]> git.proxmox.com Git - qemu.git/blob - target-i386/ops_sse.h
target-i386: fix dpps and dppd SSE2 instructions
[qemu.git] / target-i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20 #if SHIFT == 0
21 #define Reg MMXReg
22 #define XMM_ONLY(...)
23 #define B(n) MMX_B(n)
24 #define W(n) MMX_W(n)
25 #define L(n) MMX_L(n)
26 #define Q(n) q
27 #define SUFFIX _mmx
28 #else
29 #define Reg XMMReg
30 #define XMM_ONLY(...) __VA_ARGS__
31 #define B(n) XMM_B(n)
32 #define W(n) XMM_W(n)
33 #define L(n) XMM_L(n)
34 #define Q(n) XMM_Q(n)
35 #define SUFFIX _xmm
36 #endif
37
38 void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39 {
40 int shift;
41
42 if (s->Q(0) > 15) {
43 d->Q(0) = 0;
44 #if SHIFT == 1
45 d->Q(1) = 0;
46 #endif
47 } else {
48 shift = s->B(0);
49 d->W(0) >>= shift;
50 d->W(1) >>= shift;
51 d->W(2) >>= shift;
52 d->W(3) >>= shift;
53 #if SHIFT == 1
54 d->W(4) >>= shift;
55 d->W(5) >>= shift;
56 d->W(6) >>= shift;
57 d->W(7) >>= shift;
58 #endif
59 }
60 }
61
62 void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63 {
64 int shift;
65
66 if (s->Q(0) > 15) {
67 shift = 15;
68 } else {
69 shift = s->B(0);
70 }
71 d->W(0) = (int16_t)d->W(0) >> shift;
72 d->W(1) = (int16_t)d->W(1) >> shift;
73 d->W(2) = (int16_t)d->W(2) >> shift;
74 d->W(3) = (int16_t)d->W(3) >> shift;
75 #if SHIFT == 1
76 d->W(4) = (int16_t)d->W(4) >> shift;
77 d->W(5) = (int16_t)d->W(5) >> shift;
78 d->W(6) = (int16_t)d->W(6) >> shift;
79 d->W(7) = (int16_t)d->W(7) >> shift;
80 #endif
81 }
82
83 void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84 {
85 int shift;
86
87 if (s->Q(0) > 15) {
88 d->Q(0) = 0;
89 #if SHIFT == 1
90 d->Q(1) = 0;
91 #endif
92 } else {
93 shift = s->B(0);
94 d->W(0) <<= shift;
95 d->W(1) <<= shift;
96 d->W(2) <<= shift;
97 d->W(3) <<= shift;
98 #if SHIFT == 1
99 d->W(4) <<= shift;
100 d->W(5) <<= shift;
101 d->W(6) <<= shift;
102 d->W(7) <<= shift;
103 #endif
104 }
105 }
106
107 void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108 {
109 int shift;
110
111 if (s->Q(0) > 31) {
112 d->Q(0) = 0;
113 #if SHIFT == 1
114 d->Q(1) = 0;
115 #endif
116 } else {
117 shift = s->B(0);
118 d->L(0) >>= shift;
119 d->L(1) >>= shift;
120 #if SHIFT == 1
121 d->L(2) >>= shift;
122 d->L(3) >>= shift;
123 #endif
124 }
125 }
126
127 void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128 {
129 int shift;
130
131 if (s->Q(0) > 31) {
132 shift = 31;
133 } else {
134 shift = s->B(0);
135 }
136 d->L(0) = (int32_t)d->L(0) >> shift;
137 d->L(1) = (int32_t)d->L(1) >> shift;
138 #if SHIFT == 1
139 d->L(2) = (int32_t)d->L(2) >> shift;
140 d->L(3) = (int32_t)d->L(3) >> shift;
141 #endif
142 }
143
144 void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145 {
146 int shift;
147
148 if (s->Q(0) > 31) {
149 d->Q(0) = 0;
150 #if SHIFT == 1
151 d->Q(1) = 0;
152 #endif
153 } else {
154 shift = s->B(0);
155 d->L(0) <<= shift;
156 d->L(1) <<= shift;
157 #if SHIFT == 1
158 d->L(2) <<= shift;
159 d->L(3) <<= shift;
160 #endif
161 }
162 }
163
164 void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165 {
166 int shift;
167
168 if (s->Q(0) > 63) {
169 d->Q(0) = 0;
170 #if SHIFT == 1
171 d->Q(1) = 0;
172 #endif
173 } else {
174 shift = s->B(0);
175 d->Q(0) >>= shift;
176 #if SHIFT == 1
177 d->Q(1) >>= shift;
178 #endif
179 }
180 }
181
182 void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183 {
184 int shift;
185
186 if (s->Q(0) > 63) {
187 d->Q(0) = 0;
188 #if SHIFT == 1
189 d->Q(1) = 0;
190 #endif
191 } else {
192 shift = s->B(0);
193 d->Q(0) <<= shift;
194 #if SHIFT == 1
195 d->Q(1) <<= shift;
196 #endif
197 }
198 }
199
200 #if SHIFT == 1
201 void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202 {
203 int shift, i;
204
205 shift = s->L(0);
206 if (shift > 16)
207 shift = 16;
208 for(i = 0; i < 16 - shift; i++)
209 d->B(i) = d->B(i + shift);
210 for(i = 16 - shift; i < 16; i++)
211 d->B(i) = 0;
212 }
213
214 void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
215 {
216 int shift, i;
217
218 shift = s->L(0);
219 if (shift > 16)
220 shift = 16;
221 for(i = 15; i >= shift; i--)
222 d->B(i) = d->B(i - shift);
223 for(i = 0; i < shift; i++)
224 d->B(i) = 0;
225 }
226 #endif
227
228 #define SSE_HELPER_B(name, F)\
229 void glue(name, SUFFIX) (Reg *d, Reg *s)\
230 {\
231 d->B(0) = F(d->B(0), s->B(0));\
232 d->B(1) = F(d->B(1), s->B(1));\
233 d->B(2) = F(d->B(2), s->B(2));\
234 d->B(3) = F(d->B(3), s->B(3));\
235 d->B(4) = F(d->B(4), s->B(4));\
236 d->B(5) = F(d->B(5), s->B(5));\
237 d->B(6) = F(d->B(6), s->B(6));\
238 d->B(7) = F(d->B(7), s->B(7));\
239 XMM_ONLY(\
240 d->B(8) = F(d->B(8), s->B(8));\
241 d->B(9) = F(d->B(9), s->B(9));\
242 d->B(10) = F(d->B(10), s->B(10));\
243 d->B(11) = F(d->B(11), s->B(11));\
244 d->B(12) = F(d->B(12), s->B(12));\
245 d->B(13) = F(d->B(13), s->B(13));\
246 d->B(14) = F(d->B(14), s->B(14));\
247 d->B(15) = F(d->B(15), s->B(15));\
248 )\
249 }
250
251 #define SSE_HELPER_W(name, F)\
252 void glue(name, SUFFIX) (Reg *d, Reg *s)\
253 {\
254 d->W(0) = F(d->W(0), s->W(0));\
255 d->W(1) = F(d->W(1), s->W(1));\
256 d->W(2) = F(d->W(2), s->W(2));\
257 d->W(3) = F(d->W(3), s->W(3));\
258 XMM_ONLY(\
259 d->W(4) = F(d->W(4), s->W(4));\
260 d->W(5) = F(d->W(5), s->W(5));\
261 d->W(6) = F(d->W(6), s->W(6));\
262 d->W(7) = F(d->W(7), s->W(7));\
263 )\
264 }
265
266 #define SSE_HELPER_L(name, F)\
267 void glue(name, SUFFIX) (Reg *d, Reg *s)\
268 {\
269 d->L(0) = F(d->L(0), s->L(0));\
270 d->L(1) = F(d->L(1), s->L(1));\
271 XMM_ONLY(\
272 d->L(2) = F(d->L(2), s->L(2));\
273 d->L(3) = F(d->L(3), s->L(3));\
274 )\
275 }
276
277 #define SSE_HELPER_Q(name, F)\
278 void glue(name, SUFFIX) (Reg *d, Reg *s)\
279 {\
280 d->Q(0) = F(d->Q(0), s->Q(0));\
281 XMM_ONLY(\
282 d->Q(1) = F(d->Q(1), s->Q(1));\
283 )\
284 }
285
286 #if SHIFT == 0
287 static inline int satub(int x)
288 {
289 if (x < 0)
290 return 0;
291 else if (x > 255)
292 return 255;
293 else
294 return x;
295 }
296
297 static inline int satuw(int x)
298 {
299 if (x < 0)
300 return 0;
301 else if (x > 65535)
302 return 65535;
303 else
304 return x;
305 }
306
307 static inline int satsb(int x)
308 {
309 if (x < -128)
310 return -128;
311 else if (x > 127)
312 return 127;
313 else
314 return x;
315 }
316
317 static inline int satsw(int x)
318 {
319 if (x < -32768)
320 return -32768;
321 else if (x > 32767)
322 return 32767;
323 else
324 return x;
325 }
326
327 #define FADD(a, b) ((a) + (b))
328 #define FADDUB(a, b) satub((a) + (b))
329 #define FADDUW(a, b) satuw((a) + (b))
330 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
331 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
332
333 #define FSUB(a, b) ((a) - (b))
334 #define FSUBUB(a, b) satub((a) - (b))
335 #define FSUBUW(a, b) satuw((a) - (b))
336 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
337 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
338 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
339 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
340 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
341 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
342
343 #define FAND(a, b) (a) & (b)
344 #define FANDN(a, b) ((~(a)) & (b))
345 #define FOR(a, b) (a) | (b)
346 #define FXOR(a, b) (a) ^ (b)
347
348 #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
349 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
350 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
351 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0
352
