]> git.proxmox.com Git - qemu.git/blob - target-microblaze/op_helper.c
microblaze: cleanup helper_addkc
[qemu.git] / target-microblaze / op_helper.c
1 /*
2 * Microblaze helper routines.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <assert.h>
21 #include "exec.h"
22 #include "helper.h"
23 #include "host-utils.h"
24
25 #define D(x)
26
27 #if !defined(CONFIG_USER_ONLY)
28 #define MMUSUFFIX _mmu
29 #define SHIFT 0
30 #include "softmmu_template.h"
31 #define SHIFT 1
32 #include "softmmu_template.h"
33 #define SHIFT 2
34 #include "softmmu_template.h"
35 #define SHIFT 3
36 #include "softmmu_template.h"
37
38 /* Try to fill the TLB and return an exception if error. If retaddr is
39 NULL, it means that the function was called in C code (i.e. not
40 from generated code or from helper.c) */
41 /* XXX: fix it to restore all registers */
42 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
43 {
44 TranslationBlock *tb;
45 CPUState *saved_env;
46 unsigned long pc;
47 int ret;
48
49 /* XXX: hack to restore env in all cases, even if not called from
50 generated code */
51 saved_env = env;
52 env = cpu_single_env;
53
54 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
55 if (unlikely(ret)) {
56 if (retaddr) {
57 /* now we have a real cpu fault */
58 pc = (unsigned long)retaddr;
59 tb = tb_find_pc(pc);
60 if (tb) {
61 /* the PC is inside the translated code. It means that we have
62 a virtual CPU fault */
63 cpu_restore_state(tb, env, pc, NULL);
64 }
65 }
66 cpu_loop_exit();
67 }
68 env = saved_env;
69 }
70 #endif
71
72 void helper_raise_exception(uint32_t index)
73 {
74 env->exception_index = index;
75 cpu_loop_exit();
76 }
77
78 void helper_debug(void)
79 {
80 int i;
81
82 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
83 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
84 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
85 env->debug, env->imm, env->iflags);
86 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
87 env->btaken, env->btarget,
88 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
89 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
90 (env->sregs[SR_MSR] & MSR_EIP),
91 (env->sregs[SR_MSR] & MSR_IE));
92 for (i = 0; i < 32; i++) {
93 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
94 if ((i + 1) % 4 == 0)
95 qemu_log("\n");
96 }
97 qemu_log("\n\n");
98 }
99
100 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
101 {
102 uint32_t cout = 0;
103
104 if ((b == ~0) && cin)
105 cout = 1;
106 else if ((~0 - a) < (b + cin))
107 cout = 1;
108 return cout;
109 }
110
111 uint32_t helper_cmp(uint32_t a, uint32_t b)
112 {
113 uint32_t t;
114
115 t = b + ~a + 1;
116 if ((b & 0x80000000) ^ (a & 0x80000000))
117 t = (t & 0x7fffffff) | (b & 0x80000000);
118 return t;
119 }
120
121 uint32_t helper_cmpu(uint32_t a, uint32_t b)
122 {
123 uint32_t t;
124
125 t = b + ~a + 1;
126 if ((b & 0x80000000) ^ (a & 0x80000000))
127 t = (t & 0x7fffffff) | (a & 0x80000000);
128 return t;
129 }
130
131 uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
132 {
133 uint32_t ncf;
134 ncf = compute_carry(a, b, cf);
135 return ncf;
136 }
137
138 static inline int div_prepare(uint32_t a, uint32_t b)
139 {
140 if (b == 0) {
141 env->sregs[SR_MSR] |= MSR_DZ;
142
143 if ((env->sregs[SR_MSR] & MSR_EE)
144 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
145 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
146 helper_raise_exception(EXCP_HW_EXCP);
147 }
148 return 0;
149 }
150 env->sregs[SR_MSR] &= ~MSR_DZ;
151 return 1;
152 }
153
154 uint32_t helper_divs(uint32_t a, uint32_t b)
155 {
156 if (!div_prepare(a, b))
157 return 0;
158 return (int32_t)a / (int32_t)b;
159 }
160
161 uint32_t helper_divu(uint32_t a, uint32_t b)
162 {
163 if (!div_prepare(a, b))
164 return 0;
165 return a / b;
166 }
167
