]> git.proxmox.com Git - qemu.git/blob - target-microblaze/op_helper.c
Remove unused is_softmmu parameter from cpu_handle_mmu_fault
[qemu.git] / target-microblaze / op_helper.c
1 /*
2 * Microblaze helper routines.
3 *
4 * Copyright (c) 2009 Edgar E. Iglesias <edgar.iglesias@gmail.com>.
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20 #include <assert.h>
21 #include "cpu.h"
22 #include "dyngen-exec.h"
23 #include "helper.h"
24 #include "host-utils.h"
25
26 #define D(x)
27
28 #if !defined(CONFIG_USER_ONLY)
29 #include "softmmu_exec.h"
30
31 #define MMUSUFFIX _mmu
32 #define SHIFT 0
33 #include "softmmu_template.h"
34 #define SHIFT 1
35 #include "softmmu_template.h"
36 #define SHIFT 2
37 #include "softmmu_template.h"
38 #define SHIFT 3
39 #include "softmmu_template.h"
40
41 /* Try to fill the TLB and return an exception if error. If retaddr is
42 NULL, it means that the function was called in C code (i.e. not
43 from generated code or from helper.c) */
44 /* XXX: fix it to restore all registers */
45 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
46 {
47 TranslationBlock *tb;
48 CPUState *saved_env;
49 unsigned long pc;
50 int ret;
51
52 /* XXX: hack to restore env in all cases, even if not called from
53 generated code */
54 saved_env = env;
55 env = cpu_single_env;
56
57 ret = cpu_mb_handle_mmu_fault(env, addr, is_write, mmu_idx);
58 if (unlikely(ret)) {
59 if (retaddr) {
60 /* now we have a real cpu fault */
61 pc = (unsigned long)retaddr;
62 tb = tb_find_pc(pc);
63 if (tb) {
64 /* the PC is inside the translated code. It means that we have
65 a virtual CPU fault */
66 cpu_restore_state(tb, env, pc);
67 }
68 }
69 cpu_loop_exit(env);
70 }
71 env = saved_env;
72 }
73 #endif
74
75 void helper_put(uint32_t id, uint32_t ctrl, uint32_t data)
76 {
77 int test = ctrl & STREAM_TEST;
78 int atomic = ctrl & STREAM_ATOMIC;
79 int control = ctrl & STREAM_CONTROL;
80 int nonblock = ctrl & STREAM_NONBLOCK;
81 int exception = ctrl & STREAM_EXCEPTION;
82
83 qemu_log("Unhandled stream put to stream-id=%d data=%x %s%s%s%s%s\n",
84 id, data,
85 test ? "t" : "",
86 nonblock ? "n" : "",
87 exception ? "e" : "",
88 control ? "c" : "",
89 atomic ? "a" : "");
90 }
91
92 uint32_t helper_get(uint32_t id, uint32_t ctrl)
93 {
94 int test = ctrl & STREAM_TEST;
95 int atomic = ctrl & STREAM_ATOMIC;
96 int control = ctrl & STREAM_CONTROL;
97 int nonblock = ctrl & STREAM_NONBLOCK;
98 int exception = ctrl & STREAM_EXCEPTION;
99
100 qemu_log("Unhandled stream get from stream-id=%d %s%s%s%s%s\n",
101 id,
102 test ? "t" : "",
103 nonblock ? "n" : "",
104 exception ? "e" : "",
105 control ? "c" : "",
106 atomic ? "a" : "");
107 return 0xdead0000 | id;
108 }
109
110 void helper_raise_exception(uint32_t index)
111 {
112 env->exception_index = index;
113 cpu_loop_exit(env);
114 }
115
116 void helper_debug(void)
117 {
118 int i;
119
120 qemu_log("PC=%8.8x\n", env->sregs[SR_PC]);
121 qemu_log("rmsr=%x resr=%x rear=%x debug[%x] imm=%x iflags=%x\n",
122 env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR],
123 env->debug, env->imm, env->iflags);
