]> git.proxmox.com Git - qemu.git/blob - target-i386/ops_sse.h
Merge branch pci into master
[qemu.git] / target-i386 / ops_sse.h
1 /*
2 * MMX/3DNow!/SSE/SSE2/SSE3/SSSE3/SSE4/PNI support
3 *
4 * Copyright (c) 2005 Fabrice Bellard
5 * Copyright (c) 2008 Intel Corporation <andrew.zaborowski@intel.com>
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
19 */
20 #if SHIFT == 0
21 #define Reg MMXReg
22 #define XMM_ONLY(...)
23 #define B(n) MMX_B(n)
24 #define W(n) MMX_W(n)
25 #define L(n) MMX_L(n)
26 #define Q(n) q
27 #define SUFFIX _mmx
28 #else
29 #define Reg XMMReg
30 #define XMM_ONLY(...) __VA_ARGS__
31 #define B(n) XMM_B(n)
32 #define W(n) XMM_W(n)
33 #define L(n) XMM_L(n)
34 #define Q(n) XMM_Q(n)
35 #define SUFFIX _xmm
36 #endif
37
38 void glue(helper_psrlw, SUFFIX)(Reg *d, Reg *s)
39 {
40 int shift;
41
42 if (s->Q(0) > 15) {
43 d->Q(0) = 0;
44 #if SHIFT == 1
45 d->Q(1) = 0;
46 #endif
47 } else {
48 shift = s->B(0);
49 d->W(0) >>= shift;
50 d->W(1) >>= shift;
51 d->W(2) >>= shift;
52 d->W(3) >>= shift;
53 #if SHIFT == 1
54 d->W(4) >>= shift;
55 d->W(5) >>= shift;
56 d->W(6) >>= shift;
57 d->W(7) >>= shift;
58 #endif
59 }
60 }
61
62 void glue(helper_psraw, SUFFIX)(Reg *d, Reg *s)
63 {
64 int shift;
65
66 if (s->Q(0) > 15) {
67 shift = 15;
68 } else {
69 shift = s->B(0);
70 }
71 d->W(0) = (int16_t)d->W(0) >> shift;
72 d->W(1) = (int16_t)d->W(1) >> shift;
73 d->W(2) = (int16_t)d->W(2) >> shift;
74 d->W(3) = (int16_t)d->W(3) >> shift;
75 #if SHIFT == 1
76 d->W(4) = (int16_t)d->W(4) >> shift;
77 d->W(5) = (int16_t)d->W(5) >> shift;
78 d->W(6) = (int16_t)d->W(6) >> shift;
79 d->W(7) = (int16_t)d->W(7) >> shift;
80 #endif
81 }
82
83 void glue(helper_psllw, SUFFIX)(Reg *d, Reg *s)
84 {
85 int shift;
86
87 if (s->Q(0) > 15) {
88 d->Q(0) = 0;
89 #if SHIFT == 1
90 d->Q(1) = 0;
91 #endif
92 } else {
93 shift = s->B(0);
94 d->W(0) <<= shift;
95 d->W(1) <<= shift;
96 d->W(2) <<= shift;
97 d->W(3) <<= shift;
98 #if SHIFT == 1
99 d->W(4) <<= shift;
100 d->W(5) <<= shift;
101 d->W(6) <<= shift;
102 d->W(7) <<= shift;
103 #endif
104 }
105 }
106
107 void glue(helper_psrld, SUFFIX)(Reg *d, Reg *s)
108 {
109 int shift;
110
111 if (s->Q(0) > 31) {
112 d->Q(0) = 0;
113 #if SHIFT == 1
114 d->Q(1) = 0;
115 #endif
116 } else {
117 shift = s->B(0);
118 d->L(0) >>= shift;
119 d->L(1) >>= shift;
120 #if SHIFT == 1
121 d->L(2) >>= shift;
122 d->L(3) >>= shift;
123 #endif
124 }
125 }
126
127 void glue(helper_psrad, SUFFIX)(Reg *d, Reg *s)
128 {
129 int shift;
130
131 if (s->Q(0) > 31) {
132 shift = 31;
133 } else {
134 shift = s->B(0);
135 }
136 d->L(0) = (int32_t)d->L(0) >> shift;
137 d->L(1) = (int32_t)d->L(1) >> shift;
138 #if SHIFT == 1
139 d->L(2) = (int32_t)d->L(2) >> shift;
140 d->L(3) = (int32_t)d->L(3) >> shift;
141 #endif
142 }
143
144 void glue(helper_pslld, SUFFIX)(Reg *d, Reg *s)
145 {
146 int shift;
147
148 if (s->Q(0) > 31) {
149 d->Q(0) = 0;
150 #if SHIFT == 1
151 d->Q(1) = 0;
152 #endif
153 } else {
154 shift = s->B(0);
155 d->L(0) <<= shift;
156 d->L(1) <<= shift;
157 #if SHIFT == 1
158 d->L(2) <<= shift;
159 d->L(3) <<= shift;
160 #endif
161 }
162 }
163
164 void glue(helper_psrlq, SUFFIX)(Reg *d, Reg *s)
165 {
166 int shift;
167
168 if (s->Q(0) > 63) {
169 d->Q(0) = 0;
170 #if SHIFT == 1
171 d->Q(1) = 0;
172 #endif
173 } else {
174 shift = s->B(0);
175 d->Q(0) >>= shift;
176 #if SHIFT == 1
177 d->Q(1) >>= shift;
178 #endif
179 }
180 }
181
182 void glue(helper_psllq, SUFFIX)(Reg *d, Reg *s)
183 {
184 int shift;
185
186 if (s->Q(0) > 63) {
187 d->Q(0) = 0;
188 #if SHIFT == 1
189 d->Q(1) = 0;
190 #endif
191 } else {
192 shift = s->B(0);
193 d->Q(0) <<= shift;
194 #if SHIFT == 1
195 d->Q(1) <<= shift;
196 #endif
197 }
198 }
199
200 #if SHIFT == 1
201 void glue(helper_psrldq, SUFFIX)(Reg *d, Reg *s)
202 {
203 int shift, i;
204
205 shift = s->L(0);
206 if (shift > 16) {
207 shift = 16;
208 }
209 for (i = 0; i < 16 - shift; i++) {
210 d->B(i) = d->B(i + shift);
211 }
212 for (i = 16 - shift; i < 16; i++) {
213 d->B(i) = 0;
214 }
215 }
216
217 void glue(helper_pslldq, SUFFIX)(Reg *d, Reg *s)
218 {
219 int shift, i;
220
221 shift = s->L(0);
222 if (shift > 16) {
223 shift = 16;
224 }
225 for (i = 15; i >= shift; i--) {
226 d->B(i) = d->B(i - shift);
227 }
228 for (i = 0; i < shift; i++) {
229 d->B(i) = 0;
230 }
231 }
232 #endif
233
234 #define SSE_HELPER_B(name, F) \
235 void glue(name, SUFFIX)(Reg *d, Reg *s) \
236 { \
237 d->B(0) = F(d->B(0), s->B(0)); \
238 d->B(1) = F(d->B(1), s->B(1)); \
239 d->B(2) = F(d->B(2), s->B(2)); \
240 d->B(3) = F(d->B(3), s->B(3)); \
241 d->B(4) = F(d->B(4), s->B(4)); \
242 d->B(5) = F(d->B(5), s->B(5)); \
243 d->B(6) = F(d->B(6), s->B(6)); \
244 d->B(7) = F(d->B(7), s->B(7)); \
245 XMM_ONLY( \
246 d->B(8) = F(d->B(8), s->B(8)); \
247 d->B(9) = F(d->B(9), s->B(9)); \
248 d->B(10) = F(d->B(10), s->B(10)); \
249 d->B(11) = F(d->B(11), s->B(11)); \
250 d->B(12) = F(d->B(12), s->B(12)); \
251 d->B(13) = F(d->B(13), s->B(13)); \
252 d->B(14) = F(d->B(14), s->B(14)); \
253 d->B(15) = F(d->B(15), s->B(15)); \
254 ) \
255 }
256
257 #define SSE_HELPER_W(name, F) \
258 void glue(name, SUFFIX)(Reg *d, Reg *s) \
259 { \
260 d->W(0) = F(d->W(0), s->W(0)); \
261 d->W(1) = F(d->W(1), s->W(1)); \
262 d->W(2) = F(d->W(2), s->W(2)); \
263 d->W(3) = F(d->W(3), s->W(3)); \
264 XMM_ONLY( \
265 d->W(4) = F(d->W(4), s->W(4)); \
266 d->W(5) = F(d->W(5), s->W(5)); \
267 d->W(6) = F(d->W(6), s->W(6)); \
268 d->W(7) = F(d->W(7), s->W(7)); \
269 ) \
270 }
271
272 #define SSE_HELPER_L(name, F) \
273 void glue(name, SUFFIX)(Reg *d, Reg *s) \
274 { \
275 d->L(0) = F(d->L(0), s->L(0)); \
276 d->L(1) = F(d->L(1), s->L(1)); \
277 XMM_ONLY( \
278 d->L(2) = F(d->L(2), s->L(2)); \
279 d->L(3) = F(d->L(3), s->L(3)); \
280 ) \
281 }
282
283 #define SSE_HELPER_Q(name, F) \
284 void glue(name, SUFFIX)(Reg *d, Reg *s) \
285 { \
286 d->Q(0) = F(d->Q(0), s->Q(0)); \
287 XMM_ONLY( \
288 d->Q(1) = F(d->Q(1), s->Q(1)); \
289 ) \
290 }
291
292 #if SHIFT == 0
293 static inline int satub(int x)
294 {
295 if (x < 0) {
296 return 0;
297 } else if (x > 255) {
298 return 255;
299 } else {
300 return x;
301 }
302 }
303
304 static inline int satuw(int x)
305 {
306 if (x < 0) {
307 return 0;
308 } else if (x > 65535) {
309 return 65535;
310 } else {
311 return x;
312 }
313 }
314
315 static inline int satsb(int x)
316 {
317 if (x < -128) {
318 return -128;
319 } else if (x > 127) {
320 return 127;
321 } else {
322 return x;
323 }
324 }
325
326 static inline int satsw(int x)
327 {
328 if (x < -32768) {
329 return -32768;
330 } else if (x > 32767) {
331 return 32767;
332 } else {
333 return x;
334 }
335 }
336
337 #define FADD(a, b) ((a) + (b))
338 #define FADDUB(a, b) satub((a) + (b))
339 #define FADDUW(a, b) satuw((a) + (b))
340 #define FADDSB(a, b) satsb((int8_t)(a) + (int8_t)(b))
341 #define FADDSW(a, b) satsw((int16_t)(a) + (int16_t)(b))
342
343 #define FSUB(a, b) ((a) - (b))
344 #define FSUBUB(a, b) satub((a) - (b))
345 #define FSUBUW(a, b) satuw((a) - (b))
346 #define FSUBSB(a, b) satsb((int8_t)(a) - (int8_t)(b))
347 #define FSUBSW(a, b) satsw((int16_t)(a) - (int16_t)(b))
348 #define FMINUB(a, b) ((a) < (b)) ? (a) : (b)
349 #define FMINSW(a, b) ((int16_t)(a) < (int16_t)(b)) ? (a) : (b)
