]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Don't leak VLANClientState on PCI hot remove
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 #include "helper.h"
26 /*****************************************************************************/
27 /* Exceptions processing helpers */
28
29 void do_raise_exception_err (uint32_t exception, int error_code)
30 {
31 #if 1
32 if (exception < 0x100)
33 qemu_log("%s: %d %d\n", __func__, exception, error_code);
34 #endif
35 env->exception_index = exception;
36 env->error_code = error_code;
37 cpu_loop_exit();
38 }
39
40 void do_raise_exception (uint32_t exception)
41 {
42 do_raise_exception_err(exception, 0);
43 }
44
45 void do_interrupt_restart (void)
46 {
47 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
48 !(env->CP0_Status & (1 << CP0St_ERL)) &&
49 !(env->hflags & MIPS_HFLAG_DM) &&
50 (env->CP0_Status & (1 << CP0St_IE)) &&
51 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
52 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
53 do_raise_exception(EXCP_EXT_INTERRUPT);
54 }
55 }
56
57 #if !defined(CONFIG_USER_ONLY)
58 static void do_restore_state (void *pc_ptr)
59 {
60 TranslationBlock *tb;
61 unsigned long pc = (unsigned long) pc_ptr;
62
63 tb = tb_find_pc (pc);
64 if (tb) {
65 cpu_restore_state (tb, env, pc, NULL);
66 }
67 }
68 #endif
69
70 target_ulong do_clo (target_ulong t0)
71 {
72 return clo32(t0);
73 }
74
75 target_ulong do_clz (target_ulong t0)
76 {
77 return clz32(t0);
78 }
79
80 #if defined(TARGET_MIPS64)
81 target_ulong do_dclo (target_ulong t0)
82 {
83 return clo64(t0);
84 }
85
86 target_ulong do_dclz (target_ulong t0)
87 {
88 return clz64(t0);
89 }
90 #endif /* TARGET_MIPS64 */
91
92 /* 64 bits arithmetic for 32 bits hosts */
93 static inline uint64_t get_HILO (void)
94 {
95 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
96 }
97
98 static inline void set_HILO (uint64_t HILO)
99 {
100 env->active_tc.LO[0] = (int32_t)HILO;
101 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
102 }
103
104 static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
105 {
106 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
107 t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
108 }
109
110 static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
111 {
112 t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
113 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
114 }
115
116 #if TARGET_LONG_BITS > HOST_LONG_BITS
117 void do_madd (target_ulong t0, target_ulong t1)
118 {
119 int64_t tmp;
120
121 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
122 set_HILO((int64_t)get_HILO() + tmp);
123 }
124
125 void do_maddu (target_ulong t0, target_ulong t1)
126 {
127 uint64_t tmp;
128
129 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
130 set_HILO(get_HILO() + tmp);
131 }
132
133 void do_msub (target_ulong t0, target_ulong t1)
134 {
135 int64_t tmp;
136
137 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
138 set_HILO((int64_t)get_HILO() - tmp);
139 }
140
141 void do_msubu (target_ulong t0, target_ulong t1)
142 {
143 uint64_t tmp;
144
145 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
146 set_HILO(get_HILO() - tmp);
147 }
148 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
149
150 /* Multiplication variants of the vr54xx. */
151 target_ulong do_muls (target_ulong t0, target_ulong t1)
152 {
153 set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
154
155 return t0;
156 }
157
158 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
159 {
160 set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
161
162 return t0;
163 }
164
165 target_ulong do_macc (target_ulong t0, target_ulong t1)
166 {
167 set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
168
169 return t0;
170 }
171
172 target_ulong do_macchi (target_ulong t0, target_ulong t1)
173 {
174 set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
175
176 return t0;
177 }
178
179 target_ulong do_maccu (target_ulong t0, target_ulong t1)
180 {
181 set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
182
183 return t0;
184 }
185