168 /* raise FPU exception. */
169 static void raise_fpu_exception(void)
170 {
171 env->sregs[SR_ESR] = ESR_EC_FPU;
172 helper_raise_exception(EXCP_HW_EXCP);
173 }
174
175 static void update_fpu_flags(int flags)
176 {
177 int raise = 0;
178
179 if (flags & float_flag_invalid) {
180 env->sregs[SR_FSR] |= FSR_IO;
181 raise = 1;
182 }
183 if (flags & float_flag_divbyzero) {
184 env->sregs[SR_FSR] |= FSR_DZ;
185 raise = 1;
186 }
187 if (flags & float_flag_overflow) {
188 env->sregs[SR_FSR] |= FSR_OF;
189 raise = 1;
190 }
191 if (flags & float_flag_underflow) {
192 env->sregs[SR_FSR] |= FSR_UF;
193 raise = 1;
194 }
195 if (raise
196 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
197 && (env->sregs[SR_MSR] & MSR_EE)) {
198 raise_fpu_exception();
199 }
200 }
201
202 uint32_t helper_fadd(uint32_t a, uint32_t b)
203 {
204 CPU_FloatU fd, fa, fb;
205 int flags;
206
207 set_float_exception_flags(0, &env->fp_status);
208 fa.l = a;
209 fb.l = b;
210 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
211
212 flags = get_float_exception_flags(&env->fp_status);
213 update_fpu_flags(flags);
214 return fd.l;
215 }
216
217 uint32_t helper_frsub(uint32_t a, uint32_t b)
218 {
219 CPU_FloatU fd, fa, fb;
220 int flags;
221
222 set_float_exception_flags(0, &env->fp_status);
223 fa.l = a;
224 fb.l = b;
225 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
226 flags = get_float_exception_flags(&env->fp_status);
227 update_fpu_flags(flags);
228 return fd.l;
229 }
230
231 uint32_t helper_fmul(uint32_t a, uint32_t b)
232 {
233 CPU_FloatU fd, fa, fb;
234 int flags;
235
236 set_float_exception_flags(0, &env->fp_status);
237 fa.l = a;
238 fb.l = b;
239 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
240 flags = get_float_exception_flags(&env->fp_status);
241 update_fpu_flags(flags);
242
243 return fd.l;
244 }
245
246 uint32_t helper_fdiv(uint32_t a, uint32_t b)
247 {
248 CPU_FloatU fd, fa, fb;
249 int flags;
250
251 set_float_exception_flags(0, &env->fp_status);
252 fa.l = a;
253 fb.l = b;
254 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
255 flags = get_float_exception_flags(&env->fp_status);
256 update_fpu_flags(flags);
257
258 return fd.l;
259 }
260
261 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
262 {
263 CPU_FloatU fa, fb;
264 uint32_t r = 0;
265
266 fa.l = a;
267 fb.l = b;
268
269 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
270 update_fpu_flags(float_flag_invalid);
271 r = 1;
272 }
273
274 if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
275 r = 1;
276 }
277
278 return r;
279 }
280
281 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
282 {
283 CPU_FloatU fa, fb;
284 int r;
285 int flags;
286
287 set_float_exception_flags(0, &env->fp_status);
288 fa.l = a;
289 fb.l = b;
290 r = float32_lt(fb.f, fa.f, &env->fp_status);
291 flags = get_float_exception_flags(&env->fp_status);
292 update_fpu_flags(flags & float_flag_invalid);
293
294 return r;
295 }
296
297 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
298 {
299 CPU_FloatU fa, fb;
300 int flags;
301 int r;
302
303 set_float_exception_flags(0, &env->fp_status);
304 fa.l = a;
305 fb.l = b;
306 r = float32_eq(fa.f, fb.f, &env->fp_status);
307 flags = get_float_exception_flags(&env->fp_status);
308 update_fpu_flags(flags & float_flag_invalid);
309
310 return r;
311 }
312
313 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
314 {
315 CPU_FloatU fa, fb;
316 int flags;
317 int r;
318
319 fa.l = a;
320 fb.l = b;
321 set_float_exception_flags(0, &env->fp_status);
322 r = float32_le(fa.f, fb.f, &env->fp_status);
323 flags = get_float_exception_flags(&env->fp_status);
324 update_fpu_flags(flags & float_flag_invalid);
325
326
327 return r;
328 }
329
330 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
331 {
332 CPU_FloatU fa, fb;