350 #define FMAXUB(a, b) ((a) > (b)) ? (a) : (b)
351 #define FMAXSW(a, b) ((int16_t)(a) > (int16_t)(b)) ? (a) : (b)
352
353 #define FAND(a, b) ((a) & (b))
354 #define FANDN(a, b) ((~(a)) & (b))
355 #define FOR(a, b) ((a) | (b))
356 #define FXOR(a, b) ((a) ^ (b))
357
358 #define FCMPGTB(a, b) ((int8_t)(a) > (int8_t)(b) ? -1 : 0)
359 #define FCMPGTW(a, b) ((int16_t)(a) > (int16_t)(b) ? -1 : 0)
360 #define FCMPGTL(a, b) ((int32_t)(a) > (int32_t)(b) ? -1 : 0)
361 #define FCMPEQ(a, b) ((a) == (b) ? -1 : 0)
362
363 #define FMULLW(a, b) ((a) * (b))
364 #define FMULHRW(a, b) (((int16_t)(a) * (int16_t)(b) + 0x8000) >> 16)
365 #define FMULHUW(a, b) ((a) * (b) >> 16)
366 #define FMULHW(a, b) ((int16_t)(a) * (int16_t)(b) >> 16)
367
368 #define FAVG(a, b) (((a) + (b) + 1) >> 1)
369 #endif
370
371 SSE_HELPER_B(helper_paddb, FADD)
372 SSE_HELPER_W(helper_paddw, FADD)
373 SSE_HELPER_L(helper_paddl, FADD)
374 SSE_HELPER_Q(helper_paddq, FADD)
375
376 SSE_HELPER_B(helper_psubb, FSUB)
377 SSE_HELPER_W(helper_psubw, FSUB)
378 SSE_HELPER_L(helper_psubl, FSUB)
379 SSE_HELPER_Q(helper_psubq, FSUB)
380
381 SSE_HELPER_B(helper_paddusb, FADDUB)
382 SSE_HELPER_B(helper_paddsb, FADDSB)
383 SSE_HELPER_B(helper_psubusb, FSUBUB)
384 SSE_HELPER_B(helper_psubsb, FSUBSB)
385
386 SSE_HELPER_W(helper_paddusw, FADDUW)
387 SSE_HELPER_W(helper_paddsw, FADDSW)
388 SSE_HELPER_W(helper_psubusw, FSUBUW)
389 SSE_HELPER_W(helper_psubsw, FSUBSW)
390
391 SSE_HELPER_B(helper_pminub, FMINUB)
392 SSE_HELPER_B(helper_pmaxub, FMAXUB)
393
394 SSE_HELPER_W(helper_pminsw, FMINSW)
395 SSE_HELPER_W(helper_pmaxsw, FMAXSW)
396
397 SSE_HELPER_Q(helper_pand, FAND)
398 SSE_HELPER_Q(helper_pandn, FANDN)
399 SSE_HELPER_Q(helper_por, FOR)
400 SSE_HELPER_Q(helper_pxor, FXOR)
401
402 SSE_HELPER_B(helper_pcmpgtb, FCMPGTB)
403 SSE_HELPER_W(helper_pcmpgtw, FCMPGTW)
404 SSE_HELPER_L(helper_pcmpgtl, FCMPGTL)
405
406 SSE_HELPER_B(helper_pcmpeqb, FCMPEQ)
407 SSE_HELPER_W(helper_pcmpeqw, FCMPEQ)
408 SSE_HELPER_L(helper_pcmpeql, FCMPEQ)
409
410 SSE_HELPER_W(helper_pmullw, FMULLW)
411 #if SHIFT == 0
412 SSE_HELPER_W(helper_pmulhrw, FMULHRW)
413 #endif
414 SSE_HELPER_W(helper_pmulhuw, FMULHUW)
415 SSE_HELPER_W(helper_pmulhw, FMULHW)
416
417 SSE_HELPER_B(helper_pavgb, FAVG)
418 SSE_HELPER_W(helper_pavgw, FAVG)
419
420 void glue(helper_pmuludq, SUFFIX)(Reg *d, Reg *s)
421 {
422 d->Q(0) = (uint64_t)s->L(0) * (uint64_t)d->L(0);
423 #if SHIFT == 1
424 d->Q(1) = (uint64_t)s->L(2) * (uint64_t)d->L(2);
425 #endif
426 }
427
428 void glue(helper_pmaddwd, SUFFIX)(Reg *d, Reg *s)
429 {
430 int i;
431
432 for (i = 0; i < (2 << SHIFT); i++) {
433 d->L(i) = (int16_t)s->W(2 * i) * (int16_t)d->W(2 * i) +
434 (int16_t)s->W(2 * i + 1) * (int16_t)d->W(2 * i + 1);
435 }
436 }
437
438 #if SHIFT == 0
439 static inline int abs1(int a)
440 {
441 if (a < 0) {
442 return -a;
443 } else {
444 return a;
445 }
446 }
447 #endif
448 void glue(helper_psadbw, SUFFIX)(Reg *d, Reg *s)
449 {
450 unsigned int val;
451
452 val = 0;
453 val += abs1(d->B(0) - s->B(0));
454 val += abs1(d->B(1) - s->B(1));
455 val += abs1(d->B(2) - s->B(2));
456 val += abs1(d->B(3) - s->B(3));
457 val += abs1(d->B(4) - s->B(4));
458 val += abs1(d->B(5) - s->B(5));
459 val += abs1(d->B(6) - s->B(6));
460 val += abs1(d->B(7) - s->B(7));
461 d->Q(0) = val;
462 #if SHIFT == 1
463 val = 0;
464 val += abs1(d->B(8) - s->B(8));
465 val += abs1(d->B(9) - s->B(9));
466 val += abs1(d->B(10) - s->B(10));
467 val += abs1(d->B(11) - s->B(11));
468 val += abs1(d->B(12) - s->B(12));
469 val += abs1(d->B(13) - s->B(13));
470 val += abs1(d->B(14) - s->B(14));
471 val += abs1(d->B(15) - s->B(15));
472 d->Q(1) = val;
473 #endif
474 }
475
476 void glue(helper_maskmov, SUFFIX)(Reg *d, Reg *s, target_ulong a0)
477 {
478 int i;
479
480 for (i = 0; i < (8 << SHIFT); i++) {
481 if (s->B(i) & 0x80) {
482 stb(a0 + i, d->B(i));
483 }
484 }
485 }
486
487 void glue(helper_movl_mm_T0, SUFFIX)(Reg *d, uint32_t val)
488 {
489 d->L(0) = val;
490 d->L(1) = 0;
491 #if SHIFT == 1
492 d->Q(1) = 0;
493 #endif
494 }
495
496 #ifdef TARGET_X86_64
497 void glue(helper_movq_mm_T0, SUFFIX)(Reg *d, uint64_t val)
498 {
499 d->Q(0) = val;
500 #if SHIFT == 1
501 d->Q(1) = 0;
502 #endif
503 }
504 #endif
505
506 #if SHIFT == 0
507 void glue(helper_pshufw, SUFFIX)(Reg *d, Reg *s, int order)
508 {
509 Reg r;
510
511 r.W(0) = s->W(order & 3);
512 r.W(1) = s->W((order >> 2) & 3);
513 r.W(2) = s->W((order >> 4) & 3);
514 r.W(3) = s->W((order >> 6) & 3);
515 *d = r;
516 }
517 #else
518 void helper_shufps(Reg *d, Reg *s, int order)
519 {
520 Reg r;
521
522 r.L(0) = d->L(order & 3);
523 r.L(1) = d->L((order >> 2) & 3);
524 r.L(2) = s->L((order >> 4) & 3);
525 r.L(3) = s->L((order >> 6) & 3);
526 *d = r;
527 }
528
529 void helper_shufpd(Reg *d, Reg *s, int order)
530 {
531 Reg r;
532
533 r.Q(0) = d->Q(order & 1);
534 r.Q(1) = s->Q((order >> 1) & 1);
535 *d = r;
536 }
537
538 void glue(helper_pshufd, SUFFIX)(Reg *d, Reg *s, int order)
539 {
540 Reg r;
541
542 r.L(0) = s->L(order & 3);
543 r.L(1) = s->L((order >> 2) & 3);
544 r.L(2) = s->L((order >> 4) & 3);
545 r.L(3) = s->L((order >> 6) & 3);
546 *d = r;
547 }
548
549 void glue(helper_pshuflw, SUFFIX)(Reg *d, Reg *s, int order)
550 {
551 Reg r;
552
553 r.W(0) = s->W(order & 3);
554 r.W(1) = s->W((order >> 2) & 3);
555 r.W(2) = s->W((order >> 4) & 3);
556 r.W(3) = s->W((order >> 6) & 3);
557 r.Q(1) = s->Q(1);
558 *d = r;
559 }
560
561 void glue(helper_pshufhw, SUFFIX)(Reg *d, Reg *s, int order)
562 {
563 Reg r;
564
565 r.Q(0) = s->Q(0);
566 r.W(4) = s->W(4 + (order & 3));
567 r.W(5) = s->W(4 + ((order >> 2) & 3));
568 r.W(6) = s->W(4 + ((order >> 4) & 3));
569 r.W(7) = s->W(4 + ((order >> 6) & 3));
570 *d = r;
571 }
572 #endif
573
574 #if SHIFT == 1
575 /* FPU ops */
576 /* XXX: not accurate */
577
578 #define SSE_HELPER_S(name, F) \
579 void helper_ ## name ## ps(Reg *d, Reg *s) \
580 { \
581 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0)); \
582 d->XMM_S(1) = F(32, d->XMM_S(1), s->XMM_S(1)); \
583 d->XMM_S(2) = F(32, d->XMM_S(2), s->XMM_S(2)); \
584 d->XMM_S(3) = F(32, d->XMM_S(3), s->XMM_S(3)); \
585 } \
586 \
587 void helper_ ## name ## ss(Reg *d, Reg *s) \
588 { \
589 d->XMM_S(0) = F(32, d->XMM_S(0), s->XMM_S(0)); \
590 } \
591 \
592 void helper_ ## name ## pd(Reg *d, Reg *s) \
593 { \
594 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0)); \
595 d->XMM_D(1) = F(64, d->XMM_D(1), s->XMM_D(1)); \
596 } \
597 \
598 void helper_ ## name ## sd(Reg *d, Reg *s) \
599 { \
600 d->XMM_D(0) = F(64, d->XMM_D(0), s->XMM_D(0)); \
601 }
602
603 #define FPU_ADD(size, a, b) float ## size ## _add(a, b, &env->sse_status)
604 #define FPU_SUB(size, a, b) float ## size ## _sub(a, b, &env->sse_status)
605 #define FPU_MUL(size, a, b) float ## size ## _mul(a, b, &env->sse_status)
606 #define FPU_DIV(size, a, b) float ## size ## _div(a, b, &env->sse_status)
607 #define FPU_SQRT(size, a, b) float ## size ## _sqrt(b, &env->sse_status)
608
609 /* Note that the choice of comparison op here is important to get the
610 * special cases right: for min and max Intel specifies that (-0,0),
611 * (NaN, anything) and (anything, NaN) return the second argument.