124 qemu_log("btaken=%d btarget=%x mode=%s(saved=%s) eip=%d ie=%d\n",
125 env->btaken, env->btarget,
126 (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel",
127 (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel",
128 (env->sregs[SR_MSR] & MSR_EIP),
129 (env->sregs[SR_MSR] & MSR_IE));
130 for (i = 0; i < 32; i++) {
131 qemu_log("r%2.2d=%8.8x ", i, env->regs[i]);
132 if ((i + 1) % 4 == 0)
133 qemu_log("\n");
134 }
135 qemu_log("\n\n");
136 }
137
138 static inline uint32_t compute_carry(uint32_t a, uint32_t b, uint32_t cin)
139 {
140 uint32_t cout = 0;
141
142 if ((b == ~0) && cin)
143 cout = 1;
144 else if ((~0 - a) < (b + cin))
145 cout = 1;
146 return cout;
147 }
148
149 uint32_t helper_cmp(uint32_t a, uint32_t b)
150 {
151 uint32_t t;
152
153 t = b + ~a + 1;
154 if ((b & 0x80000000) ^ (a & 0x80000000))
155 t = (t & 0x7fffffff) | (b & 0x80000000);
156 return t;
157 }
158
159 uint32_t helper_cmpu(uint32_t a, uint32_t b)
160 {
161 uint32_t t;
162
163 t = b + ~a + 1;
164 if ((b & 0x80000000) ^ (a & 0x80000000))
165 t = (t & 0x7fffffff) | (a & 0x80000000);
166 return t;
167 }
168
169 uint32_t helper_carry(uint32_t a, uint32_t b, uint32_t cf)
170 {
171 uint32_t ncf;
172 ncf = compute_carry(a, b, cf);
173 return ncf;
174 }
175
176 static inline int div_prepare(uint32_t a, uint32_t b)
177 {
178 if (b == 0) {
179 env->sregs[SR_MSR] |= MSR_DZ;
180
181 if ((env->sregs[SR_MSR] & MSR_EE)
182 && !(env->pvr.regs[2] & PVR2_DIV_ZERO_EXC_MASK)) {
183 env->sregs[SR_ESR] = ESR_EC_DIVZERO;
184 helper_raise_exception(EXCP_HW_EXCP);
185 }
186 return 0;
187 }
188 env->sregs[SR_MSR] &= ~MSR_DZ;
189 return 1;
190 }
191
192 uint32_t helper_divs(uint32_t a, uint32_t b)
193 {
194 if (!div_prepare(a, b))
195 return 0;
196 return (int32_t)a / (int32_t)b;
197 }
198
199 uint32_t helper_divu(uint32_t a, uint32_t b)
200 {
201 if (!div_prepare(a, b))
202 return 0;
203 return a / b;
204 }
205
206 /* raise FPU exception. */
207 static void raise_fpu_exception(void)
208 {
209 env->sregs[SR_ESR] = ESR_EC_FPU;
210 helper_raise_exception(EXCP_HW_EXCP);
211 }
212
213 static void update_fpu_flags(int flags)
214 {
215 int raise = 0;
216
217 if (flags & float_flag_invalid) {
218 env->sregs[SR_FSR] |= FSR_IO;
219 raise = 1;
220 }
221 if (flags & float_flag_divbyzero) {
222 env->sregs[SR_FSR] |= FSR_DZ;
223 raise = 1;
224 }
225 if (flags & float_flag_overflow) {
226 env->sregs[SR_FSR] |= FSR_OF;
227 raise = 1;
228 }
229 if (flags & float_flag_underflow) {
230 env->sregs[SR_FSR] |= FSR_UF;
231 raise = 1;
232 }
233 if (raise
234 && (env->pvr.regs[2] & PVR2_FPU_EXC_MASK)
235 && (env->sregs[SR_MSR] & MSR_EE)) {
236 raise_fpu_exception();
237 }
238 }
239
240 uint32_t helper_fadd(uint32_t a, uint32_t b)
241 {
242 CPU_FloatU fd, fa, fb;
243 int flags;
244
245 set_float_exception_flags(0, &env->fp_status);
246 fa.l = a;
247 fb.l = b;
248 fd.f = float32_add(fa.f, fb.f, &env->fp_status);
249
250 flags = get_float_exception_flags(&env->fp_status);
251 update_fpu_flags(flags);
252 return fd.l;
253 }
254
255 uint32_t helper_frsub(uint32_t a, uint32_t b)
256 {
257 CPU_FloatU fd, fa, fb;
258 int flags;
