]> git.proxmox.com Git - qemu.git/blob - target-microblaze/op_helper.c
microblaze: Improve subkc
[qemu.git] / target-microblaze / op_helper.c
1 /*
2 * Microblaze helper routines.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <assert.h>
21 #include "exec.h"
22 #include "helper.h"
23 #include "host-utils.h"
24
25 #define D(x)
26
27 #if !defined(CONFIG_USER_ONLY)
28 #define MMUSUFFIX _mmu
29 #define SHIFT 0
30 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
33 #define SHIFT 2
34 #include "softmmu_template.h"
35 #define SHIFT 3
36 #include "softmmu_template.h"
37
38 /* Try to fill the TLB and return an exception if error. If retaddr is
39 NULL, it means that the function was called in C code (i.e. not
40 from generated code or from helper.c) */
41 /* XXX: fix it to restore all registers */
42 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
43 {
44 TranslationBlock *tb;
45 CPUState *saved_env;
46 unsigned long pc;
47 int ret;
48
49 /* XXX: hack to restore env in all cases, even if not called from
50 generated code */
51 saved_env = env;
52 env = cpu_single_env;
53
54 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
55 if (unlikely(ret)) {
56 if (retaddr) {
57 /* now we have a real cpu fault */
58 pc = (unsigned long)retaddr;
59 tb = tb_find_pc(pc);
60 if (tb) {
61 /* the PC is inside the translated code. It means that we have
62 a virtual CPU fault */
63 cpu_restore_state(tb, env, pc, NULL);
64 }
65 }
66 cpu_loop_exit();
67 }
68 env = saved_env;
69 }
70 #endif
71
72 void helper_raise_exception(uint32_t index)
73 {
74 env->exception_index = index;
75 cpu_loop_exit();
76 }
77
78 void helper_debug(void)
79 {
80 int i;
81
82 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
83 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
84 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
85 env->debug, env->imm, env->iflags);
86 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
87 env->btaken, env->btarget,
88 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
89 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
90 (env->sregs[SR_MSR] & MSR_EIP),
91 (env->sregs[SR_MSR] & MSR_IE));
92 for (i = 0; i < 32; i++) {
93 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
94 if ((i + 1) % 4 == 0)
95 qemu_log("\n");
96 }
97 qemu_log("\n\n");
98 }
99
100 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
101 {
102 uint32_t cout = 0;
103
104 if ((b == ~0) && cin)
105 cout = 1;
106 else if ((~0 - a) < (b + cin))
107 cout = 1;
108 return cout;
109 }
110
111 uint32_t helper_cmp(uint32_t a, uint32_t b)
112 {
113 uint32_t t;
114
115 t = b + ~a + 1;
116 if ((b & 0x80000000) ^ (a & 0x80000000))
117 t = (t & 0x7fffffff) | (b & 0x80000000);
118 return t;
119 }
120
121 uint32_t helper_cmpu(uint32_t a, uint32_t b)
122 {
123 uint32_t t;
124
125 t = b + ~a + 1;
126 if ((b & 0x80000000) ^ (a & 0x80000000))
127 t = (t & 0x7fffffff) | (a & 0x80000000);
128 return t;
129 }
130
131 uint32_t helper_addkc(uint32_t a, uint32_t b, uint32_t cf)
132 {
133 uint32_t d, ncf;
134
135 d = a + b + cf;
136
137 ncf = compute_carry(a, b, cf);
138 return ncf;
139 }
140
141 static inline int div_prepare(uint32_t a, uint32_t b)
142 {
143 if (b == 0) {
144 env->sregs[SR_MSR] |= MSR_DZ;
145
146 if ((env->sregs[SR_MSR] & MSR_EE)
147 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
148 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
149 helper_raise_exception(EXCP_HW_EXCP);
150 }
151 return 0;
152 }
153 env->sregs[SR_MSR] &= ~MSR_DZ;
154 return 1;
155 }
156
157 uint32_t helper_divs(uint32_t a, uint32_t b)
158 {
159 if (!div_prepare(a, b))
160 return 0;
161 return (int32_t)a / (int32_t)b;
162 }
163
164 uint32_t helper_divu(uint32_t a, uint32_t b)
165 {
166 if (!div_prepare(a, b))
167 return 0;
168 return a / b;
169 }
170
