(2) >>= shift;
140 d->L(3) >>= shift;
141 #endif
142 }
143 FORCE_RET();
144 }
145
146 void OPPROTO glue(op_psrad, SUFFIX)(void)
147 {
148 Reg *d, *s;
149 int shift;
150
151 d = (Reg *)((char *)env + PARAM1);
152 s = (Reg *)((char *)env + PARAM2);
153
154 if (s->Q(0) > 31) {
155 shift = 31;
156 } else {
157 shift = s->B(0);
158 }
159 d->L(0) = (int32_t)d->L(0) >> shift;
160 d->L(1) = (int32_t)d->L(1) >> shift;
161 #if SHIFT == 1
162 d->L(2) = (int32_t)d->L(2) >> shift;
163 d->L(3) = (int32_t)d->L(3) >> shift;
164 #endif
165 }
166
167 void OPPROTO glue(op_pslld, SUFFIX)(void)
168 {
169 Reg *d, *s;
170 int shift;
171
172 d = (Reg *)((char *)env + PARAM1);
173 s = (Reg *)((char *)env + PARAM2);
174
175 if (s->Q(0) > 31) {
176 d->Q(0) = 0;
177 #if SHIFT == 1
178 d->Q(1) = 0;
179 #endif
180 } else {
181 shift = s->B(0);
182 d->L(0) <<= shift;
183 d->L(1) <<= shift;
184 #if SHIFT == 1
185 d->L(2) <<= shift;
186 d->L(3) <<= shift;
187 #endif
188 }
189 FORCE_RET();
190 }
191
192 void OPPROTO glue(op_psrlq, SUFFIX)(void)
193 {
194 Reg *d, *s;
195 int shift;
196
197 d = (Reg *)((char *)env + PARAM1);
198 s = (Reg *)((char *)env + PARAM2);
199
200 if (s->Q(0) > 63) {
201 d->Q(0) = 0;
202 #if SHIFT == 1
203 d->Q(1) = 0;
204 #endif
205 } else {
206 shift = s->B(0);
207 d->Q(0) >>= shift;
208 #if SHIFT == 1
209 d->Q(1) >>= shift;
210 #endif
211 }
212 FORCE_RET();
213 }
214
215 void OPPROTO glue(op_psllq, SUFFIX)(void)
216 {
217 Reg *d, *s;
218 int shift;
219
220 d = (Reg *)((char *)env + PARAM1);
221 s = (Reg *)((char *)env + PARAM2);
222
223 if (s->Q(0) > 63) {
224 d->Q(0) = 0;
225 #if SHIFT == 1
226 d->Q(1) = 0;
227 #endif
228 } else {
229 shift = s->B(0);
230 d->Q(0) <<= shift;
231 #if SHIFT == 1
232 d->Q(1) <<= shift;
233 #endif
234 }
235 FORCE_RET();
236 }
237
238 #if SHIFT == 1
239 void OPPROTO glue(op_psrldq, SUFFIX)(void)
240 {
241 Reg *d, *s;
242 int shift, i;
243
244 d = (Reg *)((char *)env + PARAM1);
245 s = (Reg *)((char *)env + PARAM2);
246 shift = s->L(0);
247 if (shift > 16)
248 shift = 16;
249 for(i = 0; i < 16 - shift; i++)
250 d->B(i) = d->B(i + shift);
251 for(i = 16 - shift; i < 16; i++)
252 d->B(i) = 0;
253 FORCE_RET();
254 }
255
256 void OPPROTO glue(op_pslldq, SUFFIX)(void)
257 {
258 Reg *d, *s;
259 int shift, i;
260
261 d = (Reg *)((char *)env + PARAM1);
262 s = (Reg *)((char *)env + PARAM2);
263 shift = s->L(0);
264 if (shift > 16)
265 shift = 16;
266 for(i = 15; i >= shift; i--)
267 d->B(i) = d->B(i - shift);
268 for(i = 0; i < shift; i++)
269 d->B(i) = 0;
270 FORCE_RET();
271 }
272 #endif
273
274 #define SSE_OP_B(name, F)\
275 void OPPROTO glue(name, SUFFIX) (void)\
276 {\
277 Reg *d, *s;\
278 d = (Reg *)((char *)env + PARAM1);\
279 s = (Reg *)((char *)env + PARAM2);\
280 d->B(0) = F(d->B(0), s->B(0));\
281 d->B(1) = F(d->B(1), s->B(1));\
282 d->B(2) = F(d->B(2), s->B(2));\
283 d->B(3) = F(d->B(3), s->B(3));\
284 d->B(4) = F(d->B(4), s->B(4));\
285 d->B(5) = F(d->B(5), s->B(5));\
286 d->B(6) = F(d->B(6), s->B(6));\
287 d->B(7) = F(d->B(7), s->B(7));\
288 XMM_ONLY(\
289 d->B(8) = F(d->B(8), s->B(8));\
290 d->B(9) = F(d->B(9), s->B(9));\
291 d->B(10) = F(d->B(10), s->B(10));\
292 d->B(11) = F(d->B(11), s->B(11));\
293 d->B(12) = F(d->B(12), s->B(12));\
294 d->B(13) = F(d->B(13), s->B(13));\
295 d->B(14) = F(d->B(14), s->B(14));\
296 d->B(15) = F(d->B(15), s->B(15));\
297 )\
298 }
299
300 #define SSE_OP_W(name, F)\
301 void OPPROTO glue(name, SUFFIX) (void)\
302 {\
303 Reg *d, *s;\
304 d = (Reg *)((char *)env + PARAM1);\
305 s = (Reg *)((char *)env + PARAM2);\
306 d->W(0) = F(d->W(0), s->W(0));\
307 d->W(1) = F(d->W(1), s->W(1));\
308 d->W(2) = F(d->W(2), s->W(2));\
309 d->W(3) = F(d->W(3), s->W(3));\
310 XMM_ONLY(\
311 d->W(4) = F(d->W(4), s->W(4));\
312 d->W(5) = F(d->W(5), s->W(5));\
313 d->W(6) = F(d->W(6), s->W(6));\
314 d->W(7) = F(d->W(7), s->W(7));\
315 )\
316 }
317
318 #define SSE_OP_L(name, F)\
319 void OPPROTO glue(name, SUFFIX) (void)\
320 {\
321 Reg *d, *s;\
322 d = (Reg *)((char *)env + PARAM1);\
323 s = (Reg *)((char *)env + PARAM2);\
324 d->L(0) = F(d->L(0), s->L(0));\
325 d->L(1) = F(d->L(1), s->L(1));\
326 XMM_ONLY(\
327 d->L(2) = F(d->L(2), s->L(2));\
328 d->L(3) = F(d->L(3), s->L(3));\
329 )\
330 }
331
332 #define SSE_OP_Q(name, F)\
333 void OPPROTO glue(name, SUFFIX) (void)\
334 {\
335 Reg *d, *s;\
336 d = (Reg *)((char *)env + PARAM1);\
