]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Correctly identify multiple cpus in SMP systems
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "exec.h"
21
22 #include "host-utils.h"
23
24 #include "helper.h"
25
26 #ifndef CONFIG_USER_ONLY
27 static inline void cpu_mips_tlb_flush (CPUState *env, int flush_global);
28 #endif
29
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
32
33 void helper_raise_exception_err (uint32_t exception, int error_code)
34 {
35 #if 1
36 if (exception < 0x100)
37 qemu_log("%s: %d %d\n", __func__, exception, error_code);
38 #endif
39 env->exception_index = exception;
40 env->error_code = error_code;
41 cpu_loop_exit();
42 }
43
44 void helper_raise_exception (uint32_t exception)
45 {
46 helper_raise_exception_err(exception, 0);
47 }
48
49 #if !defined(CONFIG_USER_ONLY)
50 static void do_restore_state (void *pc_ptr)
51 {
52 TranslationBlock *tb;
53 unsigned long pc = (unsigned long) pc_ptr;
54
55 tb = tb_find_pc (pc);
56 if (tb) {
57 cpu_restore_state (tb, env, pc, NULL);
58 }
59 }
60 #endif
61
62 #if defined(CONFIG_USER_ONLY)
63 #define HELPER_LD(name, insn, type) \
64 static inline type do_##name(target_ulong addr, int mem_idx) \
65 { \
66 return (type) insn##_raw(addr); \
67 }
68 #else
69 #define HELPER_LD(name, insn, type) \
70 static inline type do_##name(target_ulong addr, int mem_idx) \
71 { \
72 switch (mem_idx) \
73 { \
74 case 0: return (type) insn##_kernel(addr); break; \
75 case 1: return (type) insn##_super(addr); break; \
76 default: \
77 case 2: return (type) insn##_user(addr); break; \
78 } \
79 }
80 #endif
81 HELPER_LD(lbu, ldub, uint8_t)
82 HELPER_LD(lw, ldl, int32_t)
83 #ifdef TARGET_MIPS64
84 HELPER_LD(ld, ldq, int64_t)
85 #endif
86 #undef HELPER_LD
87
88 #if defined(CONFIG_USER_ONLY)
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
91 { \
92 insn##_raw(addr, val); \
93 }
94 #else
95 #define HELPER_ST(name, insn, type) \
96 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
97 { \
98 switch (mem_idx) \
99 { \
100 case 0: insn##_kernel(addr, val); break; \
101 case 1: insn##_super(addr, val); break; \
102 default: \
103 case 2: insn##_user(addr, val); break; \
104 } \
105 }
106 #endif
107 HELPER_ST(sb, stb, uint8_t)
108 HELPER_ST(sw, stl, uint32_t)
109 #ifdef TARGET_MIPS64
110 HELPER_ST(sd, stq, uint64_t)
111 #endif
112 #undef HELPER_ST
113
114 target_ulong helper_clo (target_ulong arg1)
115 {
116 return clo32(arg1);
117 }
118
119 target_ulong helper_clz (target_ulong arg1)
120 {
121 return clz32(arg1);
122 }
123
124 #if defined(TARGET_MIPS64)
125 target_ulong helper_dclo (target_ulong arg1)
126 {
127 return clo64(arg1);
128 }
129
130 target_ulong helper_dclz (target_ulong arg1)
131 {
132 return clz64(arg1);
133 }
134 #endif /* TARGET_MIPS64 */
135
136 /* 64 bits arithmetic for 32 bits hosts */
137 static inline uint64_t get_HILO (void)
138 {
139 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
140 }
141
142 static inline void set_HILO (uint64_t HILO)
143 {
144 env->active_tc.LO[0] = (int32_t)HILO;
145 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
146 }
147
148 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
149 {
150 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
151 arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
152 }
153
154 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
155 {
156 arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
157 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
158 }
159
160 /* Multiplication variants of the vr54xx. */
161 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
162 {
163 set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
164
165 return arg1;
166 }
167
168 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
169 {
170 set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
171
172 return arg1;
173 }
174
175 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
176 {
177 set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
178
179 return arg1;
180 }
181
182 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
183 {
184 set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
185
186 return arg1;
187 }
188
189 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
190 {
191 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
192
193 return arg1;
194 }
195
196 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
197 {
198 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
199
200 return arg1;
201 }
202
203 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
204 {
205 set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
206
207 return arg1;
208 }
209
210 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
211 {
212 set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
213
214 return arg1;
215 }
216
217 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
218 {
219 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
220
221 return arg1;
222 }
223
224 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
225 {
226 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
227
228 return arg1;
229 }
230
231 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
232 {
233 set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
234
235 return arg1;
236 }
237
238 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
239 {
240 set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
241
242 return arg1;
243 }
244
245 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
246 {
247 set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
248
249 return arg1;
250 }
251
252 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
253 {
254 set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
255
256 return arg1;
257 }
258
259 #ifdef TARGET_MIPS64
260 void helper_dmult (target_ulong arg1, target_ulong arg2)
261 {
262 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
263 }
264
265 void helper_dmultu (target_ulong arg1, target_ulong arg2)
266 {
267 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
268 }
269 #endif
270
271 #ifndef CONFIG_USER_ONLY
272
273 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
274 {
275 target_phys_addr_t lladdr;
276
277 lladdr = cpu_mips_translate_address(env, address, rw);
278
279 if (lladdr == -1LL) {
280 cpu_loop_exit();
281 } else {
282 return lladdr;
283 }
284 }
285
286 #define HELPER_LD_ATOMIC(name, insn) \
287 target_ulong helper_##name(target_ulong arg, int mem_idx) \
288 { \
289 env->lladdr = do_translate_address(arg, 0); \
290 env->llval = do_##insn(arg, mem_idx); \
291 return env->llval; \
292 }
293 HELPER_LD_ATOMIC(ll, lw)
294 #ifdef TARGET_MIPS64
295 HELPER_LD_ATOMIC(lld, ld)
296 #endif
297 #undef HELPER_LD_ATOMIC
298
299 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
300 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
301 { \
302 target_long tmp; \
303 \
304 if (arg2 & almask) { \
305 env->CP0_BadVAddr = arg2; \
306 helper_raise_exception(EXCP_AdES); \
307 } \
308 if (do_translate_address(arg2, 1) == env->lladdr) { \
309 tmp = do_##ld_insn(arg2, mem_idx); \
310 if (tmp == env->llval) { \
311 do_##st_insn(arg2, arg1, mem_idx); \
312 return 1; \
313 } \
314 } \
315 return 0; \
316 }
317 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
318 #ifdef TARGET_MIPS64
319 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
320 #endif
321 #undef HELPER_ST_ATOMIC
322 #endif
323
324 #ifdef TARGET_WORDS_BIGENDIAN
325 #define GET_LMASK(v) ((v) & 3)
326 #define GET_OFFSET(addr, offset) (addr + (offset))
327 #else
328 #define GET_LMASK(v) (((v) & 3) ^ 3)
329 #define GET_OFFSET(addr, offset) (addr - (offset))
330 #endif
331
332 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
333 {
334 target_ulong tmp;
335
336 tmp = do_lbu(arg2, mem_idx);
337 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
338
339 if (GET_LMASK(arg2) <= 2) {
340 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
341 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
342 }
343
344 if (GET_LMASK(arg2) <= 1) {
345 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
346 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
347 }
348
349 if (GET_LMASK(arg2) == 0) {
350 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
351 arg1 = (arg1 & 0xFFFFFF00) | tmp;
352 }
353 return (int32_t)arg1;
354 }
355
356 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
357 {
358 target_ulong tmp;
359
360 tmp = do_lbu(arg2, mem_idx);
361 arg1 = (arg1 & 0xFFFFFF00) | tmp;
362
363 if (GET_LMASK(arg2) >= 1) {
364 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
365 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
366 }
367
368 if (GET_LMASK(arg2) >= 2) {
369 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
370 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
371 }
372
373 if (GET_LMASK(arg2) == 3) {
374 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
375 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
376 }
377 return (int32_t)arg1;
378 }
379
380 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
381 {
382 do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
383
384 if (GET_LMASK(arg2) <= 2)
385 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
386
387 if (GET_LMASK(arg2) <= 1)
388 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
389
390 if (GET_LMASK(arg2) == 0)
391 do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
392 }
393
394 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
395 {
396 do_sb(arg2, (uint8_t)arg1, mem_idx);
397
398 if (GET_LMASK(arg2) >= 1)
399 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
400
401 if (GET_LMASK(arg2) >= 2)
402 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
403
404 if (GET_LMASK(arg2) == 3)
405 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
406 }
407
408 #if defined(TARGET_MIPS64)
409 /* "half" load and stores. We must do the memory access inline,
410 or fault handling won't work. */
411
412 #ifdef TARGET_WORDS_BIGENDIAN
413 #define GET_LMASK64(v) ((v) & 7)
414 #else
415 #define GET_LMASK64(v) (((v) & 7) ^ 7)
416 #endif
417
418 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
419 {
420 uint64_t tmp;
421
422 tmp = do_lbu(arg2, mem_idx);
423 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
424
425 if (GET_LMASK64(arg2) <= 6) {
426 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
427 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
428 }
429
430 if (GET_LMASK64(arg2) <= 5) {
431 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
432 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
433 }
434
435 if (GET_LMASK64(arg2) <= 4) {
436 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
437 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
438 }
439
440 if (GET_LMASK64(arg2) <= 3) {
441 tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
442 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
443 }
444
445 if (GET_LMASK64(arg2) <= 2) {
446 tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
447 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
448 }
449
450 if (GET_LMASK64(arg2) <= 1) {
451 tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
452 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
453 }
454
455 if (GET_LMASK64(arg2) == 0) {
456 tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
457 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
458 }
459
460 return arg1;
461 }
462
463 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
464 {
465 uint64_t tmp;
466
467 tmp = do_lbu(arg2, mem_idx);
468 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
469
470 if (GET_LMASK64(arg2) >= 1) {
471 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
472 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
473 }
474
475 if (GET_LMASK64(arg2) >= 2) {
476 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
477 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
478 }
479
480 if (GET_LMASK64(arg2) >= 3) {