612 */
613 #define FPU_MIN(size, a, b) \
614 (float ## size ## _lt(a, b, &env->sse_status) ? (a) : (b))
615 #define FPU_MAX(size, a, b) \
616 (float ## size ## _lt(b, a, &env->sse_status) ? (a) : (b))
617
618 SSE_HELPER_S(add, FPU_ADD)
619 SSE_HELPER_S(sub, FPU_SUB)
620 SSE_HELPER_S(mul, FPU_MUL)
621 SSE_HELPER_S(div, FPU_DIV)
622 SSE_HELPER_S(min, FPU_MIN)
623 SSE_HELPER_S(max, FPU_MAX)
624 SSE_HELPER_S(sqrt, FPU_SQRT)
625
626
627 /* float to float conversions */
628 void helper_cvtps2pd(Reg *d, Reg *s)
629 {
630 float32 s0, s1;
631
632 s0 = s->XMM_S(0);
633 s1 = s->XMM_S(1);
634 d->XMM_D(0) = float32_to_float64(s0, &env->sse_status);
635 d->XMM_D(1) = float32_to_float64(s1, &env->sse_status);
636 }
637
638 void helper_cvtpd2ps(Reg *d, Reg *s)
639 {
640 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
641 d->XMM_S(1) = float64_to_float32(s->XMM_D(1), &env->sse_status);
642 d->Q(1) = 0;
643 }
644
645 void helper_cvtss2sd(Reg *d, Reg *s)
646 {
647 d->XMM_D(0) = float32_to_float64(s->XMM_S(0), &env->sse_status);
648 }
649
650 void helper_cvtsd2ss(Reg *d, Reg *s)
651 {
652 d->XMM_S(0) = float64_to_float32(s->XMM_D(0), &env->sse_status);
653 }
654
655 /* integer to float */
656 void helper_cvtdq2ps(Reg *d, Reg *s)
657 {
658 d->XMM_S(0) = int32_to_float32(s->XMM_L(0), &env->sse_status);
659 d->XMM_S(1) = int32_to_float32(s->XMM_L(1), &env->sse_status);
660 d->XMM_S(2) = int32_to_float32(s->XMM_L(2), &env->sse_status);
661 d->XMM_S(3) = int32_to_float32(s->XMM_L(3), &env->sse_status);
662 }
663
664 void helper_cvtdq2pd(Reg *d, Reg *s)
665 {
666 int32_t l0, l1;
667
668 l0 = (int32_t)s->XMM_L(0);
669 l1 = (int32_t)s->XMM_L(1);
670 d->XMM_D(0) = int32_to_float64(l0, &env->sse_status);
671 d->XMM_D(1) = int32_to_float64(l1, &env->sse_status);
672 }
673
674 void helper_cvtpi2ps(XMMReg *d, MMXReg *s)
675 {
676 d->XMM_S(0) = int32_to_float32(s->MMX_L(0), &env->sse_status);
677 d->XMM_S(1) = int32_to_float32(s->MMX_L(1), &env->sse_status);
678 }
679
680 void helper_cvtpi2pd(XMMReg *d, MMXReg *s)
681 {
682 d->XMM_D(0) = int32_to_float64(s->MMX_L(0), &env->sse_status);
683 d->XMM_D(1) = int32_to_float64(s->MMX_L(1), &env->sse_status);
684 }
685
686 void helper_cvtsi2ss(XMMReg *d, uint32_t val)
687 {
688 d->XMM_S(0) = int32_to_float32(val, &env->sse_status);
689 }
690
691 void helper_cvtsi2sd(XMMReg *d, uint32_t val)
692 {
693 d->XMM_D(0) = int32_to_float64(val, &env->sse_status);
694 }
695
696 #ifdef TARGET_X86_64
697 void helper_cvtsq2ss(XMMReg *d, uint64_t val)
698 {
699 d->XMM_S(0) = int64_to_float32(val, &env->sse_status);
700 }
701
702 void helper_cvtsq2sd(XMMReg *d, uint64_t val)
703 {
704 d->XMM_D(0) = int64_to_float64(val, &env->sse_status);
705 }
706 #endif
707
708 /* float to integer */
709 void helper_cvtps2dq(XMMReg *d, XMMReg *s)
710 {
711 d->XMM_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
712 d->XMM_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
713 d->XMM_L(2) = float32_to_int32(s->XMM_S(2), &env->sse_status);
714 d->XMM_L(3) = float32_to_int32(s->XMM_S(3), &env->sse_status);
715 }
716
717 void helper_cvtpd2dq(XMMReg *d, XMMReg *s)
718 {
719 d->XMM_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
720 d->XMM_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
721 d->XMM_Q(1) = 0;
722 }
723
724 void helper_cvtps2pi(MMXReg *d, XMMReg *s)
725 {
726 d->MMX_L(0) = float32_to_int32(s->XMM_S(0), &env->sse_status);
727 d->MMX_L(1) = float32_to_int32(s->XMM_S(1), &env->sse_status);
728 }
729
730 void helper_cvtpd2pi(MMXReg *d, XMMReg *s)
731 {
732 d->MMX_L(0) = float64_to_int32(s->XMM_D(0), &env->sse_status);
733 d->MMX_L(1) = float64_to_int32(s->XMM_D(1), &env->sse_status);
734 }
735
736 int32_t helper_cvtss2si(XMMReg *s)
737 {
738 return float32_to_int32(s->XMM_S(0), &env->sse_status);
739 }
740
741 int32_t helper_cvtsd2si(XMMReg *s)
742 {
743 return float64_to_int32(s->XMM_D(0), &env->sse_status);
744 }
745
746 #ifdef TARGET_X86_64
747 int64_t helper_cvtss2sq(XMMReg *s)
748 {
749 return float32_to_int64(s->XMM_S(0), &env->sse_status);
750 }
751
752 int64_t helper_cvtsd2sq(XMMReg *s)
753 {
754 return float64_to_int64(s->XMM_D(0), &env->sse_status);
755 }
756 #endif
757
758 /* float to integer truncated */
759 void helper_cvttps2dq(XMMReg *d, XMMReg *s)
760 {
761 d->XMM_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
762 d->XMM_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
763 d->XMM_L(2) = float32_to_int32_round_to_zero(s->XMM_S(2), &env->sse_status);
764 d->XMM_L(3) = float32_to_int32_round_to_zero(s->XMM_S(3), &env->sse_status);
765 }
766
767 void helper_cvttpd2dq(XMMReg *d, XMMReg *s)
768 {
769 d->XMM_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
770 d->XMM_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
771 d->XMM_Q(1) = 0;
772 }
773
774 void helper_cvttps2pi(MMXReg *d, XMMReg *s)
775 {
776 d->MMX_L(0) = float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
777 d->MMX_L(1) = float32_to_int32_round_to_zero(s->XMM_S(1), &env->sse_status);
778 }
779
780 void helper_cvttpd2pi(MMXReg *d, XMMReg *s)
781 {
782 d->MMX_L(0) = float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
783 d->MMX_L(1) = float64_to_int32_round_to_zero(s->XMM_D(1), &env->sse_status);
784 }
785
786 int32_t helper_cvttss2si(XMMReg *s)
787 {
788 return float32_to_int32_round_to_zero(s->XMM_S(0), &env->sse_status);
789 }
790
791 int32_t helper_cvttsd2si(XMMReg *s)
792 {
793 return float64_to_int32_round_to_zero(s->XMM_D(0), &env->sse_status);
794 }
795
796 #ifdef TARGET_X86_64
797 int64_t helper_cvttss2sq(XMMReg *s)
798 {
799 return float32_to_int64_round_to_zero(s->XMM_S(0), &env->sse_status);
800 }
801
802 int64_t helper_cvttsd2sq(XMMReg *s)
803 {
804 return float64_to_int64_round_to_zero(s->XMM_D(0), &env->sse_status);
805 }
806 #endif
807
808 void helper_rsqrtps(XMMReg *d, XMMReg *s)
809 {
810 d->XMM_S(0) = float32_div(float32_one,
811 float32_sqrt(s->XMM_S(0), &env->sse_status),
812 &env->sse_status);
813 d->XMM_S(1) = float32_div(float32_one,
814 float32_sqrt(s->XMM_S(1), &env->sse_status),
815 &env->sse_status);
816 d->XMM_S(2) = float32_div(float32_one,
817 float32_sqrt(s->XMM_S(2), &env->sse_status),
818 &env->sse_status);
819 d->XMM_S(3) = float32_div(float32_one,
820 float32_sqrt(s->XMM_S(3), &env->sse_status),
821 &env->sse_status);
822 }
823
824 void helper_rsqrtss(XMMReg *d, XMMReg *s)
825 {
826 d->XMM_S(0) = float32_div(float32_one,
827 float32_sqrt(s->XMM_S(0), &env->sse_status),
828 &env->sse_status);
829 }
830
831 void helper_rcpps(XMMReg *d, XMMReg *s)
832 {
833 d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
834 d->XMM_S(1) = float32_div(float32_one, s->XMM_S(1), &env->sse_status);
835 d->XMM_S(2) = float32_div(float32_one, s->XMM_S(2), &env->sse_status);
836 d->XMM_S(3) = float32_div(float32_one, s->XMM_S(3), &env->sse_status);
837 }
838
839 void helper_rcpss(XMMReg *d, XMMReg *s)
840 {
841 d->XMM_S(0) = float32_div(float32_one, s->XMM_S(0), &env->sse_status);
842 }
843
844 static inline uint64_t helper_extrq(uint64_t src, int shift, int len)
845 {
846 uint64_t mask;
847
848 if (len == 0) {
849 mask = ~0LL;
850 } else {
851 mask = (1ULL << len) - 1;
852 }
853 return (src >> shift) & mask;
854 }
855
856 void helper_extrq_r(XMMReg *d, XMMReg *s)
857 {
858 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), s->XMM_B(1), s->XMM_B(0));
859 }
860
861 void helper_extrq_i(XMMReg *d, int index, int length)
862 {
863 d->XMM_Q(0) = helper_extrq(d->XMM_Q(0), index, length);
864 }
865
866 static inline uint64_t helper_insertq(uint64_t src, int shift, int len)
867 {
868 uint64_t mask;
869
870 if (len == 0) {
871 mask = ~0ULL;
872 } else {
873 mask = (1ULL << len) - 1;
874 }
875 return (src & ~(mask << shift)) | ((src & mask) << shift);
876 }
877
878 void helper_insertq_r(XMMReg *d, XMMReg *s)
879 {
880 d->XMM_Q(0) = helper_insertq(s->XMM_Q(0), s->XMM_B(9), s->XMM_B(8));