337 s = (Reg *)((char *)env + PARAM2);\
338 d->Q(0) = F(d->Q(0), s->Q(0));\
339 XMM_ONLY(\
340 d->Q(1) = F(d->Q(1), s->Q(1));\
341 )\
342 }
343
344 #if SHIFT == 0
345 static inline int satub(int x)
346 {
347 if (x < 0)
348 return 0;
349 else if (x > 255)
350 return 255;
351 else
352 return x;
353 }
354
355 static inline int satuw(int x)
356 {
357 if (x < 0)
358 return 0;
359 else if (x > 65535)
360 return 65535;
361 else
362 return x;
363 }
364
365 static inline int satsb(int x)
366 {
367 if (x < -128)
368 return -128;
369 else if (x > 127)
370 return 127;
371 else
372 return x;
373 }
374
375 static inline int satsw(int x)
376 {
377 if (x < -32768)
378 return -32768;
379 else if (x > 32767)
380 return 32767;
381 else
382 return x;
383 }
384
385 #define FADD(a, b) ((a) + (b))
386 #define FADDUB(a, b) satub((a) + (b))
387 #define FADDUW(a, b) satuw((a) + (b))
388 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
389 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
390
391 #define FSUB(a, b) ((a) - (b))
392 #define FSUBUB(a, b) satub((a) - (b))
393 #define FSUBUW(a, b) satuw((a) - (b))
394 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
395 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
396 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
397 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
398 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
399 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
400
401 #define FAND(a, b) (a) & (b)
402 #define FANDN(a, b) ((~(a)) & (b))
403 #define FOR(a, b) (a) | (b)
404 #define FXOR(a, b) (a) ^ (b)
405
406 #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
407 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
408 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
409 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0
410
411 #define FMULLW(a, b) (a) * (b)
412 #define FMULHUW(a, b) (a) * (b) >> 16
413 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
414
415 #define FAVG(a, b) ((a) + (b) + 1) >> 1
416 #endif
417
418 SSE_OP_B(op_paddb, FADD)
419 SSE_OP_W(op_paddw, FADD)
420 SSE_OP_L(op_paddl, FADD)
421 SSE_OP_Q(op_paddq, FADD)
422
423 SSE_OP_B(op_psubb, FSUB)
424 SSE_OP_W(op_psubw, FSUB)
425 SSE_OP_L(op_psubl, FSUB)
426 SSE_OP_Q(op_psubq, FSUB)
427
428 SSE_OP_B(op_paddusb, FADDUB)
429 SSE_OP_B(op_paddsb, FADDSB)
430 SSE_OP_B(op_psubusb, FSUBUB)
431 SSE_OP_B(op_psubsb, FSUBSB)
432
433 SSE_OP_W(op_paddusw, FADDUW)
434 SSE_OP_W(op_paddsw, FADDSW)
435 SSE_OP_W(op_psubusw, FSUBUW)
436 SSE_OP_W(op_psubsw, FSUBSW)
437
438 SSE_OP_B(op_pminub, FMINUB)
439 SSE_OP_B(op_pmaxub, FMAXUB)
440
441 SSE_OP_W(op_pminsw, FMINSW)
442 SSE_OP_W(op_pmaxsw, FMAXSW)
443
444 SSE_OP_Q(op_pand, FAND)
445 SSE_OP_Q(op_pandn, FANDN)
446 SSE_OP_Q(op_por, FOR)
447 SSE_OP_Q(op_pxor, FXOR)
448
449 SSE_OP_B(op_pcmpgtb, FCMPGTB)
450 SSE_OP_W(op_pcmpgtw, FCMPGTW)
451 SSE_OP_L(op_pcmpgtl, FCMPGTL)
452
453 SSE_OP_B(op_pcmpeqb, FCMPEQ)
454 SSE_OP_W(op_pcmpeqw, FCMPEQ)
455 SSE_OP_L(op_pcmpeql, FCMPEQ)
456
457 SSE_OP_W(op_pmullw, FMULLW)
458 SSE_OP_W(op_pmulhuw, FMULHUW)
459 SSE_OP_W(op_pmulhw, FMULHW)
460
461 SSE_OP_B(op_pavgb, FAVG)
462 SSE_OP_W(op_pavgw, FAVG)
463
464 void OPPROTO glue(op_pmuludq, SUFFIX) (void)
465 {
466 Reg *d, *s;
467 d = (Reg *)((char *)env + PARAM1);
468 s = (Reg *)((char *)env + PARAM2);
469
470 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
471 #if SHIFT == 1
472 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
473 #endif
474 }
475
476 void OPPROTO glue(op_pmaddwd, SUFFIX) (void)
477 {
478 int i;
479 Reg *d, *s;
480 d = (Reg *)((char *)env + PARAM1);
481 s = (Reg *)((char *)env + PARAM2);
482
483 for(i = 0; i < (2 << SHIFT); i++) {
484 d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
485 (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
486 }
487 FORCE_RET();
488 }
489
490 #if SHIFT == 0
491 static inline int abs1(int a)
492 {
493 if (a < 0)
494 return -a;
495 else
496 return a;
497 }
498 #endif
499 void OPPROTO glue(op_psadbw, SUFFIX) (void)
500 {
501 unsigned int val;
502 Reg *d, *s;
503 d = (Reg *)((char *)env + PARAM1);
504 s = (Reg *)((char *)env + PARAM2);
505
506 val = 0;
507 val += abs1(d->B(0) - s->B(0));
508 val += abs1(d->B(1) - s->B(1));
509 val += abs1(d->B(2) - s->B(2));
510 val += abs1(d->B(3) - s->B(3));
511 val += abs1(d->B(4) - s->B(4));
512 val += abs1(d->B(5) - s->B(5));
