]> git.proxmox.com Git - qemu.git/blob - target-i386/ops_sse.h
target-i386: fix helper_pmovmskb_mmx helper
[qemu.git] / target-i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, write to the Free Software
19 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
20 */
21 #if SHIFT == 0
22 #define Reg MMXReg
23 #define XMM_ONLY(x...)
24 #define B(n) MMX_B(n)
25 #define W(n) MMX_W(n)
26 #define L(n) MMX_L(n)
27 #define Q(n) q
28 #define SUFFIX _mmx
29 #else
30 #define Reg XMMReg
31 #define XMM_ONLY(x...) x
32 #define B(n) XMM_B(n)
33 #define W(n) XMM_W(n)
34 #define L(n) XMM_L(n)
35 #define Q(n) XMM_Q(n)
36 #define SUFFIX _xmm
37 #endif
38
39 void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
40 {
41 int shift;
42
43 if (s->Q(0) > 15) {
44 d->Q(0) = 0;
45 #if SHIFT == 1
46 d->Q(1) = 0;
47 #endif
48 } else {
49 shift = s->B(0);
50 d->W(0) >>= shift;
51 d->W(1) >>= shift;
52 d->W(2) >>= shift;
53 d->W(3) >>= shift;
54 #if SHIFT == 1
55 d->W(4) >>= shift;
56 d->W(5) >>= shift;
57 d->W(6) >>= shift;
58 d->W(7) >>= shift;
59 #endif
60 }
61 FORCE_RET();
62 }
63
64 void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
65 {
66 int shift;
67
68 if (s->Q(0) > 15) {
69 shift = 15;
70 } else {
71 shift = s->B(0);
72 }
73 d->W(0) = (int16_t)d->W(0) >> shift;
74 d->W(1) = (int16_t)d->W(1) >> shift;
75 d->W(2) = (int16_t)d->W(2) >> shift;
76 d->W(3) = (int16_t)d->W(3) >> shift;
77 #if SHIFT == 1
78 d->W(4) = (int16_t)d->W(4) >> shift;
79 d->W(5) = (int16_t)d->W(5) >> shift;
80 d->W(6) = (int16_t)d->W(6) >> shift;
81 d->W(7) = (int16_t)d->W(7) >> shift;
82 #endif
83 }
84
85 void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
86 {
87 int shift;
88
89 if (s->Q(0) > 15) {
90 d->Q(0) = 0;
91 #if SHIFT == 1
92 d->Q(1) = 0;
93 #endif
94 } else {
95 shift = s->B(0);
96 d->W(0) <<= shift;
97 d->W(1) <<= shift;
98 d->W(2) <<= shift;
99 d->W(3) <<= shift;
100 #if SHIFT == 1
101 d->W(4) <<= shift;
102 d->W(5) <<= shift;
103 d->W(6) <<= shift;
104 d->W(7) <<= shift;
105 #endif
106 }
107 FORCE_RET();
108 }
109
110 void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
111 {
112 int shift;
113
114 if (s->Q(0) > 31) {
115 d->Q(0) = 0;
116 #if SHIFT == 1
117 d->Q(1) = 0;
118 #endif
119 } else {
120 shift = s->B(0);
121 d->L(0) >>= shift;
122 d->L(1) >>= shift;
123 #if SHIFT == 1
124 d->L(2) >>= shift;
125 d->L(3) >>= shift;
126 #endif
127 }
128 FORCE_RET();
129 }
130
131 void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
132 {
133 int shift;
134
135 if (s->Q(0) > 31) {
136 shift = 31;
137 } else {
138 shift = s->B(0);
139 }
140 d->L(0) = (int32_t)d->L(0) >> shift;
141 d->L(1) = (int32_t)d->L(1) >> shift;
142 #if SHIFT == 1
143 d->L(2) = (int32_t)d->L(2) >> shift;
144 d->L(3) = (int32_t)d->L(3) >> shift;
145 #endif
146 }
147
148 void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
149 {
150 int shift;
151
152 if (s->Q(0) > 31) {
153 d->Q(0) = 0;
154 #if SHIFT == 1
155 d->Q(1) = 0;
156 #endif
157 } else {
158 shift = s->B(0);
159 d->L(0) <<= shift;
160 d->L(1) <<= shift;
161 #if SHIFT == 1
162 d->L(2) <<= shift;
163 d->L(3) <<= shift;
164 #endif
165 }
166 FORCE_RET();
167 }
168
169 void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
170 {
171 int shift;
172
173 if (s->Q(0) > 63) {
174 d->Q(0) = 0;
175 #if SHIFT == 1
176 d->Q(1) = 0;
177 #endif
178 } else {
179 shift = s->B(0);
180 d->Q(0) >>= shift;
181 #if SHIFT == 1
182 d->Q(1) >>= shift;
183 #endif
184 }
185 FORCE_RET();
186 }
187
188 void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
189 {
190 int shift;
191
192 if (s->Q(0) > 63) {
193 d->Q(0) = 0;
194 #if SHIFT == 1
195 d->Q(1) = 0;
196 #endif
197 } else {
198 shift = s->B(0);
199 d->Q(0) <<= shift;
200 #if SHIFT == 1
201 d->Q(1) <<= shift;
202 #endif
203 }
204 FORCE_RET();
205 }
206
207 #if SHIFT == 1
208 void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
209 {
210 int shift, i;
211
212 shift = s->L(0);
213 if (shift > 16)
214 shift = 16;
215 for(i = 0; i < 16 - shift; i++)
216 d->B(i) = d->B(i + shift);
217 for(i = 16 - shift; i < 16; i++)
218 d->B(i) = 0;
219 FORCE_RET();
220 }
221
222 void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
223 {
224 int shift, i;
225
226 shift = s->L(0);
227 if (shift > 16)
228 shift = 16;
229 for(i = 15; i >= shift; i--)
230 d->B(i) = d->B(i - shift);
231 for(i = 0; i < shift; i++)
232 d->B(i) = 0;
233 FORCE_RET();
234 }
235 #endif
236
237 #define SSE_HELPER_B(name, F)\
238 void glue(name, SUFFIX) (Reg *d, Reg *s)\
239 {\
240 d->B(0) = F(d->B(0), s->B(0));\
241 d->B(1) = F(d->B(1), s->B(1));\
242 d->B(2) = F(d->B(2), s->B(2));\
243 d->B(3) = F(d->B(3), s->B(3));\
244 d->B(4) = F(d->B(4), s->B(4));\
245 d->B(5) = F(d->B(5), s->B(5));\
246 d->B(6) = F(d->B(6), s->B(6));\
247 d->B(7) = F(d->B(7), s->B(7));\
248 XMM_ONLY(\
249 d->B(8) = F(d->B(8), s->B(8));\
250 d->B(9) = F(d->B(9), s->B(9));\
251 d->B(10) = F(d->B(10), s->B(10));\
252 d->B(11) = F(d->B(11), s->B(11));\
253 d->B(12) = F(d->B(12), s->B(12));\
254 d->B(13) = F(d->B(13), s->B(13));\
255 d->B(14) = F(d->B(14), s->B(14));\
256 d->B(15) = F(d->B(15), s->B(15));\
257 )\
258 }
259
260 #define SSE_HELPER_W(name, F)\
261 void glue(name, SUFFIX) (Reg *d, Reg *s)\
262 {\
263 d->W(0) = F(d->W(0), s->W(0));\
264 d->W(1) = F(d->W(1), s->W(1));\
265 d->W(2) = F(d->W(2), s->W(2));\
266 d->W(3) = F(d->W(3), s->W(3));\
267 XMM_ONLY(\
268 d->W(4) = F(d->W(4), s->W(4));\
269 d->W(5) = F(d->W(5), s->W(5));\
270 d->W(6) = F(d->W(6), s->W(6));\
271 d->W(7) = F(d->W(7), s->W(7));\
272 )\
273 }
274
275 #define SSE_HELPER_L(name, F)\
276 void glue(name, SUFFIX) (Reg *d, Reg *s)\
277 {\
278 d->L(0) = F(d->L(0), s->L(0));\
279 d->L(1) = F(d->L(1), s->L(1));\
280 XMM_ONLY(\
281 d->L(2) = F(d->L(2), s->L(2));\
282 d->L(3) = F(d->L(3), s->L(3));\
283 )\
284 }
285
286 #define SSE_HELPER_Q(name, F)\
287 void glue(name, SUFFIX) (Reg *d, Reg *s)\
288 {\
289 d->Q(0) = F(d->Q(0), s->Q(0));\
290 XMM_ONLY(\
291 d->Q(1) = F(d->Q(1), s->Q(1));\
292 )\
293 }
294
295 #if SHIFT == 0
296 static inline int satub(int x)
297 {
298 if (x < 0)
299 return 0;
300 else if (x > 255)
301 return 255;
302 else
303 return x;
304 }
305
306 static inline int satuw(int x)
307 {
308 if (x < 0)
309 return 0;
310 else if (x > 65535)
311 return 65535;
312 else
313 return x;
314 }
315
316 static inline int satsb(int x)
317 {
318 if (x < -128)
319 return -128;
320 else if (x > 127)
321 return 127;
322 else
323 return x;
324 }
325
326 static inline int satsw(int x)
327 {
328 if (x < -32768)
329 return -32768;
330 else if (x > 32767)
331 return 32767;
332 else
333 return x;
334 }
335
336 #define FADD(a, b) ((a) + (b))
337 #define FADDUB(a, b) satub((a) + (b))
338 #define FADDUW(a, b) satuw((a) + (b))
339 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
340 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
341
342 #define FSUB(a, b) ((a) - (b))
343 #define FSUBUB(a, b) satub((a) - (b))
344 #define FSUBUW(a, b) satuw((a) - (b))
345 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
346 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
347 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
348 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
349 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