333 int flags, r;
334
335 fa.l = a;
336 fb.l = b;
337 set_float_exception_flags(0, &env->fp_status);
338 r = float32_lt(fa.f, fb.f, &env->fp_status);
339 flags = get_float_exception_flags(&env->fp_status);
340 update_fpu_flags(flags & float_flag_invalid);
341 return r;
342 }
343
344 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
345 {
346 CPU_FloatU fa, fb;
347 int flags, r;
348
349 fa.l = a;
350 fb.l = b;
351 set_float_exception_flags(0, &env->fp_status);
352 r = !float32_eq(fa.f, fb.f, &env->fp_status);
353 flags = get_float_exception_flags(&env->fp_status);
354 update_fpu_flags(flags & float_flag_invalid);
355
356 return r;
357 }
358
359 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
360 {
361 CPU_FloatU fa, fb;
362 int flags, r;
363
364 fa.l = a;
365 fb.l = b;
366 set_float_exception_flags(0, &env->fp_status);
367 r = !float32_lt(fa.f, fb.f, &env->fp_status);
368 flags = get_float_exception_flags(&env->fp_status);
369 update_fpu_flags(flags & float_flag_invalid);
370
371 return r;
372 }
373
374 uint32_t helper_flt(uint32_t a)
375 {
376 CPU_FloatU fd, fa;
377
378 fa.l = a;
379 fd.f = int32_to_float32(fa.l, &env->fp_status);
380 return fd.l;
381 }
382
383 uint32_t helper_fint(uint32_t a)
384 {
385 CPU_FloatU fa;
386 uint32_t r;
387 int flags;
388
389 set_float_exception_flags(0, &env->fp_status);
390 fa.l = a;
391 r = float32_to_int32(fa.f, &env->fp_status);
392 flags = get_float_exception_flags(&env->fp_status);
393 update_fpu_flags(flags);
394
395 return r;
396 }
397
398 uint32_t helper_fsqrt(uint32_t a)
399 {
400 CPU_FloatU fd, fa;
401 int flags;
402
403 set_float_exception_flags(0, &env->fp_status);
404 fa.l = a;
405 fd.l = float32_sqrt(fa.f, &env->fp_status);
406 flags = get_float_exception_flags(&env->fp_status);
407 update_fpu_flags(flags);
408
409 return fd.l;
410 }
411
412 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
413 {
414 unsigned int i;
415 uint32_t mask = 0xff000000;
416
417 for (i = 0; i < 4; i++) {
418 if ((a & mask) == (b & mask))
419 return i + 1;
420 mask >>= 8;
421 }
422 return 0;
423 }
424
425 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
426 {
427 if (addr & mask) {
428 qemu_log_mask(CPU_LOG_INT,
429 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
430 addr, mask, wr, dr);
431 env->sregs[SR_EAR] = addr;
432 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
433 | (dr & 31) << 5;
434 if (mask == 3) {
435 env->sregs[SR_ESR] |= 1 << 11;
436 }
437 if (!(env->sregs[SR_MSR] & MSR_EE)) {
438 return;
439 }
440 helper_raise_exception(EXCP_HW_EXCP);
441 }
442 }
443
444 #if !defined(CONFIG_USER_ONLY)
445 /* Writes/reads to the MMU's special regs end up here. */
446 uint32_t helper_mmu_read(uint32_t rn)
447 {
448 return mmu_read(env, rn);
449 }
450
451 void helper_mmu_write(uint32_t rn, uint32_t v)
452 {
453 mmu_write(env, rn, v);
454 }
455
456 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
457 int is_asi, int size)
458 {
459 CPUState *saved_env;
460
461 if (!cpu_single_env) {
462 /* XXX: ??? */
463 return;
464 }
465
466 /* XXX: hack to restore env in all cases, even if not called from
467 generated code */
468 saved_env = env;
469 env = cpu_single_env;
470 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
471 addr, is_write, is_exec);
472 if (!(env->sregs[SR_MSR] & MSR_EE)) {
473 env = saved_env;
474 return;
475 }
476
477 env->sregs[SR_EAR] = addr;
478 if (is_exec) {
479 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
480 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
481 helper_raise_exception(EXCP_HW_EXCP);
482 }
483 } else {
484 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
485 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
486 helper_raise_exception(EXCP_HW_EXCP);
487 }
488 }
489 env = saved_env;
490 }
491 #endif