513 val += abs1(d->B(6) - s->B(6));
514 val += abs1(d->B(7) - s->B(7));
515 d->Q(0) = val;
516 #if SHIFT == 1
517 val = 0;
518 val += abs1(d->B(8) - s->B(8));
519 val += abs1(d->B(9) - s->B(9));
520 val += abs1(d->B(10) - s->B(10));
521 val += abs1(d->B(11) - s->B(11));
522 val += abs1(d->B(12) - s->B(12));
523 val += abs1(d->B(13) - s->B(13));
524 val += abs1(d->B(14) - s->B(14));
525 val += abs1(d->B(15) - s->B(15));
526 d->Q(1) = val;
527 #endif
528 }
529
530 void OPPROTO glue(op_maskmov, SUFFIX) (void)
531 {
532 int i;
533 Reg *d, *s;
534 d = (Reg *)((char *)env + PARAM1);
535 s = (Reg *)((char *)env + PARAM2);
536 for(i = 0; i < (8 << SHIFT); i++) {
537 if (s->B(i) & 0x80)
538 stb(A0 + i, d->B(i));
539 }
540 FORCE_RET();
541 }
542
543 void OPPROTO glue(op_movl_mm_T0, SUFFIX) (void)
544 {
545 Reg *d;
546 d = (Reg *)((char *)env + PARAM1);
547 d->L(0) = T0;
548 d->L(1) = 0;
549 #if SHIFT == 1
550 d->Q(1) = 0;
551 #endif
552 }
553
554 void OPPROTO glue(op_movl_T0_mm, SUFFIX) (void)
555 {
556 Reg *s;
557 s = (Reg *)((char *)env + PARAM1);
558 T0 = s->L(0);
559 }
560
561 #ifdef TARGET_X86_64
562 void OPPROTO glue(op_movq_mm_T0, SUFFIX) (void)
563 {
564 Reg *d;
565 d = (Reg *)((char *)env + PARAM1);
566 d->Q(0) = T0;
567 #if SHIFT == 1
568 d->Q(1) = 0;
569 #endif
570 }
571
572 void OPPROTO glue(op_movq_T0_mm, SUFFIX) (void)
573 {
574 Reg *s;
575 s = (Reg *)((char *)env + PARAM1);
576 T0 = s->Q(0);
577 }
578 #endif
579
580 #if SHIFT == 0
581 void OPPROTO glue(op_pshufw, SUFFIX) (void)
582 {
583 Reg r, *d, *s;
584 int order;
585 d = (Reg *)((char *)env + PARAM1);
586 s = (Reg *)((char *)env + PARAM2);
587 order = PARAM3;
588 r.W(0) = s->W(order & 3);
589 r.W(1) = s->W((order >> 2) & 3);
590 r.W(2) = s->W((order >> 4) & 3);
591 r.W(3) = s->W((order >> 6) & 3);
592 *d = r;
593 }
594 #else
595 void OPPROTO op_shufps(void)
596 {
597 Reg r, *d, *s;
598 int order;
599 d = (Reg *)((char *)env + PARAM1);
600 s = (Reg *)((char *)env + PARAM2);
601 order = PARAM3;
602 r.L(0) = d->L(order & 3);
603 r.L(1) = d->L((order >> 2) & 3);
604 r.L(2) = s->L((order >> 4) & 3);
605 r.L(3) = s->L((order >> 6) & 3);
606 *d = r;
607 }
608
609 void OPPROTO op_shufpd(void)
610 {
611 Reg r, *d, *s;
612 int order;
613 d = (Reg *)((char *)env + PARAM1);
614 s = (Reg *)((char *)env + PARAM2);
615 order = PARAM3;
616 r.Q(0) = d->Q(order & 1);
617 r.Q(1) = s->Q((order >> 1) & 1);
618 *d = r;
619 }
620
621 void OPPROTO glue(op_pshufd, SUFFIX) (void)
622 {
623 Reg r, *d, *s;
624 int order;
625 d = (Reg *)((char *)env + PARAM1);
626 s = (Reg *)((char *)env + PARAM2);
627 order = PARAM3;
628 r.L(0) = s->L(order & 3);
629 r.L(1) = s->L((order >> 2) & 3);
630 r.L(2) = s->L((order >> 4) & 3);
631 r.L(3) = s->L((order >> 6) & 3);
632 *d = r;
633 }
634
635 void OPPROTO glue(op_pshuflw, SUFFIX) (void)
636 {
637 Reg r, *d, *s;
638 int order;
639 d = (Reg *)((char *)env + PARAM1);
640 s = (Reg *)((char *)env + PARAM2);
641 order = PARAM3;
642 r.W(0) = s->W(order & 3);
643 r.W(1) = s->W((order >> 2) & 3);
644 r.W(2) = s->W((order >> 4) & 3);
645 r.W(3) = s->W((order >> 6) & 3);
646 r.Q(1) = s->Q(1);
647 *d = r;
648 }
649
650 void OPPROTO glue(op_pshufhw, SUFFIX) (void)
651 {
652 Reg r, *d, *s;
653 int order;
654 d = (Reg *)((char *)env + PARAM1);
655 s = (Reg *)((char *)env + PARAM2);
656 order = PARAM3;
657 r.Q(0) = s->Q(0);
658 r.W(4) = s->W(4 + (order & 3));
659 r.W(5) = s->W(4 + ((order >> 2) & 3));
660 r.W(6) = s->W(4 + ((order >> 4) & 3));
661 r.W(7) = s->W(4 + ((order >> 6) & 3));
662 *d = r;
663 }
664 #endif
665
666 #if SHIFT == 1
667 /* FPU ops */
668 /* XXX: not accurate */
669
670 #define SSE_OP_S(name, F)\
671 void OPPROTO op_ ## name ## ps (void)\
672 {\
673 Reg *d, *s;\
674 d = (Reg *)((char *)env + PARAM1);\
675 s = (Reg *)((char *)env + PARAM2);\
676 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
677 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
678 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
679 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
680 }\
681 \
682 void OPPROTO op_ ## name ## ss (void)\
683 {\
684 Reg *d, *s;\
685 d = (Reg *)((char *)env + PARAM1);\
686 s = (Reg *)((char *)env + PARAM2);\
687 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
688 }\
689 void OPPROTO op_ ## name ## pd (void)\
690 {\
691 Reg *d, *s;\
692 d = (Reg *)((char *)env + PARAM1);\