259
260 set_float_exception_flags(0, &env->fp_status);
261 fa.l = a;
262 fb.l = b;
263 fd.f = float32_sub(fb.f, fa.f, &env->fp_status);
264 flags = get_float_exception_flags(&env->fp_status);
265 update_fpu_flags(flags);
266 return fd.l;
267 }
268
269 uint32_t helper_fmul(uint32_t a, uint32_t b)
270 {
271 CPU_FloatU fd, fa, fb;
272 int flags;
273
274 set_float_exception_flags(0, &env->fp_status);
275 fa.l = a;
276 fb.l = b;
277 fd.f = float32_mul(fa.f, fb.f, &env->fp_status);
278 flags = get_float_exception_flags(&env->fp_status);
279 update_fpu_flags(flags);
280
281 return fd.l;
282 }
283
284 uint32_t helper_fdiv(uint32_t a, uint32_t b)
285 {
286 CPU_FloatU fd, fa, fb;
287 int flags;
288
289 set_float_exception_flags(0, &env->fp_status);
290 fa.l = a;
291 fb.l = b;
292 fd.f = float32_div(fb.f, fa.f, &env->fp_status);
293 flags = get_float_exception_flags(&env->fp_status);
294 update_fpu_flags(flags);
295
296 return fd.l;
297 }
298
299 uint32_t helper_fcmp_un(uint32_t a, uint32_t b)
300 {
301 CPU_FloatU fa, fb;
302 uint32_t r = 0;
303
304 fa.l = a;
305 fb.l = b;
306
307 if (float32_is_signaling_nan(fa.f) || float32_is_signaling_nan(fb.f)) {
308 update_fpu_flags(float_flag_invalid);
309 r = 1;
310 }
311
312 if (float32_is_quiet_nan(fa.f) || float32_is_quiet_nan(fb.f)) {
313 r = 1;
314 }
315
316 return r;
317 }
318
319 uint32_t helper_fcmp_lt(uint32_t a, uint32_t b)
320 {
321 CPU_FloatU fa, fb;
322 int r;
323 int flags;
324
325 set_float_exception_flags(0, &env->fp_status);
326 fa.l = a;
327 fb.l = b;
328 r = float32_lt(fb.f, fa.f, &env->fp_status);
329 flags = get_float_exception_flags(&env->fp_status);
330 update_fpu_flags(flags & float_flag_invalid);
331
332 return r;
333 }
334
335 uint32_t helper_fcmp_eq(uint32_t a, uint32_t b)
336 {
337 CPU_FloatU fa, fb;
338 int flags;
339 int r;
340
341 set_float_exception_flags(0, &env->fp_status);
342 fa.l = a;
343 fb.l = b;
344 r = float32_eq_quiet(fa.f, fb.f, &env->fp_status);
345 flags = get_float_exception_flags(&env->fp_status);
346 update_fpu_flags(flags & float_flag_invalid);
347
348 return r;
349 }
350
351 uint32_t helper_fcmp_le(uint32_t a, uint32_t b)
352 {
353 CPU_FloatU fa, fb;
354 int flags;
355 int r;
356
357 fa.l = a;
358 fb.l = b;
359 set_float_exception_flags(0, &env->fp_status);
360 r = float32_le(fa.f, fb.f, &env->fp_status);
361 flags = get_float_exception_flags(&env->fp_status);
362 update_fpu_flags(flags & float_flag_invalid);
363
364
365 return r;
366 }
367
368 uint32_t helper_fcmp_gt(uint32_t a, uint32_t b)
369 {
370 CPU_FloatU fa, fb;
371 int flags, r;
372
373 fa.l = a;
374 fb.l = b;
375 set_float_exception_flags(0, &env->fp_status);
376 r = float32_lt(fa.f, fb.f, &env->fp_status);
377 flags = get_float_exception_flags(&env->fp_status);
378 update_fpu_flags(flags & float_flag_invalid);
379 return r;
380 }
381
382 uint32_t helper_fcmp_ne(uint32_t a, uint32_t b)
383 {
384 CPU_FloatU fa, fb;
385 int flags, r;
386
387 fa.l = a;
388 fb.l = b;
389 set_float_exception_flags(0, &env->fp_status);
390 r = !float32_eq_quiet(fa.f, fb.f, &env->fp_status);
391 flags = get_float_exception_flags(&env->fp_status);