481 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
482 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
483 }
484
485 if (GET_LMASK64(arg2) >= 4) {
486 tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
487 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
488 }
489
490 if (GET_LMASK64(arg2) >= 5) {
491 tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
492 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
493 }
494
495 if (GET_LMASK64(arg2) >= 6) {
496 tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
497 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
498 }
499
500 if (GET_LMASK64(arg2) == 7) {
501 tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
502 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
503 }
504
505 return arg1;
506 }
507
508 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
509 {
510 do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
511
512 if (GET_LMASK64(arg2) <= 6)
513 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
514
515 if (GET_LMASK64(arg2) <= 5)
516 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
517
518 if (GET_LMASK64(arg2) <= 4)
519 do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
520
521 if (GET_LMASK64(arg2) <= 3)
522 do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
523
524 if (GET_LMASK64(arg2) <= 2)
525 do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
526
527 if (GET_LMASK64(arg2) <= 1)
528 do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
529
530 if (GET_LMASK64(arg2) <= 0)
531 do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
532 }
533
534 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
535 {
536 do_sb(arg2, (uint8_t)arg1, mem_idx);
537
538 if (GET_LMASK64(arg2) >= 1)
539 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
540
541 if (GET_LMASK64(arg2) >= 2)
542 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
543
544 if (GET_LMASK64(arg2) >= 3)
545 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
546
547 if (GET_LMASK64(arg2) >= 4)
548 do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
549
550 if (GET_LMASK64(arg2) >= 5)
551 do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
552
553 if (GET_LMASK64(arg2) >= 6)
554 do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
555
556 if (GET_LMASK64(arg2) == 7)
557 do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
558 }
559 #endif /* TARGET_MIPS64 */
560
561 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
562
563 void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
564 {
565 target_ulong base_reglist = reglist & 0xf;
566 target_ulong do_r31 = reglist & 0x10;
567 #ifdef CONFIG_USER_ONLY
568 #undef ldfun
569 #define ldfun ldl_raw
570 #else
571 uint32_t (*ldfun)(target_ulong);
572
573 switch (mem_idx)
574 {
575 case 0: ldfun = ldl_kernel; break;
576 case 1: ldfun = ldl_super; break;
577 default:
578 case 2: ldfun = ldl_user; break;
579 }
580 #endif
581
582 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
583 target_ulong i;
584
585 for (i = 0; i < base_reglist; i++) {
586 env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
587 addr += 4;
588 }
589 }
590
591 if (do_r31) {
592 env->active_tc.gpr[31] = (target_long) ldfun(addr);
593 }
594 }
595
596 void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
597 {
598 target_ulong base_reglist = reglist & 0xf;
599 target_ulong do_r31 = reglist & 0x10;
600 #ifdef CONFIG_USER_ONLY
601 #undef stfun
602 #define stfun stl_raw
603 #else
604 void (*stfun)(target_ulong, uint32_t);
605
606 switch (mem_idx)
607 {
608 case 0: stfun = stl_kernel; break;
609 case 1: stfun = stl_super; break;
610 default:
611 case 2: stfun = stl_user; break;
612 }
613 #endif
614
615 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
616 target_ulong i;
617
618 for (i = 0; i < base_reglist; i++) {
619 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
620 addr += 4;
621 }
622 }
623
624 if (do_r31) {
625 stfun(addr, env->active_tc.gpr[31]);
626 }
627 }
628
629 #if defined(TARGET_MIPS64)
630 void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
631 {
632 target_ulong base_reglist = reglist & 0xf;
633 target_ulong do_r31 = reglist & 0x10;
634 #ifdef CONFIG_USER_ONLY
635 #undef ldfun
636 #define ldfun ldq_raw
637 #else
638 uint64_t (*ldfun)(target_ulong);
639
640 switch (mem_idx)
641 {
642 case 0: ldfun = ldq_kernel; break;
643 case 1: ldfun = ldq_super; break;
644 default:
645 case 2: ldfun = ldq_user; break;
646 }
647 #endif
648
649 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
650 target_ulong i;
651
652 for (i = 0; i < base_reglist; i++) {
653 env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
654 addr += 8;
655 }
656 }
657
658 if (do_r31) {
659 env->active_tc.gpr[31] = ldfun(addr);
660 }
661 }
662
663 void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
664 {
665 target_ulong base_reglist = reglist & 0xf;
666 target_ulong do_r31 = reglist & 0x10;
667 #ifdef CONFIG_USER_ONLY
668 #undef stfun
669 #define stfun stq_raw
670 #else
671 void (*stfun)(target_ulong, uint64_t);
672
673 switch (mem_idx)
674 {
675 case 0: stfun = stq_kernel; break;
676 case 1: stfun = stq_super; break;
677 default:
678 case 2: stfun = stq_user; break;
679 }
680 #endif
681
682 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
683 target_ulong i;
684
685 for (i = 0; i < base_reglist; i++) {
686 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
687 addr += 8;
688 }
689 }
690
691 if (do_r31) {
692 stfun(addr, env->active_tc.gpr[31]);
693 }
694 }
695 #endif
696
697 #ifndef CONFIG_USER_ONLY
698 /* CP0 helpers */
699 target_ulong helper_mfc0_mvpcontrol (void)
700 {
701 return env->mvp->CP0_MVPControl;
702 }
703
704 target_ulong helper_mfc0_mvpconf0 (void)
705 {
706 return env->mvp->CP0_MVPConf0;
707 }
708
709 target_ulong helper_mfc0_mvpconf1 (void)
710 {
711 return env->mvp->CP0_MVPConf1;
712 }
713
714 target_ulong helper_mfc0_random (void)
715 {
716 return (int32_t)cpu_mips_get_random(env);
717 }
718
719 target_ulong helper_mfc0_tcstatus (void)
720 {
721 return env->active_tc.CP0_TCStatus;
722 }
723
724 target_ulong helper_mftc0_tcstatus(void)
725 {
726 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
727
728 if (other_tc == env->current_tc)
729 return env->active_tc.CP0_TCStatus;
730 else
731 return env->tcs[other_tc].CP0_TCStatus;
732 }
733
734 target_ulong helper_mfc0_tcbind (void)
735 {
736 return env->active_tc.CP0_TCBind;
737 }
738
739 target_ulong helper_mftc0_tcbind(void)
740 {
741 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
742
743 if (other_tc == env->current_tc)
744 return env->active_tc.CP0_TCBind;
745 else
746 return env->tcs[other_tc].CP0_TCBind;
747 }
748
749 target_ulong helper_mfc0_tcrestart (void)
750 {
751 return env->active_tc.PC;
752 }
753
754 target_ulong helper_mftc0_tcrestart(void)
755 {
756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
757
758 if (other_tc == env->current_tc)
759 return env->active_tc.PC;
760 else
761 return env->tcs[other_tc].PC;
762 }
763
764 target_ulong helper_mfc0_tchalt (void)
765 {
766 return env->active_tc.CP0_TCHalt;
767 }
768
769 target_ulong helper_mftc0_tchalt(void)
770 {
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
772
773 if (other_tc == env->current_tc)
774 return env->active_tc.CP0_TCHalt;
775 else
776 return env->tcs[other_tc].CP0_TCHalt;
777 }
778
779 target_ulong helper_mfc0_tccontext (void)
780 {
781 return env->active_tc.CP0_TCContext;
782 }
783
784 target_ulong helper_mftc0_tccontext(void)
785 {
786 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
787
788 if (other_tc == env->current_tc)
789 return env->active_tc.CP0_TCContext;
790 else
791 return env->tcs[other_tc].CP0_TCContext;
792 }
793
794 target_ulong helper_mfc0_tcschedule (void)
795 {
796 return env->active_tc.CP0_TCSchedule;
797 }
798
799 target_ulong helper_mftc0_tcschedule(void)
800 {
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
802
803 if (other_tc == env->current_tc)
804 return env->active_tc.CP0_TCSchedule;
805 else
806 return env->tcs[other_tc].CP0_TCSchedule;
807 }
808
809 target_ulong helper_mfc0_tcschefback (void)
810 {
811 return env->active_tc.CP0_TCScheFBack;
812 }
813
814 target_ulong helper_mftc0_tcschefback(void)
815 {
816 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
817
818 if (other_tc == env->current_tc)
819 return env->active_tc.CP0_TCScheFBack;
820 else
821 return env->tcs[other_tc].CP0_TCScheFBack;
822 }
823
824 target_ulong helper_mfc0_count (void)
825 {
826 return (int32_t)cpu_mips_get_count(env);
827 }
828
829 target_ulong helper_mftc0_entryhi(void)
830 {
831 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
832 int32_t tcstatus;
833
834 if (other_tc == env->current_tc)
835 tcstatus = env->active_tc.CP0_TCStatus;
836 else
837 tcstatus = env->tcs[other_tc].CP0_TCStatus;
838
839 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
840 }
841
842 target_ulong helper_mftc0_status(void)
843 {
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 target_ulong t0;
846 int32_t tcstatus;
847
848 if (other_tc == env->current_tc)
849 tcstatus = env->active_tc.CP0_TCStatus;
850 else
851 tcstatus = env->tcs[other_tc].CP0_TCStatus;
852
853 t0 = env->CP0_Status & ~0xf1000018;
854 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
855 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
856 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
857
858 return t0;
859 }
860
861 target_ulong helper_mfc0_lladdr (void)
862 {
863 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
864 }
865
866 target_ulong helper_mfc0_watchlo (uint32_t sel)
867 {
868 return (int32_t)env->CP0_WatchLo[sel];
869 }
870
871 target_ulong helper_mfc0_watchhi (uint32_t sel)
872 {
873 return env->CP0_WatchHi[sel];
874 }
875
876 target_ulong helper_mfc0_debug (void)
877 {
878 target_ulong t0 = env->CP0_Debug;
879 if (env->hflags & MIPS_HFLAG_DM)
880 t0 |= 1 << CP0DB_DM;
881
882 return t0;
883 }
884
885 target_ulong helper_mftc0_debug(void)
886 {
887 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
888 int32_t tcstatus;
889
890 if (other_tc == env->current_tc)
891 tcstatus = env->active_tc.CP0_Debug_tcstatus;
892 else
893 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
894
895 /* XXX: Might be wrong, check with EJTAG spec. */
896 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
897 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
898 }
899
900 #if defined(TARGET_MIPS64)
901 target_ulong helper_dmfc0_tcrestart (void)
902 {
903 return env->active_tc.PC;
904 }
905
906 target_ulong helper_dmfc0_tchalt (void)
907 {
908 return env->active_tc.CP0_TCHalt;
909 }
910
911 target_ulong helper_dmfc0_tccontext (void)
912 {
913 return env->active_tc.CP0_TCContext;
914 }
915
916 target_ulong helper_dmfc0_tcschedule (void)
917 {
918 return env->active_tc.CP0_TCSchedule;
919 }
920
921 target_ulong helper_dmfc0_tcschefback (void)
922 {
923 return env->active_tc.CP0_TCScheFBack;
924 }
925
926 target_ulong helper_dmfc0_lladdr (void)
927 {
928 return env->lladdr >> env->CP0_LLAddr_shift;
929 }
930
931 target_ulong helper_dmfc0_watchlo (uint32_t sel)
932 {
933 return env->CP0_WatchLo[sel];
934 }
935 #endif /* TARGET_MIPS64 */
936
937 void helper_mtc0_index (target_ulong arg1)
938 {
939 int num = 1;
940 unsigned int tmp = env->tlb->nb_tlb;
941
942 do {
943 tmp >>= 1;
944 num <<= 1;
945 } while (tmp);
946 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
947 }
948
949 void helper_mtc0_mvpcontrol (target_ulong arg1)
950 {
951 uint32_t mask = 0;
952 uint32_t newval;
953
954 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
955 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
956 (1 << CP0MVPCo_EVP);
957 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
958 mask |= (1 << CP0MVPCo_STLB);
959 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
960
961 // TODO: Enable/disable shared TLB, enable/disable VPEs.