350 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
351
352 #define FAND(a, b) (a) & (b)
353 #define FANDN(a, b) ((~(a)) & (b))
354 #define FOR(a, b) (a) | (b)
355 #define FXOR(a, b) (a) ^ (b)
356
357 #define FCMPGTB(a, b) (int8_t)(a) > (int8_t)(b) ? -1 : 0
358 #define FCMPGTW(a, b) (int16_t)(a) > (int16_t)(b) ? -1 : 0
359 #define FCMPGTL(a, b) (int32_t)(a) > (int32_t)(b) ? -1 : 0
360 #define FCMPEQ(a, b) (a) == (b) ? -1 : 0
361
362 #define FMULLW(a, b) (a) * (b)
363 #define FMULHRW(a, b) ((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16
364 #define FMULHUW(a, b) (a) * (b) >> 16
365 #define FMULHW(a, b) (int16_t)(a) * (int16_t)(b) >> 16
366
367 #define FAVG(a, b) ((a) + (b) + 1) >> 1
368 #endif
369
370 SSE_HELPER_B(helper_paddb, FADD)
371 SSE_HELPER_W(helper_paddw, FADD)
372 SSE_HELPER_L(helper_paddl, FADD)
373 SSE_HELPER_Q(helper_paddq, FADD)
374
375 SSE_HELPER_B(helper_psubb, FSUB)
376 SSE_HELPER_W(helper_psubw, FSUB)
377 SSE_HELPER_L(helper_psubl, FSUB)
378 SSE_HELPER_Q(helper_psubq, FSUB)
379
380 SSE_HELPER_B(helper_paddusb, FADDUB)
381 SSE_HELPER_B(helper_paddsb, FADDSB)
382 SSE_HELPER_B(helper_psubusb, FSUBUB)
383 SSE_HELPER_B(helper_psubsb, FSUBSB)
384
385 SSE_HELPER_W(helper_paddusw, FADDUW)
386 SSE_HELPER_W(helper_paddsw, FADDSW)
387 SSE_HELPER_W(helper_psubusw, FSUBUW)
388 SSE_HELPER_W(helper_psubsw, FSUBSW)
389
390 SSE_HELPER_B(helper_pminub, FMINUB)
391 SSE_HELPER_B(helper_pmaxub, FMAXUB)
392
393 SSE_HELPER_W(helper_pminsw, FMINSW)
394 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
395
396 SSE_HELPER_Q(helper_pand, FAND)
397 SSE_HELPER_Q(helper_pandn, FANDN)
398 SSE_HELPER_Q(helper_por, FOR)
399 SSE_HELPER_Q(helper_pxor, FXOR)
400
401 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
402 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
403 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
404
405 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
406 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
407 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
408
409 SSE_HELPER_W(helper_pmullw, FMULLW)
410 #if SHIFT == 0
411 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
412 #endif
413 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
414 SSE_HELPER_W(helper_pmulhw, FMULHW)
415
416 SSE_HELPER_B(helper_pavgb, FAVG)
417 SSE_HELPER_W(helper_pavgw, FAVG)
418
419 void glue(helper_pmuludq, SUFFIX) (Reg *d, Reg *s)
420 {
421 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
422 #if SHIFT == 1
423 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
424 #endif
425 }
426
427 void glue(helper_pmaddwd, SUFFIX) (Reg *d, Reg *s)
428 {
429 int i;
430
431 for(i = 0; i < (2 << SHIFT); i++) {
432 d->L(i) = (int16_t)s->W(2*i) * (int16_t)d->W(2*i) +
433 (int16_t)s->W(2*i+1) * (int16_t)d->W(2*i+1);
434 }
435 FORCE_RET();
436 }
437
438 #if SHIFT == 0
439 static inline int abs1(int a)
440 {
441 if (a < 0)
442 return -a;
443 else
444 return a;
445 }
446 #endif
447 void glue(helper_psadbw, SUFFIX) (Reg *d, Reg *s)
448 {
449 unsigned int val;
450
451 val = 0;
452 val += abs1(d->B(0) - s->B(0));
453 val += abs1(d->B(1) - s->B(1));
454 val += abs1(d->B(2) - s->B(2));
455 val += abs1(d->B(3) - s->B(3));
456 val += abs1(d->B(4) - s->B(4));
457 val += abs1(d->B(5) - s->B(5));
458 val += abs1(d->B(6) - s->B(6));
459 val += abs1(d->B(7) - s->B(7));
460 d->Q(0) = val;
461 #if SHIFT == 1
462 val = 0;
463 val += abs1(d->B(8) - s->B(8));
464 val += abs1(d->B(9) - s->B(9));
465 val += abs1(d->B(10) - s->B(10));
466 val += abs1(d->B(11) - s->B(11));
467 val += abs1(d->B(12) - s->B(12));
468 val += abs1(d->B(13) - s->B(13));
469 val += abs1(d->B(14) - s->B(14));
470 val += abs1(d->B(15) - s->B(15));
471 d->Q(1) = val;
472 #endif
473 }
474
475 void glue(helper_maskmov, SUFFIX) (Reg *d, Reg *s, target_ulong a0)
476 {
477 int i;
478 for(i = 0; i < (8 << SHIFT); i++) {
479 if (s->B(i) & 0x80)
480 stb(a0 + i, d->B(i));
481 }
482 FORCE_RET();
483 }
484
485 void glue(helper_movl_mm_T0, SUFFIX) (Reg *d, uint32_t val)
486 {
487 d->L(0) = val;
488 d->L(1) = 0;
489 #if SHIFT == 1
490 d->Q(1) = 0;
491 #endif
492 }
493
494 #ifdef TARGET_X86_64
495 void glue(helper_movq_mm_T0, SUFFIX) (Reg *d, uint64_t val)
496 {
497 d->Q(0) = val;
498 #if SHIFT == 1
499 d->Q(1) = 0;
500 #endif
501 }
502 #endif
503
504 #if SHIFT == 0
505 void glue(helper_pshufw, SUFFIX) (Reg *d, Reg *s, int order)
506 {
507 Reg r;
508 r.W(0) = s->W(order & 3);
509 r.W(1) = s->W((order >> 2) & 3);
510 r.W(2) = s->W((order >> 4) & 3);
511 r.W(3) = s->W((order >> 6) & 3);
512 *d = r;
513 }
514 #else
515 void helper_shufps(Reg *d, Reg *s, int order)
516 {
517 Reg r;
518 r.L(0) = d->L(order & 3);
519 r.L(1) = d->L((order >> 2) & 3);
520 r.L(2) = s->L((order >> 4) & 3);
521 r.L(3) = s->L((order >> 6) & 3);
522 *d = r;
523 }
524
525 void helper_shufpd(Reg *d, Reg *s, int order)
526 {
527 Reg r;
528 r.Q(0) = d->Q(order & 1);
529 r.Q(1) = s->Q((order >> 1) & 1);
530 *d = r;
531 }
532
533 void glue(helper_pshufd, SUFFIX) (Reg *d, Reg *s, int order)
534 {
535 Reg r;
536 r.L(0) = s->L(order & 3);
537 r.L(1) = s->L((order >> 2) & 3);
538 r.L(2) = s->L((order >> 4) & 3);
539 r.L(3) = s->L((order >> 6) & 3);
540 *d = r;
541 }
542
543 void glue(helper_pshuflw, SUFFIX) (Reg *d, Reg *s, int order)
544 {
545 Reg r;
546 r.W(0) = s->W(order & 3);
547 r.W(1) = s->W((order >> 2) & 3);
548 r.W(2) = s->W((order >> 4) & 3);
549 r.W(3) = s->W((order >> 6) & 3);
550 r.Q(1) = s->Q(1);
551 *d = r;
552 }
553
554 void glue(helper_pshufhw, SUFFIX) (Reg *d, Reg *s, int order)
555 {
556 Reg r;
557 r.Q(0) = s->Q(0);
558 r.W(4) = s->W(4 + (order & 3));
559 r.W(5) = s->W(4 + ((order >> 2) & 3));
560 r.W(6) = s->W(4 + ((order >> 4) & 3));
561 r.W(7) = s->W(4 + ((order >> 6) & 3));
562 *d = r;
563 }
564 #endif
565
566 #if SHIFT == 1
567 /* FPU ops */
568 /* XXX: not accurate */
569
570 #define SSE_HELPER_S(name, F)\
571 void helper_ ## name ## ps (Reg *d, Reg *s)\
572 {\
573 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
574 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
575 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
576 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
577 }\
578 \
579 void helper_ ## name ## ss (Reg *d, Reg *s)\
580 {\
581 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
582 }\
583 void helper_ ## name ## pd (Reg *d, Reg *s)\
584 {\
585 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
586 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
587 }\
588 \
589 void helper_ ## name ## sd (Reg *d, Reg *s)\
590 {\
591 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
592 }
593
594 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
595 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
596 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
597 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
598 #define FPU_MIN(size, a, b) (a) < (b) ? (a) : (b)
599 #define FPU_MAX(size, a, b) (a) > (b) ? (a) : (b)
600 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
601
602 SSE_HELPER_S(add, FPU_ADD)
603 SSE_HELPER_S(sub, FPU_SUB)
604 SSE_HELPER_S(mul, FPU_MUL)
605 SSE_HELPER_S(div, FPU_DIV)
606 SSE_HELPER_S(min, FPU_MIN)
607 SSE_HELPER_S(max, FPU_MAX)
608 SSE_HELPER_S(sqrt, FPU_SQRT)
609
610