353 #define FMULLW(a, b) (a) * (b)
354 #define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
355 #define FMULHUW(a, b) (a) * (b) >> 16
356 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
357
358 #define FAVG(a, b) ((a) + (b) + 1) >> 1
359 #endif
360
361 SSE_HELPER_B(helper_paddb, FADD)
362 SSE_HELPER_W(helper_paddw, FADD)
363 SSE_HELPER_L(helper_paddl, FADD)
364 SSE_HELPER_Q(helper_paddq, FADD)
365
366 SSE_HELPER_B(helper_psubb, FSUB)
367 SSE_HELPER_W(helper_psubw, FSUB)
368 SSE_HELPER_L(helper_psubl, FSUB)
369 SSE_HELPER_Q(helper_psubq, FSUB)
370
371 SSE_HELPER_B(helper_paddusb, FADDUB)
372 SSE_HELPER_B(helper_paddsb, FADDSB)
373 SSE_HELPER_B(helper_psubusb, FSUBUB)
374 SSE_HELPER_B(helper_psubsb, FSUBSB)
375
376 SSE_HELPER_W(helper_paddusw, FADDUW)
377 SSE_HELPER_W(helper_paddsw, FADDSW)
378 SSE_HELPER_W(helper_psubusw, FSUBUW)
379 SSE_HELPER_W(helper_psubsw, FSUBSW)
380
381 SSE_HELPER_B(helper_pminub, FMINUB)
382 SSE_HELPER_B(helper_pmaxub, FMAXUB)
383
384 SSE_HELPER_W(helper_pminsw, FMINSW)
385 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
386
387 SSE_HELPER_Q(helper_pand, FAND)
388 SSE_HELPER_Q(helper_pandn, FANDN)
389 SSE_HELPER_Q(helper_por, FOR)
390 SSE_HELPER_Q(helper_pxor, FXOR)
391
392 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
393 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
394 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
395
396 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
397 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
398 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
399
400 SSE_HELPER_W(helper_pmullw, FMULLW)
401 #if SHIFT == 0
402 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
403 #endif
404 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
405 SSE_HELPER_W(helper_pmulhw, FMULHW)
406
407 SSE_HELPER_B(helper_pavgb, FAVG)
408 SSE_HELPER_W(helper_pavgw, FAVG)
409
410 void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
411 {
412 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
413 #if SHIFT == 1
414 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
415 #endif
416 }
417
418 void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
419 {
420 int i;
421
422 for(i = 0; i < (2 << SHIFT); i++) {
423 d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
424 (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
425 }
426 }
427
428 #if SHIFT == 0
429 static inline int abs1(int a)
430 {
431 if (a < 0)
432 return -a;
433 else
434 return a;
435 }
436 #endif
437 void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
438 {
439 unsigned int val;
440
441 val = 0;
442 val += abs1(d->B(0) - s->B(0));
443 val += abs1(d->B(1) - s->B(1));
444 val += abs1(d->B(2) - s->B(2));
445 val += abs1(d->B(3) - s->B(3));
446 val += abs1(d->B(4) - s->B(4));
447 val += abs1(d->B(5) - s->B(5));
448 val += abs1(d->B(6) - s->B(6));
449 val += abs1(d->B(7) - s->B(7));
450 d->Q(0) = val;
451 #if SHIFT == 1
452 val = 0;
453 val += abs1(d->B(8) - s->B(8));
454 val += abs1(d->B(9) - s->B(9));
455 val += abs1(d->B(10) - s->B(10));
456 val += abs1(d->B(11) - s->B(11));
457 val += abs1(d->B(12) - s->B(12));
458 val += abs1(d->B(13) - s->B(13));
459 val += abs1(d->B(14) - s->B(14));
460 val += abs1(d->B(15) - s->B(15));
461 d->Q(1) = val;
462 #endif
463 }
464
465 void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
466 {
467 int i;
468 for(i = 0; i < (8 << SHIFT); i++) {
469 if (s->B(i) & 0x80)
470 stb(a0 + i, d->B(i));
471 }
472 }
473
474 void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
475 {
476 d->L(0) = val;
477 d->L(1) = 0;
478 #if SHIFT == 1
479 d->Q(1) = 0;
480 #endif
481 }
482
483 #ifdef TARGET_X86_64
484 void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
485 {
486 d->Q(0) = val;
487 #if SHIFT == 1
488 d->Q(1) = 0;
489 #endif
490 }
491 #endif
492
493 #if SHIFT == 0
494 void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
495 {
496 Reg r;
497 r.W(0) = s->W(order & 3);
498 r.W(1) = s->W((order >> 2) & 3);
499 r.W(2) = s->W((order >> 4) & 3);
500 r.W(3) = s->W((order >> 6) & 3);
501 *d = r;
502 }
503 #else
504 void helper_shufps(Reg *d, Reg *s, int order)
505 {
506 Reg r;
507 r.L(0) = d->L(order & 3);
508 r.L(1) = d->L((order >> 2) & 3);
509 r.L(2) = s->L((order >> 4) & 3);
510 r.L(3) = s->L((order >> 6) & 3);
511 *d = r;
512 }
513
514 void helper_shufpd(Reg *d, Reg *s, int order)
515 {
516 Reg r;
517 r.Q(0) = d->Q(order & 1);
518 r.Q(1) = s->Q((order >> 1) & 1);
519 *d = r;
520 }
521
522 void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
523 {
524 Reg r;
525 r.L(0) = s->L(order & 3);
526 r.L(1) = s->L((order >> 2) & 3);
527 r.L(2) = s->L((order >> 4) & 3);
528 r.L(3) = s->L((order >> 6) & 3);
529 *d = r;
530 }
531
532 void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
533 {
534 Reg r;
535 r.W(0) = s->W(order & 3);
536 r.W(1) = s->W((order >> 2) & 3);
537 r.W(2) = s->W((order >> 4) & 3);
538 r.W(3) = s->W((order >> 6) & 3);
539 r.Q(1) = s->Q(1);
540 *d = r;
541 }
542
543 void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
544 {
545 Reg r;
546 r.Q(0) = s->Q(0);
547 r.W(4) = s->W(4 + (order & 3));
548 r.W(5) = s->W(4 + ((order >> 2) & 3));
549 r.W(6) = s->W(4 + ((order >> 4) & 3));
550 r.W(7) = s->W(4 + ((order >> 6) & 3));
551 *d = r;
552 }
553 #endif
554
555 #if SHIFT == 1
556 /* FPU ops */
557 /* XXX: not accurate */
558
559 #define SSE_HELPER_S(name, F)\
560 void helper_ ## name ## ps (Reg *d, Reg *s)\
561 {\
562 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
563 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
564 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
565 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
566 }\
567 \
568 void helper_ ## name ## ss (Reg *d, Reg *s)\
569 {\
570 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
571 }\
572 void helper_ ## name ## pd (Reg *d, Reg *s)\
573 {\
574 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
575 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
576 }\
577 \
578 void helper_ ## name ## sd (Reg *d, Reg *s)\
579 {\
580 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
581 }
582
583 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
584 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
585 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
586 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
587 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
588
589 /* Note that the choice of comparison op here is important to get the
590 * special cases right: for min and max Intel specifies that (-0,0),
591 * (NaN, anything) and (anything, NaN) return the second argument.
592 */
593 #define FPU_MIN(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b)
594 #define FPU_MAX(size, a, b) float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b)
595
596 SSE_HELPER_S(add, FPU_ADD)
597 SSE_HELPER_S(sub, FPU_SUB)
598 SSE_HELPER_S(mul, FPU_MUL)
599 SSE_HELPER_S(div, FPU_DIV)
600 SSE_HELPER_S(min, FPU_MIN)
601 SSE_HELPER_S(max, FPU_MAX)
602 SSE_HELPER_S(sqrt, FPU_SQRT)
603
604
605 /* float to float conversions */
606 void helper_cvtps2pd(Reg *d, Reg *s)
607 {
608 float32 s0, s1;
609 s0 = s->XMM_S(0);
610 s1 = s->XMM_S(1);
611 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
612 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
613 }
614
615 void helper_cvtpd2ps(Reg *d, Reg *s)
616 {
617 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