881 }
882
883 void helper_insertq_i(XMMReg *d, int index, int length)
884 {
885 d->XMM_Q(0) = helper_insertq(d->XMM_Q(0), index, length);
886 }
887
888 void helper_haddps(XMMReg *d, XMMReg *s)
889 {
890 XMMReg r;
891
892 r.XMM_S(0) = float32_add(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
893 r.XMM_S(1) = float32_add(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
894 r.XMM_S(2) = float32_add(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
895 r.XMM_S(3) = float32_add(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
896 *d = r;
897 }
898
899 void helper_haddpd(XMMReg *d, XMMReg *s)
900 {
901 XMMReg r;
902
903 r.XMM_D(0) = float64_add(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
904 r.XMM_D(1) = float64_add(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
905 *d = r;
906 }
907
908 void helper_hsubps(XMMReg *d, XMMReg *s)
909 {
910 XMMReg r;
911
912 r.XMM_S(0) = float32_sub(d->XMM_S(0), d->XMM_S(1), &env->sse_status);
913 r.XMM_S(1) = float32_sub(d->XMM_S(2), d->XMM_S(3), &env->sse_status);
914 r.XMM_S(2) = float32_sub(s->XMM_S(0), s->XMM_S(1), &env->sse_status);
915 r.XMM_S(3) = float32_sub(s->XMM_S(2), s->XMM_S(3), &env->sse_status);
916 *d = r;
917 }
918
919 void helper_hsubpd(XMMReg *d, XMMReg *s)
920 {
921 XMMReg r;
922
923 r.XMM_D(0) = float64_sub(d->XMM_D(0), d->XMM_D(1), &env->sse_status);
924 r.XMM_D(1) = float64_sub(s->XMM_D(0), s->XMM_D(1), &env->sse_status);
925 *d = r;
926 }
927
928 void helper_addsubps(XMMReg *d, XMMReg *s)
929 {
930 d->XMM_S(0) = float32_sub(d->XMM_S(0), s->XMM_S(0), &env->sse_status);
931 d->XMM_S(1) = float32_add(d->XMM_S(1), s->XMM_S(1), &env->sse_status);
932 d->XMM_S(2) = float32_sub(d->XMM_S(2), s->XMM_S(2), &env->sse_status);
933 d->XMM_S(3) = float32_add(d->XMM_S(3), s->XMM_S(3), &env->sse_status);
934 }
935
936 void helper_addsubpd(XMMReg *d, XMMReg *s)
937 {
938 d->XMM_D(0) = float64_sub(d->XMM_D(0), s->XMM_D(0), &env->sse_status);
939 d->XMM_D(1) = float64_add(d->XMM_D(1), s->XMM_D(1), &env->sse_status);
940 }
941
942 /* XXX: unordered */
943 #define SSE_HELPER_CMP(name, F) \
944 void helper_ ## name ## ps(Reg *d, Reg *s) \
945 { \
946 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0)); \
947 d->XMM_L(1) = F(32, d->XMM_S(1), s->XMM_S(1)); \
948 d->XMM_L(2) = F(32, d->XMM_S(2), s->XMM_S(2)); \
949 d->XMM_L(3) = F(32, d->XMM_S(3), s->XMM_S(3)); \
950 } \
951 \
952 void helper_ ## name ## ss(Reg *d, Reg *s) \
953 { \
954 d->XMM_L(0) = F(32, d->XMM_S(0), s->XMM_S(0)); \
955 } \
956 \
957 void helper_ ## name ## pd(Reg *d, Reg *s) \
958 { \
959 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0)); \
960 d->XMM_Q(1) = F(64, d->XMM_D(1), s->XMM_D(1)); \
961 } \
962 \
963 void helper_ ## name ## sd(Reg *d, Reg *s) \
964 { \
965 d->XMM_Q(0) = F(64, d->XMM_D(0), s->XMM_D(0)); \
966 }
967
968 #define FPU_CMPEQ(size, a, b) \
969 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? -1 : 0)
970 #define FPU_CMPLT(size, a, b) \
971 (float ## size ## _lt(a, b, &env->sse_status) ? -1 : 0)
972 #define FPU_CMPLE(size, a, b) \
973 (float ## size ## _le(a, b, &env->sse_status) ? -1 : 0)
974 #define FPU_CMPUNORD(size, a, b) \
975 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? -1 : 0)
976 #define FPU_CMPNEQ(size, a, b) \
977 (float ## size ## _eq_quiet(a, b, &env->sse_status) ? 0 : -1)
978 #define FPU_CMPNLT(size, a, b) \
979 (float ## size ## _lt(a, b, &env->sse_status) ? 0 : -1)
980 #define FPU_CMPNLE(size, a, b) \
981 (float ## size ## _le(a, b, &env->sse_status) ? 0 : -1)
982 #define FPU_CMPORD(size, a, b) \
983 (float ## size ## _unordered_quiet(a, b, &env->sse_status) ? 0 : -1)
984
985 SSE_HELPER_CMP(cmpeq, FPU_CMPEQ)
986 SSE_HELPER_CMP(cmplt, FPU_CMPLT)
987 SSE_HELPER_CMP(cmple, FPU_CMPLE)
988 SSE_HELPER_CMP(cmpunord, FPU_CMPUNORD)
989 SSE_HELPER_CMP(cmpneq, FPU_CMPNEQ)
990 SSE_HELPER_CMP(cmpnlt, FPU_CMPNLT)
991 SSE_HELPER_CMP(cmpnle, FPU_CMPNLE)
992 SSE_HELPER_CMP(cmpord, FPU_CMPORD)
993
994 static const int comis_eflags[4] = {CC_C, CC_Z, 0, CC_Z | CC_P | CC_C};
995
996 void helper_ucomiss(Reg *d, Reg *s)
997 {
998 int ret;
999 float32 s0, s1;
1000
1001 s0 = d->XMM_S(0);
1002 s1 = s->XMM_S(0);
1003 ret = float32_compare_quiet(s0, s1, &env->sse_status);
1004 CC_SRC = comis_eflags[ret + 1];
1005 }
1006
1007 void helper_comiss(Reg *d, Reg *s)
1008 {
1009 int ret;
1010 float32 s0, s1;
1011
1012 s0 = d->XMM_S(0);
1013 s1 = s->XMM_S(0);
1014 ret = float32_compare(s0, s1, &env->sse_status);
1015 CC_SRC = comis_eflags[ret + 1];
1016 }
1017
1018 void helper_ucomisd(Reg *d, Reg *s)
1019 {
1020 int ret;
1021 float64 d0, d1;
1022
1023 d0 = d->XMM_D(0);
1024 d1 = s->XMM_D(0);
1025 ret = float64_compare_quiet(d0, d1, &env->sse_status);
1026 CC_SRC = comis_eflags[ret + 1];
1027 }
1028
1029 void helper_comisd(Reg *d, Reg *s)
1030 {
1031 int ret;
1032 float64 d0, d1;
1033
1034 d0 = d->XMM_D(0);
1035 d1 = s->XMM_D(0);
1036 ret = float64_compare(d0, d1, &env->sse_status);
1037 CC_SRC = comis_eflags[ret + 1];
1038 }
1039
1040 uint32_t helper_movmskps(Reg *s)
1041 {
1042 int b0, b1, b2, b3;
1043
1044 b0 = s->XMM_L(0) >> 31;
1045 b1 = s->XMM_L(1) >> 31;
1046 b2 = s->XMM_L(2) >> 31;
1047 b3 = s->XMM_L(3) >> 31;
1048 return b0 | (b1 << 1) | (b2 << 2) | (b3 << 3);
1049 }
1050
1051 uint32_t helper_movmskpd(Reg *s)
1052 {
1053 int b0, b1;
1054
1055 b0 = s->XMM_L(1) >> 31;
1056 b1 = s->XMM_L(3) >> 31;
1057 return b0 | (b1 << 1);
1058 }
1059
1060 #endif
1061
1062 uint32_t glue(helper_pmovmskb, SUFFIX)(Reg *s)
1063 {
1064 uint32_t val;
1065
1066 val = 0;
1067 val |= (s->B(0) >> 7);
1068 val |= (s->B(1) >> 6) & 0x02;
1069 val |= (s->B(2) >> 5) & 0x04;
1070 val |= (s->B(3) >> 4) & 0x08;
1071 val |= (s->B(4) >> 3) & 0x10;
1072 val |= (s->B(5) >> 2) & 0x20;
1073 val |= (s->B(6) >> 1) & 0x40;
1074 val |= (s->B(7)) & 0x80;
1075 #if SHIFT == 1
1076 val |= (s->B(8) << 1) & 0x0100;
1077 val |= (s->B(9) << 2) & 0x0200;
1078 val |= (s->B(10) << 3) & 0x0400;
1079 val |= (s->B(11) << 4) & 0x0800;
1080 val |= (s->B(12) << 5) & 0x1000;
1081 val |= (s->B(13) << 6) & 0x2000;
1082 val |= (s->B(14) << 7) & 0x4000;
1083 val |= (s->B(15) << 8) & 0x8000;
1084 #endif
1085 return val;
1086 }
1087
1088 void glue(helper_packsswb, SUFFIX)(Reg *d, Reg *s)
1089 {
1090 Reg r;
1091
1092 r.B(0) = satsb((int16_t)d->W(0));
1093 r.B(1) = satsb((int16_t)d->W(1));
1094 r.B(2) = satsb((int16_t)d->W(2));
1095 r.B(3) = satsb((int16_t)d->W(3));
1096 #if SHIFT == 1
1097 r.B(4) = satsb((int16_t)d->W(4));
1098 r.B(5) = satsb((int16_t)d->W(5));
1099 r.B(6) = satsb((int16_t)d->W(6));
1100 r.B(7) = satsb((int16_t)d->W(7));
1101 #endif
1102 r.B((4 << SHIFT) + 0) = satsb((int16_t)s->W(0));
1103 r.B((4 << SHIFT) + 1) = satsb((int16_t)s->W(1));
1104 r.B((4 << SHIFT) + 2) = satsb((int16_t)s->W(2));
1105 r.B((4 << SHIFT) + 3) = satsb((int16_t)s->W(3));
1106 #if SHIFT == 1
1107 r.B(12) = satsb((int16_t)s->W(4));
1108 r.B(13) = satsb((int16_t)s->W(5));
1109 r.B(14) = satsb((int16_t)s->W(6));
1110 r.B(15) = satsb((int16_t)s->W(7));
1111 #endif
1112 *d = r;
1113 }
1114
1115 void glue(helper_packuswb, SUFFIX)(Reg *d, Reg *s)
1116 {
1117 Reg r;
1118
1119 r.B(0) = satub((int16_t)d->W(0));
1120 r.B(1) = satub((int16_t)d->W(1));
1121 r.B(2) = satub((int16_t)d->W(2));
1122 r.B(3) = satub((int16_t)d->W(3));
1123 #if SHIFT == 1
1124 r.B(4) = satub((int16_t)d->W(4));
1125 r.B(5) = satub((int16_t)d->W(5));
1126 r.B(6) = satub((int16_t)d->W(6));
1127 r.B(7) = satub((int16_t)d->W(7));
1128 #endif
1129 r.B((4 << SHIFT) + 0) = satub((int16_t)s->W(0));
1130 r.B((4 << SHIFT) + 1) = satub((int16_t)s->W(1));
1131 r.B((4 << SHIFT) + 2) = satub((int16_t)s->W(2));
1132 r.B((4 << SHIFT) + 3) = satub((int16_t)s->W(3));
1133 #if SHIFT == 1
1134 r.B(12) = satub((int16_t)s->W(4));
1135 r.B(13) = satub((int16_t)s->W(5));
1136 r.B(14) = satub((int16_t)s->W(6));
1137 r.B(15) = satub((int16_t)s->W(7));
1138 #endif
1139 *d = r;