611 /* float to float conversions */
612 void helper_cvtps2pd(Reg *d, Reg *s)
613 {
614 float32 s0, s1;
615 s0 = s->XMM_S(0);
616 s1 = s->XMM_S(1);
617 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
618 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
619 }
620
621 void helper_cvtpd2ps(Reg *d, Reg *s)
622 {
623 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
624 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
625 d->Q(1) = 0;
626 }
627
628 void helper_cvtss2sd(Reg *d, Reg *s)
629 {
630 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
631 }
632
633 void helper_cvtsd2ss(Reg *d, Reg *s)
634 {
635 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
636 }
637
638 /* integer to float */
639 void helper_cvtdq2ps(Reg *d, Reg *s)
640 {
641 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
642 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
643 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
644 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
645 }
646
647 void helper_cvtdq2pd(Reg *d, Reg *s)
648 {
649 int32_t l0, l1;
650 l0 = (int32_t)s->XMM_L(0);
651 l1 = (int32_t)s->XMM_L(1);
652 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
653 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
654 }
655
656 void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
657 {
658 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
659 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
660 }
661
662 void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
663 {
664 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
665 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
666 }
667
668 void helper_cvtsi2ss(XMMReg *d, uint32_t val)
669 {
670 d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
671 }
672
673 void helper_cvtsi2sd(XMMReg *d, uint32_t val)
674 {
675 d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
676 }
677
678 #ifdef TARGET_X86_64
679 void helper_cvtsq2ss(XMMReg *d, uint64_t val)
680 {
681 d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
682 }
683
684 void helper_cvtsq2sd(XMMReg *d, uint64_t val)
685 {
686 d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
687 }
688 #endif
689
690 /* float to integer */
691 void helper_cvtps2dq(XMMReg *d, XMMReg *s)
692 {
693 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
694 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
695 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
696 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
697 }
698
699 void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
700 {
701 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
702 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
703 d->XMM_Q(1) = 0;
704 }
705
706 void helper_cvtps2pi(MMXReg *d, XMMReg *s)
707 {
708 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
709 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
710 }
711
712 void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
713 {
714 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
715 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
716 }
717
718 int32_t helper_cvtss2si(XMMReg *s)
719 {
720 return float32_to_int32(s->XMM_S(0), &env->sse_status);
721 }
722
723 int32_t helper_cvtsd2si(XMMReg *s)
724 {
725 return float64_to_int32(s->XMM_D(0), &env->sse_status);
726 }
727
728 #ifdef TARGET_X86_64
729 int64_t helper_cvtss2sq(XMMReg *s)
730 {
731 return float32_to_int64(s->XMM_S(0), &env->sse_status);
732 }
733
734 int64_t helper_cvtsd2sq(XMMReg *s)
735 {
736 return float64_to_int64(s->XMM_D(0), &env->sse_status);
737 }
738 #endif
739
740 /* float to integer truncated */
741 void helper_cvttps2dq(XMMReg *d, XMMReg *s)
742 {
743 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
744 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
745 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
746 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
747 }
748
749 void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
750 {
751 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
752 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
753 d->XMM_Q(1) = 0;
754 }
755
756 void helper_cvttps2pi(MMXReg *d, XMMReg *s)
757 {
758 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
759 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
760 }
761
762 void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
763 {
764 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
765 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
766 }
767
768 int32_t helper_cvttss2si(XMMReg *s)
769 {
770 return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
771 }
772
773 int32_t helper_cvttsd2si(XMMReg *s)
774 {
775 return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
776 }
777
778 #ifdef TARGET_X86_64
779 int64_t helper_cvttss2sq(XMMReg *s)
780 {
781 return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
782 }
783
784 int64_t helper_cvttsd2sq(XMMReg *s)
785 {
786 return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
787 }
788 #endif
789
790 void helper_rsqrtps(XMMReg *d, XMMReg *s)
791 {
792 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
793 d->XMM_S(1) = approx_rsqrt(s->XMM_S(1));
794 d->XMM_S(2) = approx_rsqrt(s->XMM_S(2));
795 d->XMM_S(3) = approx_rsqrt(s->XMM_S(3));
796 }
797
798 void helper_rsqrtss(XMMReg *d, XMMReg *s)
799 {
800 d->XMM_S(0) = approx_rsqrt(s->XMM_S(0));
801 }
802
803 void helper_rcpps(XMMReg *d, XMMReg *s)
804 {
805 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
806 d->XMM_S(1) = approx_rcp(s->XMM_S(1));
807 d->XMM_S(2) = approx_rcp(s->XMM_S(2));
808 d->XMM_S(3) = approx_rcp(s->XMM_S(3));
809 }
810
811 void helper_rcpss(XMMReg *d, XMMReg *s)
812 {
813 d->XMM_S(0) = approx_rcp(s->XMM_S(0));
814 }
815
816 void helper_haddps(XMMReg *d, XMMReg *s)
817 {
818 XMMReg r;
819 r.XMM_S(0) = d->XMM_S(0) + d->XMM_S(1);
820 r.XMM_S(1) = d->XMM_S(2) + d->XMM_S(3);
821 r.XMM_S(2) = s->XMM_S(0) + s->XMM_S(1);
822 r.XMM_S(3) = s->XMM_S(2) + s->XMM_S(3);
823 *d = r;
824 }
825
826 void helper_haddpd(XMMReg *d, XMMReg *s)
827 {
828 XMMReg r;
829 r.XMM_D(0) = d->XMM_D(0) + d->XMM_D(1);
830 r.XMM_D(1) = s->XMM_D(0) + s->XMM_D(1);
831 *d = r;
832 }
833
834 void helper_hsubps(XMMReg *d, XMMReg *s)
835 {
836 XMMReg r;
837 r.XMM_S(0) = d->XMM_S(0) - d->XMM_S(1);
838 r.XMM_S(1) = d->XMM_S(2) - d->XMM_S(3);
839 r.XMM_S(2) = s->XMM_S(0) - s->XMM_S(1);
840 r.XMM_S(3) = s->XMM_S(2) - s->XMM_S(3);
841 *d = r;
842 }
843
844 void helper_hsubpd(XMMReg *d, XMMReg *s)
845 {
846 XMMReg r;
847 r.XMM_D(0) = d->XMM_D(0) - d->XMM_D(1);
848 r.XMM_D(1) = s->XMM_D(0) - s->XMM_D(1);
849 *d = r;
850 }
851
852 void helper_addsubps(XMMReg *d, XMMReg *s)
853 {
854 d->XMM_S(0) = d->XMM_S(0) - s->XMM_S(0);
855 d->XMM_S(1) = d->XMM_S(1) + s->XMM_S(1);
856 d->XMM_S(2) = d->XMM_S(2) - s->XMM_S(2);
857 d->XMM_S(3) = d->XMM_S(3) + s->XMM_S(3);
858 }
859
860 void helper_addsubpd(XMMReg *d, XMMReg *s)
861 {
862 d->XMM_D(0) = d->XMM_D(0) - s->XMM_D(0);
863 d->XMM_D(1) = d->XMM_D(1) + s->XMM_D(1);
864 }
865
866 /* XXX: unordered */
867 #define SSE_HELPER_CMP(name, F)\
868 void helper_ ## name ## ps (Reg *d, Reg *s)\
869 {\
870 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
871 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1));\