618 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
619 d->Q(1) = 0;
620 }
621
622 void helper_cvtss2sd(Reg *d, Reg *s)
623 {
624 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
625 }
626
627 void helper_cvtsd2ss(Reg *d, Reg *s)
628 {
629 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
630 }
631
632 /* integer to float */
633 void helper_cvtdq2ps(Reg *d, Reg *s)
634 {
635 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
636 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
637 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
638 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
639 }
640
641 void helper_cvtdq2pd(Reg *d, Reg *s)
642 {
643 int32_t l0, l1;
644 l0 = (int32_t)s->XMM_L(0);
645 l1 = (int32_t)s->XMM_L(1);
646 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
647 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
648 }
649
650 void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
651 {
652 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
653 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
654 }
655
656 void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
657 {
658 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
659 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
660 }
661
662 void helper_cvtsi2ss(XMMReg *d, uint32_t val)
663 {
664 d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
665 }
666
667 void helper_cvtsi2sd(XMMReg *d, uint32_t val)
668 {
669 d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
670 }
671
672 #ifdef TARGET_X86_64
673 void helper_cvtsq2ss(XMMReg *d, uint64_t val)
674 {
675 d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
676 }
677
678 void helper_cvtsq2sd(XMMReg *d, uint64_t val)
679 {
680 d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
681 }
682 #endif
683
684 /* float to integer */
685 void helper_cvtps2dq(XMMReg *d, XMMReg *s)
686 {
687 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
688 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
689 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
690 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
691 }
692
693 void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
694 {
695 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
696 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
697 d->XMM_Q(1) = 0;
698 }
699
700 void helper_cvtps2pi(MMXReg *d, XMMReg *s)
701 {
702 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
703 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
704 }
705
706 void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
707 {
708 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
709 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
710 }
711
712 int32_t helper_cvtss2si(XMMReg *s)
713 {
714 return float32_to_int32(s->XMM_S(0), &env->sse_status);
715 }
716
717 int32_t helper_cvtsd2si(XMMReg *s)
718 {
719 return float64_to_int32(s->XMM_D(0), &env->sse_status);
720 }
721
722 #ifdef TARGET_X86_64
723 int64_t helper_cvtss2sq(XMMReg *s)
724 {
725 return float32_to_int64(s->XMM_S(0), &env->sse_status);
726 }
727
728 int64_t helper_cvtsd2sq(XMMReg *s)
729 {
730 return float64_to_int64(s->XMM_D(0), &env->sse_status);
731 }
732 #endif
733
734 /* float to integer truncated */
735 void helper_cvttps2dq(XMMReg *d, XMMReg *s)
736 {
737 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
738 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
739 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
740 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
741 }
742
743 void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
744 {
745 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
746 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
747 d->XMM_Q(1) = 0;
748 }
749
750 void helper_cvttps2pi(MMXReg *d, XMMReg *s)
751 {
752 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
753 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
754 }
755
756 void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
757 {
758 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
759 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
760 }
761
762 int32_t helper_cvttss2si(XMMReg *s)
763 {
764 return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
765 }
766
767 int32_t helper_cvttsd2si(XMMReg *s)
768 {
769 return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
770 }
771
772 #ifdef TARGET_X86_64
773 int64_t helper_cvttss2sq(XMMReg *s)
774 {
775 return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
776 }
777
778 int64_t helper_cvttsd2sq(XMMReg *s)
779 {
780 return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
781 }
782 #endif
783
784 void helper_rsqrtps(XMMReg *d, XMMReg *s)
785 {
786 d->XMM_S(0) = float32_div(float32_one,
787 float32_sqrt(s->XMM_S(0), &env->sse_status),
788 &env->sse_status);
789 d->XMM_S(1) = float32_div(float32_one,
790 float32_sqrt(s->XMM_S(1), &env->sse_status),
791 &env->sse_status);
792 d->XMM_S(2) = float32_div(float32_one,
793 float32_sqrt(s->XMM_S(2), &env->sse_status),
794 &env->sse_status);
795 d->XMM_S(3) = float32_div(float32_one,
796 float32_sqrt(s->XMM_S(3), &env->sse_status),
797 &env->sse_status);
798 }
799
800 void helper_rsqrtss(XMMReg *d, XMMReg *s)
801 {
802 d->XMM_S(0) = float32_div(float32_one,
803 float32_sqrt(s->XMM_S(0), &env->sse_status),
804 &env->sse_status);
805 }
806
807 void helper_rcpps(XMMReg *d, XMMReg *s)
808 {
809 d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
810 d->XMM_S(1) = float32_div(float32_one, s->XMM_S(1), &env->sse_status);
811 d->XMM_S(2) = float32_div(float32_one, s->XMM_S(2), &env->sse_status);
812 d->XMM_S(3) = float32_div(float32_one, s->XMM_S(3), &env->sse_status);
813 }
814
815 void helper_rcpss(XMMReg *d, XMMReg *s)
816 {
817 d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
818 }
819
820 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
821 {
822 uint64_t mask;
823
824 if (len == 0) {
825 mask = ~0LL;
826 } else {
827 mask = (1ULL << len) - 1;
828 }
829 return (src >> shift) & mask;
830 }
831
832 void helper_extrq_r(XMMReg *d, XMMReg *s)
833 {
834 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
835 }
836
837 void helper_extrq_i(XMMReg *d, int index, int length)
838 {
839 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
840 }
841
842 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
843 {
844 uint64_t mask;
845
846 if (len == 0) {
847 mask = ~0ULL;
848 } else {
849 mask = (1ULL << len) - 1;
850 }
851 return (src & ~(mask << shift)) | ((src & mask) << shift);
852 }
853
854 void helper_insertq_r(XMMReg *d, XMMReg *s)
855 {
856 d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
857 }
858
859 void helper_insertq_i(XMMReg *d, int index, int length)
860 {
861 d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
862 }
863
864 void helper_haddps(XMMReg *d, XMMReg *s)
865 {
866 XMMReg r;
867 r.XMM_S(0) = float32_add(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
868 r.XMM_S(1) = float32_add(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
869 r.XMM_S(2) = float32_add(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
870 r.XMM_S(3) = float32_add(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
871 *d = r;
872 }
873
874 void helper_haddpd(XMMReg *d, XMMReg *s)
875 {
876 XMMReg r;
877 r.XMM_D(0) = float64_add(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
878 r.XMM_D(1) = float64_add(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
879 *d = r;