962
963 env->mvp->CP0_MVPControl = newval;
964 }
965
966 void helper_mtc0_vpecontrol (target_ulong arg1)
967 {
968 uint32_t mask;
969 uint32_t newval;
970
971 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
972 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
973 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
974
975 /* Yield scheduler intercept not implemented. */
976 /* Gating storage scheduler intercept not implemented. */
977
978 // TODO: Enable/disable TCs.
979
980 env->CP0_VPEControl = newval;
981 }
982
983 void helper_mtc0_vpeconf0 (target_ulong arg1)
984 {
985 uint32_t mask = 0;
986 uint32_t newval;
987
988 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
989 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
990 mask |= (0xff << CP0VPEC0_XTC);
991 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
992 }
993 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
994
995 // TODO: TC exclusive handling due to ERL/EXL.
996
997 env->CP0_VPEConf0 = newval;
998 }
999
1000 void helper_mtc0_vpeconf1 (target_ulong arg1)
1001 {
1002 uint32_t mask = 0;
1003 uint32_t newval;
1004
1005 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1006 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1007 (0xff << CP0VPEC1_NCP1);
1008 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1009
1010 /* UDI not implemented. */
1011 /* CP2 not implemented. */
1012
1013 // TODO: Handle FPU (CP1) binding.
1014
1015 env->CP0_VPEConf1 = newval;
1016 }
1017
1018 void helper_mtc0_yqmask (target_ulong arg1)
1019 {
1020 /* Yield qualifier inputs not implemented. */
1021 env->CP0_YQMask = 0x00000000;
1022 }
1023
1024 void helper_mtc0_vpeopt (target_ulong arg1)
1025 {
1026 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1027 }
1028
1029 void helper_mtc0_entrylo0 (target_ulong arg1)
1030 {
1031 /* Large physaddr (PABITS) not implemented */
1032 /* 1k pages not implemented */
1033 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1034 }
1035
1036 void helper_mtc0_tcstatus (target_ulong arg1)
1037 {
1038 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1039 uint32_t newval;
1040
1041 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1042
1043 // TODO: Sync with CP0_Status.
1044
1045 env->active_tc.CP0_TCStatus = newval;
1046 }
1047
1048 void helper_mttc0_tcstatus (target_ulong arg1)
1049 {
1050 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1051
1052 // TODO: Sync with CP0_Status.
1053
1054 if (other_tc == env->current_tc)
1055 env->active_tc.CP0_TCStatus = arg1;
1056 else
1057 env->tcs[other_tc].CP0_TCStatus = arg1;
1058 }
1059
1060 void helper_mtc0_tcbind (target_ulong arg1)
1061 {
1062 uint32_t mask = (1 << CP0TCBd_TBE);
1063 uint32_t newval;
1064
1065 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1066 mask |= (1 << CP0TCBd_CurVPE);
1067 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1068 env->active_tc.CP0_TCBind = newval;
1069 }
1070
1071 void helper_mttc0_tcbind (target_ulong arg1)
1072 {
1073 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1074 uint32_t mask = (1 << CP0TCBd_TBE);
1075 uint32_t newval;
1076
1077 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1078 mask |= (1 << CP0TCBd_CurVPE);
1079 if (other_tc == env->current_tc) {
1080 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1081 env->active_tc.CP0_TCBind = newval;
1082 } else {
1083 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1084 env->tcs[other_tc].CP0_TCBind = newval;
1085 }
1086 }
1087
1088 void helper_mtc0_tcrestart (target_ulong arg1)
1089 {
1090 env->active_tc.PC = arg1;
1091 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1092 env->lladdr = 0ULL;
1093 /* MIPS16 not implemented. */
1094 }
1095
1096 void helper_mttc0_tcrestart (target_ulong arg1)
1097 {
1098 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1099
1100 if (other_tc == env->current_tc) {
1101 env->active_tc.PC = arg1;
1102 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1103 env->lladdr = 0ULL;
1104 /* MIPS16 not implemented. */
1105 } else {
1106 env->tcs[other_tc].PC = arg1;
1107 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1108 env->lladdr = 0ULL;
1109 /* MIPS16 not implemented. */
1110 }
1111 }
1112
1113 void helper_mtc0_tchalt (target_ulong arg1)
1114 {
1115 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1116
1117 // TODO: Halt TC / Restart (if allocated+active) TC.