872 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2));\
873 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3));\
874 }\
875 \
876 void helper_ ## name ## ss (Reg *d, Reg *s)\
877 {\
878 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0));\
879 }\
880 void helper_ ## name ## pd (Reg *d, Reg *s)\
881 {\
882 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
883 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1));\
884 }\
885 \
886 void helper_ ## name ## sd (Reg *d, Reg *s)\
887 {\
888 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0));\
889 }
890
891 #define FPU_CMPEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? -1 : 0
892 #define FPU_CMPLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0
893 #define FPU_CMPLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? -1 : 0
894 #define FPU_CMPUNORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? - 1 : 0
895 #define FPU_CMPNEQ(size, a, b) float ## size ## _eq(a, b, &env->sse_status) ? 0 : -1
896 #define FPU_CMPNLT(size, a, b) float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1
897 #define FPU_CMPNLE(size, a, b) float ## size ## _le(a, b, &env->sse_status) ? 0 : -1
898 #define FPU_CMPORD(size, a, b) float ## size ## _unordered(a, b, &env->sse_status) ? 0 : -1
899
900 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
901 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
902 SSE_HELPER_CMP(cmple, FPU_CMPLE)
903 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
904 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
905 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
906 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
907 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
908
909 const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
910
911 void helper_ucomiss(Reg *d, Reg *s)
912 {
913 int ret;
914 float32 s0, s1;
915
916 s0 = d->XMM_S(0);
917 s1 = s->XMM_S(0);
918 ret = float32_compare_quiet(s0, s1, &env->sse_status);
919 CC_SRC = comis_eflags[ret + 1];
920 FORCE_RET();
921 }
922
923 void helper_comiss(Reg *d, Reg *s)
924 {
925 int ret;
926 float32 s0, s1;
927
928 s0 = d->XMM_S(0);
929 s1 = s->XMM_S(0);
930 ret = float32_compare(s0, s1, &env->sse_status);
931 CC_SRC = comis_eflags[ret + 1];
932 FORCE_RET();
933 }
934
935 void helper_ucomisd(Reg *d, Reg *s)
936 {
937 int ret;
938 float64 d0, d1;
939
940 d0 = d->XMM_D(0);
941 d1 = s->XMM_D(0);
942 ret = float64_compare_quiet(d0, d1, &env->sse_status);
943 CC_SRC = comis_eflags[ret + 1];
944 FORCE_RET();
945 }
946
947 void helper_comisd(Reg *d, Reg *s)
948 {
949 int ret;
950 float64 d0, d1;
951
952 d0 = d->XMM_D(0);
953 d1 = s->XMM_D(0);
954 ret = float64_compare(d0, d1, &env->sse_status);
955 CC_SRC = comis_eflags[ret + 1];
956 FORCE_RET();
957 }
958
959 uint32_t helper_movmskps(Reg *s)
960 {
961 int b0, b1, b2, b3;
962 b0 = s->XMM_L(0) >> 31;
963 b1 = s->XMM_L(1) >> 31;
964 b2 = s->XMM_L(2) >> 31;
965 b3 = s->XMM_L(3) >> 31;
966 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
967 }
968
969 uint32_t helper_movmskpd(Reg *s)
970 {
971 int b0, b1;
972 b0 = s->XMM_L(1) >> 31;
973 b1 = s->XMM_L(3) >> 31;
974 return b0 | (b1 << 1);
975 }
976
977 #endif
978
979 uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
980 {
981 uint32_t val;
982 val = 0;
983 val |= (s->B(0) >> 7);
984 val |= (s->B(1) >> 6) & 0x02;
985 val |= (s->B(2) >> 5) & 0x04;
986 val |= (s->B(3) >> 4) & 0x08;
987 val |= (s->B(4) >> 3) & 0x10;
988 val |= (s->B(5) >> 2) & 0x20;
989 val |= (s->B(6) >> 1) & 0x40;
990 val |= (s->B(7)) & 0x80;
991 #if SHIFT == 1
992 val |= (s->B(8) << 1) & 0x0100;
993 val |= (s->B(9) << 2) & 0x0200;
994 val |= (s->B(10) << 3) & 0x0400;
995 val |= (s->B(11) << 4) & 0x0800;
996 val |= (s->B(12) << 5) & 0x1000;
997 val |= (s->B(13) << 6) & 0x2000;
998 val |= (s->B(14) << 7) & 0x4000;
999 val |= (s->B(15) << 8) & 0x8000;
1000 #endif
1001 return val;
1002 }
1003
1004 void glue(helper_packsswb, SUFFIX) (Reg *d, Reg *s)
1005 {
1006 Reg r;
1007
1008 r.B(0) = satsb((int16_t)d->W(0));
1009 r.B(1) = satsb((int16_t)d->W(1));
1010 r.B(2) = satsb((int16_t)d->W(2));
1011 r.B(3) = satsb((int16_t)d->W(3));
1012 #if SHIFT == 1
1013 r.B(4) = satsb((int16_t)d->W(4));
1014 r.B(5) = satsb((int16_t)d->W(5));
1015 r.B(6) = satsb((int16_t)d->W(6));
1016 r.B(7) = satsb((int16_t)d->W(7));
1017 #endif
1018 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1019 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1020 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1021 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1022 #if SHIFT == 1
1023 r.B(12) = satsb((int16_t)s->W(4));
1024 r.B(13) = satsb((int16_t)s->W(5));
1025 r.B(14) = satsb((int16_t)s->W(6));
1026 r.B(15) = satsb((int16_t)s->W(7));
1027 #endif
1028 *d = r;
1029 }
1030
1031 void glue(helper_packuswb, SUFFIX) (Reg *d, Reg *s)
1032 {
1033 Reg r;
1034
1035 r.B(0) = satub((int16_t)d->W(0));
1036 r.B(1) = satub((int16_t)d->W(1));
1037 r.B(2) = satub((int16_t)d->W(2));
1038 r.B(3) = satub((int16_t)d->W(3));
1039 #if SHIFT == 1
1040 r.B(4) = satub((int16_t)d->W(4));
1041 r.B(5) = satub((int16_t)d->W(5));
1042 r.B(6) = satub((int16_t)d->W(6));
1043 r.B(7) = satub((int16_t)d->W(7));
1044 #endif
1045 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1046 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1047 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1048 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1049 #if SHIFT == 1
1050 r.B(12) = satub((int16_t)s->W(4));
1051 r.B(13) = satub((int16_t)s->W(5));
1052 r.B(14) = satub((int16_t)s->W(6));
1053 r.B(15) = satub((int16_t)s->W(7));
1054 #endif
1055 *d = r;
1056 }
1057
1058 void glue(helper_packssdw, SUFFIX) (Reg *d, Reg *s)
1059 {
1060 Reg r;
1061
1062 r.W(0) = satsw(d->L(0));
1063 r.W(1) = satsw(d->L(1));
1064 #if SHIFT == 1
1065 r.W(2) = satsw(d->L(2));
1066 r.W(3) = satsw(d->L(3));
1067 #endif
1068 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1069 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1070 #if SHIFT == 1
1071 r.W(6) = satsw(s->L(2));
1072 r.W(7) = satsw(s->L(3));
1073 #endif
1074 *d = r;
1075 }
1076
1077 #define UNPCK_OP(base_name, base) \
1078 \
1079 void glue(helper_punpck ## base_name ## bw, SUFFIX) (Reg *d, Reg *s) \
1080 { \
1081 Reg r; \
1082 \
1083 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1084 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1085 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1086 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1087 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1088 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1089 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1090 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1091 XMM_ONLY( \
1092 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1093 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1094 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1095 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1096 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1097 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1098 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1099 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1100 ) \