880 }
881
882 void helper_hsubps(XMMReg *d, XMMReg *s)
883 {
884 XMMReg r;
885 r.XMM_S(0) = float32_sub(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
886 r.XMM_S(1) = float32_sub(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
887 r.XMM_S(2) = float32_sub(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
888 r.XMM_S(3) = float32_sub(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
889 *d = r;
890 }
891
892 void helper_hsubpd(XMMReg *d, XMMReg *s)
893 {
894 XMMReg r;
895 r.XMM_D(0) = float64_sub(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
896 r.XMM_D(1) = float64_sub(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
897 *d = r;
898 }
899
900 void helper_addsubps(XMMReg *d, XMMReg *s)
901 {
902 d->XMM_S(0) = float32_sub(d->XMM_S(0), s->XMM_S(0), &env->sse_status);
903 d->XMM_S(1) = float32_add(d->XMM_S(1), s->XMM_S(1), &env->sse_status);
904 d->XMM_S(2) = float32_sub(d->XMM_S(2), s->XMM_S(2), &env->sse_status);
905 d->XMM_S(3) = float32_add(d->XMM_S(3), s->XMM_S(3), &env->sse_status);
906 }
907
908 void helper_addsubpd(XMMReg *d, XMMReg *s)
909 {
910 d->XMM_D(0) = float64_sub(d->XMM_D(0), s->XMM_D(0), &env->sse_status);
911 d->XMM_D(1) = float64_add(d->XMM_D(1), s->XMM_D(1), &env->sse_status);
912 }
913
914 /* XXX: unordered */
915 #define SSE_HELPER_CMP(name, F)\
916 void helper_ ## name ## ps (Reg *d, Reg *s)\
917 {\
918 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
919 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
920 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
921 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
922 }\
923 \
924 void helper_ ## name ## ss (Reg *d, Reg *s)\
925 {\
926 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
927 }\
928 void helper_ ## name ## pd (Reg *d, Reg *s)\
929 {\
930 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
931 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
932 }\
933 \
934 void helper_ ## name ## sd (Reg *d, Reg *s)\
935 {\
936 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
937 }
938
939 #define FPU_CMPEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0
940 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
941 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
942 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? - 1 : 0
943 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1
944 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
945 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
946 #define FPU_CMPORD(size, a, b) float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1
947
948 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
949 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
950 SSE_HELPER_CMP(cmple, FPU_CMPLE)
951 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
952 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
953 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
954 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
955 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
956
957 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
958
959 void helper_ucomiss(Reg *d, Reg *s)
960 {
961 int ret;
962 float32 s0, s1;
963
964 s0 = d->XMM_S(0);
965 s1 = s->XMM_S(0);
966 ret = float32_compare_quiet(s0, s1, &env->sse_status);
967 CC_SRC = comis_eflags[ret + 1];
968 }
969
970 void helper_comiss(Reg *d, Reg *s)
971 {
972 int ret;
973 float32 s0, s1;
974
975 s0 = d->XMM_S(0);
976 s1 = s->XMM_S(0);
977 ret = float32_compare(s0, s1, &env->sse_status);
978 CC_SRC = comis_eflags[ret + 1];
979 }
980
981 void helper_ucomisd(Reg *d, Reg *s)
982 {
983 int ret;
984 float64 d0, d1;
985
986 d0 = d->XMM_D(0);
987 d1 = s->XMM_D(0);
988 ret = float64_compare_quiet(d0, d1, &env->sse_status);
989 CC_SRC = comis_eflags[ret + 1];
990 }
991
992 void helper_comisd(Reg *d, Reg *s)
993 {
994 int ret;
995 float64 d0, d1;
996
997 d0 = d->XMM_D(0);
998 d1 = s->XMM_D(0);
999 ret = float64_compare(d0, d1, &env->sse_status);
1000 CC_SRC = comis_eflags[ret + 1];
1001 }
1002
1003 uint32_t helper_movmskps(Reg *s)
1004 {
1005 int b0, b1, b2, b3;
1006 b0 = s->XMM_L(0) >> 31;
1007 b1 = s->XMM_L(1) >> 31;
1008 b2 = s->XMM_L(2) >> 31;
1009 b3 = s->XMM_L(3) >> 31;
1010 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1011 }
1012
1013 uint32_t helper_movmskpd(Reg *s)
1014 {
1015 int b0, b1;
1016 b0 = s->XMM_L(1) >> 31;
1017 b1 = s->XMM_L(3) >> 31;
1018 return b0 | (b1 << 1);
1019 }
1020
1021 #endif
1022
1023 uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1024 {
1025 uint32_t val;
1026 val = 0;
1027 val |= (s->B(0) >> 7);
1028 val |= (s->B(1) >> 6) & 0x02;
1029 val |= (s->B(2) >> 5) & 0x04;
1030 val |= (s->B(3) >> 4) & 0x08;
1031 val |= (s->B(4) >> 3) & 0x10;
1032 val |= (s->B(5) >> 2) & 0x20;
1033 val |= (s->B(6) >> 1) & 0x40;
1034 val |= (s->B(7)) & 0x80;
1035 #if SHIFT == 1
1036 val |= (s->B(8) << 1) & 0x0100;
1037 val |= (s->B(9) << 2) & 0x0200;
1038 val |= (s->B(10) << 3) & 0x0400;
1039 val |= (s->B(11) << 4) & 0x0800;
1040 val |= (s->B(12) << 5) & 0x1000;
1041 val |= (s->B(13) << 6) & 0x2000;
1042 val |= (s->B(14) << 7) & 0x4000;
1043 val |= (s->B(15) << 8) & 0x8000;
1044 #endif
1045 return val;
1046 }
1047
1048 void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1049 {
1050 Reg r;
1051
1052 r.B(0) = satsb((int16_t)d->W(0));
1053 r.B(1) = satsb((int16_t)d->W(1));
1054 r.B(2) = satsb((int16_t)d->W(2));
1055 r.B(3) = satsb((int16_t)d->W(3));
1056 #if SHIFT == 1
1057 r.B(4) = satsb((int16_t)d->W(4));
1058 r.B(5) = satsb((int16_t)d->W(5));
1059 r.B(6) = satsb((int16_t)d->W(6));
1060 r.B(7) = satsb((int16_t)d->W(7));
1061 #endif
1062 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1063 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1064 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1065 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1066 #if SHIFT == 1
1067 r.B(12) = satsb((int16_t)s->W(4));
1068 r.B(13) = satsb((int16_t)s->W(5));
1069 r.B(14) = satsb((int16_t)s->W(6));
1070 r.B(15) = satsb((int16_t)s->W(7));
1071 #endif
1072 *d = r;
1073 }
1074
1075 void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1076 {
1077 Reg r;
1078
1079 r.B(0) = satub((int16_t)d->W(0));
1080 r.B(1) = satub((int16_t)d->W(1));
1081 r.B(2) = satub((int16_t)d->W(2));
1082 r.B(3) = satub((int16_t)d->W(3));
1083 #if SHIFT == 1
1084 r.B(4) = satub((int16_t)d->W(4));
1085 r.B(5) = satub((int16_t)d->W(5));
1086 r.B(6) = satub((int16_t)d->W(6));
1087 r.B(7) = satub((int16_t)d->W(7));
1088 #endif
1089 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1090 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1091 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1092 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1093 #if SHIFT == 1
1094 r.B(12) = satub((int16_t)s->W(4));
1095 r.B(13) = satub((int16_t)s->W(5));
1096 r.B(14) = satub((int16_t)s->W(6));
1097 r.B(15) = satub((int16_t)s->W(7));
1098 #endif
1099 *d = r;
1100 }
1101
1102 void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1103 {
1104 Reg r;
1105
1106 r.W(0) = satsw(d->L(0));
1107 r.W(1) = satsw(d->L(1));
1108 #if SHIFT == 1
1109 r.W(2) = satsw(d->L(2));
1110 r.W(3) = satsw(d->L(3));
1111 #endif
1112 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1113 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1114 #if SHIFT == 1
1115 r.W(6) = satsw(s->L(2));
1116 r.W(7) = satsw(s->L(3));
1117 #endif
1118 *d = r;
1119 }
1120
1121 #define UNPCK_OP(base_name, base) \