1118 }
1119
1120 void helper_mttc0_tchalt (target_ulong arg1)
1121 {
1122 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1123
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1125
1126 if (other_tc == env->current_tc)
1127 env->active_tc.CP0_TCHalt = arg1;
1128 else
1129 env->tcs[other_tc].CP0_TCHalt = arg1;
1130 }
1131
1132 void helper_mtc0_tccontext (target_ulong arg1)
1133 {
1134 env->active_tc.CP0_TCContext = arg1;
1135 }
1136
1137 void helper_mttc0_tccontext (target_ulong arg1)
1138 {
1139 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1140
1141 if (other_tc == env->current_tc)
1142 env->active_tc.CP0_TCContext = arg1;
1143 else
1144 env->tcs[other_tc].CP0_TCContext = arg1;
1145 }
1146
1147 void helper_mtc0_tcschedule (target_ulong arg1)
1148 {
1149 env->active_tc.CP0_TCSchedule = arg1;
1150 }
1151
1152 void helper_mttc0_tcschedule (target_ulong arg1)
1153 {
1154 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1155
1156 if (other_tc == env->current_tc)
1157 env->active_tc.CP0_TCSchedule = arg1;
1158 else
1159 env->tcs[other_tc].CP0_TCSchedule = arg1;
1160 }
1161
1162 void helper_mtc0_tcschefback (target_ulong arg1)
1163 {
1164 env->active_tc.CP0_TCScheFBack = arg1;
1165 }
1166
1167 void helper_mttc0_tcschefback (target_ulong arg1)
1168 {
1169 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1170
1171 if (other_tc == env->current_tc)
1172 env->active_tc.CP0_TCScheFBack = arg1;
1173 else
1174 env->tcs[other_tc].CP0_TCScheFBack = arg1;
1175 }
1176
1177 void helper_mtc0_entrylo1 (target_ulong arg1)
1178 {
1179 /* Large physaddr (PABITS) not implemented */
1180 /* 1k pages not implemented */
1181 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1182 }
1183
1184 void helper_mtc0_context (target_ulong arg1)
1185 {
1186 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1187 }
1188
1189 void helper_mtc0_pagemask (target_ulong arg1)
1190 {
1191 /* 1k pages not implemented */
1192 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1193 }
1194
1195 void helper_mtc0_pagegrain (target_ulong arg1)
1196 {
1197 /* SmartMIPS not implemented */
1198 /* Large physaddr (PABITS) not implemented */
1199 /* 1k pages not implemented */
1200 env->CP0_PageGrain = 0;
1201 }
1202
1203 void helper_mtc0_wired (target_ulong arg1)
1204 {
1205 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1206 }
1207
1208 void helper_mtc0_srsconf0 (target_ulong arg1)
1209 {
1210 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1211 }
1212
1213 void helper_mtc0_srsconf1 (target_ulong arg1)
1214 {
1215 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1216 }
1217
1218 void helper_mtc0_srsconf2 (target_ulong arg1)
1219 {
1220 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1221 }
1222
1223 void helper_mtc0_srsconf3 (target_ulong arg1)
1224 {
1225 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1226 }
1227
1228 void helper_mtc0_srsconf4 (target_ulong arg1)
1229 {
1230 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1231 }
1232
1233 void helper_mtc0_hwrena (target_ulong arg1)
1234 {
1235 env->CP0_HWREna = arg1 & 0x0000000F;
1236 }
1237
1238 void helper_mtc0_count (target_ulong arg1)
1239 {
1240 cpu_mips_store_count(env, arg1);
1241 }
1242
1243 void helper_mtc0_entryhi (target_ulong arg1)
1244 {
1245 target_ulong old, val;
1246
1247 /* 1k pages not implemented */
1248 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1249 #if defined(TARGET_MIPS64)
1250 val &= env->SEGMask;
1251 #endif
1252 old = env->CP0_EntryHi;
1253 env->CP0_EntryHi = val;
1254 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1255 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1256 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1257 }
1258 /* If the ASID changes, flush qemu's TLB. */
1259 if ((old & 0xFF) != (val & 0xFF))
1260 cpu_mips_tlb_flush(env, 1);
1261 }
1262
1263 void helper_mttc0_entryhi(target_ulong arg1)
1264 {
1265 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1266 int32_t tcstatus;
1267
1268 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1269 if (other_tc == env->current_tc) {
1270 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1271 env->active_tc.CP0_TCStatus = tcstatus;
1272 } else {
1273 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1274 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1275 }
1276 }
1277
1278 void helper_mtc0_compare (target_ulong arg1)
1279 {
1280 cpu_mips_store_compare(env, arg1);
1281 }
1282
1283 void helper_mtc0_status (target_ulong arg1)
1284 {
1285 uint32_t val, old;
1286 uint32_t mask = env->CP0_Status_rw_bitmask;
1287
1288 val = arg1 & mask;
1289 old = env->CP0_Status;
1290 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1291 compute_hflags(env);
1292 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1293 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1294 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1295 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1296 env->CP0_Cause);
1297 switch (env->hflags & MIPS_HFLAG_KSU) {
1298 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1299 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1300 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1301 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1302 }
1303 }
1304 }
1305
1306 void helper_mttc0_status(target_ulong arg1)
1307 {
1308 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1309 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1310
1311 env->CP0_Status = arg1 & ~0xf1000018;
1312 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1313 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1314 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1315 if (other_tc == env->current_tc)
1316 env->active_tc.CP0_TCStatus = tcstatus;
1317 else
1318 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1319 }
1320
1321 void helper_mtc0_intctl (target_ulong arg1)
1322 {
1323 /* vectored interrupts not implemented, no performance counters. */
1324 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1325 }
1326
1327 void helper_mtc0_srsctl (target_ulong arg1)
1328 {
1329 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1330 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1331 }
1332
1333 void helper_mtc0_cause (target_ulong arg1)
1334 {
1335 uint32_t mask = 0x00C00300;
1336 uint32_t old = env->CP0_Cause;
1337 int i;
1338
1339 if (env->insn_flags & ISA_MIPS32R2)
1340 mask |= 1 << CP0Ca_DC;
1341
1342 env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1343
1344 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1345 if (env->CP0_Cause & (1 << CP0Ca_DC))
1346 cpu_mips_stop_count(env);
1347 else
1348 cpu_mips_start_count(env);
1349 }
1350
1351 /* Set/reset software interrupts */
1352 for (i = 0 ; i < 2 ; i++) {
1353 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1354 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
1355 }
1356 }
1357 }
1358
1359 void helper_mtc0_ebase (target_ulong arg1)
1360 {
1361 /* vectored interrupts not implemented */
1362 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1363 }
1364
1365 void helper_mtc0_config0 (target_ulong arg1)
1366 {
1367 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1368 }
1369
1370 void helper_mtc0_config2 (target_ulong arg1)
1371 {
1372 /* tertiary/secondary caches not implemented */
1373 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1374 }
1375
1376 void helper_mtc0_lladdr (target_ulong arg1)
1377 {
1378 target_long mask = env->CP0_LLAddr_rw_bitmask;
1379 arg1 = arg1 << env->CP0_LLAddr_shift;
1380 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1381 }
1382
1383 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1384 {
1385 /* Watch exceptions for instructions, data loads, data stores
1386 not implemented. */
1387 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1388 }
1389
1390 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1391 {
1392 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1393 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1394 }
1395
1396 void helper_mtc0_xcontext (target_ulong arg1)
1397 {
1398 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1399 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1400 }
1401
1402 void helper_mtc0_framemask (target_ulong arg1)
1403 {
1404 env->CP0_Framemask = arg1; /* XXX */
1405 }
1406
1407 void helper_mtc0_debug (target_ulong arg1)
1408 {
1409 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1410 if (arg1 & (1 << CP0DB_DM))
1411 env->hflags |= MIPS_HFLAG_DM;
1412 else
1413 env->hflags &= ~MIPS_HFLAG_DM;
1414 }
1415
1416 void helper_mttc0_debug(target_ulong arg1)
1417 {
1418 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1419 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1420
1421 /* XXX: Might be wrong, check with EJTAG spec. */
1422 if (other_tc == env->current_tc)
1423 env->active_tc.CP0_Debug_tcstatus = val;
1424 else
1425 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1426 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1427 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1428 }
1429
1430 void helper_mtc0_performance0 (target_ulong arg1)
1431 {
1432 env->CP0_Performance0 = arg1 & 0x000007ff;
1433 }
1434
1435 void helper_mtc0_taglo (target_ulong arg1)
1436 {
1437 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1438 }
1439
1440 void helper_mtc0_datalo (target_ulong arg1)
1441 {
1442 env->CP0_DataLo = arg1; /* XXX */
1443 }
1444
1445 void helper_mtc0_taghi (target_ulong arg1)
1446 {
1447 env->CP0_TagHi = arg1; /* XXX */
1448 }
1449
1450 void helper_mtc0_datahi (target_ulong arg1)
1451 {
1452 env->CP0_DataHi = arg1; /* XXX */
1453 }
1454
1455 /* MIPS MT functions */
1456 target_ulong helper_mftgpr(uint32_t sel)
1457 {
1458 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1459
1460 if (other_tc == env->current_tc)
1461 return env->active_tc.gpr[sel];
1462 else
1463 return env->tcs[other_tc].gpr[sel];
1464 }
1465
1466 target_ulong helper_mftlo(uint32_t sel)
1467 {
1468 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1469
1470 if (other_tc == env->current_tc)
1471 return env->active_tc.LO[sel];
1472 else
1473 return env->tcs[other_tc].LO[sel];
1474 }
1475
1476 target_ulong helper_mfthi(uint32_t sel)
1477 {
1478 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1479
1480 if (other_tc == env->current_tc)
1481 return env->active_tc.HI[sel];
1482 else
1483 return env->tcs[other_tc].HI[sel];
1484 }
1485
1486 target_ulong helper_mftacx(uint32_t sel)
1487 {
1488 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1489
1490 if (other_tc == env->current_tc)
1491 return env->active_tc.ACX[sel];
1492 else
1493 return env->tcs[other_tc].ACX[sel];
1494 }
1495
1496 target_ulong helper_mftdsp(void)
1497 {
1498 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1499
1500 if (other_tc == env->current_tc)
1501 return env->active_tc.DSPControl;
1502 else
1503 return env->tcs[other_tc].DSPControl;
1504 }
1505
1506 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1507 {
1508 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1509
1510 if (other_tc == env->current_tc)
1511 env->active_tc.gpr[sel] = arg1;
1512 else
1513 env->tcs[other_tc].gpr[sel] = arg1;
1514 }
1515
1516 void helper_mttlo(target_ulong arg1, uint32_t sel)
1517 {
1518 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1519
1520 if (other_tc == env->current_tc)
1521 env->active_tc.LO[sel] = arg1;