1140 }
1141
1142 void glue(helper_packssdw, SUFFIX)(Reg *d, Reg *s)
1143 {
1144 Reg r;
1145
1146 r.W(0) = satsw(d->L(0));
1147 r.W(1) = satsw(d->L(1));
1148 #if SHIFT == 1
1149 r.W(2) = satsw(d->L(2));
1150 r.W(3) = satsw(d->L(3));
1151 #endif
1152 r.W((2 << SHIFT) + 0) = satsw(s->L(0));
1153 r.W((2 << SHIFT) + 1) = satsw(s->L(1));
1154 #if SHIFT == 1
1155 r.W(6) = satsw(s->L(2));
1156 r.W(7) = satsw(s->L(3));
1157 #endif
1158 *d = r;
1159 }
1160
1161 #define UNPCK_OP(base_name, base) \
1162 \
1163 void glue(helper_punpck ## base_name ## bw, SUFFIX)(Reg *d, Reg *s) \
1164 { \
1165 Reg r; \
1166 \
1167 r.B(0) = d->B((base << (SHIFT + 2)) + 0); \
1168 r.B(1) = s->B((base << (SHIFT + 2)) + 0); \
1169 r.B(2) = d->B((base << (SHIFT + 2)) + 1); \
1170 r.B(3) = s->B((base << (SHIFT + 2)) + 1); \
1171 r.B(4) = d->B((base << (SHIFT + 2)) + 2); \
1172 r.B(5) = s->B((base << (SHIFT + 2)) + 2); \
1173 r.B(6) = d->B((base << (SHIFT + 2)) + 3); \
1174 r.B(7) = s->B((base << (SHIFT + 2)) + 3); \
1175 XMM_ONLY( \
1176 r.B(8) = d->B((base << (SHIFT + 2)) + 4); \
1177 r.B(9) = s->B((base << (SHIFT + 2)) + 4); \
1178 r.B(10) = d->B((base << (SHIFT + 2)) + 5); \
1179 r.B(11) = s->B((base << (SHIFT + 2)) + 5); \
1180 r.B(12) = d->B((base << (SHIFT + 2)) + 6); \
1181 r.B(13) = s->B((base << (SHIFT + 2)) + 6); \
1182 r.B(14) = d->B((base << (SHIFT + 2)) + 7); \
1183 r.B(15) = s->B((base << (SHIFT + 2)) + 7); \
1184 ) \
1185 *d = r; \
1186 } \
1187 \
1188 void glue(helper_punpck ## base_name ## wd, SUFFIX)(Reg *d, Reg *s) \
1189 { \
1190 Reg r; \
1191 \
1192 r.W(0) = d->W((base << (SHIFT + 1)) + 0); \
1193 r.W(1) = s->W((base << (SHIFT + 1)) + 0); \
1194 r.W(2) = d->W((base << (SHIFT + 1)) + 1); \
1195 r.W(3) = s->W((base << (SHIFT + 1)) + 1); \
1196 XMM_ONLY( \
1197 r.W(4) = d->W((base << (SHIFT + 1)) + 2); \
1198 r.W(5) = s->W((base << (SHIFT + 1)) + 2); \
1199 r.W(6) = d->W((base << (SHIFT + 1)) + 3); \
1200 r.W(7) = s->W((base << (SHIFT + 1)) + 3); \
1201 ) \
1202 *d = r; \
1203 } \
1204 \
1205 void glue(helper_punpck ## base_name ## dq, SUFFIX)(Reg *d, Reg *s) \
1206 { \
1207 Reg r; \
1208 \
1209 r.L(0) = d->L((base << SHIFT) + 0); \
1210 r.L(1) = s->L((base << SHIFT) + 0); \
1211 XMM_ONLY( \
1212 r.L(2) = d->L((base << SHIFT) + 1); \
1213 r.L(3) = s->L((base << SHIFT) + 1); \
1214 ) \
1215 *d = r; \
1216 } \
1217 \
1218 XMM_ONLY( \
1219 void glue(helper_punpck ## base_name ## qdq, SUFFIX)(Reg *d, \
1220 Reg *s) \
1221 { \
1222 Reg r; \
1223 \
1224 r.Q(0) = d->Q(base); \
1225 r.Q(1) = s->Q(base); \
1226 *d = r; \
1227 } \
1228 )
1229
1230 UNPCK_OP(l, 0)
1231 UNPCK_OP(h, 1)
1232
1233 /* 3DNow! float ops */
1234 #if SHIFT == 0
1235 void helper_pi2fd(MMXReg *d, MMXReg *s)
1236 {
1237 d->MMX_S(0) = int32_to_float32(s->MMX_L(0), &env->mmx_status);
1238 d->MMX_S(1) = int32_to_float32(s->MMX_L(1), &env->mmx_status);
1239 }
1240
1241 void helper_pi2fw(MMXReg *d, MMXReg *s)
1242 {
1243 d->MMX_S(0) = int32_to_float32((int16_t)s->MMX_W(0), &env->mmx_status);
1244 d->MMX_S(1) = int32_to_float32((int16_t)s->MMX_W(2), &env->mmx_status);
1245 }
1246
1247 void helper_pf2id(MMXReg *d, MMXReg *s)
1248 {
1249 d->MMX_L(0) = float32_to_int32_round_to_zero(s->MMX_S(0), &env->mmx_status);
1250 d->MMX_L(1) = float32_to_int32_round_to_zero(s->MMX_S(1), &env->mmx_status);
1251 }
1252
1253 void helper_pf2iw(MMXReg *d, MMXReg *s)
1254 {
1255 d->MMX_L(0) = satsw(float32_to_int32_round_to_zero(s->MMX_S(0),
1256 &env->mmx_status));
1257 d->MMX_L(1) = satsw(float32_to_int32_round_to_zero(s->MMX_S(1),
1258 &env->mmx_status));
1259 }
1260
1261 void helper_pfacc(MMXReg *d, MMXReg *s)
1262 {
1263 MMXReg r;
1264
1265 r.MMX_S(0) = float32_add(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1266 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1267 *d = r;
1268 }
1269
1270 void helper_pfadd(MMXReg *d, MMXReg *s)
1271 {
1272 d->MMX_S(0) = float32_add(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1273 d->MMX_S(1) = float32_add(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1274 }
1275
1276 void helper_pfcmpeq(MMXReg *d, MMXReg *s)
1277 {
1278 d->MMX_L(0) = float32_eq_quiet(d->MMX_S(0), s->MMX_S(0),
1279 &env->mmx_status) ? -1 : 0;
1280 d->MMX_L(1) = float32_eq_quiet(d->MMX_S(1), s->MMX_S(1),
1281 &env->mmx_status) ? -1 : 0;
1282 }
1283
1284 void helper_pfcmpge(MMXReg *d, MMXReg *s)
1285 {
1286 d->MMX_L(0) = float32_le(s->MMX_S(0), d->MMX_S(0),
1287 &env->mmx_status) ? -1 : 0;
1288 d->MMX_L(1) = float32_le(s->MMX_S(1), d->MMX_S(1),
1289 &env->mmx_status) ? -1 : 0;
1290 }
1291
1292 void helper_pfcmpgt(MMXReg *d, MMXReg *s)
1293 {
1294 d->MMX_L(0) = float32_lt(s->MMX_S(0), d->MMX_S(0),
1295 &env->mmx_status) ? -1 : 0;
1296 d->MMX_L(1) = float32_lt(s->MMX_S(1), d->MMX_S(1),
1297 &env->mmx_status) ? -1 : 0;
1298 }
1299
1300 void helper_pfmax(MMXReg *d, MMXReg *s)
1301 {
1302 if (float32_lt(d->MMX_S(0), s->MMX_S(0), &env->mmx_status)) {
1303 d->MMX_S(0) = s->MMX_S(0);
1304 }
1305 if (float32_lt(d->MMX_S(1), s->MMX_S(1), &env->mmx_status)) {
1306 d->MMX_S(1) = s->MMX_S(1);
1307 }
1308 }
1309
1310 void helper_pfmin(MMXReg *d, MMXReg *s)
1311 {
1312 if (float32_lt(s->MMX_S(0), d->MMX_S(0), &env->mmx_status)) {
1313 d->MMX_S(0) = s->MMX_S(0);
1314 }
1315 if (float32_lt(s->MMX_S(1), d->MMX_S(1), &env->mmx_status)) {
1316 d->MMX_S(1) = s->MMX_S(1);
1317 }
1318 }
1319
1320 void helper_pfmul(MMXReg *d, MMXReg *s)
1321 {
1322 d->MMX_S(0) = float32_mul(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1323 d->MMX_S(1) = float32_mul(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1324 }
1325
1326 void helper_pfnacc(MMXReg *d, MMXReg *s)
1327 {
1328 MMXReg r;
1329
1330 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1331 r.MMX_S(1) = float32_sub(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1332 *d = r;
1333 }
1334
1335 void helper_pfpnacc(MMXReg *d, MMXReg *s)
1336 {
1337 MMXReg r;
1338
1339 r.MMX_S(0) = float32_sub(d->MMX_S(0), d->MMX_S(1), &env->mmx_status);
1340 r.MMX_S(1) = float32_add(s->MMX_S(0), s->MMX_S(1), &env->mmx_status);
1341 *d = r;
1342 }
1343
1344 void helper_pfrcp(MMXReg *d, MMXReg *s)
1345 {
1346 d->MMX_S(0) = float32_div(float32_one, s->MMX_S(0), &env->mmx_status);
1347 d->MMX_S(1) = d->MMX_S(0);
1348 }
1349
1350 void helper_pfrsqrt(MMXReg *d, MMXReg *s)
1351 {
1352 d->MMX_L(1) = s->MMX_L(0) & 0x7fffffff;
1353 d->MMX_S(1) = float32_div(float32_one,
1354 float32_sqrt(d->MMX_S(1), &env->mmx_status),
1355 &env->mmx_status);
1356 d->MMX_L(1) |= s->MMX_L(0) & 0x80000000;
1357 d->MMX_L(0) = d->MMX_L(1);
1358 }
1359
1360 void helper_pfsub(MMXReg *d, MMXReg *s)
1361 {
1362 d->MMX_S(0) = float32_sub(d->MMX_S(0), s->MMX_S(0), &env->mmx_status);
1363 d->MMX_S(1) = float32_sub(d->MMX_S(1), s->MMX_S(1), &env->mmx_status);
1364 }
1365
1366 void helper_pfsubr(MMXReg *d, MMXReg *s)
1367 {
1368 d->MMX_S(0) = float32_sub(s->MMX_S(0), d->MMX_S(0), &env->mmx_status);
1369 d->MMX_S(1) = float32_sub(s->MMX_S(1), d->MMX_S(1), &env->mmx_status);
1370 }
1371
1372 void helper_pswapd(MMXReg *d, MMXReg *s)
1373 {
1374 MMXReg r;
1375
1376 r.MMX_L(0) = s->MMX_L(1);
1377 r.MMX_L(1) = s->MMX_L(0);
1378 *d = r;
1379 }
1380 #endif
1381
1382 /* SSSE3 op helpers */
1383 void glue(helper_pshufb, SUFFIX)(Reg *d, Reg *s)
1384 {
1385 int i;
1386 Reg r;
1387
1388 for (i = 0; i < (8 << SHIFT); i++) {
1389 r.B(i) = (s->B(i) & 0x80) ? 0 : (d->B(s->B(i) & ((8 << SHIFT) - 1)));
1390 }
1391
1392 *d = r;
1393 }
1394
1395 void glue(helper_phaddw, SUFFIX)(Reg *d, Reg *s)
1396 {
1397 d->W(0) = (int16_t)d->W(0) + (int16_t)d->W(1);
1398 d->W(1) = (int16_t)d->W(2) + (int16_t)d->W(3);
1399 XMM_ONLY(d->W(2) = (int16_t)d->W(4) + (int16_t)d->W(5));
1400 XMM_ONLY(d->W(3) = (int16_t)d->W(6) + (int16_t)d->W(7));
1401 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) + (int16_t)s->W(1);
1402 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) + (int16_t)s->W(3);