392 update_fpu_flags(flags & float_flag_invalid);
393
394 return r;
395 }
396
397 uint32_t helper_fcmp_ge(uint32_t a, uint32_t b)
398 {
399 CPU_FloatU fa, fb;
400 int flags, r;
401
402 fa.l = a;
403 fb.l = b;
404 set_float_exception_flags(0, &env->fp_status);
405 r = !float32_lt(fa.f, fb.f, &env->fp_status);
406 flags = get_float_exception_flags(&env->fp_status);
407 update_fpu_flags(flags & float_flag_invalid);
408
409 return r;
410 }
411
412 uint32_t helper_flt(uint32_t a)
413 {
414 CPU_FloatU fd, fa;
415
416 fa.l = a;
417 fd.f = int32_to_float32(fa.l, &env->fp_status);
418 return fd.l;
419 }
420
421 uint32_t helper_fint(uint32_t a)
422 {
423 CPU_FloatU fa;
424 uint32_t r;
425 int flags;
426
427 set_float_exception_flags(0, &env->fp_status);
428 fa.l = a;
429 r = float32_to_int32(fa.f, &env->fp_status);
430 flags = get_float_exception_flags(&env->fp_status);
431 update_fpu_flags(flags);
432
433 return r;
434 }
435
436 uint32_t helper_fsqrt(uint32_t a)
437 {
438 CPU_FloatU fd, fa;
439 int flags;
440
441 set_float_exception_flags(0, &env->fp_status);
442 fa.l = a;
443 fd.l = float32_sqrt(fa.f, &env->fp_status);
444 flags = get_float_exception_flags(&env->fp_status);
445 update_fpu_flags(flags);
446
447 return fd.l;
448 }
449
450 uint32_t helper_pcmpbf(uint32_t a, uint32_t b)
451 {
452 unsigned int i;
453 uint32_t mask = 0xff000000;
454
455 for (i = 0; i < 4; i++) {
456 if ((a & mask) == (b & mask))
457 return i + 1;
458 mask >>= 8;
459 }
460 return 0;
461 }
462
463 void helper_memalign(uint32_t addr, uint32_t dr, uint32_t wr, uint32_t mask)
464 {
465 if (addr & mask) {
466 qemu_log_mask(CPU_LOG_INT,
467 "unaligned access addr=%x mask=%x, wr=%d dr=r%d\n",
468 addr, mask, wr, dr);
469 env->sregs[SR_EAR] = addr;
470 env->sregs[SR_ESR] = ESR_EC_UNALIGNED_DATA | (wr << 10) \
471 | (dr & 31) << 5;
472 if (mask == 3) {
473 env->sregs[SR_ESR] |= 1 << 11;
474 }
475 if (!(env->sregs[SR_MSR] & MSR_EE)) {
476 return;
477 }
478 helper_raise_exception(EXCP_HW_EXCP);
479 }
480 }
481
482 #if !defined(CONFIG_USER_ONLY)
483 /* Writes/reads to the MMU's special regs end up here. */
484 uint32_t helper_mmu_read(uint32_t rn)
485 {
486 return mmu_read(env, rn);
487 }
488
489 void helper_mmu_write(uint32_t rn, uint32_t v)
490 {
491 mmu_write(env, rn, v);
492 }
493
494 void cpu_unassigned_access(CPUState *env1, target_phys_addr_t addr,
495 int is_write, int is_exec, int is_asi, int size)
496 {
497 CPUState *saved_env;
498
499 saved_env = env;
500 env = env1;
501
502 qemu_log_mask(CPU_LOG_INT, "Unassigned " TARGET_FMT_plx " wr=%d exe=%d\n",
503 addr, is_write, is_exec);
504 if (!(env->sregs[SR_MSR] & MSR_EE)) {
505 env = saved_env;
506 return;
507 }
508
509 env->sregs[SR_EAR] = addr;
510 if (is_exec) {
511 if ((env->pvr.regs[2] & PVR2_IOPB_BUS_EXC_MASK)) {
512 env->sregs[SR_ESR] = ESR_EC_INSN_BUS;
513 helper_raise_exception(EXCP_HW_EXCP);
514 }
515 } else {
516 if ((env->pvr.regs[2] & PVR2_DOPB_BUS_EXC_MASK)) {
517 env->sregs[SR_ESR] = ESR_EC_DATA_BUS;
518 helper_raise_exception(EXCP_HW_EXCP);
519 }
520 }
521 env = saved_env;
522 }
523 #endif