1522 else
1523 env->tcs[other_tc].LO[sel] = arg1;
1524 }
1525
1526 void helper_mtthi(target_ulong arg1, uint32_t sel)
1527 {
1528 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1529
1530 if (other_tc == env->current_tc)
1531 env->active_tc.HI[sel] = arg1;
1532 else
1533 env->tcs[other_tc].HI[sel] = arg1;
1534 }
1535
1536 void helper_mttacx(target_ulong arg1, uint32_t sel)
1537 {
1538 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1539
1540 if (other_tc == env->current_tc)
1541 env->active_tc.ACX[sel] = arg1;
1542 else
1543 env->tcs[other_tc].ACX[sel] = arg1;
1544 }
1545
1546 void helper_mttdsp(target_ulong arg1)
1547 {
1548 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1549
1550 if (other_tc == env->current_tc)
1551 env->active_tc.DSPControl = arg1;
1552 else
1553 env->tcs[other_tc].DSPControl = arg1;
1554 }
1555
1556 /* MIPS MT functions */
1557 target_ulong helper_dmt(target_ulong arg1)
1558 {
1559 // TODO
1560 arg1 = 0;
1561 // rt = arg1
1562
1563 return arg1;
1564 }
1565
1566 target_ulong helper_emt(target_ulong arg1)
1567 {
1568 // TODO
1569 arg1 = 0;
1570 // rt = arg1
1571
1572 return arg1;
1573 }
1574
1575 target_ulong helper_dvpe(target_ulong arg1)
1576 {
1577 // TODO
1578 arg1 = 0;
1579 // rt = arg1
1580
1581 return arg1;
1582 }
1583
1584 target_ulong helper_evpe(target_ulong arg1)
1585 {
1586 // TODO
1587 arg1 = 0;
1588 // rt = arg1
1589
1590 return arg1;
1591 }
1592 #endif /* !CONFIG_USER_ONLY */
1593
1594 void helper_fork(target_ulong arg1, target_ulong arg2)
1595 {
1596 // arg1 = rt, arg2 = rs
1597 arg1 = 0;
1598 // TODO: store to TC register
1599 }
1600
1601 target_ulong helper_yield(target_ulong arg1)
1602 {
1603 if (arg1 < 0) {
1604 /* No scheduling policy implemented. */
1605 if (arg1 != -2) {
1606 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1607 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1608 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1609 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1610 helper_raise_exception(EXCP_THREAD);
1611 }
1612 }
1613 } else if (arg1 == 0) {
1614 if (0 /* TODO: TC underflow */) {
1615 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1616 helper_raise_exception(EXCP_THREAD);
1617 } else {
1618 // TODO: Deallocate TC
1619 }
1620 } else if (arg1 > 0) {
1621 /* Yield qualifier inputs not implemented. */
1622 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1623 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1624 helper_raise_exception(EXCP_THREAD);
1625 }
1626 return env->CP0_YQMask;
1627 }
1628
1629 #ifndef CONFIG_USER_ONLY
1630 /* TLB management */
1631 static void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1632 {
1633 /* Flush qemu's TLB and discard all shadowed entries. */
1634 tlb_flush (env, flush_global);
1635 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1636 }
1637
1638 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1639 {
1640 /* Discard entries from env->tlb[first] onwards. */
1641 while (env->tlb->tlb_in_use > first) {
1642 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1643 }
1644 }
1645
1646 static void r4k_fill_tlb (int idx)
1647 {
1648 r4k_tlb_t *tlb;
1649
1650 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1651 tlb = &env->tlb->mmu.r4k.tlb[idx];
1652 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1653 #if defined(TARGET_MIPS64)
1654 tlb->VPN &= env->SEGMask;
1655 #endif
1656 tlb->ASID = env->CP0_EntryHi & 0xFF;
1657 tlb->PageMask = env->CP0_PageMask;
1658 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1659 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1660 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1661 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1662 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1663 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1664 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1665 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1666 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1667 }
1668
1669 void r4k_helper_tlbwi (void)
1670 {
1671 int idx;
1672
1673 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1674
1675 /* Discard cached TLB entries. We could avoid doing this if the
1676 tlbwi is just upgrading access permissions on the current entry;
1677 that might be a further win. */
1678 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1679
1680 r4k_invalidate_tlb(env, idx, 0);
1681 r4k_fill_tlb(idx);
1682 }
1683
1684 void r4k_helper_tlbwr (void)
1685 {
1686 int r = cpu_mips_get_random(env);
1687
1688 r4k_invalidate_tlb(env, r, 1);
1689 r4k_fill_tlb(r);
1690 }
1691
1692 void r4k_helper_tlbp (void)
1693 {
1694 r4k_tlb_t *tlb;
1695 target_ulong mask;
1696 target_ulong tag;
1697 target_ulong VPN;
1698 uint8_t ASID;
1699 int i;
1700
1701 ASID = env->CP0_EntryHi & 0xFF;
1702 for (i = 0; i < env->tlb->nb_tlb; i++) {
1703 tlb = &env->tlb->mmu.r4k.tlb[i];
1704 /* 1k pages are not supported. */
1705 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1706 tag = env->CP0_EntryHi & ~mask;
1707 VPN = tlb->VPN & ~mask;
1708 /* Check ASID, virtual page number & size */
1709 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1710 /* TLB match */
1711 env->CP0_Index = i;
1712 break;
1713 }
1714 }
1715 if (i == env->tlb->nb_tlb) {
1716 /* No match. Discard any shadow entries, if any of them match. */
1717 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1718 tlb = &env->tlb->mmu.r4k.tlb[i];
1719 /* 1k pages are not supported. */
1720 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1721 tag = env->CP0_EntryHi & ~mask;
1722 VPN = tlb->VPN & ~mask;
1723 /* Check ASID, virtual page number & size */
1724 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1725 r4k_mips_tlb_flush_extra (env, i);
1726 break;
1727 }
1728 }
1729
1730 env->CP0_Index |= 0x80000000;
1731 }
1732 }
1733
1734 void r4k_helper_tlbr (void)
1735 {
1736 r4k_tlb_t *tlb;
1737 uint8_t ASID;
1738 int idx;
1739
1740 ASID = env->CP0_EntryHi & 0xFF;
1741 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1742 tlb = &env->tlb->mmu.r4k.tlb[idx];
1743
1744 /* If this will change the current ASID, flush qemu's TLB. */
1745 if (ASID != tlb->ASID)
1746 cpu_mips_tlb_flush (env, 1);
1747
1748 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1749
1750 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1751 env->CP0_PageMask = tlb->PageMask;
1752 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1753 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1754 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1755 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1756 }
1757
1758 void helper_tlbwi(void)
1759 {
1760 env->tlb->helper_tlbwi();
1761 }
1762
1763 void helper_tlbwr(void)
1764 {
1765 env->tlb->helper_tlbwr();
1766 }
1767
1768 void helper_tlbp(void)
1769 {
1770 env->tlb->helper_tlbp();
1771 }
1772
1773 void helper_tlbr(void)
1774 {
1775 env->tlb->helper_tlbr();
1776 }
1777
1778 /* Specials */
1779 target_ulong helper_di (void)
1780 {
1781 target_ulong t0 = env->CP0_Status;
1782
1783 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1784 return t0;
1785 }
1786
1787 target_ulong helper_ei (void)
1788 {
1789 target_ulong t0 = env->CP0_Status;
1790
1791 env->CP0_Status = t0 | (1 << CP0St_IE);
1792 return t0;
1793 }
1794
1795 static void debug_pre_eret (void)
1796 {
1797 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1798 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1799 env->active_tc.PC, env->CP0_EPC);
1800 if (env->CP0_Status & (1 << CP0St_ERL))
1801 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1802 if (env->hflags & MIPS_HFLAG_DM)
1803 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1804 qemu_log("\n");
1805 }
1806 }
1807
1808 static void debug_post_eret (void)
1809 {
1810 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1811 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1812 env->active_tc.PC, env->CP0_EPC);
1813 if (env->CP0_Status & (1 << CP0St_ERL))
1814 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1815 if (env->hflags & MIPS_HFLAG_DM)
1816 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1817 switch (env->hflags & MIPS_HFLAG_KSU) {
1818 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1819 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1820 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1821 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1822 }
1823 }
1824 }
1825
1826 static void set_pc (target_ulong error_pc)
1827 {
1828 env->active_tc.PC = error_pc & ~(target_ulong)1;
1829 if (error_pc & 1) {
1830 env->hflags |= MIPS_HFLAG_M16;
1831 } else {
1832 env->hflags &= ~(MIPS_HFLAG_M16);
1833 }
1834 }
1835
1836 void helper_eret (void)
1837 {
1838 debug_pre_eret();
1839 if (env->CP0_Status & (1 << CP0St_ERL)) {
1840 set_pc(env->CP0_ErrorEPC);
1841 env->CP0_Status &= ~(1 << CP0St_ERL);
1842 } else {
1843 set_pc(env->CP0_EPC);
1844 env->CP0_Status &= ~(1 << CP0St_EXL);
1845 }
1846 compute_hflags(env);
1847 debug_post_eret();
1848 env->lladdr = 1;
1849 }
1850
1851 void helper_deret (void)
1852 {
1853 debug_pre_eret();
1854 set_pc(env->CP0_DEPC);
1855
1856 env->hflags &= MIPS_HFLAG_DM;
1857 compute_hflags(env);
1858 debug_post_eret();
1859 env->lladdr = 1;
1860 }
1861 #endif /* !CONFIG_USER_ONLY */
1862
1863 target_ulong helper_rdhwr_cpunum(void)
1864 {
1865 if ((env->hflags & MIPS_HFLAG_CP0) ||
1866 (env->CP0_HWREna & (1 << 0)))
1867 return env->CP0_EBase & 0x3ff;
1868 else
1869 helper_raise_exception(EXCP_RI);
1870
1871 return 0;
1872 }
1873
1874 target_ulong helper_rdhwr_synci_step(void)
1875 {
1876 if ((env->hflags & MIPS_HFLAG_CP0) ||
1877 (env->CP0_HWREna & (1 << 1)))
1878 return env->SYNCI_Step;
1879 else
1880 helper_raise_exception(EXCP_RI);
1881
1882 return 0;
1883 }
1884
1885 target_ulong helper_rdhwr_cc(void)
1886 {
1887 if ((env->hflags & MIPS_HFLAG_CP0) ||
1888 (env->CP0_HWREna & (1 << 2)))
1889 return env->CP0_Count;
1890 else
1891 helper_raise_exception(EXCP_RI);
1892
1893 return 0;
1894 }
1895
1896 target_ulong helper_rdhwr_ccres(void)
1897 {
1898 if ((env->hflags & MIPS_HFLAG_CP0) ||
1899 (env->CP0_HWREna & (1 << 3)))
1900 return env->CCRes;
1901 else
1902 helper_raise_exception(EXCP_RI);
1903
1904 return 0;
1905 }
1906
1907 void helper_pmon (int function)
1908 {
1909 function /= 2;
1910 switch (function) {
1911 case 2: /* TODO: char inbyte(int waitflag); */
1912 if (env->active_tc.gpr[4] == 0)
1913 env->active_tc.gpr[2] = -1;
1914 /* Fall through */
1915 case 11: /* TODO: char inbyte (void); */
1916 env->active_tc.gpr[2] = -1;
1917 break;
1918 case 3:
1919 case 12:
1920 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1921 break;
1922 case 17:
1923 break;
1924 case 158:
1925 {
1926 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1927 printf("%s", fmt);
1928 }
1929 break;
1930 }
1931 }
1932
1933 void helper_wait (void)
1934 {
1935 env->halted = 1;
1936 helper_raise_exception(EXCP_HLT);
1937 }
1938
1939 #if !defined(CONFIG_USER_ONLY)
1940
1941 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1942
1943 #define MMUSUFFIX _mmu
1944 #define ALIGNED_ONLY
1945
1946 #define SHIFT 0
1947 #include "softmmu_template.h"
1948
1949 #define SHIFT 1
1950 #include "softmmu_template.h"
1951
1952 #define SHIFT 2
1953 #include "softmmu_template.h"
1954
1955 #define SHIFT 3
1956 #include "softmmu_template.h"
1957
1958 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1959 {