186 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
187 {
188 set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
189
190 return t0;
191 }
192
193 target_ulong do_msac (target_ulong t0, target_ulong t1)
194 {
195 set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
196
197 return t0;
198 }
199
200 target_ulong do_msachi (target_ulong t0, target_ulong t1)
201 {
202 set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
203
204 return t0;
205 }
206
207 target_ulong do_msacu (target_ulong t0, target_ulong t1)
208 {
209 set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
210
211 return t0;
212 }
213
214 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
215 {
216 set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
217
218 return t0;
219 }
220
221 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
222 {
223 set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
224
225 return t0;
226 }
227
228 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
229 {
230 set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
231
232 return t0;
233 }
234
235 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
236 {
237 set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
238
239 return t0;
240 }
241
242 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
243 {
244 set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
245
246 return t0;
247 }
248
249 #ifdef TARGET_MIPS64
250 void do_dmult (target_ulong t0, target_ulong t1)
251 {
252 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
253 }
254
255 void do_dmultu (target_ulong t0, target_ulong t1)
256 {
257 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
258 }
259 #endif
260
261 #ifdef TARGET_WORDS_BIGENDIAN
262 #define GET_LMASK(v) ((v) & 3)
263 #define GET_OFFSET(addr, offset) (addr + (offset))
264 #else
265 #define GET_LMASK(v) (((v) & 3) ^ 3)
266 #define GET_OFFSET(addr, offset) (addr - (offset))
267 #endif
268
269 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
270 {
271 target_ulong tmp;
272
273 #ifdef CONFIG_USER_ONLY
274 #define ldfun ldub_raw
275 #else
276 int (*ldfun)(target_ulong);
277
278 switch (mem_idx)
279 {
280 case 0: ldfun = ldub_kernel; break;
281 case 1: ldfun = ldub_super; break;
282 default:
283 case 2: ldfun = ldub_user; break;
284 }
285 #endif
286 tmp = ldfun(t0);
287 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
288
289 if (GET_LMASK(t0) <= 2) {
290 tmp = ldfun(GET_OFFSET(t0, 1));
291 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
292 }
293
294 if (GET_LMASK(t0) <= 1) {
295 tmp = ldfun(GET_OFFSET(t0, 2));
296 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
297 }
298
299 if (GET_LMASK(t0) == 0) {
300 tmp = ldfun(GET_OFFSET(t0, 3));
301 t1 = (t1 & 0xFFFFFF00) | tmp;
302 }
303 return (int32_t)t1;
304 }
305
306 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
307 {
308 target_ulong tmp;
309
310 #ifdef CONFIG_USER_ONLY
311 #define ldfun ldub_raw
312 #else
313 int (*ldfun)(target_ulong);
314
315 switch (mem_idx)
316 {
317 case 0: ldfun = ldub_kernel; break;
318 case 1: ldfun = ldub_super; break;
319 default:
320 case 2: ldfun = ldub_user; break;
321 }
322 #endif
323 tmp = ldfun(t0);
324 t1 = (t1 & 0xFFFFFF00) | tmp;
325
326 if (GET_LMASK(t0) >= 1) {
327 tmp = ldfun(GET_OFFSET(t0, -1));
328 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
329 }
330
331 if (GET_LMASK(t0) >= 2) {
332 tmp = ldfun(GET_OFFSET(t0, -2));
333 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
334 }
335
336 if (GET_LMASK(t0) == 3) {
337 tmp = ldfun(GET_OFFSET(t0, -3));
338 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
339 }
340 return (int32_t)t1;
341 }
342
343 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
344 {
345 #ifdef CONFIG_USER_ONLY
346 #define stfun stb_raw
347 #else
348 void (*stfun)(target_ulong, int);
349
350 switch (mem_idx)
351 {
352 case 0: stfun = stb_kernel; break;
353 case 1: stfun = stb_super; break;
354 default:
355 case 2: stfun = stb_user; break;
356 }
357 #endif
358 stfun(t0, (uint8_t)(t1 >> 24));
359
360 if (GET_LMASK(t0) <= 2)
361 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