693 s = (Reg *)((char *)env + PARAM2);\
694 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
695 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
696 }\
697 \
698 void OPPROTO op_ ## name ## sd (void)\
699 {\
700 Reg *d, *s;\
701 d = (Reg *)((char *)env + PARAM1);\
702 s = (Reg *)((char *)env + PARAM2);\
703 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
704 }
705
706 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
707 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
708 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
709 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
710 #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
711 #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
712 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
713
714 SSE_OP_S(add, FPU_ADD)
715 SSE_OP_S(sub, FPU_SUB)
716 SSE_OP_S(mul, FPU_MUL)
717 SSE_OP_S(div, FPU_DIV)
718 SSE_OP_S(min, FPU_MIN)
719 SSE_OP_S(max, FPU_MAX)
720 SSE_OP_S(sqrt, FPU_SQRT)
721
722
723 /* float to float conversions */
724 void OPPROTO op_cvtps2pd(void)
725 {
726 float32 s0, s1;
727 Reg *d, *s;
728 d = (Reg *)((char *)env + PARAM1);
729 s = (Reg *)((char *)env + PARAM2);
730 s0 = s->XMM_S(0);
731 s1 = s->XMM_S(1);
732 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
733 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
734 }
735
736 void OPPROTO op_cvtpd2ps(void)
737 {
738 Reg *d, *s;
739 d = (Reg *)((char *)env + PARAM1);
740 s = (Reg *)((char *)env + PARAM2);
741 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
742 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
743 d->Q(1) = 0;
744 }
745
746 void OPPROTO op_cvtss2sd(void)
747 {
748 Reg *d, *s;
749 d = (Reg *)((char *)env + PARAM1);
750 s = (Reg *)((char *)env + PARAM2);
751 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
752 }
753
754 void OPPROTO op_cvtsd2ss(void)
755 {
756 Reg *d, *s;
757 d = (Reg *)((char *)env + PARAM1);
758 s = (Reg *)((char *)env + PARAM2);
759 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
760 }
761
762 /* integer to float */
763 void OPPROTO op_cvtdq2ps(void)
764 {
765 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
766 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
767 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
768 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
769 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
770 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
771 }
772
773 void OPPROTO op_cvtdq2pd(void)
774 {
775 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
776 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
777 int32_t l0, l1;
778 l0 = (int32_t)s->XMM_L(0);
779 l1 = (int32_t)s->XMM_L(1);
780 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
781 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
782 }
783
784 void OPPROTO op_cvtpi2ps(void)
785 {
786 XMMReg *d = (Reg *)((char *)env + PARAM1);
787 MMXReg *s = (MMXReg *)((char *)env + PARAM2);
788 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
789 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
790 }
791
792 void OPPROTO op_cvtpi2pd(void)
793 {
794 XMMReg *d = (Reg *)((char *)env + PARAM1);
795 MMXReg *s = (MMXReg *)((char *)env + PARAM2);
796 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
797 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
798 }
799
800 void OPPROTO op_cvtsi2ss(void)
801 {
802 XMMReg *d = (Reg *)((char *)env + PARAM1);
803 d->XMM_S(0) = int32_to_float32(T0, &env->sse_status);
804 }
805
806 void OPPROTO op_cvtsi2sd(void)
807 {
808 XMMReg *d = (Reg *)((char *)env + PARAM1);
809 d->XMM_D(0) = int32_to_float64(T0, &env->sse_status);
810 }
811
812 #ifdef TARGET_X86_64
813 void OPPROTO op_cvtsq2ss(void)
814 {
815 XMMReg *d = (Reg *)((char *)env + PARAM1);
816 d->XMM_S(0) = int64_to_float32(T0, &env->sse_status);
817 }
818
819 void OPPROTO op_cvtsq2sd(void)
820 {
821 XMMReg *d = (Reg *)((char *)env + PARAM1);
822 d->XMM_D(0) = int64_to_float64(T0, &env->sse_status);
823 }
824 #endif
825
826 /* float to integer */
827 void OPPROTO op_cvtps2dq(void)
828 {
829 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
830 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
831 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
832 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
833 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