171 /* raise FPU exception. */
172 static void raise_fpu_exception(void)
173 {
174 env->sregs[SR_ESR] = ESR_EC_FPU;
175 helper_raise_exception(EXCP_HW_EXCP);
176 }
177
178 static void update_fpu_flags(int flags)
179 {
180 int raise = 0;
181
182 if (flags & float_flag_invalid) {
183 env->sregs[SR_FSR] |= FSR_IO;
184 raise = 1;
185 }
186 if (flags & float_flag_divbyzero) {
187 env->sregs[SR_FSR] |= FSR_DZ;
188 raise = 1;
189 }
190 if (flags & float_flag_overflow) {
191 env->sregs[SR_FSR] |= FSR_OF;
192 raise = 1;
193 }
194 if (flags & float_flag_underflow) {
195 env->sregs[SR_FSR] |= FSR_UF;
196 raise = 1;
197 }
198 if (raise
199 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
200 && (env->sregs[SR_MSR] & MSR_EE)) {
201 raise_fpu_exception();
202 }
203 }
204
205 uint32_t helper_fadd(uint32_t a, uint32_t b)
206 {
207 CPU_FloatU fd, fa, fb;
208 int flags;
209
210 set_float_exception_flags(0, &env->fp_status);
211 fa.l = a;
212 fb.l = b;
213 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
214
215 flags = get_float_exception_flags(&env->fp_status);
216 update_fpu_flags(flags);
217 return fd.l;
218 }
219
220 uint32_t helper_frsub(uint32_t a, uint32_t b)
221 {
222 CPU_FloatU fd, fa, fb;
223 int flags;
224
225 set_float_exception_flags(0, &env->fp_status);
226 fa.l = a;
227 fb.l = b;
228 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
229 flags = get_float_exception_flags(&env->fp_status);
230 update_fpu_flags(flags);
231 return fd.l;
232 }
233
234 uint32_t helper_fmul(uint32_t a, uint32_t b)
235 {
236 CPU_FloatU fd, fa, fb;
237 int flags;
238
239 set_float_exception_flags(0, &env->fp_status);
240 fa.l = a;
241 fb.l = b;
242 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
243 flags = get_float_exception_flags(&env->fp_status);
244 update_fpu_flags(flags);
245
246 return fd.l;
247 }
248
249 uint32_t helper_fdiv(uint32_t a, uint32_t b)
250 {
251 CPU_FloatU fd, fa, fb;
252 int flags;
253
254 set_float_exception_flags(0, &env->fp_status);
255 fa.l = a;
256 fb.l = b;
257 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
258 flags = get_float_exception_flags(&env->fp_status);
259 update_fpu_flags(flags);
260
261 return fd.l;
262 }
263
264 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
265 {
266 CPU_FloatU fa, fb;
267 uint32_t r = 0;
268
269 fa.l = a;
270 fb.l = b;
271
272 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
273 update_fpu_flags(float_flag_invalid);
274 r = 1;
275 }
276
277 if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
278 r = 1;
279 }
280
281 return r;
282 }
283
284 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
285 {
286 CPU_FloatU fa, fb;
287 int r;
288 int flags;
289
290 set_float_exception_flags(0, &env->fp_status);
291 fa.l = a;
292 fb.l = b;
293 r = float32_lt(fb.f, fa.f, &env->fp_status);
294 flags = get_float_exception_flags(&env->fp_status);
295 update_fpu_flags(flags & float_flag_invalid);
296
297 return r;
298 }
299
300 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
301 {
302 CPU_FloatU fa, fb;
303 int flags;
304 int r;
305
306 set_float_exception_flags(0, &env->fp_status);
307 fa.l = a;
308 fb.l = b;
309 r = float32_eq(fa.f, fb.f, &env->fp_status);
310 flags = get_float_exception_flags(&env->fp_status);
311 update_fpu_flags(flags & float_flag_invalid);
312
313 return r;
314 }
315
316 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
317 {
318 CPU_FloatU fa, fb;
319 int flags;
320 int r;
321
322 fa.l = a;
323 fb.l = b;
324 set_float_exception_flags(0, &env->fp_status);
325 r = float32_le(fa.f, fb.f, &env->fp_status);
326 flags = get_float_exception_flags(&env->fp_status);
327 update_fpu_flags(flags & float_flag_invalid);
328
329
330 return r;
331 }
332
333 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
334 {
335 CPU_FloatU fa, fb;