1960 env->CP0_BadVAddr = addr;
1961 do_restore_state (retaddr);
1962 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1963 }
1964
1965 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1966 {
1967 TranslationBlock *tb;
1968 CPUState *saved_env;
1969 unsigned long pc;
1970 int ret;
1971
1972 /* XXX: hack to restore env in all cases, even if not called from
1973 generated code */
1974 saved_env = env;
1975 env = cpu_single_env;
1976 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1977 if (ret) {
1978 if (retaddr) {
1979 /* now we have a real cpu fault */
1980 pc = (unsigned long)retaddr;
1981 tb = tb_find_pc(pc);
1982 if (tb) {
1983 /* the PC is inside the translated code. It means that we have
1984 a virtual CPU fault */
1985 cpu_restore_state(tb, env, pc, NULL);
1986 }
1987 }
1988 helper_raise_exception_err(env->exception_index, env->error_code);
1989 }
1990 env = saved_env;
1991 }
1992
1993 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1994 int unused, int size)
1995 {
1996 if (is_exec)
1997 helper_raise_exception(EXCP_IBE);
1998 else
1999 helper_raise_exception(EXCP_DBE);
2000 }
2001 #endif /* !CONFIG_USER_ONLY */
2002
2003 /* Complex FPU operations which may need stack space. */
2004
2005 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2006 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2007 #define FLOAT_TWO32 make_float32(1 << 30)
2008 #define FLOAT_TWO64 make_float64(1ULL << 62)
2009 #define FLOAT_QNAN32 0x7fbfffff
2010 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2011 #define FLOAT_SNAN32 0x7fffffff
2012 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2013
2014 /* convert MIPS rounding mode in FCR31 to IEEE library */
2015 static unsigned int ieee_rm[] = {
2016 float_round_nearest_even,
2017 float_round_to_zero,
2018 float_round_up,
2019 float_round_down
2020 };
2021
2022 #define RESTORE_ROUNDING_MODE \
2023 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2024
2025 #define RESTORE_FLUSH_MODE \
2026 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2027
2028 target_ulong helper_cfc1 (uint32_t reg)
2029 {
2030 target_ulong arg1;
2031
2032 switch (reg) {
2033 case 0:
2034 arg1 = (int32_t)env->active_fpu.fcr0;
2035 break;
2036 case 25:
2037 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2038 break;
2039 case 26:
2040 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2041 break;
2042 case 28:
2043 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2044 break;
2045 default:
2046 arg1 = (int32_t)env->active_fpu.fcr31;
2047 break;
2048 }
2049
2050 return arg1;
2051 }
2052
2053 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2054 {
2055 switch(reg) {
2056 case 25:
2057 if (arg1 & 0xffffff00)
2058 return;
2059 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2060 ((arg1 & 0x1) << 23);
2061 break;
2062 case 26:
2063 if (arg1 & 0x007c0000)
2064 return;
2065 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2066 break;
2067 case 28:
2068 if (arg1 & 0x007c0000)
2069 return;
2070 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2071 ((arg1 & 0x4) << 22);
2072 break;
2073 case 31:
2074 if (arg1 & 0x007c0000)
2075 return;
2076 env->active_fpu.fcr31 = arg1;
2077 break;
2078 default:
2079 return;
2080 }
2081 /* set rounding mode */
2082 RESTORE_ROUNDING_MODE;
2083 /* set flush-to-zero mode */
2084 RESTORE_FLUSH_MODE;
2085 set_float_exception_flags(0, &env->active_fpu.fp_status);
2086 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2087 helper_raise_exception(EXCP_FPE);
2088 }
2089
2090 static inline char ieee_ex_to_mips(char xcpt)
2091 {
2092 return (xcpt & float_flag_inexact) >> 5 |
2093 (xcpt & float_flag_underflow) >> 3 |
2094 (xcpt & float_flag_overflow) >> 1 |
2095 (xcpt & float_flag_divbyzero) << 1 |
2096 (xcpt & float_flag_invalid) << 4;
2097 }
2098
2099 static inline char mips_ex_to_ieee(char xcpt)
2100 {
2101 return (xcpt & FP_INEXACT) << 5 |
2102 (xcpt & FP_UNDERFLOW) << 3 |
2103 (xcpt & FP_OVERFLOW) << 1 |
2104 (xcpt & FP_DIV0) >> 1 |
2105 (xcpt & FP_INVALID) >> 4;
2106 }
2107
2108 static inline void update_fcr31(void)
2109 {
2110 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2111
2112 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2113 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2114 helper_raise_exception(EXCP_FPE);
2115 else
2116 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2117 }
2118
2119 /* Float support.
2120 Single precition routines have a "s" suffix, double precision a
2121 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2122 paired single lower "pl", paired single upper "pu". */
2123
2124 /* unary operations, modifying fp status */
2125 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2126 {
2127 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2128 }
2129
2130 uint32_t helper_float_sqrt_s(uint32_t fst0)
2131 {
2132 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2133 }
2134
2135 uint64_t helper_float_cvtd_s(uint32_t fst0)
2136 {
2137 uint64_t fdt2;
2138
2139 set_float_exception_flags(0, &env->active_fpu.fp_status);
2140 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2141 update_fcr31();
2142 return fdt2;
2143 }
2144
2145 uint64_t helper_float_cvtd_w(uint32_t wt0)
2146 {
2147 uint64_t fdt2;
2148
2149 set_float_exception_flags(0, &env->active_fpu.fp_status);
2150 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2151 update_fcr31();
2152 return fdt2;
2153 }
2154
2155 uint64_t helper_float_cvtd_l(uint64_t dt0)
2156 {
2157 uint64_t fdt2;
2158
2159 set_float_exception_flags(0, &env->active_fpu.fp_status);
2160 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2161 update_fcr31();
2162 return fdt2;
2163 }
2164
2165 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2166 {
2167 uint64_t dt2;
2168
2169 set_float_exception_flags(0, &env->active_fpu.fp_status);
2170 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2171 update_fcr31();
2172 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2173 dt2 = FLOAT_SNAN64;
2174 return dt2;
2175 }
2176
2177 uint64_t helper_float_cvtl_s(uint32_t fst0)
2178 {
2179 uint64_t dt2;
2180
2181 set_float_exception_flags(0, &env->active_fpu.fp_status);
2182 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2183 update_fcr31();
2184 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2185 dt2 = FLOAT_SNAN64;
2186 return dt2;
2187 }
2188
2189 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2190 {
2191 uint32_t fst2;
2192 uint32_t fsth2;
2193
2194 set_float_exception_flags(0, &env->active_fpu.fp_status);
2195 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2196 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2197 update_fcr31();
2198 return ((uint64_t)fsth2 << 32) | fst2;
2199 }
2200
2201 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2202 {
2203 uint32_t wt2;
2204 uint32_t wth2;
2205
2206 set_float_exception_flags(0, &env->active_fpu.fp_status);
2207 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2208 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2209 update_fcr31();
2210 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2211 wt2 = FLOAT_SNAN32;
2212 wth2 = FLOAT_SNAN32;
2213 }
2214 return ((uint64_t)wth2 << 32) | wt2;
2215 }
2216
2217 uint32_t helper_float_cvts_d(uint64_t fdt0)
2218 {
2219 uint32_t fst2;
2220
2221 set_float_exception_flags(0, &env->active_fpu.fp_status);
2222 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2223 update_fcr31();
2224 return fst2;
2225 }
2226
2227 uint32_t helper_float_cvts_w(uint32_t wt0)
2228 {
2229 uint32_t fst2;
2230
2231 set_float_exception_flags(0, &env->active_fpu.fp_status);
2232 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2233 update_fcr31();
2234 return fst2;
2235 }
2236
2237 uint32_t helper_float_cvts_l(uint64_t dt0)
2238 {
2239 uint32_t fst2;
2240
2241 set_float_exception_flags(0, &env->active_fpu.fp_status);
2242 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2243 update_fcr31();
2244 return fst2;
2245 }
2246
2247 uint32_t helper_float_cvts_pl(uint32_t wt0)
2248 {
2249 uint32_t wt2;
2250
2251 set_float_exception_flags(0, &env->active_fpu.fp_status);
2252 wt2 = wt0;
2253 update_fcr31();
2254 return wt2;
2255 }
2256
2257 uint32_t helper_float_cvts_pu(uint32_t wth0)
2258 {
2259 uint32_t wt2;
2260
2261 set_float_exception_flags(0, &env->active_fpu.fp_status);
2262 wt2 = wth0;
2263 update_fcr31();
2264 return wt2;
2265 }
2266
2267 uint32_t helper_float_cvtw_s(uint32_t fst0)
2268 {
2269 uint32_t wt2;
2270
2271 set_float_exception_flags(0, &env->active_fpu.fp_status);
2272 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2273 update_fcr31();
2274 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2275 wt2 = FLOAT_SNAN32;
2276 return wt2;
2277 }
2278
2279 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2280 {
2281 uint32_t wt2;
2282
2283 set_float_exception_flags(0, &env->active_fpu.fp_status);
2284 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2285 update_fcr31();
2286 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2287 wt2 = FLOAT_SNAN32;
2288 return wt2;
2289 }
2290
2291 uint64_t helper_float_roundl_d(uint64_t fdt0)
2292 {
2293 uint64_t dt2;
2294
2295 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2296 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2297 RESTORE_ROUNDING_MODE;
2298 update_fcr31();
2299 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2300 dt2 = FLOAT_SNAN64;
2301 return dt2;
2302 }
2303
2304 uint64_t helper_float_roundl_s(uint32_t fst0)
2305 {
2306 uint64_t dt2;
2307
2308 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2309 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2310 RESTORE_ROUNDING_MODE;
2311 update_fcr31();
2312 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2313 dt2 = FLOAT_SNAN64;
2314 return dt2;
2315 }
2316
2317 uint32_t helper_float_roundw_d(uint64_t fdt0)
2318 {
2319 uint32_t wt2;
2320
2321 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2322 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2323 RESTORE_ROUNDING_MODE;
2324 update_fcr31();
2325 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2326 wt2 = FLOAT_SNAN32;
2327 return wt2;
2328 }
2329
2330 uint32_t helper_float_roundw_s(uint32_t fst0)
2331 {
2332 uint32_t wt2;
2333
2334 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2335 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2336 RESTORE_ROUNDING_MODE;
2337 update_fcr31();
2338 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2339 wt2 = FLOAT_SNAN32;
2340 return wt2;
2341 }
2342
2343 uint64_t helper_float_truncl_d(uint64_t fdt0)
2344 {
2345 uint64_t dt2;
2346
2347 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2348 update_fcr31();
2349 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2350 dt2 = FLOAT_SNAN64;
2351 return dt2;
2352 }
2353
2354 uint64_t helper_float_truncl_s(uint32_t fst0)
2355 {
2356 uint64_t dt2;
2357
2358 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2359 update_fcr31();
2360 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2361 dt2 = FLOAT_SNAN64;
2362 return dt2;
2363 }
2364
2365 uint32_t helper_float_truncw_d(uint64_t fdt0)
2366 {
2367 uint32_t wt2;
2368
2369 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2370 update_fcr31();
2371 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2372 wt2 = FLOAT_SNAN32;
2373 return wt2;
2374 }
2375
2376 uint32_t helper_float_truncw_s(uint32_t fst0)
2377 {