834 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
835 }
836
837 void OPPROTO op_cvtpd2dq(void)
838 {
839 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
840 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
841 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
842 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
843 d->XMM_Q(1) = 0;
844 }
845
846 void OPPROTO op_cvtps2pi(void)
847 {
848 MMXReg *d = (MMXReg *)((char *)env + PARAM1);
849 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
850 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
851 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
852 }
853
854 void OPPROTO op_cvtpd2pi(void)
855 {
856 MMXReg *d = (MMXReg *)((char *)env + PARAM1);
857 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
858 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
859 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
860 }
861
862 void OPPROTO op_cvtss2si(void)
863 {
864 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
865 T0 = float32_to_int32(s->XMM_S(0), &env->sse_status);
866 }
867
868 void OPPROTO op_cvtsd2si(void)
869 {
870 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
871 T0 = float64_to_int32(s->XMM_D(0), &env->sse_status);
872 }
873
874 #ifdef TARGET_X86_64
875 void OPPROTO op_cvtss2sq(void)
876 {
877 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
878 T0 = float32_to_int64(s->XMM_S(0), &env->sse_status);
879 }
880
881 void OPPROTO op_cvtsd2sq(void)
882 {
883 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
884 T0 = float64_to_int64(s->XMM_D(0), &env->sse_status);
885 }
886 #endif
887
888 /* float to integer truncated */
889 void OPPROTO op_cvttps2dq(void)
890 {
891 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
892 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
893 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
894 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
895 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
896 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
897 }
898
899 void OPPROTO op_cvttpd2dq(void)
900 {
901 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
902 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
903 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
904 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
905 d->XMM_Q(1) = 0;
906 }
907
908 void OPPROTO op_cvttps2pi(void)
909 {
910 MMXReg *d = (MMXReg *)((char *)env + PARAM1);
911 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
912 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
913 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
914 }
915
916 void OPPROTO op_cvttpd2pi(void)
917 {
918 MMXReg *d = (MMXReg *)((char *)env + PARAM1);
919 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
920 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
921 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
922 }
923
924 void OPPROTO op_cvttss2si(void)
925 {
926 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
927 T0 = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
928 }
929
930 void OPPROTO op_cvttsd2si(void)
931 {
932 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
933 T0 = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
934 }
935
936 #ifdef TARGET_X86_64
937 void OPPROTO op_cvttss2sq(void)
938 {
939 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
940 T0 = float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
941 }
942
943 void OPPROTO op_cvttsd2sq(void)
944 {
945 XMMReg *s = (XMMReg *)((char *)env + PARAM1);
946 T0 = float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
947 }
948 #endif
949
950 void OPPROTO op_rsqrtps(void)
951 {
952 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
953 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
954 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
955 d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
956 d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
957 d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
958 }
959
960 void OPPROTO op_rsqrtss(void)
961 {
962 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
963 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
964 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
965 }
966
967 void OPPROTO op_rcpps(void)
968 {