362
363 if (GET_LMASK(t0) <= 1)
364 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
365
366 if (GET_LMASK(t0) == 0)
367 stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
368 }
369
370 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
371 {
372 #ifdef CONFIG_USER_ONLY
373 #define stfun stb_raw
374 #else
375 void (*stfun)(target_ulong, int);
376
377 switch (mem_idx)
378 {
379 case 0: stfun = stb_kernel; break;
380 case 1: stfun = stb_super; break;
381 default:
382 case 2: stfun = stb_user; break;
383 }
384 #endif
385 stfun(t0, (uint8_t)t1);
386
387 if (GET_LMASK(t0) >= 1)
388 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
389
390 if (GET_LMASK(t0) >= 2)
391 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
392
393 if (GET_LMASK(t0) == 3)
394 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
395 }
396
397 #if defined(TARGET_MIPS64)
398 /* "half" load and stores. We must do the memory access inline,
399 or fault handling won't work. */
400
401 #ifdef TARGET_WORDS_BIGENDIAN
402 #define GET_LMASK64(v) ((v) & 7)
403 #else
404 #define GET_LMASK64(v) (((v) & 7) ^ 7)
405 #endif
406
407 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
408 {
409 uint64_t tmp;
410
411 #ifdef CONFIG_USER_ONLY
412 #define ldfun ldub_raw
413 #else
414 int (*ldfun)(target_ulong);
415
416 switch (mem_idx)
417 {
418 case 0: ldfun = ldub_kernel; break;
419 case 1: ldfun = ldub_super; break;
420 default:
421 case 2: ldfun = ldub_user; break;
422 }
423 #endif
424 tmp = ldfun(t0);
425 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
426
427 if (GET_LMASK64(t0) <= 6) {
428 tmp = ldfun(GET_OFFSET(t0, 1));
429 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
430 }
431
432 if (GET_LMASK64(t0) <= 5) {
433 tmp = ldfun(GET_OFFSET(t0, 2));
434 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
435 }
436
437 if (GET_LMASK64(t0) <= 4) {
438 tmp = ldfun(GET_OFFSET(t0, 3));
439 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
440 }
441
442 if (GET_LMASK64(t0) <= 3) {
443 tmp = ldfun(GET_OFFSET(t0, 4));
444 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
445 }
446
447 if (GET_LMASK64(t0) <= 2) {
448 tmp = ldfun(GET_OFFSET(t0, 5));
449 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
450 }
451
452 if (GET_LMASK64(t0) <= 1) {
453 tmp = ldfun(GET_OFFSET(t0, 6));
454 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
455 }
456
457 if (GET_LMASK64(t0) == 0) {
458 tmp = ldfun(GET_OFFSET(t0, 7));
459 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
460 }
461
462 return t1;
463 }
464
465 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
466 {
467 uint64_t tmp;
468
469 #ifdef CONFIG_USER_ONLY
470 #define ldfun ldub_raw
471 #else
472 int (*ldfun)(target_ulong);
473
474 switch (mem_idx)
475 {
476 case 0: ldfun = ldub_kernel; break;
477 case 1: ldfun = ldub_super; break;
478 default:
479 case 2: ldfun = ldub_user; break;
480 }
481 #endif
482 tmp = ldfun(t0);
483 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
484
485 if (GET_LMASK64(t0) >= 1) {
486 tmp = ldfun(GET_OFFSET(t0, -1));
487 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
488 }
489
490 if (GET_LMASK64(t0) >= 2) {
491 tmp = ldfun(GET_OFFSET(t0, -2));
492 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
493 }
494
495 if (GET_LMASK64(t0) >= 3) {
496 tmp = ldfun(GET_OFFSET(t0, -3));
497 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
498 }
499
500 if (GET_LMASK64(t0) >= 4) {
501 tmp = ldfun(GET_OFFSET(t0, -4));
502 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
503 }
504
505 if (GET_LMASK64(t0) >= 5) {
506 tmp = ldfun(GET_OFFSET(t0, -5));
507 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
508 }
509
510 if (GET_LMASK64(t0) >= 6) {
511 tmp = ldfun(GET_OFFSET(t0, -6));
512 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
513 }
514
515 if (GET_LMASK64(t0) == 7) {
516 tmp = ldfun(GET_OFFSET(t0, -7));
517 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
518 }
519
520 return t1;
521 }
522
523 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
524 {
525 #ifdef CONFIG_USER_ONLY
526 #define stfun stb_raw