1101 *d = r; \
1102 } \
1103 \
1104 void glue(helper_punpck ## base_name ## wd, SUFFIX) (Reg *d, Reg *s) \
1105 { \
1106 Reg r; \
1107 \
1108 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1109 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1110 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1111 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1112 XMM_ONLY( \
1113 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1114 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1115 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1116 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1117 ) \
1118 *d = r; \
1119 } \
1120 \
1121 void glue(helper_punpck ## base_name ## dq, SUFFIX) (Reg *d, Reg *s) \
1122 { \
1123 Reg r; \
1124 \
1125 r.L(0) = d->L((base << SHIFT) + 0); \
1126 r.L(1) = s->L((base << SHIFT) + 0); \
1127 XMM_ONLY( \
1128 r.L(2) = d->L((base << SHIFT) + 1); \
1129 r.L(3) = s->L((base << SHIFT) + 1); \
1130 ) \
1131 *d = r; \
1132 } \
1133 \
1134 XMM_ONLY( \
1135 void glue(helper_punpck ## base_name ## qdq, SUFFIX) (Reg *d, Reg *s) \
1136 { \
1137 Reg r; \
1138 \
1139 r.Q(0) = d->Q(base); \
1140 r.Q(1) = s->Q(base); \
1141 *d = r; \
1142 } \
1143 )
1144
1145 UNPCK_OP(l, 0)
1146 UNPCK_OP(h, 1)
1147
1148 /* 3DNow! float ops */
1149 #if SHIFT == 0
1150 void helper_pi2fd(MMXReg *d, MMXReg *s)
1151 {
1152 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1153 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1154 }
1155
1156 void helper_pi2fw(MMXReg *d, MMXReg *s)
1157 {
1158 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1159 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1160 }
1161
1162 void helper_pf2id(MMXReg *d, MMXReg *s)
1163 {
1164 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1165 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1166 }
1167
1168 void helper_pf2iw(MMXReg *d, MMXReg *s)
1169 {
1170 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status));
1171 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status));
1172 }
1173
1174 void helper_pfacc(MMXReg *d, MMXReg *s)
1175 {
1176 MMXReg r;
1177 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1178 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1179 *d = r;
1180 }
1181
1182 void helper_pfadd(MMXReg *d, MMXReg *s)
1183 {
1184 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1185 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1186 }
1187
1188 void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1189 {
1190 d->MMX_L(0) = float32_eq(d->MMX_S(0), s->MMX_S(0), &env->mmx_status) ? -1 : 0;
1191 d->MMX_L(1) = float32_eq(d->MMX_S(1), s->MMX_S(1), &env->mmx_status) ? -1 : 0;
1192 }
1193
1194 void helper_pfcmpge(MMXReg *d, MMXReg *s)
1195 {
1196 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1197 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1198 }
1199
1200 void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1201 {
1202 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status) ? -1 : 0;
1203 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status) ? -1 : 0;
1204 }
1205
1206 void helper_pfmax(MMXReg *d, MMXReg *s)
1207 {
1208 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status))
1209 d->MMX_S(0) = s->MMX_S(0);
1210 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status))
1211 d->MMX_S(1) = s->MMX_S(1);
1212 }
1213
1214 void helper_pfmin(MMXReg *d, MMXReg *s)
1215 {
1216 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status))
1217 d->MMX_S(0) = s->MMX_S(0);
1218 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status))
1219 d->MMX_S(1) = s->MMX_S(1);
1220 }
1221
1222 void helper_pfmul(MMXReg *d, MMXReg *s)
1223 {
1224 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1225 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1226 }
1227
1228 void helper_pfnacc(MMXReg *d, MMXReg *s)
1229 {
1230 MMXReg r;
1231 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1232 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1233 *d = r;
1234 }
1235
1236 void helper_pfpnacc(MMXReg *d, MMXReg *s)
1237 {
1238 MMXReg r;
1239 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1240 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1241 *d = r;
1242 }
1243
1244 void helper_pfrcp(MMXReg *d, MMXReg *s)
1245 {
1246 d->MMX_S(0) = approx_rcp(s->MMX_S(0));
1247 d->MMX_S(1) = d->MMX_S(0);
1248 }
1249
1250 void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1251 {
1252 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1253 d->MMX_S(1) = approx_rsqrt(d->MMX_S(1));
1254 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1255 d->MMX_L(0) = d->MMX_L(1);
1256 }
1257
1258 void helper_pfsub(MMXReg *d, MMXReg *s)
1259 {
1260 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1261 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1262 }
1263
1264 void helper_pfsubr(MMXReg *d, MMXReg *s)
1265 {
1266 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1267 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1268 }
1269
1270 void helper_pswapd(MMXReg *d, MMXReg *s)
1271 {
1272 MMXReg r;
1273 r.MMX_L(0) = s->MMX_L(1);
1274 r.MMX_L(1) = s->MMX_L(0);
1275 *d = r;
1276 }
1277 #endif
1278
1279 /* SSSE3 op helpers */
1280 void glue(helper_pshufb, SUFFIX) (Reg *d, Reg *s)
1281 {
1282 int i;
1283 Reg r;
1284
1285 for (i = 0; i < (8 << SHIFT); i++)
1286 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1287
1288 *d = r;
1289 }
1290
1291 void glue(helper_phaddw, SUFFIX) (Reg *d, Reg *s)
1292 {
1293 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1294 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1295 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1296 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1297 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1298 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1299 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1300 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1301 }
1302
1303 void glue(helper_phaddd, SUFFIX) (Reg *d, Reg *s)
1304 {
1305 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1306 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1307 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1308 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1309 }
1310
1311 void glue(helper_phaddsw, SUFFIX) (Reg *d, Reg *s)
1312 {
1313 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1314 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1315 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1316 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1317 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1318 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1319 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1320 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1321 }
1322
1323 void glue(helper_pmaddubsw, SUFFIX) (Reg *d, Reg *s)
1324 {
1325 d->W(0) = satsw((int8_t)s->B( 0) * (uint8_t)d->B( 0) +
1326 (int8_t)s->B( 1) * (uint8_t)d->B( 1));
1327 d->W(1) = satsw((int8_t)s->B( 2) * (uint8_t)d->B( 2) +
1328 (int8_t)s->B( 3) * (uint8_t)d->B( 3));
1329 d->W(2) = satsw((int8_t)s->B( 4) * (uint8_t)d->B( 4) +
1330 (int8_t)s->B( 5) * (uint8_t)d->B( 5));