2378 uint32_t wt2;
2379
2380 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2381 update_fcr31();
2382 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2383 wt2 = FLOAT_SNAN32;
2384 return wt2;
2385 }
2386
2387 uint64_t helper_float_ceill_d(uint64_t fdt0)
2388 {
2389 uint64_t dt2;
2390
2391 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2392 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2393 RESTORE_ROUNDING_MODE;
2394 update_fcr31();
2395 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2396 dt2 = FLOAT_SNAN64;
2397 return dt2;
2398 }
2399
2400 uint64_t helper_float_ceill_s(uint32_t fst0)
2401 {
2402 uint64_t dt2;
2403
2404 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2405 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2406 RESTORE_ROUNDING_MODE;
2407 update_fcr31();
2408 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2409 dt2 = FLOAT_SNAN64;
2410 return dt2;
2411 }
2412
2413 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2414 {
2415 uint32_t wt2;
2416
2417 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2418 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2419 RESTORE_ROUNDING_MODE;
2420 update_fcr31();
2421 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2422 wt2 = FLOAT_SNAN32;
2423 return wt2;
2424 }
2425
2426 uint32_t helper_float_ceilw_s(uint32_t fst0)
2427 {
2428 uint32_t wt2;
2429
2430 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2431 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2432 RESTORE_ROUNDING_MODE;
2433 update_fcr31();
2434 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2435 wt2 = FLOAT_SNAN32;
2436 return wt2;
2437 }
2438
2439 uint64_t helper_float_floorl_d(uint64_t fdt0)
2440 {
2441 uint64_t dt2;
2442
2443 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2444 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2445 RESTORE_ROUNDING_MODE;
2446 update_fcr31();
2447 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2448 dt2 = FLOAT_SNAN64;
2449 return dt2;
2450 }
2451
2452 uint64_t helper_float_floorl_s(uint32_t fst0)
2453 {
2454 uint64_t dt2;
2455
2456 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2457 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2458 RESTORE_ROUNDING_MODE;
2459 update_fcr31();
2460 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2461 dt2 = FLOAT_SNAN64;
2462 return dt2;
2463 }
2464
2465 uint32_t helper_float_floorw_d(uint64_t fdt0)
2466 {
2467 uint32_t wt2;
2468
2469 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2470 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2471 RESTORE_ROUNDING_MODE;
2472 update_fcr31();
2473 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2474 wt2 = FLOAT_SNAN32;
2475 return wt2;
2476 }
2477
2478 uint32_t helper_float_floorw_s(uint32_t fst0)
2479 {
2480 uint32_t wt2;
2481
2482 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2483 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2484 RESTORE_ROUNDING_MODE;
2485 update_fcr31();
2486 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2487 wt2 = FLOAT_SNAN32;
2488 return wt2;
2489 }
2490
2491 /* unary operations, not modifying fp status */
2492 #define FLOAT_UNOP(name) \
2493 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2494 { \
2495 return float64_ ## name(fdt0); \
2496 } \
2497 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2498 { \
2499 return float32_ ## name(fst0); \
2500 } \
2501 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2502 { \
2503 uint32_t wt0; \
2504 uint32_t wth0; \
2505 \
2506 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2507 wth0 = float32_ ## name(fdt0 >> 32); \
2508 return ((uint64_t)wth0 << 32) | wt0; \
2509 }
2510 FLOAT_UNOP(abs)
2511 FLOAT_UNOP(chs)
2512 #undef FLOAT_UNOP
2513
2514 /* MIPS specific unary operations */
2515 uint64_t helper_float_recip_d(uint64_t fdt0)
2516 {
2517 uint64_t fdt2;
2518
2519 set_float_exception_flags(0, &env->active_fpu.fp_status);
2520 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2521 update_fcr31();
2522 return fdt2;
2523 }
2524
2525 uint32_t helper_float_recip_s(uint32_t fst0)
2526 {
2527 uint32_t fst2;
2528
2529 set_float_exception_flags(0, &env->active_fpu.fp_status);
2530 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2531 update_fcr31();
2532 return fst2;
2533 }
2534
2535 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2536 {
2537 uint64_t fdt2;
2538
2539 set_float_exception_flags(0, &env->active_fpu.fp_status);
2540 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2541 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2542 update_fcr31();
2543 return fdt2;
2544 }
2545
2546 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2547 {
2548 uint32_t fst2;
2549
2550 set_float_exception_flags(0, &env->active_fpu.fp_status);
2551 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2552 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2553 update_fcr31();
2554 return fst2;
2555 }
2556
2557 uint64_t helper_float_recip1_d(uint64_t fdt0)
2558 {
2559 uint64_t fdt2;
2560
2561 set_float_exception_flags(0, &env->active_fpu.fp_status);
2562 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2563 update_fcr31();
2564 return fdt2;
2565 }
2566
2567 uint32_t helper_float_recip1_s(uint32_t fst0)
2568 {
2569 uint32_t fst2;
2570
2571 set_float_exception_flags(0, &env->active_fpu.fp_status);
2572 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2573 update_fcr31();
2574 return fst2;
2575 }
2576
2577 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2578 {
2579 uint32_t fst2;
2580 uint32_t fsth2;
2581
2582 set_float_exception_flags(0, &env->active_fpu.fp_status);
2583 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2584 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2585 update_fcr31();
2586 return ((uint64_t)fsth2 << 32) | fst2;
2587 }
2588
2589 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2590 {
2591 uint64_t fdt2;
2592
2593 set_float_exception_flags(0, &env->active_fpu.fp_status);
2594 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2595 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2596 update_fcr31();
2597 return fdt2;
2598 }
2599
2600 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2601 {
2602 uint32_t fst2;
2603
2604 set_float_exception_flags(0, &env->active_fpu.fp_status);
2605 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2606 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2607 update_fcr31();
2608 return fst2;
2609 }
2610
2611 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2612 {
2613 uint32_t fst2;
2614 uint32_t fsth2;
2615
2616 set_float_exception_flags(0, &env->active_fpu.fp_status);
2617 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2618 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2619 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2620 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2621 update_fcr31();
2622 return ((uint64_t)fsth2 << 32) | fst2;
2623 }
2624
2625 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2626
2627 /* binary operations */
2628 #define FLOAT_BINOP(name) \
2629 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2630 { \
2631 uint64_t dt2; \
2632 \
2633 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2634 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2635 update_fcr31(); \
2636 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2637 dt2 = FLOAT_QNAN64; \
2638 return dt2; \
2639 } \
2640 \
2641 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2642 { \
2643 uint32_t wt2; \
2644 \
2645 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2646 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2647 update_fcr31(); \
2648 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2649 wt2 = FLOAT_QNAN32; \
2650 return wt2; \
2651 } \
2652 \
2653 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2654 { \
2655 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2656 uint32_t fsth0 = fdt0 >> 32; \
2657 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2658 uint32_t fsth1 = fdt1 >> 32; \
2659 uint32_t wt2; \
2660 uint32_t wth2; \
2661 \
2662 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2663 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2664 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2665 update_fcr31(); \
2666 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2667 wt2 = FLOAT_QNAN32; \
2668 wth2 = FLOAT_QNAN32; \
2669 } \
2670 return ((uint64_t)wth2 << 32) | wt2; \
2671 }
2672
2673 FLOAT_BINOP(add)
2674 FLOAT_BINOP(sub)
2675 FLOAT_BINOP(mul)
2676 FLOAT_BINOP(div)
2677 #undef FLOAT_BINOP
2678
2679 /* ternary operations */
2680 #define FLOAT_TERNOP(name1, name2) \
2681 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2682 uint64_t fdt2) \
2683 { \
2684 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2685 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2686 } \
2687 \
2688 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2689 uint32_t fst2) \
2690 { \
2691 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2692 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2693 } \
2694 \
2695 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2696 uint64_t fdt2) \
2697 { \
2698 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2699 uint32_t fsth0 = fdt0 >> 32; \
2700 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2701 uint32_t fsth1 = fdt1 >> 32; \
2702 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2703 uint32_t fsth2 = fdt2 >> 32; \
2704 \
2705 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2706 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2707 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2708 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2709 return ((uint64_t)fsth2 << 32) | fst2; \
2710 }
2711
2712 FLOAT_TERNOP(mul, add)
2713 FLOAT_TERNOP(mul, sub)
2714 #undef FLOAT_TERNOP
2715
2716 /* negated ternary operations */
2717 #define FLOAT_NTERNOP(name1, name2) \
2718 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2719 uint64_t fdt2) \
2720 { \
2721 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2722 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2723 return float64_chs(fdt2); \
2724 } \
2725 \
2726 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2727 uint32_t fst2) \
2728 { \
2729 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2730 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2731 return float32_chs(fst2); \
2732 } \
2733 \
2734 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2735 uint64_t fdt2) \
2736 { \
2737 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2738 uint32_t fsth0 = fdt0 >> 32; \
2739 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2740 uint32_t fsth1 = fdt1 >> 32; \
2741 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2742 uint32_t fsth2 = fdt2 >> 32; \
2743 \
2744 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2745 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2746 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2747 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2748 fst2 = float32_chs(fst2); \
2749 fsth2 = float32_chs(fsth2); \
2750 return ((uint64_t)fsth2 << 32) | fst2; \
2751 }
2752
2753 FLOAT_NTERNOP(mul, add)
2754 FLOAT_NTERNOP(mul, sub)
2755 #undef FLOAT_NTERNOP
2756
2757 /* MIPS specific binary operations */
2758 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2759 {