527 #else
528 void (*stfun)(target_ulong, int);
529
530 switch (mem_idx)
531 {
532 case 0: stfun = stb_kernel; break;
533 case 1: stfun = stb_super; break;
534 default:
535 case 2: stfun = stb_user; break;
536 }
537 #endif
538 stfun(t0, (uint8_t)(t1 >> 56));
539
540 if (GET_LMASK64(t0) <= 6)
541 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
542
543 if (GET_LMASK64(t0) <= 5)
544 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
545
546 if (GET_LMASK64(t0) <= 4)
547 stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
548
549 if (GET_LMASK64(t0) <= 3)
550 stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
551
552 if (GET_LMASK64(t0) <= 2)
553 stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
554
555 if (GET_LMASK64(t0) <= 1)
556 stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
557
558 if (GET_LMASK64(t0) <= 0)
559 stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
560 }
561
562 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
563 {
564 #ifdef CONFIG_USER_ONLY
565 #define stfun stb_raw
566 #else
567 void (*stfun)(target_ulong, int);
568
569 switch (mem_idx)
570 {
571 case 0: stfun = stb_kernel; break;
572 case 1: stfun = stb_super; break;
573 default:
574 case 2: stfun = stb_user; break;
575 }
576 #endif
577 stfun(t0, (uint8_t)t1);
578
579 if (GET_LMASK64(t0) >= 1)
580 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
581
582 if (GET_LMASK64(t0) >= 2)
583 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
584
585 if (GET_LMASK64(t0) >= 3)
586 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
587
588 if (GET_LMASK64(t0) >= 4)
589 stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
590
591 if (GET_LMASK64(t0) >= 5)
592 stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
593
594 if (GET_LMASK64(t0) >= 6)
595 stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
596
597 if (GET_LMASK64(t0) == 7)
598 stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
599 }
600 #endif /* TARGET_MIPS64 */
601
602 #ifndef CONFIG_USER_ONLY
603 /* CP0 helpers */
604 target_ulong do_mfc0_mvpcontrol (void)
605 {
606 return env->mvp->CP0_MVPControl;
607 }
608
609 target_ulong do_mfc0_mvpconf0 (void)
610 {
611 return env->mvp->CP0_MVPConf0;
612 }
613
614 target_ulong do_mfc0_mvpconf1 (void)
615 {
616 return env->mvp->CP0_MVPConf1;
617 }
618
619 target_ulong do_mfc0_random (void)
620 {
621 return (int32_t)cpu_mips_get_random(env);
622 }
623
624 target_ulong do_mfc0_tcstatus (void)
625 {
626 return env->active_tc.CP0_TCStatus;
627 }
628
629 target_ulong do_mftc0_tcstatus(void)
630 {
631 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
632
633 if (other_tc == env->current_tc)
634 return env->active_tc.CP0_TCStatus;
635 else
636 return env->tcs[other_tc].CP0_TCStatus;
637 }
638
639 target_ulong do_mfc0_tcbind (void)
640 {
641 return env->active_tc.CP0_TCBind;
642 }
643
644 target_ulong do_mftc0_tcbind(void)
645 {
646 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
647
648 if (other_tc == env->current_tc)
649 return env->active_tc.CP0_TCBind;
650 else
651 return env->tcs[other_tc].CP0_TCBind;
652 }
653
654 target_ulong do_mfc0_tcrestart (void)
655 {
656 return env->active_tc.PC;
657 }
658
659 target_ulong do_mftc0_tcrestart(void)
660 {
661 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
662
663 if (other_tc == env->current_tc)
664 return env->active_tc.PC;
665 else
666 return env->tcs[other_tc].PC;
667 }
668
669 target_ulong do_mfc0_tchalt (void)
670 {
671 return env->active_tc.CP0_TCHalt;
672 }
673
674 target_ulong do_mftc0_tchalt(void)
675 {
676 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
677
678 if (other_tc == env->current_tc)
679 return env->active_tc.CP0_TCHalt;
680 else
681 return env->tcs[other_tc].CP0_TCHalt;
682 }
683
684 target_ulong do_mfc0_tccontext (void)
685 {
686 return env->active_tc.CP0_TCContext;
687 }
688
689 target_ulong do_mftc0_tccontext(void)
690 {
691 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
692
693 if (other_tc == env->current_tc)
694 return env->active_tc.CP0_TCContext;
695 else
696 return env->tcs[other_tc].CP0_TCContext;