969 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
970 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
971 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
972 d->XMM_S(1) = approx_rcp(s->XMM_S(1));
973 d->XMM_S(2) = approx_rcp(s->XMM_S(2));
974 d->XMM_S(3) = approx_rcp(s->XMM_S(3));
975 }
976
977 void OPPROTO op_rcpss(void)
978 {
979 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
980 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
981 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
982 }
983
984 void OPPROTO op_haddps(void)
985 {
986 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
987 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
988 XMMReg r;
989 r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
990 r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
991 r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
992 r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
993 *d = r;
994 }
995
996 void OPPROTO op_haddpd(void)
997 {
998 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
999 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
1000 XMMReg r;
1001 r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
1002 r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
1003 *d = r;
1004 }
1005
1006 void OPPROTO op_hsubps(void)
1007 {
1008 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
1009 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
1010 XMMReg r;
1011 r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
1012 r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
1013 r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
1014 r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
1015 *d = r;
1016 }
1017
1018 void OPPROTO op_hsubpd(void)
1019 {
1020 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
1021 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
1022 XMMReg r;
1023 r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
1024 r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
1025 *d = r;
1026 }
1027
1028 void OPPROTO op_addsubps(void)
1029 {
1030 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
1031 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
1032 d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
1033 d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
1034 d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
1035 d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
1036 }
1037
1038 void OPPROTO op_addsubpd(void)
1039 {
1040 XMMReg *d = (XMMReg *)((char *)env + PARAM1);
1041 XMMReg *s = (XMMReg *)((char *)env + PARAM2);
1042 d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
1043 d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
1044 }
1045
1046 /* XXX: unordered */
1047 #define SSE_OP_CMP(name, F)\
1048 void OPPROTO op_ ## name ## ps (void)\
1049 {\
1050 Reg *d, *s;\
1051 d = (Reg *)((char *)env + PARAM1);\
1052 s = (Reg *)((char *)env + PARAM2);\
1053 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
1054 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
1055 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
1056 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
1057 }\
1058 \
1059 void OPPROTO op_ ## name ## ss (void)\
1060 {\
1061 Reg *d, *s;\
1062 d = (Reg *)((char *)env + PARAM1);\
1063 s = (Reg *)((char *)env + PARAM2);\
1064 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
1065 }\
1066 void OPPROTO op_ ## name ## pd (void)\
1067 {\
1068 Reg *d, *s;\
1069 d = (Reg *)((char *)env + PARAM1);\
1070 s = (Reg *)((char *)env + PARAM2);\
1071 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
1072 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
1073 }\
1074 \
1075 void OPPROTO op_ ## name ## sd (void)\
1076 {\
1077 Reg *d, *s;\
1078 d = (Reg *)((char *)env + PARAM1);\
1079 s = (Reg *)((char *)env + PARAM2);\
1080 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
1081 }
1082
1083 #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
1084 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
1085 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
1086 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
1087 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
1088 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
1089 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
1090 #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