1403 XMM_ONLY(d->W(6) = (int16_t)s->W(4) + (int16_t)s->W(5));
1404 XMM_ONLY(d->W(7) = (int16_t)s->W(6) + (int16_t)s->W(7));
1405 }
1406
1407 void glue(helper_phaddd, SUFFIX)(Reg *d, Reg *s)
1408 {
1409 d->L(0) = (int32_t)d->L(0) + (int32_t)d->L(1);
1410 XMM_ONLY(d->L(1) = (int32_t)d->L(2) + (int32_t)d->L(3));
1411 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) + (int32_t)s->L(1);
1412 XMM_ONLY(d->L(3) = (int32_t)s->L(2) + (int32_t)s->L(3));
1413 }
1414
1415 void glue(helper_phaddsw, SUFFIX)(Reg *d, Reg *s)
1416 {
1417 d->W(0) = satsw((int16_t)d->W(0) + (int16_t)d->W(1));
1418 d->W(1) = satsw((int16_t)d->W(2) + (int16_t)d->W(3));
1419 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) + (int16_t)d->W(5)));
1420 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) + (int16_t)d->W(7)));
1421 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) + (int16_t)s->W(1));
1422 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) + (int16_t)s->W(3));
1423 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) + (int16_t)s->W(5)));
1424 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) + (int16_t)s->W(7)));
1425 }
1426
1427 void glue(helper_pmaddubsw, SUFFIX)(Reg *d, Reg *s)
1428 {
1429 d->W(0) = satsw((int8_t)s->B(0) * (uint8_t)d->B(0) +
1430 (int8_t)s->B(1) * (uint8_t)d->B(1));
1431 d->W(1) = satsw((int8_t)s->B(2) * (uint8_t)d->B(2) +
1432 (int8_t)s->B(3) * (uint8_t)d->B(3));
1433 d->W(2) = satsw((int8_t)s->B(4) * (uint8_t)d->B(4) +
1434 (int8_t)s->B(5) * (uint8_t)d->B(5));
1435 d->W(3) = satsw((int8_t)s->B(6) * (uint8_t)d->B(6) +
1436 (int8_t)s->B(7) * (uint8_t)d->B(7));
1437 #if SHIFT == 1
1438 d->W(4) = satsw((int8_t)s->B(8) * (uint8_t)d->B(8) +
1439 (int8_t)s->B(9) * (uint8_t)d->B(9));
1440 d->W(5) = satsw((int8_t)s->B(10) * (uint8_t)d->B(10) +
1441 (int8_t)s->B(11) * (uint8_t)d->B(11));
1442 d->W(6) = satsw((int8_t)s->B(12) * (uint8_t)d->B(12) +
1443 (int8_t)s->B(13) * (uint8_t)d->B(13));
1444 d->W(7) = satsw((int8_t)s->B(14) * (uint8_t)d->B(14) +
1445 (int8_t)s->B(15) * (uint8_t)d->B(15));
1446 #endif
1447 }
1448
1449 void glue(helper_phsubw, SUFFIX)(Reg *d, Reg *s)
1450 {
1451 d->W(0) = (int16_t)d->W(0) - (int16_t)d->W(1);
1452 d->W(1) = (int16_t)d->W(2) - (int16_t)d->W(3);
1453 XMM_ONLY(d->W(2) = (int16_t)d->W(4) - (int16_t)d->W(5));
1454 XMM_ONLY(d->W(3) = (int16_t)d->W(6) - (int16_t)d->W(7));
1455 d->W((2 << SHIFT) + 0) = (int16_t)s->W(0) - (int16_t)s->W(1);
1456 d->W((2 << SHIFT) + 1) = (int16_t)s->W(2) - (int16_t)s->W(3);
1457 XMM_ONLY(d->W(6) = (int16_t)s->W(4) - (int16_t)s->W(5));
1458 XMM_ONLY(d->W(7) = (int16_t)s->W(6) - (int16_t)s->W(7));
1459 }
1460
1461 void glue(helper_phsubd, SUFFIX)(Reg *d, Reg *s)
1462 {
1463 d->L(0) = (int32_t)d->L(0) - (int32_t)d->L(1);
1464 XMM_ONLY(d->L(1) = (int32_t)d->L(2) - (int32_t)d->L(3));
1465 d->L((1 << SHIFT) + 0) = (int32_t)s->L(0) - (int32_t)s->L(1);
1466 XMM_ONLY(d->L(3) = (int32_t)s->L(2) - (int32_t)s->L(3));
1467 }
1468
1469 void glue(helper_phsubsw, SUFFIX)(Reg *d, Reg *s)
1470 {
1471 d->W(0) = satsw((int16_t)d->W(0) - (int16_t)d->W(1));
1472 d->W(1) = satsw((int16_t)d->W(2) - (int16_t)d->W(3));
1473 XMM_ONLY(d->W(2) = satsw((int16_t)d->W(4) - (int16_t)d->W(5)));
1474 XMM_ONLY(d->W(3) = satsw((int16_t)d->W(6) - (int16_t)d->W(7)));
1475 d->W((2 << SHIFT) + 0) = satsw((int16_t)s->W(0) - (int16_t)s->W(1));
1476 d->W((2 << SHIFT) + 1) = satsw((int16_t)s->W(2) - (int16_t)s->W(3));
1477 XMM_ONLY(d->W(6) = satsw((int16_t)s->W(4) - (int16_t)s->W(5)));
1478 XMM_ONLY(d->W(7) = satsw((int16_t)s->W(6) - (int16_t)s->W(7)));
1479 }
1480
1481 #define FABSB(_, x) (x > INT8_MAX ? -(int8_t)x : x)
1482 #define FABSW(_, x) (x > INT16_MAX ? -(int16_t)x : x)
1483 #define FABSL(_, x) (x > INT32_MAX ? -(int32_t)x : x)
1484 SSE_HELPER_B(helper_pabsb, FABSB)
1485 SSE_HELPER_W(helper_pabsw, FABSW)
1486 SSE_HELPER_L(helper_pabsd, FABSL)
1487
1488 #define FMULHRSW(d, s) (((int16_t) d * (int16_t)s + 0x4000) >> 15)
1489 SSE_HELPER_W(helper_pmulhrsw, FMULHRSW)
1490
1491 #define FSIGNB(d, s) (s <= INT8_MAX ? s ? d : 0 : -(int8_t)d)
1492 #define FSIGNW(d, s) (s <= INT16_MAX ? s ? d : 0 : -(int16_t)d)
1493 #define FSIGNL(d, s) (s <= INT32_MAX ? s ? d : 0 : -(int32_t)d)
1494 SSE_HELPER_B(helper_psignb, FSIGNB)
1495 SSE_HELPER_W(helper_psignw, FSIGNW)
1496 SSE_HELPER_L(helper_psignd, FSIGNL)
1497
1498 void glue(helper_palignr, SUFFIX)(Reg *d, Reg *s, int32_t shift)
1499 {
1500 Reg r;
1501
1502 /* XXX could be checked during translation */
1503 if (shift >= (16 << SHIFT)) {
1504 r.Q(0) = 0;
1505 XMM_ONLY(r.Q(1) = 0);
1506 } else {
1507 shift <<= 3;
1508 #define SHR(v, i) (i < 64 && i > -64 ? i > 0 ? v >> (i) : (v << -(i)) : 0)
1509 #if SHIFT == 0
1510 r.Q(0) = SHR(s->Q(0), shift - 0) |
1511 SHR(d->Q(0), shift - 64);
1512 #else
1513 r.Q(0) = SHR(s->Q(0), shift - 0) |
1514 SHR(s->Q(1), shift - 64) |
1515 SHR(d->Q(0), shift - 128) |
1516 SHR(d->Q(1), shift - 192);
1517 r.Q(1) = SHR(s->Q(0), shift + 64) |
1518 SHR(s->Q(1), shift - 0) |
1519 SHR(d->Q(0), shift - 64) |
1520 SHR(d->Q(1), shift - 128);
1521 #endif
1522 #undef SHR
1523 }
1524
1525 *d = r;
1526 }
1527
1528 #define XMM0 (env->xmm_regs[0])
1529
1530 #if SHIFT == 1
1531 #define SSE_HELPER_V(name, elem, num, F) \
1532 void glue(name, SUFFIX)(Reg *d, Reg *s) \
1533 { \
1534 d->elem(0) = F(d->elem(0), s->elem(0), XMM0.elem(0)); \
1535 d->elem(1) = F(d->elem(1), s->elem(1), XMM0.elem(1)); \
1536 if (num > 2) { \
1537 d->elem(2) = F(d->elem(2), s->elem(2), XMM0.elem(2)); \
1538 d->elem(3) = F(d->elem(3), s->elem(3), XMM0.elem(3)); \
1539 if (num > 4) { \
1540 d->elem(4) = F(d->elem(4), s->elem(4), XMM0.elem(4)); \
1541 d->elem(5) = F(d->elem(5), s->elem(5), XMM0.elem(5)); \
1542 d->elem(6) = F(d->elem(6), s->elem(6), XMM0.elem(6)); \
1543 d->elem(7) = F(d->elem(7), s->elem(7), XMM0.elem(7)); \
1544 if (num > 8) { \
1545 d->elem(8) = F(d->elem(8), s->elem(8), XMM0.elem(8)); \
1546 d->elem(9) = F(d->elem(9), s->elem(9), XMM0.elem(9)); \
1547 d->elem(10) = F(d->elem(10), s->elem(10), XMM0.elem(10)); \
1548 d->elem(11) = F(d->elem(11), s->elem(11), XMM0.elem(11)); \
1549 d->elem(12) = F(d->elem(12), s->elem(12), XMM0.elem(12)); \
1550 d->elem(13) = F(d->elem(13), s->elem(13), XMM0.elem(13)); \
1551 d->elem(14) = F(d->elem(14), s->elem(14), XMM0.elem(14)); \
1552 d->elem(15) = F(d->elem(15), s->elem(15), XMM0.elem(15)); \
1553 } \
1554 } \
1555 } \
1556 }
1557
1558 #define SSE_HELPER_I(name, elem, num, F) \
1559 void glue(name, SUFFIX)(Reg *d, Reg *s, uint32_t imm) \
1560 { \
1561 d->elem(0) = F(d->elem(0), s->elem(0), ((imm >> 0) & 1)); \
1562 d->elem(1) = F(d->elem(1), s->elem(1), ((imm >> 1) & 1)); \
1563 if (num > 2) { \
1564 d->elem(2) = F(d->elem(2), s->elem(2), ((imm >> 2) & 1)); \
1565 d->elem(3) = F(d->elem(3), s->elem(3), ((imm >> 3) & 1)); \
1566 if (num > 4) { \
1567 d->elem(4) = F(d->elem(4), s->elem(4), ((imm >> 4) & 1)); \
1568 d->elem(5) = F(d->elem(5), s->elem(5), ((imm >> 5) & 1)); \
1569 d->elem(6) = F(d->elem(6), s->elem(6), ((imm >> 6) & 1)); \
1570 d->elem(7) = F(d->elem(7), s->elem(7), ((imm >> 7) & 1)); \
1571 if (num > 8) { \
1572 d->elem(8) = F(d->elem(8), s->elem(8), ((imm >> 8) & 1)); \
1573 d->elem(9) = F(d->elem(9), s->elem(9), ((imm >> 9) & 1)); \
1574 d->elem(10) = F(d->elem(10), s->elem(10), \
1575 ((imm >> 10) & 1)); \
1576 d->elem(11) = F(d->elem(11), s->elem(11), \
1577 ((imm >> 11) & 1)); \
1578 d->elem(12) = F(d->elem(12), s->elem(12), \
1579 ((imm >> 12) & 1)); \
1580 d->elem(13) = F(d->elem(13), s->elem(13), \
1581 ((imm >> 13) & 1)); \
1582 d->elem(14) = F(d->elem(14), s->elem(14), \
1583 ((imm >> 14) & 1)); \
1584 d->elem(15) = F(d->elem(15), s->elem(15), \
1585 ((imm >> 15) & 1)); \
1586 } \
1587 } \
1588 } \
1589 }
1590
1591 /* SSE4.1 op helpers */
1592 #define FBLENDVB(d, s, m) ((m & 0x80) ? s : d)
1593 #define FBLENDVPS(d, s, m) ((m & 0x80000000) ? s : d)
1594 #define FBLENDVPD(d, s, m) ((m & 0x8000000000000000LL) ? s : d)