697 }
698
699 target_ulong do_mfc0_tcschedule (void)
700 {
701 return env->active_tc.CP0_TCSchedule;
702 }
703
704 target_ulong do_mftc0_tcschedule(void)
705 {
706 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
707
708 if (other_tc == env->current_tc)
709 return env->active_tc.CP0_TCSchedule;
710 else
711 return env->tcs[other_tc].CP0_TCSchedule;
712 }
713
714 target_ulong do_mfc0_tcschefback (void)
715 {
716 return env->active_tc.CP0_TCScheFBack;
717 }
718
719 target_ulong do_mftc0_tcschefback(void)
720 {
721 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
722
723 if (other_tc == env->current_tc)
724 return env->active_tc.CP0_TCScheFBack;
725 else
726 return env->tcs[other_tc].CP0_TCScheFBack;
727 }
728
729 target_ulong do_mfc0_count (void)
730 {
731 return (int32_t)cpu_mips_get_count(env);
732 }
733
734 target_ulong do_mftc0_entryhi(void)
735 {
736 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
737 int32_t tcstatus;
738
739 if (other_tc == env->current_tc)
740 tcstatus = env->active_tc.CP0_TCStatus;
741 else
742 tcstatus = env->tcs[other_tc].CP0_TCStatus;
743
744 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
745 }
746
747 target_ulong do_mftc0_status(void)
748 {
749 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
750 target_ulong t0;
751 int32_t tcstatus;
752
753 if (other_tc == env->current_tc)
754 tcstatus = env->active_tc.CP0_TCStatus;
755 else
756 tcstatus = env->tcs[other_tc].CP0_TCStatus;
757
758 t0 = env->CP0_Status & ~0xf1000018;
759 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
760 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
761 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
762
763 return t0;
764 }
765
766 target_ulong do_mfc0_lladdr (void)
767 {
768 return (int32_t)env->CP0_LLAddr >> 4;
769 }
770
771 target_ulong do_mfc0_watchlo (uint32_t sel)
772 {
773 return (int32_t)env->CP0_WatchLo[sel];
774 }
775
776 target_ulong do_mfc0_watchhi (uint32_t sel)
777 {
778 return env->CP0_WatchHi[sel];
779 }
780
781 target_ulong do_mfc0_debug (void)
782 {
783 target_ulong t0 = env->CP0_Debug;
784 if (env->hflags & MIPS_HFLAG_DM)
785 t0 |= 1 << CP0DB_DM;
786
787 return t0;
788 }
789
790 target_ulong do_mftc0_debug(void)
791 {
792 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
793 int32_t tcstatus;
794
795 if (other_tc == env->current_tc)
796 tcstatus = env->active_tc.CP0_Debug_tcstatus;
797 else
798 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
799
800 /* XXX: Might be wrong, check with EJTAG spec. */
801 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
802 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
803 }
804
805 #if defined(TARGET_MIPS64)
806 target_ulong do_dmfc0_tcrestart (void)
807 {
808 return env->active_tc.PC;
809 }
810
811 target_ulong do_dmfc0_tchalt (void)
812 {
813 return env->active_tc.CP0_TCHalt;
814 }
815
816 target_ulong do_dmfc0_tccontext (void)
817 {
818 return env->active_tc.CP0_TCContext;
819 }
820
821 target_ulong do_dmfc0_tcschedule (void)
822 {
823 return env->active_tc.CP0_TCSchedule;
824 }
825
826 target_ulong do_dmfc0_tcschefback (void)
827 {
828 return env->active_tc.CP0_TCScheFBack;
829 }
830
831 target_ulong do_dmfc0_lladdr (void)
832 {
833 return env->CP0_LLAddr >> 4;
834 }
835
836 target_ulong do_dmfc0_watchlo (uint32_t sel)
837 {
838 return env->CP0_WatchLo[sel];
839 }
840 #endif /* TARGET_MIPS64 */
841
842 void do_mtc0_index (target_ulong t0)
843 {
844 int num = 1;
845 unsigned int tmp = env->tlb->nb_tlb;
846
847 do {
848 tmp >>= 1;
849 num <<= 1;
850 } while (tmp);
851 env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
852 }
853
854 void do_mtc0_mvpcontrol (target_ulong t0)
855 {
856 uint32_t mask = 0;
857 uint32_t newval;
858
859 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
860 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
861 (1 << CP0MVPCo_EVP);
862 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
863 mask |= (1 << CP0MVPCo_STLB);
864 newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
865
866 // TODO: Enable/disable shared TLB, enable/disable VPEs.