1091
1092 SSE_OP_CMP(cmpeq, FPU_CMPEQ)
1093 SSE_OP_CMP(cmplt, FPU_CMPLT)
1094 SSE_OP_CMP(cmple, FPU_CMPLE)
1095 SSE_OP_CMP(cmpunord, FPU_CMPUNORD)
1096 SSE_OP_CMP(cmpneq, FPU_CMPNEQ)
1097 SSE_OP_CMP(cmpnlt, FPU_CMPNLT)
1098 SSE_OP_CMP(cmpnle, FPU_CMPNLE)
1099 SSE_OP_CMP(cmpord, FPU_CMPORD)
1100
1101 const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
1102
1103 void OPPROTO op_ucomiss(void)
1104 {
1105 int ret;
1106 float32 s0, s1;
1107 Reg *d, *s;
1108 d = (Reg *)((char *)env + PARAM1);
1109 s = (Reg *)((char *)env + PARAM2);
1110
1111 s0 = d->XMM_S(0);
1112 s1 = s->XMM_S(0);
1113 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1114 CC_SRC = comis_eflags[ret + 1];
1115 FORCE_RET();
1116 }
1117
1118 void OPPROTO op_comiss(void)
1119 {
1120 int ret;
1121 float32 s0, s1;
1122 Reg *d, *s;
1123 d = (Reg *)((char *)env + PARAM1);
1124 s = (Reg *)((char *)env + PARAM2);
1125
1126 s0 = d->XMM_S(0);
1127 s1 = s->XMM_S(0);
1128 ret = float32_compare(s0, s1, &env->sse_status);
1129 CC_SRC = comis_eflags[ret + 1];
1130 FORCE_RET();
1131 }
1132
1133 void OPPROTO op_ucomisd(void)
1134 {
1135 int ret;
1136 float64 d0, d1;
1137 Reg *d, *s;
1138 d = (Reg *)((char *)env + PARAM1);
1139 s = (Reg *)((char *)env + PARAM2);
1140
1141 d0 = d->XMM_D(0);
1142 d1 = s->XMM_D(0);
1143 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1144 CC_SRC = comis_eflags[ret + 1];
1145 FORCE_RET();
1146 }
1147
1148 void OPPROTO op_comisd(void)
1149 {
1150 int ret;
1151 float64 d0, d1;
1152 Reg *d, *s;
1153 d = (Reg *)((char *)env + PARAM1);
1154 s = (Reg *)((char *)env + PARAM2);
1155
1156 d0 = d->XMM_D(0);
1157 d1 = s->XMM_D(0);
1158 ret = float64_compare(d0, d1, &env->sse_status);
1159 CC_SRC = comis_eflags[ret + 1];
1160 FORCE_RET();
1161 }
1162
1163 void OPPROTO op_movmskps(void)
1164 {
1165 int b0, b1, b2, b3;
1166 Reg *s;
1167 s = (Reg *)((char *)env + PARAM1);
1168 b0 = s->XMM_L(0) >> 31;
1169 b1 = s->XMM_L(1) >> 31;
1170 b2 = s->XMM_L(2) >> 31;
1171 b3 = s->XMM_L(3) >> 31;
1172 T0 = b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1173 }
1174
1175 void OPPROTO op_movmskpd(void)
1176 {
1177 int b0, b1;
1178 Reg *s;
1179 s = (Reg *)((char *)env + PARAM1);
1180 b0 = s->XMM_L(1) >> 31;
1181 b1 = s->XMM_L(3) >> 31;
1182 T0 = b0 | (b1 << 1);
1183 }
1184
1185 #endif
1186
1187 void OPPROTO glue(op_pmovmskb, SUFFIX)(void)
1188 {
1189 Reg *s;
1190 s = (Reg *)((char *)env + PARAM1);
1191 T0 = 0;
1192 T0 |= (s->XMM_B(0) >> 7);
1193 T0 |= (s->XMM_B(1) >> 6) & 0x02;
1194 T0 |= (s->XMM_B(2) >> 5) & 0x04;
1195 T0 |= (s->XMM_B(3) >> 4) & 0x08;
1196 T0 |= (s->XMM_B(4) >> 3) & 0x10;
1197 T0 |= (s->XMM_B(5) >> 2) & 0x20;
1198 T0 |= (s->XMM_B(6) >> 1) & 0x40;
1199 T0 |= (s->XMM_B(7)) & 0x80;
1200 #if SHIFT == 1
1201 T0 |= (s->XMM_B(8) << 1) & 0x0100;
1202 T0 |= (s->XMM_B(9) << 2) & 0x0200;
1203 T0 |= (s->XMM_B(10) << 3) & 0x0400;
1204 T0 |= (s->XMM_B(11) << 4) & 0x0800;
1205 T0 |= (s->XMM_B(12) << 5) & 0x1000;
1206 T0 |= (s->XMM_B(13) << 6) & 0x2000;
1207 T0 |= (s->XMM_B(14) << 7) & 0x4000;
1208 T0 |= (s->XMM_B(15) << 8) & 0x8000;
1209 #endif
1210 }
1211
1212 void OPPROTO glue(op_pinsrw, SUFFIX) (void)
1213 {
1214 Reg *d = (Reg *)((char *)env + PARAM1);
1215 int pos = PARAM2;
1216
1217 d->W(pos) = T0;
1218 }
1219
1220 void OPPROTO glue(op_pextrw, SUFFIX) (void)
1221 {
1222 Reg *s = (Reg *)((char *)env + PARAM1);
1223 int pos = PARAM2;
1224
1225 T0 = s->W(pos);
1226 }
1227
1228 void OPPROTO glue(op_packsswb, SUFFIX) (void)
1229 {
1230 Reg r, *d, *s;
1231 d = (Reg *)((char *)env + PARAM1);
1232 s = (Reg *)((char *)env + PARAM2);
1233
1234 r.B(0) = satsb((int16_t)d->W(0));
1235 r.B(1) = satsb((int16_t)d->W(1));
1236 r.B(2) = satsb((int16_t)d->W(2));
1237 r.B(3) = satsb((int16_t)d->W(3));
1238 #if SHIFT == 1
1239 r.B(4) = satsb((int16_t)d->W(4));
1240 r.B(5) = satsb((int16_t)d->W(5));
1241 r.B(6) = satsb((int16_t)d->W(6));
1242 r.B(7) = satsb((int16_t)d->W(7));
1243 #endif
1244 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1245 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1246 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1247 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1248 #if SHIFT == 1
1249 r.B(12) = satsb((int16_t)s->W(4));
1250 r.B(13) = satsb((int16_t)s->W(5));
1251 r.B(14) = satsb((int16_t)s->W(6));
1252 r.B(15) = satsb((int16_t)s->W(7));
1253 #endif
1254 *d = r;