1331 d->W(3) = satsw((int8_t)s->B( 6) * (uint8_t)d->B( 6) +
1332 (int8_t)s->B( 7) * (uint8_t)d->B( 7));
1333 #if SHIFT == 1
1334 d->W(4) = satsw((int8_t)s->B( 8) * (uint8_t)d->B( 8) +
1335 (int8_t)s->B( 9) * (uint8_t)d->B( 9));
1336 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1337 (int8_t)s->B(11) * (uint8_t)d->B(11));
1338 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1339 (int8_t)s->B(13) * (uint8_t)d->B(13));
1340 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1341 (int8_t)s->B(15) * (uint8_t)d->B(15));
1342 #endif
1343 }
1344
1345 void glue(helper_phsubw, SUFFIX) (Reg *d, Reg *s)
1346 {
1347 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1348 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1349 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1350 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1351 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1352 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1353 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1354 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1355 }
1356
1357 void glue(helper_phsubd, SUFFIX) (Reg *d, Reg *s)
1358 {
1359 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1360 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1361 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1362 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1363 }
1364
1365 void glue(helper_phsubsw, SUFFIX) (Reg *d, Reg *s)
1366 {
1367 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1368 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1369 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1370 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1371 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1372 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1373 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1374 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1375 }
1376
1377 #define FABSB(_, x) x > INT8_MAX ? -(int8_t ) x : x
1378 #define FABSW(_, x) x > INT16_MAX ? -(int16_t) x : x
1379 #define FABSL(_, x) x > INT32_MAX ? -(int32_t) x : x
1380 SSE_HELPER_B(helper_pabsb, FABSB)
1381 SSE_HELPER_W(helper_pabsw, FABSW)
1382 SSE_HELPER_L(helper_pabsd, FABSL)
1383
1384 #define FMULHRSW(d, s) ((int16_t) d * (int16_t) s + 0x4000) >> 15
1385 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1386
1387 #define FSIGNB(d, s) s <= INT8_MAX ? s ? d : 0 : -(int8_t ) d
1388 #define FSIGNW(d, s) s <= INT16_MAX ? s ? d : 0 : -(int16_t) d
1389 #define FSIGNL(d, s) s <= INT32_MAX ? s ? d : 0 : -(int32_t) d
1390 SSE_HELPER_B(helper_psignb, FSIGNB)
1391 SSE_HELPER_W(helper_psignw, FSIGNW)
1392 SSE_HELPER_L(helper_psignd, FSIGNL)
1393
1394 void glue(helper_palignr, SUFFIX) (Reg *d, Reg *s, int32_t shift)
1395 {
1396 Reg r;
1397
1398 /* XXX could be checked during translation */
1399 if (shift >= (16 << SHIFT)) {
1400 r.Q(0) = 0;
1401 XMM_ONLY(r.Q(1) = 0);
1402 } else {
1403 shift <<= 3;
1404 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1405 #if SHIFT == 0
1406 r.Q(0) = SHR(s->Q(0), shift - 0) |
1407 SHR(d->Q(0), shift - 64);
1408 #else
1409 r.Q(0) = SHR(s->Q(0), shift - 0) |
1410 SHR(s->Q(1), shift - 64) |
1411 SHR(d->Q(0), shift - 128) |
1412 SHR(d->Q(1), shift - 192);
1413 r.Q(1) = SHR(s->Q(0), shift + 64) |
1414 SHR(s->Q(1), shift - 0) |
1415 SHR(d->Q(0), shift - 64) |
1416 SHR(d->Q(1), shift - 128);
1417 #endif
1418 #undef SHR
1419 }
1420
1421 *d = r;
1422 }
1423
1424 #define XMM0 env->xmm_regs[0]
1425
1426 #if SHIFT == 1
1427 #define SSE_HELPER_V(name, elem, num, F)\
1428 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1429 {\
1430 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0));\
1431 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1));\
1432 if (num > 2) {\
1433 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2));\
1434 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3));\
1435 if (num > 4) {\
1436 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4));\
1437 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5));\
1438 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6));\
1439 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7));\
1440 if (num > 8) {\
1441 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8));\
1442 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9));\
1443 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10));\
1444 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11));\
1445 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12));\
1446 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13));\
1447 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14));\
1448 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15));\
1449 }\
1450 }\
1451 }\
1452 }
1453
1454 #define SSE_HELPER_I(name, elem, num, F)\
1455 void glue(name, SUFFIX) (Reg *d, Reg *s, uint32_t imm)\
1456 {\
1457 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1));\
1458 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1));\
1459 if (num > 2) {\
1460 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1));\
1461 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1));\
1462 if (num > 4) {\
1463 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1));\
1464 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1));\
1465 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1));\
1466 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1));\
1467 if (num > 8) {\
1468 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1));\
1469 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1));\
1470 d->elem(10) = F(d->elem(10), s->elem(10), ((imm >> 10) & 1));\
1471 d->elem(11) = F(d->elem(11), s->elem(11), ((imm >> 11) & 1));\
1472 d->elem(12) = F(d->elem(12), s->elem(12), ((imm >> 12) & 1));\
1473 d->elem(13) = F(d->elem(13), s->elem(13), ((imm >> 13) & 1));\
1474 d->elem(14) = F(d->elem(14), s->elem(14), ((imm >> 14) & 1));\
1475 d->elem(15) = F(d->elem(15), s->elem(15), ((imm >> 15) & 1));\
1476 }\
1477 }\
1478 }\
1479 }
1480
1481 /* SSE4.1 op helpers */
1482 #define FBLENDVB(d, s, m) (m & 0x80) ? s : d
1483 #define FBLENDVPS(d, s, m) (m & 0x80000000) ? s : d
1484 #define FBLENDVPD(d, s, m) (m & 0x8000000000000000LL) ? s : d
1485 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1486 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1487 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1488
1489 void glue(helper_ptest, SUFFIX) (Reg *d, Reg *s)
1490 {
1491 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1492 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1493
1494 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1495 }
1496
1497 #define SSE_HELPER_F(name, elem, num, F)\
1498 void glue(name, SUFFIX) (Reg *d, Reg *s)\
1499 {\
1500 d->elem(0) = F(0);\
1501 d->elem(1) = F(1);\
1502 d->elem(2) = F(2);\
1503 d->elem(3) = F(3);\
1504 if (num > 3) {\
1505 d->elem(4) = F(4);\
1506 d->elem(5) = F(5);\
1507 if (num > 5) {\
1508 d->elem(6) = F(6);\
1509 d->elem(7) = F(7);\
1510 }\
1511 }\
1512 }
1513