2760 set_float_exception_flags(0, &env->active_fpu.fp_status);
2761 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2762 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2763 update_fcr31();
2764 return fdt2;
2765 }
2766
2767 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2768 {
2769 set_float_exception_flags(0, &env->active_fpu.fp_status);
2770 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2771 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2772 update_fcr31();
2773 return fst2;
2774 }
2775
2776 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2777 {
2778 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2779 uint32_t fsth0 = fdt0 >> 32;
2780 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2781 uint32_t fsth2 = fdt2 >> 32;
2782
2783 set_float_exception_flags(0, &env->active_fpu.fp_status);
2784 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2785 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2786 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2787 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2788 update_fcr31();
2789 return ((uint64_t)fsth2 << 32) | fst2;
2790 }
2791
2792 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2793 {
2794 set_float_exception_flags(0, &env->active_fpu.fp_status);
2795 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2796 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2797 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2798 update_fcr31();
2799 return fdt2;
2800 }
2801
2802 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2803 {
2804 set_float_exception_flags(0, &env->active_fpu.fp_status);
2805 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2806 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2807 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2808 update_fcr31();
2809 return fst2;
2810 }
2811
2812 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2813 {
2814 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2815 uint32_t fsth0 = fdt0 >> 32;
2816 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2817 uint32_t fsth2 = fdt2 >> 32;
2818
2819 set_float_exception_flags(0, &env->active_fpu.fp_status);
2820 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2821 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2822 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2823 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2824 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2825 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2826 update_fcr31();
2827 return ((uint64_t)fsth2 << 32) | fst2;
2828 }
2829
2830 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2831 {
2832 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2833 uint32_t fsth0 = fdt0 >> 32;
2834 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2835 uint32_t fsth1 = fdt1 >> 32;
2836 uint32_t fst2;
2837 uint32_t fsth2;
2838
2839 set_float_exception_flags(0, &env->active_fpu.fp_status);
2840 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2841 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2842 update_fcr31();
2843 return ((uint64_t)fsth2 << 32) | fst2;
2844 }
2845
2846 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2847 {
2848 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2849 uint32_t fsth0 = fdt0 >> 32;
2850 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2851 uint32_t fsth1 = fdt1 >> 32;
2852 uint32_t fst2;
2853 uint32_t fsth2;
2854
2855 set_float_exception_flags(0, &env->active_fpu.fp_status);
2856 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2857 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2858 update_fcr31();
2859 return ((uint64_t)fsth2 << 32) | fst2;
2860 }
2861
2862 /* compare operations */
2863 #define FOP_COND_D(op, cond) \
2864 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2865 { \
2866 int c = cond; \
2867 update_fcr31(); \
2868 if (c) \
2869 SET_FP_COND(cc, env->active_fpu); \
2870 else \
2871 CLEAR_FP_COND(cc, env->active_fpu); \
2872 } \
2873 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2874 { \
2875 int c; \
2876 fdt0 = float64_abs(fdt0); \
2877 fdt1 = float64_abs(fdt1); \
2878 c = cond; \
2879 update_fcr31(); \
2880 if (c) \
2881 SET_FP_COND(cc, env->active_fpu); \
2882 else \
2883 CLEAR_FP_COND(cc, env->active_fpu); \
2884 }
2885
2886 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2887 {
2888 if (float64_is_signaling_nan(a) ||
2889 float64_is_signaling_nan(b) ||
2890 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2891 float_raise(float_flag_invalid, status);
2892 return 1;
2893 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2894 return 1;
2895 } else {
2896 return 0;
2897 }
2898 }
2899
2900 /* NOTE: the comma operator will make "cond" to eval to false,
2901 * but float*_is_unordered() is still called. */
2902 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2903 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2904 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2905 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2906 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2907 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2908 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2909 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2910 /* NOTE: the comma operator will make "cond" to eval to false,
2911 * but float*_is_unordered() is still called. */
2912 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2913 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2914 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2915 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2916 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2917 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2918 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2919 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2920
2921 #define FOP_COND_S(op, cond) \
2922 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2923 { \
2924 int c = cond; \
2925 update_fcr31(); \
2926 if (c) \
2927 SET_FP_COND(cc, env->active_fpu); \
2928 else \
2929 CLEAR_FP_COND(cc, env->active_fpu); \
2930 } \
2931 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2932 { \
2933 int c; \
2934 fst0 = float32_abs(fst0); \
2935 fst1 = float32_abs(fst1); \
2936 c = cond; \
2937 update_fcr31(); \
2938 if (c) \
2939 SET_FP_COND(cc, env->active_fpu); \
2940 else \
2941 CLEAR_FP_COND(cc, env->active_fpu); \
2942 }
2943
2944 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2945 {
2946 if (float32_is_signaling_nan(a) ||
2947 float32_is_signaling_nan(b) ||
2948 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2949 float_raise(float_flag_invalid, status);
2950 return 1;
2951 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2952 return 1;
2953 } else {
2954 return 0;
2955 }
2956 }
2957
2958 /* NOTE: the comma operator will make "cond" to eval to false,
2959 * but float*_is_unordered() is still called. */
2960 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2961 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2962 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2963 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2964 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2965 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2966 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2967 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2968 /* NOTE: the comma operator will make "cond" to eval to false,
2969 * but float*_is_unordered() is still called. */
2970 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2971 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2972 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2973 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2974 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2975 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2976 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2977 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2978
2979 #define FOP_COND_PS(op, condl, condh) \
2980 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2981 { \
2982 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2983 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2984 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2985 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2986 int cl = condl; \
2987 int ch = condh; \
2988 \
2989 update_fcr31(); \
2990 if (cl) \
2991 SET_FP_COND(cc, env->active_fpu); \
2992 else \
2993 CLEAR_FP_COND(cc, env->active_fpu); \
2994 if (ch) \
2995 SET_FP_COND(cc + 1, env->active_fpu); \
2996 else \
2997 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2998 } \
2999 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3000 { \
3001 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3002 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
3003 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3004 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
3005 int cl = condl; \
3006 int ch = condh; \
3007 \
3008 update_fcr31(); \
3009 if (cl) \
3010 SET_FP_COND(cc, env->active_fpu); \
3011 else \
3012 CLEAR_FP_COND(cc, env->active_fpu); \
3013 if (ch) \
3014 SET_FP_COND(cc + 1, env->active_fpu); \
3015 else \
3016 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3017 }
3018
3019 /* NOTE: the comma operator will make "cond" to eval to false,
3020 * but float*_is_unordered() is still called. */
3021 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
3022 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3023 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
3024 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
3025 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3026 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3027 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3028 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3029 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3030 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3031 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3032 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3033 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3034 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3035 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3036 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3037 /* NOTE: the comma operator will make "cond" to eval to false,
3038 * but float*_is_unordered() is still called. */
3039 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
3040 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3041 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
3042 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
3043 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3044 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3045 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3046 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3047 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3048 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3049 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3050 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3051 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3052 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3053 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3054 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))