1255 }
1256
1257 void OPPROTO glue(op_packuswb, SUFFIX) (void)
1258 {
1259 Reg r, *d, *s;
1260 d = (Reg *)((char *)env + PARAM1);
1261 s = (Reg *)((char *)env + PARAM2);
1262
1263 r.B(0) = satub((int16_t)d->W(0));
1264 r.B(1) = satub((int16_t)d->W(1));
1265 r.B(2) = satub((int16_t)d->W(2));
1266 r.B(3) = satub((int16_t)d->W(3));
1267 #if SHIFT == 1
1268 r.B(4) = satub((int16_t)d->W(4));
1269 r.B(5) = satub((int16_t)d->W(5));
1270 r.B(6) = satub((int16_t)d->W(6));
1271 r.B(7) = satub((int16_t)d->W(7));
1272 #endif
1273 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1274 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1275 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1276 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1277 #if SHIFT == 1
1278 r.B(12) = satub((int16_t)s->W(4));
1279 r.B(13) = satub((int16_t)s->W(5));
1280 r.B(14) = satub((int16_t)s->W(6));
1281 r.B(15) = satub((int16_t)s->W(7));
1282 #endif
1283 *d = r;
1284 }
1285
1286 void OPPROTO glue(op_packssdw, SUFFIX) (void)
1287 {
1288 Reg r, *d, *s;
1289 d = (Reg *)((char *)env + PARAM1);
1290 s = (Reg *)((char *)env + PARAM2);
1291
1292 r.W(0) = satsw(d->L(0));
1293 r.W(1) = satsw(d->L(1));
1294 #if SHIFT == 1
1295 r.W(2) = satsw(d->L(2));
1296 r.W(3) = satsw(d->L(3));
1297 #endif
1298 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1299 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1300 #if SHIFT == 1
1301 r.W(6) = satsw(s->L(2));
1302 r.W(7) = satsw(s->L(3));
1303 #endif
1304 *d = r;
1305 }
1306
1307 #define UNPCK_OP(base_name, base) \
1308 \
1309 void OPPROTO glue(op_punpck ## base_name ## bw, SUFFIX) (void) \
1310 { \
1311 Reg r, *d, *s; \
1312 d = (Reg *)((char *)env + PARAM1); \
1313 s = (Reg *)((char *)env + PARAM2); \
1314 \
1315 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1316 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1317 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1318 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1319 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1320 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1321 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1322 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1323 XMM_ONLY( \
1324 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1325 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1326 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1327 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1328 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1329 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1330 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1331 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1332 ) \
1333 *d = r; \
1334 } \
1335 \
1336 void OPPROTO glue(op_punpck ## base_name ## wd, SUFFIX) (void) \
1337 { \
1338 Reg r, *d, *s; \
1339 d = (Reg *)((char *)env + PARAM1); \
1340 s = (Reg *)((char *)env + PARAM2); \
1341 \
1342 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1343 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1344 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1345 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1346 XMM_ONLY( \
1347 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1348 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1349 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1350 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1351 ) \
1352 *d = r; \
1353 } \
1354 \
1355 void OPPROTO glue(op_punpck ## base_name ## dq, SUFFIX) (void) \
1356 { \
1357 Reg r, *d, *s; \
1358 d = (Reg *)((char *)env + PARAM1); \
1359 s = (Reg *)((char *)env + PARAM2); \
1360 \
1361 r.L(0) = d->L((base << SHIFT) + 0); \
1362 r.L(1) = s->L((base << SHIFT) + 0); \
1363 XMM_ONLY( \
1364 r.L(2) = d->L((base << SHIFT) + 1); \
1365 r.L(3) = s->L((base << SHIFT) + 1); \
1366 ) \
1367 *d = r; \
1368 } \
1369 \
1370 XMM_ONLY( \
1371 void OPPROTO glue(op_punpck ## base_name ## qdq, SUFFIX) (void) \
1372 { \
1373 Reg r, *d, *s; \
1374 d = (Reg *)((char *)env + PARAM1); \
1375 s = (Reg *)((char *)env + PARAM2); \
1376 \
1377 r.Q(0) = d->Q(base); \
1378 r.Q(1) = s->Q(base); \
1379 *d = r; \
1380 } \
1381 )
1382
1383 UNPCK_OP(l, 0)
1384 UNPCK_OP(h, 1)
1385
1386 #undef SHIFT
1387 #undef XMM_ONLY
1388 #undef Reg
1389 #undef B
1390 #undef W
1391 #undef L
1392 #undef Q
1393 #undef SUFFIX