1122 \
1123 void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \
1124 { \
1125 Reg r; \
1126 \
1127 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1128 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1129 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1130 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1131 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1132 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1133 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1134 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1135 XMM_ONLY( \
1136 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1137 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1138 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1139 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1140 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1141 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1142 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1143 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1144 ) \
1145 *d = r; \
1146 } \
1147 \
1148 void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \
1149 { \
1150 Reg r; \
1151 \
1152 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1153 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1154 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1155 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1156 XMM_ONLY( \
1157 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1158 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1159 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1160 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1161 ) \
1162 *d = r; \
1163 } \
1164 \
1165 void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \
1166 { \
1167 Reg r; \
1168 \
1169 r.L(0) = d->L((base << SHIFT) + 0); \
1170 r.L(1) = s->L((base << SHIFT) + 0); \
1171 XMM_ONLY( \
1172 r.L(2) = d->L((base << SHIFT) + 1); \
1173 r.L(3) = s->L((base << SHIFT) + 1); \
1174 ) \
1175 *d = r; \
1176 } \
1177 \
1178 XMM_ONLY( \
1179 void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \
1180 { \
1181 Reg r; \
1182 \
1183 r.Q(0) = d->Q(base); \
1184 r.Q(1) = s->Q(base); \
1185 *d = r; \
1186 } \
1187 )
1188
1189 UNPCK_OP(l, 0)
1190 UNPCK_OP(h, 1)
1191
1192 /* 3DNow! float ops */
1193 #if SHIFT == 0
1194 void helper_pi2fd(MMXReg *d, MMXReg *s)
1195 {
1196 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1197 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1198 }
1199
1200 void helper_pi2fw(MMXReg *d, MMXReg *s)
1201 {
1202 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1203 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1204 }
1205
1206 void helper_pf2id(MMXReg *d, MMXReg *s)
1207 {
1208 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1209 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1210 }
1211
1212 void helper_pf2iw(MMXReg *d, MMXReg *s)
1213 {
1214 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1215 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1216 }
1217
1218 void helper_pfacc(MMXReg *d, MMXReg *s)
1219 {
1220 MMXReg r;
1221 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1222 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1223 *d = r;
1224 }
1225
1226 void helper_pfadd(MMXReg *d, MMXReg *s)
1227 {
1228 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1229 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1230 }
1231
1232 void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1233 {
1234 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1235 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1236 }
1237
1238 void helper_pfcmpge(MMXReg *d, MMXReg *s)
1239 {
1240 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1241 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1242 }
1243
1244 void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1245 {
1246 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1247 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1248 }
1249
1250 void helper_pfmax(MMXReg *d, MMXReg *s)
1251 {
1252 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1253 d->MMX_S(0) = s->MMX_S(0);
1254 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1255 d->MMX_S(1) = s->MMX_S(1);
1256 }
1257
1258 void helper_pfmin(MMXReg *d, MMXReg *s)
1259 {
1260 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1261 d->MMX_S(0) = s->MMX_S(0);
1262 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1263 d->MMX_S(1) = s->MMX_S(1);
1264 }
1265
1266 void helper_pfmul(MMXReg *d, MMXReg *s)
1267 {
1268 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1269 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1270 }
1271
1272 void helper_pfnacc(MMXReg *d, MMXReg *s)
1273 {
1274 MMXReg r;
1275 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1276 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1277 *d = r;
1278 }
1279
1280 void helper_pfpnacc(MMXReg *d, MMXReg *s)
1281 {
1282 MMXReg r;
1283 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1284 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1285 *d = r;
1286 }
1287
1288 void helper_pfrcp(MMXReg *d, MMXReg *s)
1289 {
1290 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1291 d->MMX_S(1) = d->MMX_S(0);
1292 }
1293
1294 void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1295 {
1296 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1297 d->MMX_S(1) = float32_div(float32_one,
1298 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1299 &env->mmx_status);
1300 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1301 d->MMX_L(0) = d->MMX_L(1);
1302 }
1303
1304 void helper_pfsub(MMXReg *d, MMXReg *s)
1305 {
1306 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1307 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1308 }
1309
1310 void helper_pfsubr(MMXReg *d, MMXReg *s)
1311 {
1312 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1313 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1314 }
1315
1316 void helper_pswapd(MMXReg *d, MMXReg *s)
1317 {
1318 MMXReg r;
1319 r.MMX_L(0) = s->MMX_L(1);
1320 r.MMX_L(1) = s->MMX_L(0);
1321 *d = r;
1322 }
1323 #endif
1324
1325 /* SSSE3 op helpers */
1326 void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1327 {
1328 int i;
1329 Reg r;
1330
1331 for (i = 0; i < (8 << SHIFT); i++)
1332 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1333
1334 *d = r;
1335 }
1336
1337 void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1338 {
1339 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1340 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1341 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1342 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1343 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1344 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1345 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1346 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1347 }
1348
1349 void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1350 {
1351 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1352 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1353 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1354 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1355 }
1356
1357 void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1358 {