1595 SSE_HELPER_V(helper_pblendvb, B, 16, FBLENDVB)
1596 SSE_HELPER_V(helper_blendvps, L, 4, FBLENDVPS)
1597 SSE_HELPER_V(helper_blendvpd, Q, 2, FBLENDVPD)
1598
1599 void glue(helper_ptest, SUFFIX)(Reg *d, Reg *s)
1600 {
1601 uint64_t zf = (s->Q(0) & d->Q(0)) | (s->Q(1) & d->Q(1));
1602 uint64_t cf = (s->Q(0) & ~d->Q(0)) | (s->Q(1) & ~d->Q(1));
1603
1604 CC_SRC = (zf ? 0 : CC_Z) | (cf ? 0 : CC_C);
1605 }
1606
1607 #define SSE_HELPER_F(name, elem, num, F) \
1608 void glue(name, SUFFIX)(Reg *d, Reg *s) \
1609 { \
1610 d->elem(0) = F(0); \
1611 d->elem(1) = F(1); \
1612 if (num > 2) { \
1613 d->elem(2) = F(2); \
1614 d->elem(3) = F(3); \
1615 if (num > 4) { \
1616 d->elem(4) = F(4); \
1617 d->elem(5) = F(5); \
1618 d->elem(6) = F(6); \
1619 d->elem(7) = F(7); \
1620 } \
1621 } \
1622 }
1623
1624 SSE_HELPER_F(helper_pmovsxbw, W, 8, (int8_t) s->B)
1625 SSE_HELPER_F(helper_pmovsxbd, L, 4, (int8_t) s->B)
1626 SSE_HELPER_F(helper_pmovsxbq, Q, 2, (int8_t) s->B)
1627 SSE_HELPER_F(helper_pmovsxwd, L, 4, (int16_t) s->W)
1628 SSE_HELPER_F(helper_pmovsxwq, Q, 2, (int16_t) s->W)
1629 SSE_HELPER_F(helper_pmovsxdq, Q, 2, (int32_t) s->L)
1630 SSE_HELPER_F(helper_pmovzxbw, W, 8, s->B)
1631 SSE_HELPER_F(helper_pmovzxbd, L, 4, s->B)
1632 SSE_HELPER_F(helper_pmovzxbq, Q, 2, s->B)
1633 SSE_HELPER_F(helper_pmovzxwd, L, 4, s->W)
1634 SSE_HELPER_F(helper_pmovzxwq, Q, 2, s->W)
1635 SSE_HELPER_F(helper_pmovzxdq, Q, 2, s->L)
1636
1637 void glue(helper_pmuldq, SUFFIX)(Reg *d, Reg *s)
1638 {
1639 d->Q(0) = (int64_t)(int32_t) d->L(0) * (int32_t) s->L(0);
1640 d->Q(1) = (int64_t)(int32_t) d->L(2) * (int32_t) s->L(2);
1641 }
1642
1643 #define FCMPEQQ(d, s) (d == s ? -1 : 0)
1644 SSE_HELPER_Q(helper_pcmpeqq, FCMPEQQ)
1645
1646 void glue(helper_packusdw, SUFFIX)(Reg *d, Reg *s)
1647 {
1648 d->W(0) = satuw((int32_t) d->L(0));
1649 d->W(1) = satuw((int32_t) d->L(1));
1650 d->W(2) = satuw((int32_t) d->L(2));
1651 d->W(3) = satuw((int32_t) d->L(3));
1652 d->W(4) = satuw((int32_t) s->L(0));
1653 d->W(5) = satuw((int32_t) s->L(1));
1654 d->W(6) = satuw((int32_t) s->L(2));
1655 d->W(7) = satuw((int32_t) s->L(3));
1656 }
1657
1658 #define FMINSB(d, s) MIN((int8_t)d, (int8_t)s)
1659 #define FMINSD(d, s) MIN((int32_t)d, (int32_t)s)
1660 #define FMAXSB(d, s) MAX((int8_t)d, (int8_t)s)
1661 #define FMAXSD(d, s) MAX((int32_t)d, (int32_t)s)
1662 SSE_HELPER_B(helper_pminsb, FMINSB)
1663 SSE_HELPER_L(helper_pminsd, FMINSD)
1664 SSE_HELPER_W(helper_pminuw, MIN)
1665 SSE_HELPER_L(helper_pminud, MIN)
1666 SSE_HELPER_B(helper_pmaxsb, FMAXSB)
1667 SSE_HELPER_L(helper_pmaxsd, FMAXSD)
1668 SSE_HELPER_W(helper_pmaxuw, MAX)
1669 SSE_HELPER_L(helper_pmaxud, MAX)
1670
1671 #define FMULLD(d, s) ((int32_t)d * (int32_t)s)
1672 SSE_HELPER_L(helper_pmulld, FMULLD)
1673
1674 void glue(helper_phminposuw, SUFFIX)(Reg *d, Reg *s)
1675 {
1676 int idx = 0;
1677
1678 if (s->W(1) < s->W(idx)) {
1679 idx = 1;
1680 }
1681 if (s->W(2) < s->W(idx)) {
1682 idx = 2;
1683 }
1684 if (s->W(3) < s->W(idx)) {
1685 idx = 3;
1686 }
1687 if (s->W(4) < s->W(idx)) {
1688 idx = 4;
1689 }
1690 if (s->W(5) < s->W(idx)) {
1691 idx = 5;
1692 }
1693 if (s->W(6) < s->W(idx)) {
1694 idx = 6;
1695 }
1696 if (s->W(7) < s->W(idx)) {
1697 idx = 7;
1698 }
1699
1700 d->Q(1) = 0;
1701 d->L(1) = 0;
1702 d->W(1) = idx;
1703 d->W(0) = s->W(idx);
1704 }
1705
1706 void glue(helper_roundps, SUFFIX)(Reg *d, Reg *s, uint32_t mode)
1707 {
1708 signed char prev_rounding_mode;
1709
1710 prev_rounding_mode = env->sse_status.float_rounding_mode;
1711 if (!(mode & (1 << 2))) {
1712 switch (mode & 3) {
1713 case 0:
1714 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1715 break;
1716 case 1:
1717 set_float_rounding_mode(float_round_down, &env->sse_status);
1718 break;
1719 case 2:
1720 set_float_rounding_mode(float_round_up, &env->sse_status);
1721 break;
1722 case 3:
1723 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1724 break;
1725 }
1726 }
1727
1728 d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1729 d->XMM_S(1) = float32_round_to_int(s->XMM_S(1), &env->sse_status);
1730 d->XMM_S(2) = float32_round_to_int(s->XMM_S(2), &env->sse_status);
1731 d->XMM_S(3) = float32_round_to_int(s->XMM_S(3), &env->sse_status);
1732
1733 #if 0 /* TODO */
1734 if (mode & (1 << 3)) {
1735 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1736 ~float_flag_inexact,
1737 &env->sse_status);
1738 }
1739 #endif
1740 env->sse_status.float_rounding_mode = prev_rounding_mode;
1741 }
1742
1743 void glue(helper_roundpd, SUFFIX)(Reg *d, Reg *s, uint32_t mode)
1744 {
1745 signed char prev_rounding_mode;
1746
1747 prev_rounding_mode = env->sse_status.float_rounding_mode;
1748 if (!(mode & (1 << 2))) {
1749 switch (mode & 3) {
1750 case 0:
1751 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1752 break;
1753 case 1:
1754 set_float_rounding_mode(float_round_down, &env->sse_status);
1755 break;
1756 case 2:
1757 set_float_rounding_mode(float_round_up, &env->sse_status);
1758 break;
1759 case 3:
1760 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1761 break;
1762 }
1763 }
1764
1765 d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1766 d->XMM_D(1) = float64_round_to_int(s->XMM_D(1), &env->sse_status);
1767
1768 #if 0 /* TODO */
1769 if (mode & (1 << 3)) {
1770 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1771 ~float_flag_inexact,
1772 &env->sse_status);
1773 }
1774 #endif
1775 env->sse_status.float_rounding_mode = prev_rounding_mode;
1776 }
1777
1778 void glue(helper_roundss, SUFFIX)(Reg *d, Reg *s, uint32_t mode)
1779 {
1780 signed char prev_rounding_mode;
1781
1782 prev_rounding_mode = env->sse_status.float_rounding_mode;
1783 if (!(mode & (1 << 2))) {
1784 switch (mode & 3) {
1785 case 0:
1786 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1787 break;
1788 case 1:
1789 set_float_rounding_mode(float_round_down, &env->sse_status);
1790 break;
1791 case 2:
1792 set_float_rounding_mode(float_round_up, &env->sse_status);
1793 break;
1794 case 3:
1795 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1796 break;
1797 }
1798 }
1799
1800 d->XMM_S(0) = float32_round_to_int(s->XMM_S(0), &env->sse_status);
1801
1802 #if 0 /* TODO */
1803 if (mode & (1 << 3)) {
1804 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1805 ~float_flag_inexact,
1806 &env->sse_status);
1807 }
1808 #endif
1809 env->sse_status.float_rounding_mode = prev_rounding_mode;
1810 }
1811
1812 void glue(helper_roundsd, SUFFIX)(Reg *d, Reg *s, uint32_t mode)
1813 {
1814 signed char prev_rounding_mode;
1815
1816 prev_rounding_mode = env->sse_status.float_rounding_mode;
1817 if (!(mode & (1 << 2))) {
1818 switch (mode & 3) {
1819 case 0:
1820 set_float_rounding_mode(float_round_nearest_even, &env->sse_status);
1821 break;
1822 case 1:
1823 set_float_rounding_mode(float_round_down, &env->sse_status);
1824 break;
1825 case 2:
1826 set_float_rounding_mode(float_round_up, &env->sse_status);
1827 break;
1828 case 3:
1829 set_float_rounding_mode(float_round_to_zero, &env->sse_status);
1830 break;
1831 }
1832 }
1833
1834 d->XMM_D(0) = float64_round_to_int(s->XMM_D(0), &env->sse_status);
1835
1836 #if 0 /* TODO */
1837 if (mode & (1 << 3)) {
1838 set_float_exception_flags(get_float_exception_flags(&env->sse_status) &
1839 ~float_flag_inexact,
1840 &env->sse_status);
1841 }
1842 #endif
1843 env->sse_status.float_rounding_mode = prev_rounding_mode;
1844 }
1845
1846 #define FBLENDP(d, s, m) (m ? s : d)
1847 SSE_HELPER_I(helper_blendps, L, 4, FBLENDP)
1848 SSE_HELPER_I(helper_blendpd, Q, 2, FBLENDP)
1849 SSE_HELPER_I(helper_pblendw, W, 8, FBLENDP)
1850
1851 void glue(helper_dpps, SUFFIX)(Reg *d, Reg *s, uint32_t mask)
1852 {
1853 float32 iresult = float32_zero;
1854
1855 if (mask & (1 << 4)) {
1856 iresult = float32_add(iresult,
1857 float32_mul(d->XMM_S(0), s->XMM_S(0),
1858 &env->sse_status),
1859 &env->sse_status);
1860 }