336 int flags, r;
337
338 fa.l = a;
339 fb.l = b;
340 set_float_exception_flags(0, &env->fp_status);
341 r = float32_lt(fa.f, fb.f, &env->fp_status);
342 flags = get_float_exception_flags(&env->fp_status);
343 update_fpu_flags(flags & float_flag_invalid);
344 return r;
345 }
346
347 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
348 {
349 CPU_FloatU fa, fb;
350 int flags, r;
351
352 fa.l = a;
353 fb.l = b;
354 set_float_exception_flags(0, &env->fp_status);
355 r = !float32_eq(fa.f, fb.f, &env->fp_status);
356 flags = get_float_exception_flags(&env->fp_status);
357 update_fpu_flags(flags & float_flag_invalid);
358
359 return r;
360 }
361
362 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
363 {
364 CPU_FloatU fa, fb;
365 int flags, r;
366
367 fa.l = a;
368 fb.l = b;
369 set_float_exception_flags(0, &env->fp_status);
370 r = !float32_lt(fa.f, fb.f, &env->fp_status);
371 flags = get_float_exception_flags(&env->fp_status);
372 update_fpu_flags(flags & float_flag_invalid);
373
374 return r;
375 }
376
377 uint32_t helper_flt(uint32_t a)
378 {
379 CPU_FloatU fd, fa;
380
381 fa.l = a;
382 fd.f = int32_to_float32(fa.l, &env->fp_status);
383 return fd.l;
384 }
385
386 uint32_t helper_fint(uint32_t a)
387 {
388 CPU_FloatU fa;
389 uint32_t r;
390 int flags;
391
392 set_float_exception_flags(0, &env->fp_status);
393 fa.l = a;
394 r = float32_to_int32(fa.f, &env->fp_status);
395 flags = get_float_exception_flags(&env->fp_status);
396 update_fpu_flags(flags);
397
398 return r;
399 }
400
401 uint32_t helper_fsqrt(uint32_t a)
402 {
403 CPU_FloatU fd, fa;
404 int flags;
405
406 set_float_exception_flags(0, &env->fp_status);
407 fa.l = a;
408 fd.l = float32_sqrt(fa.f, &env->fp_status);
409 flags = get_float_exception_flags(&env->fp_status);
410 update_fpu_flags(flags);
411
412 return fd.l;
413 }
414
415 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
416 {
417 unsigned int i;
418 uint32_t mask = 0xff000000;
419
420 for (i = 0; i < 4; i++) {
421 if ((a & mask) == (b & mask))
422 return i + 1;
423 mask >>= 8;
424 }
425 return 0;
426 }
427
428 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
429 {
430 if (addr & mask) {
431 qemu_log_mask(CPU_LOG_INT,
432 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
433 addr, mask, wr, dr);
434 env->sregs[SR_EAR] = addr;
435 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
436 | (dr & 31) << 5;
437 if (mask == 3) {
438 env->sregs[SR_ESR] |= 1 << 11;
439 }
440 if (!(env->sregs[SR_MSR] & MSR_EE)) {
441 return;
442 }
443 helper_raise_exception(EXCP_HW_EXCP);
444 }
445 }
446
447 #if !defined(CONFIG_USER_ONLY)
448 /* Writes/reads to the MMU's special regs end up here. */
449 uint32_t helper_mmu_read(uint32_t rn)
450 {
451 return mmu_read(env, rn);
452 }
453
454 void helper_mmu_write(uint32_t rn, uint32_t v)
455 {
456 mmu_write(env, rn, v);
457 }
458
459 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
460 int is_asi, int size)
461 {
462 CPUState *saved_env;
463
464 if (!cpu_single_env) {
465 /* XXX: ??? */
466 return;
467 }
468
469 /* XXX: hack to restore env in all cases, even if not called from
470 generated code */
471 saved_env = env;
472 env = cpu_single_env;
473 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
474 addr, is_write, is_exec);
475 if (!(env->sregs[SR_MSR] & MSR_EE)) {
476 env = saved_env;
477 return;
478 }
479
480 env->sregs[SR_EAR] = addr;
481 if (is_exec) {
482 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
483 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
484 helper_raise_exception(EXCP_HW_EXCP);
485 }
486 } else {
487 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
488 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
489 helper_raise_exception(EXCP_HW_EXCP);
490 }
491 }
492 env = saved_env;
493 }
494 #endif