1359 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1360 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1361 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1362 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1363 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1364 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1365 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1366 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1367 }
1368
1369 void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1370 {
1371 d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1372 (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1373 d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1374 (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1375 d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1376 (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1377 d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1378 (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1379 #if SHIFT == 1
1380 d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1381 (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1382 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1383 (int8_t)s->B(11) * (uint8_t)d->B(11));
1384 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1385 (int8_t)s->B(13) * (uint8_t)d->B(13));
1386 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1387 (int8_t)s->B(15) * (uint8_t)d->B(15));
1388 #endif
1389 }
1390
1391 void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1392 {
1393 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1394 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1395 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1396 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1397 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1398 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1399 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1400 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1401 }
1402
1403 void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1404 {
1405 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1406 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1407 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1408 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1409 }
1410
1411 void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1412 {
1413 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1414 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1415 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1416 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1417 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1418 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1419 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1420 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1421 }
1422
1423 #define FABSB(_, x) x > INT8_MAX ? -(int8_t ) x : x
1424 #define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1425 #define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1426 SSE_HELPER_B(helper_pabsb, FABSB)
1427 SSE_HELPER_W(helper_pabsw, FABSW)
1428 SSE_HELPER_L(helper_pabsd, FABSL)
1429
1430 #define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1431 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1432
1433 #define FSIGNB(d, s) s <= INT8_MAX ? s ? d : 0 : -(int8_t ) d
1434 #define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1435 #define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1436 SSE_HELPER_B(helper_psignb, FSIGNB)
1437 SSE_HELPER_W(helper_psignw, FSIGNW)
1438 SSE_HELPER_L(helper_psignd, FSIGNL)
1439
1440 void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1441 {
1442 Reg r;
1443
1444 /* XXX could be checked during translation */
1445 if (shift >= (16 << SHIFT)) {
1446 r.Q(0) = 0;
1447 XMM_ONLY(r.Q(1) = 0);
1448 } else {
1449 shift <<= 3;
1450 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1451 #if SHIFT == 0
1452 r.Q(0) = SHR(s->Q(0), shift - 0) |
1453 SHR(d->Q(0), shift - 64);
1454 #else
1455 r.Q(0) = SHR(s->Q(0), shift - 0) |
1456 SHR(s->Q(1), shift - 64) |
1457 SHR(d->Q(0), shift - 128) |
1458 SHR(d->Q(1), shift - 192);
1459 r.Q(1) = SHR(s->Q(0), shift + 64) |
1460 SHR(s->Q(1), shift - 0) |
1461 SHR(d->Q(0), shift - 64) |
1462 SHR(d->Q(1), shift - 128);
1463 #endif
1464 #undef SHR
1465 }
1466
1467 *d = r;
1468 }
1469
1470 #define XMM0 env->xmm_regs[0]
1471
1472 #if SHIFT == 1
1473 #define SSE_HELPER_V(name, elem, num, F)\
1474 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1475 {\
1476 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1477 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1478 if (num > 2) {\
1479 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1480 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1481 if (num > 4) {\
1482 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1483 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1484 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1485 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1486 if (num > 8) {\
1487 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1488 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1489 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1490 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1491 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1492 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1493 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1494 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1495 }\
1496 }\
1497 }\
1498 }
1499
1500 #define SSE_HELPER_I(name, elem, num, F)\
1501 void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1502 {\
1503 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1504 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1505 if (num > 2) {\
1506 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1507 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1508 if (num > 4) {\
1509 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1510 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1511 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1512 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1513 if (num > 8) {\
1514 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1515 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1516 d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1517 d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1518 d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1519 d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1520 d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1521 d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1522 }\
1523 }\
1524 }\
1525 }
1526
1527 /* SSE4.1 op helpers */
1528 #define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1529 #define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1530 #define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1531 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1532 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1533 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1534
1535 void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1536 {
1537 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1538 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1539
1540 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1541 }
1542
1543 #define SSE_HELPER_F(name, elem, num, F)\
1544 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1545 {\
1546 d->elem(0) = F(0);\