867
868 env->mvp->CP0_MVPControl = newval;
869 }
870
871 void do_mtc0_vpecontrol (target_ulong t0)
872 {
873 uint32_t mask;
874 uint32_t newval;
875
876 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
877 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
878 newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
879
880 /* Yield scheduler intercept not implemented. */
881 /* Gating storage scheduler intercept not implemented. */
882
883 // TODO: Enable/disable TCs.
884
885 env->CP0_VPEControl = newval;
886 }
887
888 void do_mtc0_vpeconf0 (target_ulong t0)
889 {
890 uint32_t mask = 0;
891 uint32_t newval;
892
893 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
894 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
895 mask |= (0xff << CP0VPEC0_XTC);
896 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
897 }
898 newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
899
900 // TODO: TC exclusive handling due to ERL/EXL.
901
902 env->CP0_VPEConf0 = newval;
903 }
904
905 void do_mtc0_vpeconf1 (target_ulong t0)
906 {
907 uint32_t mask = 0;
908 uint32_t newval;
909
910 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
911 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
912 (0xff << CP0VPEC1_NCP1);
913 newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
914
915 /* UDI not implemented. */
916 /* CP2 not implemented. */
917
918 // TODO: Handle FPU (CP1) binding.
919
920 env->CP0_VPEConf1 = newval;
921 }
922
923 void do_mtc0_yqmask (target_ulong t0)
924 {
925 /* Yield qualifier inputs not implemented. */
926 env->CP0_YQMask = 0x00000000;
927 }
928
929 void do_mtc0_vpeopt (target_ulong t0)
930 {
931 env->CP0_VPEOpt = t0 & 0x0000ffff;
932 }
933
934 void do_mtc0_entrylo0 (target_ulong t0)
935 {
936 /* Large physaddr (PABITS) not implemented */
937 /* 1k pages not implemented */
938 env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
939 }
940
941 void do_mtc0_tcstatus (target_ulong t0)
942 {
943 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
944 uint32_t newval;
945
946 newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
947
948 // TODO: Sync with CP0_Status.
949
950 env->active_tc.CP0_TCStatus = newval;
951 }
952
953 void do_mttc0_tcstatus (target_ulong t0)
954 {
955 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
956
957 // TODO: Sync with CP0_Status.
958
959 if (other_tc == env->current_tc)
960 env->active_tc.CP0_TCStatus = t0;
961 else
962 env->tcs[other_tc].CP0_TCStatus = t0;
963 }
964
965 void do_mtc0_tcbind (target_ulong t0)
966 {
967 uint32_t mask = (1 << CP0TCBd_TBE);
968 uint32_t newval;
969
970 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
971 mask |= (1 << CP0TCBd_CurVPE);
972 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
973 env->active_tc.CP0_TCBind = newval;
974 }
975
976 void do_mttc0_tcbind (target_ulong t0)
977 {
978 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
979 uint32_t mask = (1 << CP0TCBd_TBE);
980 uint32_t newval;
981
982 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
983 mask |= (1 << CP0TCBd_CurVPE);
984 if (other_tc == env->current_tc) {
985 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
986 env->active_tc.CP0_TCBind = newval;
987 } else {
988 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
989 env->tcs[other_tc].CP0_TCBind = newval;
990 }
991 }
992
993 void do_mtc0_tcrestart (target_ulong t0)
994 {
995 env->active_tc.PC = t0;
996 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
997 env->CP0_LLAddr = 0ULL;
998 /* MIPS16 not implemented. */
999 }
1000
1001 void do_mttc0_tcrestart (target_ulong t0)
1002 {
1003 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1004
1005 if (other_tc == env->current_tc) {
1006 env->active_tc.PC = t0;
1007 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1008 env->CP0_LLAddr = 0ULL;
1009 /* MIPS16 not implemented. */
1010 } else {
1011 env->tcs[other_tc].PC = t0;
1012 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1013 env->CP0_LLAddr = 0ULL;
1014 /* MIPS16 not implemented. */
1015 }
1016 }
1017
1018 void do_mtc0_tchalt (target_ulong t0)
1019 {
1020 env->active_tc.CP0_TCHalt = t0 & 0x1;
1021
1022 // TODO: Halt TC / Restart (if allocated+active) TC.