1514 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1515 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1516 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1517 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1518 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1519 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1520 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1521 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1522 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1523 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1524 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1525 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1526
1527 void glue(helper_pmuldq, SUFFIX) (Reg *d, Reg *s)
1528 {
1529 d->Q(0) = (int64_t) (int32_t) d->L(0) * (int32_t) s->L(0);
1530 d->Q(1) = (int64_t) (int32_t) d->L(2) * (int32_t) s->L(2);
1531 }
1532
1533 #define FCMPEQQ(d, s) d == s ? -1 : 0
1534 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1535
1536 void glue(helper_packusdw, SUFFIX) (Reg *d, Reg *s)
1537 {
1538 d->W(0) = satuw((int32_t) d->L(0));
1539 d->W(1) = satuw((int32_t) d->L(1));
1540 d->W(2) = satuw((int32_t) d->L(2));
1541 d->W(3) = satuw((int32_t) d->L(3));
1542 d->W(4) = satuw((int32_t) s->L(0));
1543 d->W(5) = satuw((int32_t) s->L(1));
1544 d->W(6) = satuw((int32_t) s->L(2));
1545 d->W(7) = satuw((int32_t) s->L(3));
1546 }
1547
1548 #define FMINSB(d, s) MIN((int8_t) d, (int8_t) s)
1549 #define FMINSD(d, s) MIN((int32_t) d, (int32_t) s)
1550 #define FMAXSB(d, s) MAX((int8_t) d, (int8_t) s)
1551 #define FMAXSD(d, s) MAX((int32_t) d, (int32_t) s)
1552 SSE_HELPER_B(helper_pminsb, FMINSB)
1553 SSE_HELPER_L(helper_pminsd, FMINSD)
1554 SSE_HELPER_W(helper_pminuw, MIN)
1555 SSE_HELPER_L(helper_pminud, MIN)
1556 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1557 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1558 SSE_HELPER_W(helper_pmaxuw, MAX)
1559 SSE_HELPER_L(helper_pmaxud, MAX)
1560
1561 #define FMULLD(d, s) (int32_t) d * (int32_t) s
1562 SSE_HELPER_L(helper_pmulld, FMULLD)
1563
1564 void glue(helper_phminposuw, SUFFIX) (Reg *d, Reg *s)
1565 {
1566 int idx = 0;
1567
1568 if (s->W(1) < s->W(idx))
1569 idx = 1;
1570 if (s->W(2) < s->W(idx))
1571 idx = 2;
1572 if (s->W(3) < s->W(idx))
1573 idx = 3;
1574 if (s->W(4) < s->W(idx))
1575 idx = 4;
1576 if (s->W(5) < s->W(idx))
1577 idx = 5;
1578 if (s->W(6) < s->W(idx))
1579 idx = 6;
1580 if (s->W(7) < s->W(idx))
1581 idx = 7;
1582
1583 d->Q(1) = 0;
1584 d->L(1) = 0;
1585 d->W(1) = idx;
1586 d->W(0) = s->W(idx);
1587 }
1588
1589 void glue(helper_roundps, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1590 {
1591 signed char prev_rounding_mode;
1592
1593 prev_rounding_mode = env->sse_status.float_rounding_mode;
1594 if (!(mode & (1 << 2)))
1595 switch (mode & 3) {
1596 case 0:
1597 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1598 break;
1599 case 1:
1600 set_float_rounding_mode(float_round_down, &env->sse_status);
1601 break;
1602 case 2:
1603 set_float_rounding_mode(float_round_up, &env->sse_status);
1604 break;
1605 case 3:
1606 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1607 break;
1608 }
1609
1610 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1611 d->L(1) = float64_round_to_int(s->L(1), &env->sse_status);
1612 d->L(2) = float64_round_to_int(s->L(2), &env->sse_status);
1613 d->L(3) = float64_round_to_int(s->L(3), &env->sse_status);
1614
1615 #if 0 /* TODO */
1616 if (mode & (1 << 3))
1617 set_float_exception_flags(
1618 get_float_exception_flags(&env->sse_status) &
1619 ~float_flag_inexact,
1620 &env->sse_status);
1621 #endif
1622 env->sse_status.float_rounding_mode = prev_rounding_mode;
1623 }
1624
1625 void glue(helper_roundpd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1626 {
1627 signed char prev_rounding_mode;
1628
1629 prev_rounding_mode = env->sse_status.float_rounding_mode;
1630 if (!(mode & (1 << 2)))
1631 switch (mode & 3) {
1632 case 0:
1633 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1634 break;
1635 case 1:
1636 set_float_rounding_mode(float_round_down, &env->sse_status);
1637 break;
1638 case 2:
1639 set_float_rounding_mode(float_round_up, &env->sse_status);
1640 break;
1641 case 3:
1642 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1643 break;
1644 }
1645
1646 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1647 d->Q(1) = float64_round_to_int(s->Q(1), &env->sse_status);
1648
1649 #if 0 /* TODO */
1650 if (mode & (1 << 3))
1651 set_float_exception_flags(
1652 get_float_exception_flags(&env->sse_status) &
1653 ~float_flag_inexact,
1654 &env->sse_status);
1655 #endif
1656 env->sse_status.float_rounding_mode = prev_rounding_mode;
1657 }
1658
1659 void glue(helper_roundss, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1660 {
1661 signed char prev_rounding_mode;
1662
1663 prev_rounding_mode = env->sse_status.float_rounding_mode;
1664 if (!(mode & (1 << 2)))
1665 switch (mode & 3) {
1666 case 0:
1667 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1668 break;
1669 case 1:
1670 set_float_rounding_mode(float_round_down, &env->sse_status);
1671 break;
1672 case 2:
1673 set_float_rounding_mode(float_round_up, &env->sse_status);
1674 break;
1675 case 3:
1676 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1677 break;
1678 }
1679
1680 d->L(0) = float64_round_to_int(s->L(0), &env->sse_status);
1681
1682 #if 0 /* TODO */
1683 if (mode & (1 << 3))
1684 set_float_exception_flags(
1685 get_float_exception_flags(&env->sse_status) &
1686 ~float_flag_inexact,
1687 &env->sse_status);
1688 #endif
1689 env->sse_status.float_rounding_mode = prev_rounding_mode;
1690 }
1691
1692 void glue(helper_roundsd, SUFFIX) (Reg *d, Reg *s, uint32_t mode)
1693 {
1694 signed char prev_rounding_mode;
1695
1696 prev_rounding_mode = env->sse_status.float_rounding_mode;
1697 if (!(mode & (1 << 2)))
1698 switch (mode & 3) {
1699 case 0:
1700 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1701 break;
1702 case 1:
1703 set_float_rounding_mode(float_round_down, &env->sse_status);
1704 break;
1705 case 2:
1706 set_float_rounding_mode(float_round_up, &env->sse_status);
1707 break;
1708 case 3:
1709 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1710 break;
1711 }
1712
1713 d->Q(0) = float64_round_to_int(s->Q(0), &env->sse_status);
1714
1715 #if 0 /* TODO */
1716 if (mode & (1 << 3))
1717 set_float_exception_flags(
1718 get_float_exception_flags(&env->sse_status) &
1719 ~float_flag_inexact,
1720 &env->sse_status);
1721 #endif
1722 env->sse_status.float_rounding_mode = prev_rounding_mode;
1723 }
1724
1725 #define FBLENDP(d, s, m) m ? s : d
1726 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1727 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1728 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1729
1730 void glue(helper_dpps, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1731 {
1732 float32 iresult = 0 /*float32_zero*/;
1733
1734 if (mask & (1 << 4))
1735 iresult = float32_add(iresult,
1736 float32_mul(d->L(0), s->L(0), &env->sse_status),
1737 &env->sse_status);
1738 if (mask & (1 << 5))
1739 iresult = float32_add(iresult,
1740 float32_mul(d->L(1), s->L(1), &env->sse_status),
1741 &env->sse_status);
1742 if (mask & (1 << 6))
1743 iresult = float32_add(iresult,
1744 float32_mul(d->L(2), s->L(2), &env->sse_status),
1745 &env->sse_status);
1746 if (mask & (1 << 7))
1747 iresult = float32_add(iresult,