1547 d->elem(1) = F(1);\
1548 if (num > 2) {\
1549 d->elem(2) = F(2);\
1550 d->elem(3) = F(3);\
1551 if (num > 4) {\
1552 d->elem(4) = F(4);\
1553 d->elem(5) = F(5);\
1554 d->elem(6) = F(6);\
1555 d->elem(7) = F(7);\
1556 }\
1557 }\
1558 }
1559
1560 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1561 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1562 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1563 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1564 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1565 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1566 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1567 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1568 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1569 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1570 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1571 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1572
1573 void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1574 {
1575 d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1576 d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1577 }
1578
1579 #define FCMPEQQ(d, s) d == s ? -1 : 0
1580 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1581
1582 void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1583 {
1584 d->W(0) = satuw((int32_t) d->L(0));
1585 d->W(1) = satuw((int32_t) d->L(1));
1586 d->W(2) = satuw((int32_t) d->L(2));
1587 d->W(3) = satuw((int32_t) d->L(3));
1588 d->W(4) = satuw((int32_t) s->L(0));
1589 d->W(5) = satuw((int32_t) s->L(1));
1590 d->W(6) = satuw((int32_t) s->L(2));
1591 d->W(7) = satuw((int32_t) s->L(3));
1592 }
1593
1594 #define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1595 #define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1596 #define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1597 #define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1598 SSE_HELPER_B(helper_pminsb, FMINSB)
1599 SSE_HELPER_L(helper_pminsd, FMINSD)
1600 SSE_HELPER_W(helper_pminuw, MIN)
1601 SSE_HELPER_L(helper_pminud, MIN)
1602 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1603 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1604 SSE_HELPER_W(helper_pmaxuw, MAX)
1605 SSE_HELPER_L(helper_pmaxud, MAX)
1606
1607 #define FMULLD(d, s) (int32_t) d * (int32_t) s
1608 SSE_HELPER_L(helper_pmulld, FMULLD)
1609
1610 void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1611 {
1612 int idx = 0;
1613
1614 if (s->W(1) < s->W(idx))
1615 idx = 1;
1616 if (s->W(2) < s->W(idx))
1617 idx = 2;
1618 if (s->W(3) < s->W(idx))
1619 idx = 3;
1620 if (s->W(4) < s->W(idx))
1621 idx = 4;
1622 if (s->W(5) < s->W(idx))
1623 idx = 5;
1624 if (s->W(6) < s->W(idx))
1625 idx = 6;
1626 if (s->W(7) < s->W(idx))
1627 idx = 7;
1628
1629 d->Q(1) = 0;
1630 d->L(1) = 0;
1631 d->W(1) = idx;
1632 d->W(0) = s->W(idx);
1633 }
1634
1635 void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1636 {
1637 signed char prev_rounding_mode;
1638
1639 prev_rounding_mode = env->sse_status.float_rounding_mode;
1640 if (!(mode & (1 << 2)))
1641 switch (mode & 3) {
1642 case 0:
1643 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1644 break;
1645 case 1:
1646 set_float_rounding_mode(float_round_down, &env->sse_status);
1647 break;
1648 case 2:
1649 set_float_rounding_mode(float_round_up, &env->sse_status);
1650 break;
1651 case 3:
1652 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1653 break;
1654 }
1655
1656 d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1657 d->XMM_S(1) = float32_round_to_int(s->XMM_S(1), &env->sse_status);
1658 d->XMM_S(2) = float32_round_to_int(s->XMM_S(2), &env->sse_status);
1659 d->XMM_S(3) = float32_round_to_int(s->XMM_S(3), &env->sse_status);
1660
1661 #if 0 /* TODO */
1662 if (mode & (1 << 3))
1663 set_float_exception_flags(
1664 get_float_exception_flags(&env->sse_status) &
1665 ~float_flag_inexact,
1666 &env->sse_status);
1667 #endif
1668 env->sse_status.float_rounding_mode = prev_rounding_mode;
1669 }
1670
1671 void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1672 {
1673 signed char prev_rounding_mode;
1674
1675 prev_rounding_mode = env->sse_status.float_rounding_mode;
1676 if (!(mode & (1 << 2)))
1677 switch (mode & 3) {
1678 case 0:
1679 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1680 break;
1681 case 1:
1682 set_float_rounding_mode(float_round_down, &env->sse_status);
1683 break;
1684 case 2:
1685 set_float_rounding_mode(float_round_up, &env->sse_status);
1686 break;
1687 case 3:
1688 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1689 break;
1690 }
1691
1692 d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1693 d->XMM_D(1) = float64_round_to_int(s->XMM_D(1), &env->sse_status);
1694
1695 #if 0 /* TODO */
1696 if (mode & (1 << 3))
1697 set_float_exception_flags(
1698 get_float_exception_flags(&env->sse_status) &
1699 ~float_flag_inexact,
1700 &env->sse_status);
1701 #endif
1702 env->sse_status.float_rounding_mode = prev_rounding_mode;
1703 }
1704
1705 void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1706 {
1707 signed char prev_rounding_mode;
1708
1709 prev_rounding_mode = env->sse_status.float_rounding_mode;
1710 if (!(mode & (1 << 2)))
1711 switch (mode & 3) {
1712 case 0:
1713 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1714 break;
1715 case 1:
1716 set_float_rounding_mode(float_round_down, &env->sse_status);
1717 break;
1718 case 2:
1719 set_float_rounding_mode(float_round_up, &env->sse_status);
1720 break;
1721 case 3:
1722 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1723 break;
1724 }
1725
1726 d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1727
1728 #if 0 /* TODO */
1729 if (mode & (1 << 3))
1730 set_float_exception_flags(
1731 get_float_exception_flags(&env->sse_status) &
1732 ~float_flag_inexact,
1733 &env->sse_status);
1734 #endif
1735 env->sse_status.float_rounding_mode = prev_rounding_mode;
1736 }
1737
1738 void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1739 {
1740 signed char prev_rounding_mode;
1741
1742 prev_rounding_mode = env->sse_status.float_rounding_mode;
1743 if (!(mode & (1 << 2)))
1744 switch (mode & 3) {
1745 case 0:
1746 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1747 break;
1748 case 1:
1749 set_float_rounding_mode(float_round_down, &env->sse_status);
1750 break;
1751 case 2:
1752 set_float_rounding_mode(float_round_up, &env->sse_status);
1753 break;
1754 case 3:
1755 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1756 break;
1757 }
1758
1759 d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1760
1761 #if 0 /* TODO */
1762 if (mode & (1 << 3))
1763 set_float_exception_flags(
1764 get_float_exception_flags(&env->sse_status) &
1765 ~float_flag_inexact,
1766 &env->sse_status);
1767 #endif
1768 env->sse_status.float_rounding_mode = prev_rounding_mode;
1769 }
1770
1771 #define FBLENDP(d, s, m) m ? s : d
1772 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1773 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1774 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1775
1776 void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1777 {
1778 float32 iresult = float32_zero;
1779
1780 if (mask & (1 << 4))
1781 iresult = float32_add(iresult,
1782 float32_mul(d->XMM_S(0), s->XMM_S(0), &env->sse_status),
1783 &env->sse_status);
1784 if (mask & (1 << 5))
1785 iresult = float32_add(iresult,
1786 float32_mul(d->XMM_S(1), s->XMM_S(1), &env->sse_status),