1023 }
1024
1025 void do_mttc0_tchalt (target_ulong t0)
1026 {
1027 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1028
1029 // TODO: Halt TC / Restart (if allocated+active) TC.
1030
1031 if (other_tc == env->current_tc)
1032 env->active_tc.CP0_TCHalt = t0;
1033 else
1034 env->tcs[other_tc].CP0_TCHalt = t0;
1035 }
1036
1037 void do_mtc0_tccontext (target_ulong t0)
1038 {
1039 env->active_tc.CP0_TCContext = t0;
1040 }
1041
1042 void do_mttc0_tccontext (target_ulong t0)
1043 {
1044 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1045
1046 if (other_tc == env->current_tc)
1047 env->active_tc.CP0_TCContext = t0;
1048 else
1049 env->tcs[other_tc].CP0_TCContext = t0;
1050 }
1051
1052 void do_mtc0_tcschedule (target_ulong t0)
1053 {
1054 env->active_tc.CP0_TCSchedule = t0;
1055 }
1056
1057 void do_mttc0_tcschedule (target_ulong t0)
1058 {
1059 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1060
1061 if (other_tc == env->current_tc)
1062 env->active_tc.CP0_TCSchedule = t0;
1063 else
1064 env->tcs[other_tc].CP0_TCSchedule = t0;
1065 }
1066
1067 void do_mtc0_tcschefback (target_ulong t0)
1068 {
1069 env->active_tc.CP0_TCScheFBack = t0;
1070 }
1071
1072 void do_mttc0_tcschefback (target_ulong t0)
1073 {
1074 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1075
1076 if (other_tc == env->current_tc)
1077 env->active_tc.CP0_TCScheFBack = t0;
1078 else
1079 env->tcs[other_tc].CP0_TCScheFBack = t0;
1080 }
1081
1082 void do_mtc0_entrylo1 (target_ulong t0)
1083 {
1084 /* Large physaddr (PABITS) not implemented */
1085 /* 1k pages not implemented */
1086 env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
1087 }
1088
1089 void do_mtc0_context (target_ulong t0)
1090 {
1091 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
1092 }
1093
1094 void do_mtc0_pagemask (target_ulong t0)
1095 {
1096 /* 1k pages not implemented */
1097 env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1098 }
1099
1100 void do_mtc0_pagegrain (target_ulong t0)
1101 {
1102 /* SmartMIPS not implemented */
1103 /* Large physaddr (PABITS) not implemented */
1104 /* 1k pages not implemented */
1105 env->CP0_PageGrain = 0;
1106 }
1107
1108 void do_mtc0_wired (target_ulong t0)
1109 {
1110 env->CP0_Wired = t0 % env->tlb->nb_tlb;
1111 }
1112
1113 void do_mtc0_srsconf0 (target_ulong t0)
1114 {
1115 env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
1116 }
1117
1118 void do_mtc0_srsconf1 (target_ulong t0)
1119 {
1120 env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
1121 }
1122
1123 void do_mtc0_srsconf2 (target_ulong t0)
1124 {
1125 env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
1126 }
1127
1128 void do_mtc0_srsconf3 (target_ulong t0)
1129 {
1130 env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
1131 }
1132
1133 void do_mtc0_srsconf4 (target_ulong t0)
1134 {
1135 env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
1136 }
1137
1138 void do_mtc0_hwrena (target_ulong t0)
1139 {
1140 env->CP0_HWREna = t0 & 0x0000000F;
1141 }
1142
1143 void do_mtc0_count (target_ulong t0)
1144 {
1145 cpu_mips_store_count(env, t0);
1146 }
1147
1148 void do_mtc0_entryhi (target_ulong t0)
1149 {
1150 target_ulong old, val;
1151
1152 /* 1k pages not implemented */
1153 val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1154 #if defined(TARGET_MIPS64)
1155 val &= env->SEGMask;
1156 #endif
1157 old = env->CP0_EntryHi;
1158 env->CP0_EntryHi = val;
1159 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1160 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1161 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1162 }
1163 /* If the ASID changes, flush qemu's TLB. */
1164 if ((old & 0xFF) != (val & 0xFF))
1165 cpu_mips_tlb_flush(env, 1);
1166 }
1167
1168 void do_mttc0_entryhi(target_ulong t0)
1169 {
1170 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1171 int32_t tcstatus;
1172
1173 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
1174 if (other_tc == env->current_tc) {