1748 float32_mul(d->L(3), s->L(3), &env->sse_status),
1749 &env->sse_status);
1750 d->L(0) = (mask & (1 << 0)) ? iresult : 0 /*float32_zero*/;
1751 d->L(1) = (mask & (1 << 1)) ? iresult : 0 /*float32_zero*/;
1752 d->L(2) = (mask & (1 << 2)) ? iresult : 0 /*float32_zero*/;
1753 d->L(3) = (mask & (1 << 3)) ? iresult : 0 /*float32_zero*/;
1754 }
1755
1756 void glue(helper_dppd, SUFFIX) (Reg *d, Reg *s, uint32_t mask)
1757 {
1758 float64 iresult = 0 /*float64_zero*/;
1759
1760 if (mask & (1 << 4))
1761 iresult = float64_add(iresult,
1762 float64_mul(d->Q(0), s->Q(0), &env->sse_status),
1763 &env->sse_status);
1764 if (mask & (1 << 5))
1765 iresult = float64_add(iresult,
1766 float64_mul(d->Q(1), s->Q(1), &env->sse_status),
1767 &env->sse_status);
1768 d->Q(0) = (mask & (1 << 0)) ? iresult : 0 /*float64_zero*/;
1769 d->Q(1) = (mask & (1 << 1)) ? iresult : 0 /*float64_zero*/;
1770 }
1771
1772 void glue(helper_mpsadbw, SUFFIX) (Reg *d, Reg *s, uint32_t offset)
1773 {
1774 int s0 = (offset & 3) << 2;
1775 int d0 = (offset & 4) << 0;
1776 int i;
1777 Reg r;
1778
1779 for (i = 0; i < 8; i++, d0++) {
1780 r.W(i) = 0;
1781 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1782 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1783 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1784 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1785 }
1786
1787 *d = r;
1788 }
1789
1790 /* SSE4.2 op helpers */
1791 /* it's unclear whether signed or unsigned */
1792 #define FCMPGTQ(d, s) d > s ? -1 : 0
1793 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1794
1795 static inline int pcmp_elen(int reg, uint32_t ctrl)
1796 {
1797 int val;
1798
1799 /* Presence of REX.W is indicated by a bit higher than 7 set */
1800 if (ctrl >> 8)
1801 val = abs1((int64_t) env->regs[reg]);
1802 else
1803 val = abs1((int32_t) env->regs[reg]);
1804
1805 if (ctrl & 1) {
1806 if (val > 8)
1807 return 8;
1808 } else
1809 if (val > 16)
1810 return 16;
1811
1812 return val;
1813 }
1814
1815 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1816 {
1817 int val = 0;
1818
1819 if (ctrl & 1) {
1820 while (val < 8 && r->W(val))
1821 val++;
1822 } else
1823 while (val < 16 && r->B(val))
1824 val++;
1825
1826 return val;
1827 }
1828
1829 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1830 {
1831 switch ((ctrl >> 0) & 3) {
1832 case 0:
1833 return r->B(i);
1834 case 1:
1835 return r->W(i);
1836 case 2:
1837 return (int8_t) r->B(i);
1838 case 3:
1839 default:
1840 return (int16_t) r->W(i);
1841 }
1842 }
1843
1844 static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1845 int8_t ctrl, int valids, int validd)
1846 {
1847 unsigned int res = 0;
1848 int v;
1849 int j, i;
1850 int upper = (ctrl & 1) ? 7 : 15;
1851
1852 valids--;
1853 validd--;
1854
1855 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1856
1857 switch ((ctrl >> 2) & 3) {
1858 case 0:
1859 for (j = valids; j >= 0; j--) {
1860 res <<= 1;
1861 v = pcmp_val(s, ctrl, j);
1862 for (i = validd; i >= 0; i--)
1863 res |= (v == pcmp_val(d, ctrl, i));
1864 }
1865 break;
1866 case 1:
1867 for (j = valids; j >= 0; j--) {
1868 res <<= 1;
1869 v = pcmp_val(s, ctrl, j);
1870 for (i = ((validd - 1) | 1); i >= 0; i -= 2)
1871 res |= (pcmp_val(d, ctrl, i - 0) <= v &&
1872 pcmp_val(d, ctrl, i - 1) >= v);
1873 }
1874 break;
1875 case 2:
1876 res = (2 << (upper - MAX(valids, validd))) - 1;
1877 res <<= MAX(valids, validd) - MIN(valids, validd);
1878 for (i = MIN(valids, validd); i >= 0; i--) {
1879 res <<= 1;
1880 v = pcmp_val(s, ctrl, i);
1881 res |= (v == pcmp_val(d, ctrl, i));
1882 }
1883 break;
1884 case 3:
1885 for (j = valids - validd; j >= 0; j--) {
1886 res <<= 1;
1887 res |= 1;
1888 for (i = MIN(upper - j, validd); i >= 0; i--)
1889 res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
1890 }
1891 break;
1892 }
1893
1894 switch ((ctrl >> 4) & 3) {
1895 case 1:
1896 res ^= (2 << upper) - 1;
1897 break;
1898 case 3:
1899 res ^= (2 << valids) - 1;
1900 break;
1901 }
1902
1903 if (res)
1904 CC_SRC |= CC_C;
1905 if (res & 1)
1906 CC_SRC |= CC_O;
1907
1908 return res;
1909 }
1910
1911 static inline int rffs1(unsigned int val)
1912 {
1913 int ret = 1, hi;
1914
1915 for (hi = sizeof(val) * 4; hi; hi /= 2)
1916 if (val >> hi) {
1917 val >>= hi;
1918 ret += hi;
1919 }
1920
1921 return ret;
1922 }
1923
1924 static inline int ffs1(unsigned int val)
1925 {
1926 int ret = 1, hi;
1927
1928 for (hi = sizeof(val) * 4; hi; hi /= 2)
1929 if (val << hi) {
1930 val <<= hi;
1931 ret += hi;
1932 }
1933
1934 return ret;
1935 }
1936
1937 void glue(helper_pcmpestri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1938 {
1939 unsigned int res = pcmpxstrx(d, s, ctrl,
1940 pcmp_elen(R_EDX, ctrl),
1941 pcmp_elen(R_EAX, ctrl));
1942
1943 if (res)
1944 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1945 else
1946 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1947 }
1948
1949 void glue(helper_pcmpestrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1950 {
1951 int i;
1952 unsigned int res = pcmpxstrx(d, s, ctrl,
1953 pcmp_elen(R_EDX, ctrl),
1954 pcmp_elen(R_EAX, ctrl));
1955
1956 if ((ctrl >> 6) & 1) {
1957 if (ctrl & 1)
1958 for (i = 0; i <= 8; i--, res >>= 1)
1959 d->W(i) = (res & 1) ? ~0 : 0;
1960 else
1961 for (i = 0; i <= 16; i--, res >>= 1)
1962 d->B(i) = (res & 1) ? ~0 : 0;
1963 } else {
1964 d->Q(1) = 0;
1965 d->Q(0) = res;
1966 }
1967 }
1968
1969 void glue(helper_pcmpistri, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1970 {
1971 unsigned int res = pcmpxstrx(d, s, ctrl,
1972 pcmp_ilen(s, ctrl),
1973 pcmp_ilen(d, ctrl));
1974
1975 if (res)
1976 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
1977 else
1978 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
1979 }
1980
1981 void glue(helper_pcmpistrm, SUFFIX) (Reg *d, Reg *s, uint32_t ctrl)
1982 {
1983 int i;
1984 unsigned int res = pcmpxstrx(d, s, ctrl,
1985 pcmp_ilen(s, ctrl),
1986 pcmp_ilen(d, ctrl));
1987
1988 if ((ctrl >> 6) & 1) {
1989 if (ctrl & 1)
1990 for (i = 0; i <= 8; i--, res >>= 1)
1991 d->W(i) = (res & 1) ? ~0 : 0;
1992 else
1993 for (i = 0; i <= 16; i--, res >>= 1)
1994 d->B(i) = (res & 1) ? ~0 : 0;
1995 } else {
1996 d->Q(1) = 0;
1997 d->Q(0) = res;
1998 }
1999 }
2000
2001 #define CRCPOLY 0x1edc6f41
2002 #define CRCPOLY_BITREV 0x82f63b78
2003 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2004 {
2005 target_ulong crc = (msg & ((target_ulong) -1 >>
2006 (TARGET_LONG_BITS - len))) ^ crc1;
2007
2008 while (len--)
2009 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2010
2011 return crc;
2012 }
2013
2014 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2015 #define POPCOUNT(n, i) (n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i))
2016 target_ulong helper_popcnt(target_ulong n, uint32_t type)
2017 {
2018 CC_SRC = n ? 0 : CC_Z;
2019
2020 n = POPCOUNT(n, 0);
2021 n = POPCOUNT(n, 1);
2022 n = POPCOUNT(n, 2);
2023 n = POPCOUNT(n, 3);
2024 if (type == 1)
2025 return n & 0xff;
2026
2027 n = POPCOUNT(n, 4);
2028 #ifndef TARGET_X86_64
2029 return n;
2030 #else
2031 if (type == 2)
2032 return n & 0xff;
2033
2034 return POPCOUNT(n, 5);
2035 #endif
2036 }
2037 #endif
2038
2039 #undef SHIFT
2040 #undef XMM_ONLY
2041 #undef Reg
2042 #undef B
2043 #undef W
2044 #undef L
2045 #undef Q
2046 #undef SUFFIX