1861 if (mask & (1 << 5)) {
1862 iresult = float32_add(iresult,
1863 float32_mul(d->XMM_S(1), s->XMM_S(1),
1864 &env->sse_status),
1865 &env->sse_status);
1866 }
1867 if (mask & (1 << 6)) {
1868 iresult = float32_add(iresult,
1869 float32_mul(d->XMM_S(2), s->XMM_S(2),
1870 &env->sse_status),
1871 &env->sse_status);
1872 }
1873 if (mask & (1 << 7)) {
1874 iresult = float32_add(iresult,
1875 float32_mul(d->XMM_S(3), s->XMM_S(3),
1876 &env->sse_status),
1877 &env->sse_status);
1878 }
1879 d->XMM_S(0) = (mask & (1 << 0)) ? iresult : float32_zero;
1880 d->XMM_S(1) = (mask & (1 << 1)) ? iresult : float32_zero;
1881 d->XMM_S(2) = (mask & (1 << 2)) ? iresult : float32_zero;
1882 d->XMM_S(3) = (mask & (1 << 3)) ? iresult : float32_zero;
1883 }
1884
1885 void glue(helper_dppd, SUFFIX)(Reg *d, Reg *s, uint32_t mask)
1886 {
1887 float64 iresult = float64_zero;
1888
1889 if (mask & (1 << 4)) {
1890 iresult = float64_add(iresult,
1891 float64_mul(d->XMM_D(0), s->XMM_D(0),
1892 &env->sse_status),
1893 &env->sse_status);
1894 }
1895 if (mask & (1 << 5)) {
1896 iresult = float64_add(iresult,
1897 float64_mul(d->XMM_D(1), s->XMM_D(1),
1898 &env->sse_status),
1899 &env->sse_status);
1900 }
1901 d->XMM_D(0) = (mask & (1 << 0)) ? iresult : float64_zero;
1902 d->XMM_D(1) = (mask & (1 << 1)) ? iresult : float64_zero;
1903 }
1904
1905 void glue(helper_mpsadbw, SUFFIX)(Reg *d, Reg *s, uint32_t offset)
1906 {
1907 int s0 = (offset & 3) << 2;
1908 int d0 = (offset & 4) << 0;
1909 int i;
1910 Reg r;
1911
1912 for (i = 0; i < 8; i++, d0++) {
1913 r.W(i) = 0;
1914 r.W(i) += abs1(d->B(d0 + 0) - s->B(s0 + 0));
1915 r.W(i) += abs1(d->B(d0 + 1) - s->B(s0 + 1));
1916 r.W(i) += abs1(d->B(d0 + 2) - s->B(s0 + 2));
1917 r.W(i) += abs1(d->B(d0 + 3) - s->B(s0 + 3));
1918 }
1919
1920 *d = r;
1921 }
1922
1923 /* SSE4.2 op helpers */
1924 /* it's unclear whether signed or unsigned */
1925 #define FCMPGTQ(d, s) (d > s ? -1 : 0)
1926 SSE_HELPER_Q(helper_pcmpgtq, FCMPGTQ)
1927
1928 static inline int pcmp_elen(int reg, uint32_t ctrl)
1929 {
1930 int val;
1931
1932 /* Presence of REX.W is indicated by a bit higher than 7 set */
1933 if (ctrl >> 8) {
1934 val = abs1((int64_t)env->regs[reg]);
1935 } else {
1936 val = abs1((int32_t)env->regs[reg]);
1937 }
1938
1939 if (ctrl & 1) {
1940 if (val > 8) {
1941 return 8;
1942 }
1943 } else {
1944 if (val > 16) {
1945 return 16;
1946 }
1947 }
1948 return val;
1949 }
1950
1951 static inline int pcmp_ilen(Reg *r, uint8_t ctrl)
1952 {
1953 int val = 0;
1954
1955 if (ctrl & 1) {
1956 while (val < 8 && r->W(val)) {
1957 val++;
1958 }
1959 } else {
1960 while (val < 16 && r->B(val)) {
1961 val++;
1962 }
1963 }
1964
1965 return val;
1966 }
1967
1968 static inline int pcmp_val(Reg *r, uint8_t ctrl, int i)
1969 {
1970 switch ((ctrl >> 0) & 3) {
1971 case 0:
1972 return r->B(i);
1973 case 1:
1974 return r->W(i);
1975 case 2:
1976 return (int8_t)r->B(i);
1977 case 3:
1978 default:
1979 return (int16_t)r->W(i);
1980 }
1981 }
1982
1983 static inline unsigned pcmpxstrx(Reg *d, Reg *s,
1984 int8_t ctrl, int valids, int validd)
1985 {
1986 unsigned int res = 0;
1987 int v;
1988 int j, i;
1989 int upper = (ctrl & 1) ? 7 : 15;
1990
1991 valids--;
1992 validd--;
1993
1994 CC_SRC = (valids < upper ? CC_Z : 0) | (validd < upper ? CC_S : 0);
1995
1996 switch ((ctrl >> 2) & 3) {
1997 case 0:
1998 for (j = valids; j >= 0; j--) {
1999 res <<= 1;
2000 v = pcmp_val(s, ctrl, j);
2001 for (i = validd; i >= 0; i--) {
2002 res |= (v == pcmp_val(d, ctrl, i));
2003 }
2004 }
2005 break;
2006 case 1:
2007 for (j = valids; j >= 0; j--) {
2008 res <<= 1;
2009 v = pcmp_val(s, ctrl, j);
2010 for (i = ((validd - 1) | 1); i >= 0; i -= 2) {
2011 res |= (pcmp_val(d, ctrl, i - 0) <= v &&
2012 pcmp_val(d, ctrl, i - 1) >= v);
2013 }
2014 }
2015 break;
2016 case 2:
2017 res = (2 << (upper - MAX(valids, validd))) - 1;
2018 res <<= MAX(valids, validd) - MIN(valids, validd);
2019 for (i = MIN(valids, validd); i >= 0; i--) {
2020 res <<= 1;
2021 v = pcmp_val(s, ctrl, i);
2022 res |= (v == pcmp_val(d, ctrl, i));
2023 }
2024 break;
2025 case 3:
2026 for (j = valids - validd; j >= 0; j--) {
2027 res <<= 1;
2028 res |= 1;
2029 for (i = MIN(upper - j, validd); i >= 0; i--) {
2030 res &= (pcmp_val(s, ctrl, i + j) == pcmp_val(d, ctrl, i));
2031 }
2032 }
2033 break;
2034 }
2035
2036 switch ((ctrl >> 4) & 3) {
2037 case 1:
2038 res ^= (2 << upper) - 1;
2039 break;
2040 case 3:
2041 res ^= (2 << valids) - 1;
2042 break;
2043 }
2044
2045 if (res) {
2046 CC_SRC |= CC_C;
2047 }
2048 if (res & 1) {
2049 CC_SRC |= CC_O;
2050 }
2051
2052 return res;
2053 }
2054
2055 static inline int rffs1(unsigned int val)
2056 {
2057 int ret = 1, hi;
2058
2059 for (hi = sizeof(val) * 4; hi; hi /= 2) {
2060 if (val >> hi) {
2061 val >>= hi;
2062 ret += hi;
2063 }
2064 }
2065
2066 return ret;
2067 }
2068
2069 static inline int ffs1(unsigned int val)
2070 {
2071 int ret = 1, hi;
2072
2073 for (hi = sizeof(val) * 4; hi; hi /= 2) {
2074 if (val << hi) {
2075 val <<= hi;
2076 ret += hi;
2077 }
2078 }
2079
2080 return ret;
2081 }
2082
2083 void glue(helper_pcmpestri, SUFFIX)(Reg *d, Reg *s, uint32_t ctrl)
2084 {
2085 unsigned int res = pcmpxstrx(d, s, ctrl,
2086 pcmp_elen(R_EDX, ctrl),
2087 pcmp_elen(R_EAX, ctrl));
2088
2089 if (res) {
2090 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2091 } else {
2092 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2093 }
2094 }
2095
2096 void glue(helper_pcmpestrm, SUFFIX)(Reg *d, Reg *s, uint32_t ctrl)
2097 {
2098 int i;
2099 unsigned int res = pcmpxstrx(d, s, ctrl,
2100 pcmp_elen(R_EDX, ctrl),
2101 pcmp_elen(R_EAX, ctrl));
2102
2103 if ((ctrl >> 6) & 1) {
2104 if (ctrl & 1) {
2105 for (i = 0; i < 8; i++, res >>= 1) {
2106 d->W(i) = (res & 1) ? ~0 : 0;
2107 }
2108 } else {
2109 for (i = 0; i < 16; i++, res >>= 1) {
2110 d->B(i) = (res & 1) ? ~0 : 0;
2111 }
2112 }
2113 } else {
2114 d->Q(1) = 0;
2115 d->Q(0) = res;
2116 }
2117 }
2118
2119 void glue(helper_pcmpistri, SUFFIX)(Reg *d, Reg *s, uint32_t ctrl)
2120 {
2121 unsigned int res = pcmpxstrx(d, s, ctrl,
2122 pcmp_ilen(s, ctrl),
2123 pcmp_ilen(d, ctrl));
2124
2125 if (res) {
2126 env->regs[R_ECX] = ((ctrl & (1 << 6)) ? rffs1 : ffs1)(res) - 1;
2127 } else {
2128 env->regs[R_ECX] = 16 >> (ctrl & (1 << 0));
2129 }
2130 }
2131
2132 void glue(helper_pcmpistrm, SUFFIX)(Reg *d, Reg *s, uint32_t ctrl)
2133 {
2134 int i;
2135 unsigned int res = pcmpxstrx(d, s, ctrl,
2136 pcmp_ilen(s, ctrl),
2137 pcmp_ilen(d, ctrl));
2138
2139 if ((ctrl >> 6) & 1) {
2140 if (ctrl & 1) {
2141 for (i = 0; i < 8; i++, res >>= 1) {
2142 d->W(i) = (res & 1) ? ~0 : 0;
2143 }
2144 } else {
2145 for (i = 0; i < 16; i++, res >>= 1) {
2146 d->B(i) = (res & 1) ? ~0 : 0;
2147 }
2148 }
2149 } else {
2150 d->Q(1) = 0;
2151 d->Q(0) = res;
2152 }
2153 }
2154
2155 #define CRCPOLY 0x1edc6f41
2156 #define CRCPOLY_BITREV 0x82f63b78
2157 target_ulong helper_crc32(uint32_t crc1, target_ulong msg, uint32_t len)
2158 {
2159 target_ulong crc = (msg & ((target_ulong) -1 >>
2160 (TARGET_LONG_BITS - len))) ^ crc1;
2161
2162 while (len--) {
2163 crc = (crc >> 1) ^ ((crc & 1) ? CRCPOLY_BITREV : 0);
2164 }
2165
2166 return crc;
2167 }
2168
2169 #define POPMASK(i) ((target_ulong) -1 / ((1LL << (1 << i)) + 1))
2170 #define POPCOUNT(n, i) ((n & POPMASK(i)) + ((n >> (1 << i)) & POPMASK(i)))
2171 target_ulong helper_popcnt(target_ulong n, uint32_t type)
2172 {
2173 CC_SRC = n ? 0 : CC_Z;
2174
2175 n = POPCOUNT(n, 0);
2176 n = POPCOUNT(n, 1);
2177 n = POPCOUNT(n, 2);
2178 n = POPCOUNT(n, 3);
2179 if (type == 1) {
2180 return n & 0xff;
2181 }
2182
2183 n = POPCOUNT(n, 4);
2184 #ifndef TARGET_X86_64
2185 return n;
2186 #else
2187 if (type == 2) {
2188 return n & 0xff;
2189 }
2190
2191 return POPCOUNT(n, 5);
2192 #endif
2193 }
2194 #endif
2195
2196 #undef SHIFT
2197 #undef XMM_ONLY
2198 #undef Reg
2199 #undef B
2200 #undef W
2201 #undef L
2202 #undef Q
2203 #undef SUFFIX