1787 &env->sse_status);
1788 if (mask & (1 << 6))
1789 iresult = float32_add(iresult,
1790 float32_mul(d->XMM_S(2), s->XMM_S(2), &env->sse_status),
1791 &env->sse_status);
1792 if (mask & (1 << 7))
1793 iresult = float32_add(iresult,
1794 float32_mul(d->XMM_S(3), s->XMM_S(3), &env->sse_status),
1795 &env->sse_status);
1796 d->XMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1797 d->XMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1798 d->XMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1799 d->XMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1800 }
1801
1802 void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1803 {
1804 float64 iresult = float64_zero;
1805
1806 if (mask & (1 << 4))
1807 iresult = float64_add(iresult,
1808 float64_mul(d->XMM_D(0), s->XMM_D(0), &env->sse_status),
1809 &env->sse_status);
1810 if (mask & (1 << 5))
1811 iresult = float64_add(iresult,
1812 float64_mul(d->XMM_D(1), s->XMM_D(1), &env->sse_status),
1813 &env->sse_status);
1814 d->XMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1815 d->XMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1816 }
1817
1818 void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1819 {
1820 int s0 = (offset & 3) << 2;
1821 int d0 = (offset & 4) << 0;
1822 int i;
1823 Reg r;
1824
1825 for (i = 0; i < 8; i++, d0++) {
1826 r.W(i) = 0;
1827 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1828 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1829 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1830 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1831 }
1832
1833 *d = r;
1834 }
1835
1836 /* SSE4.2 op helpers */
1837 /* it's unclear whether signed or unsigned */
1838 #define FCMPGTQ(d, s) d > s ? -1 : 0
1839 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1840
1841 static inline int pcmp_elen(int reg, uint32_t ctrl)
1842 {
1843 int val;
1844
1845 /* Presence of REX.W is indicated by a bit higher than 7 set */
1846 if (ctrl >> 8)
1847 val = abs1((int64_t) env->regs[reg]);
1848 else
1849 val = abs1((int32_t) env->regs[reg]);
1850
1851 if (ctrl & 1) {
1852 if (val > 8)
1853 return 8;
1854 } else
1855 if (val > 16)
1856 return 16;
1857
1858 return val;
1859 }
1860
1861 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1862 {
1863 int val = 0;
1864
1865 if (ctrl & 1) {
1866 while (val < 8 && r->W(val))
1867 val++;
1868 } else
1869 while (val < 16 && r->B(val))
1870 val++;
1871
1872 return val;
1873 }
1874
1875 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1876 {
1877 switch ((ctrl >> 0) & 3) {
1878 case 0:
1879 return r->B(i);
1880 case 1:
1881 return r->W(i);
1882 case 2:
1883 return (int8_t) r->B(i);
1884 case 3:
1885 default:
1886 return (int16_t) r->W(i);
1887 }
1888 }
1889
1890 static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1891 int8_t ctrl, int valids, int validd)
1892 {
1893 unsigned int res = 0;
1894 int v;
1895 int j, i;
1896 int upper = (ctrl & 1) ? 7 : 15;
1897
1898 valids--;
1899 validd--;
1900
1901 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1902
1903 switch ((ctrl >> 2) & 3) {
1904 case 0:
1905 for (j = valids; j >= 0; j--) {
1906 res <<= 1;
1907 v = pcmp_val(s, ctrl, j);
1908 for (i = validd; i >= 0; i--)
1909 res |= (v == pcmp_val(d, ctrl, i));
1910 }
1911 break;
1912 case 1:
1913 for (j = valids; j >= 0; j--) {
1914 res <<= 1;
1915 v = pcmp_val(s, ctrl, j);
1916 for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1917 res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1918 pcmp_val(d, ctrl, i - 1) >= v);
1919 }
1920 break;
1921 case 2:
1922 res = (2 << (upper - MAX(valids, validd))) - 1;
1923 res <<= MAX(valids, validd) - MIN(valids, validd);
1924 for (i = MIN(valids, validd); i >= 0; i--) {
1925 res <<= 1;
1926 v = pcmp_val(s, ctrl, i);
1927 res |= (v == pcmp_val(d, ctrl, i));
1928 }
1929 break;
1930 case 3:
1931 for (j = valids - validd; j >= 0; j--) {
1932 res <<= 1;
1933 res |= 1;
1934 for (i = MIN(upper - j, validd); i >= 0; i--)
1935 res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1936 }
1937 break;
1938 }
1939
1940 switch ((ctrl >> 4) & 3) {
1941 case 1:
1942 res ^= (2 << upper) - 1;
1943 break;
1944 case 3:
1945 res ^= (2 << valids) - 1;
1946 break;
1947 }
1948
1949 if (res)
1950 CC_SRC |= CC_C;
1951 if (res & 1)
1952 CC_SRC |= CC_O;
1953
1954 return res;
1955 }
1956
1957 static inline int rffs1(unsigned int val)
1958 {
1959 int ret = 1, hi;
1960
1961 for (hi = sizeof(val) * 4; hi; hi /= 2)
1962 if (val >> hi) {
1963 val >>= hi;
1964 ret += hi;
1965 }
1966
1967 return ret;
1968 }
1969
1970 static inline int ffs1(unsigned int val)
1971 {
1972 int ret = 1, hi;
1973
1974 for (hi = sizeof(val) * 4; hi; hi /= 2)
1975 if (val << hi) {
1976 val <<= hi;
1977 ret += hi;
1978 }
1979
1980 return ret;
1981 }
1982
1983 void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1984 {
1985 unsigned int res = pcmpxstrx(d, s, ctrl,
1986 pcmp_elen(R_EDX, ctrl),
1987 pcmp_elen(R_EAX, ctrl));
1988
1989 if (res)
1990 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1991 else
1992 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1993 }
1994
1995 void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1996 {
1997 int i;
1998 unsigned int res = pcmpxstrx(d, s, ctrl,
1999 pcmp_elen(R_EDX, ctrl),
2000 pcmp_elen(R_EAX, ctrl));
2001
2002 if ((ctrl >> 6) & 1) {
2003 if (ctrl & 1)
2004 for (i = 0; i < 8; i++, res >>= 1) {
2005 d->W(i) = (res & 1) ? ~0 : 0;
2006 }
2007 else
2008 for (i = 0; i < 16; i++, res >>= 1) {
2009 d->B(i) = (res & 1) ? ~0 : 0;
2010 }
2011 } else {
2012 d->Q(1) = 0;
2013 d->Q(0) = res;
2014 }
2015 }
2016
2017 void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2018 {
2019 unsigned int res = pcmpxstrx(d, s, ctrl,
2020 pcmp_ilen(s, ctrl),
2021 pcmp_ilen(d, ctrl));
2022
2023 if (res)
2024 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2025 else
2026 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2027 }
2028
2029 void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
2030 {
2031 int i;
2032 unsigned int res = pcmpxstrx(d, s, ctrl,
2033 pcmp_ilen(s, ctrl),
2034 pcmp_ilen(d, ctrl));
2035
2036 if ((ctrl >> 6) & 1) {
2037 if (ctrl & 1)
2038 for (i = 0; i < 8; i++, res >>= 1) {
2039 d->W(i) = (res & 1) ? ~0 : 0;
2040 }
2041 else
2042 for (i = 0; i < 16; i++, res >>= 1) {
2043 d->B(i) = (res & 1) ? ~0 : 0;
2044 }
2045 } else {
2046 d->Q(1) = 0;
2047 d->Q(0) = res;
2048 }
2049 }
2050
2051 #define CRCPOLY 0x1edc6f41
2052 #define CRCPOLY_BITREV 0x82f63b78
2053 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2054 {
2055 target_ulong crc = (msg & ((target_ulong) -1 >>
2056 (TARGET_LONG_BITS - len))) ^ crc1;
2057
2058 while (len--)
2059 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2060
2061 return crc;
2062 }
2063
2064 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2065 #define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2066 target_ulong helper_popcnt(target_ulong n, uint32_t type)
2067 {
2068 CC_SRC = n ? 0 : CC_Z;
2069
2070 n = POPCOUNT(n, 0);
2071 n = POPCOUNT(n, 1);
2072 n = POPCOUNT(n, 2);
2073 n = POPCOUNT(n, 3);
2074 if (type == 1)
2075 return n & 0xff;
2076
2077 n = POPCOUNT(n, 4);
2078 #ifndef TARGET_X86_64
2079 return n;
2080 #else
2081 if (type == 2)
2082 return n & 0xff;
2083
2084 return POPCOUNT(n, 5);
2085 #endif
2086 }
2087 #endif
2088
2089 #undef SHIFT
2090 #undef XMM_ONLY
2091 #undef Reg
2092 #undef B
2093 #undef W
2094 #undef L
2095 #undef Q
2096 #undef SUFFIX