1175 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
1176 env->active_tc.CP0_TCStatus = tcstatus;
1177 } else {
1178 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
1179 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1180 }
1181 }
1182
1183 void do_mtc0_compare (target_ulong t0)
1184 {
1185 cpu_mips_store_compare(env, t0);
1186 }
1187
1188 void do_mtc0_status (target_ulong t0)
1189 {
1190 uint32_t val, old;
1191 uint32_t mask = env->CP0_Status_rw_bitmask;
1192
1193 val = t0 & mask;
1194 old = env->CP0_Status;
1195 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1196 compute_hflags(env);
1197 if (qemu_loglevel_mask(CPU_LOG_EXEC))
1198 do_mtc0_status_debug(old, val);
1199 cpu_mips_update_irq(env);
1200 }
1201
1202 void do_mttc0_status(target_ulong t0)
1203 {
1204 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1205 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1206
1207 env->CP0_Status = t0 & ~0xf1000018;
1208 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
1209 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1210 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1211 if (other_tc == env->current_tc)
1212 env->active_tc.CP0_TCStatus = tcstatus;
1213 else
1214 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1215 }
1216
1217 void do_mtc0_intctl (target_ulong t0)
1218 {
1219 /* vectored interrupts not implemented, no performance counters. */
1220 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
1221 }
1222
1223 void do_mtc0_srsctl (target_ulong t0)
1224 {
1225 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1226 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
1227 }
1228
1229 void do_mtc0_cause (target_ulong t0)
1230 {
1231 uint32_t mask = 0x00C00300;
1232 uint32_t old = env->CP0_Cause;
1233
1234 if (env->insn_flags & ISA_MIPS32R2)
1235 mask |= 1 << CP0Ca_DC;
1236
1237 env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
1238
1239 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1240 if (env->CP0_Cause & (1 << CP0Ca_DC))
1241 cpu_mips_stop_count(env);
1242 else
1243 cpu_mips_start_count(env);
1244 }
1245
1246 /* Handle the software interrupt as an hardware one, as they
1247 are very similar */
1248 if (t0 & CP0Ca_IP_mask) {
1249 cpu_mips_update_irq(env);
1250 }
1251 }
1252
1253 void do_mtc0_ebase (target_ulong t0)
1254 {
1255 /* vectored interrupts not implemented */
1256 /* Multi-CPU not implemented */
1257 env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
1258 }
1259
1260 void do_mtc0_config0 (target_ulong t0)
1261 {
1262 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
1263 }
1264
1265 void do_mtc0_config2 (target_ulong t0)
1266 {
1267 /* tertiary/secondary caches not implemented */
1268 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1269 }
1270
1271 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
1272 {
1273 /* Watch exceptions for instructions, data loads, data stores
1274 not implemented. */
1275 env->CP0_WatchLo[sel] = (t0 & ~0x7);
1276 }
1277
1278 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
1279 {
1280 env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
1281 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
1282 }
1283
1284 void do_mtc0_xcontext (target_ulong t0)
1285 {
1286 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1287 env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
1288 }
1289
1290 void do_mtc0_framemask (target_ulong t0)
1291 {
1292 env->CP0_Framemask = t0; /* XXX */
1293 }
1294
1295 void do_mtc0_debug (target_ulong t0)
1296 {
1297 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
1298 if (t0 & (1 << CP0DB_DM))
1299 env->hflags |= MIPS_HFLAG_DM;
1300 else
1301 env->hflags &= ~MIPS_HFLAG_DM;
1302 }
1303
1304 void do_mttc0_debug(target_ulong t0)
1305 {
1306 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1307 uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1308
1309 /* XXX: Might be wrong, check with EJTAG spec. */
1310 if (other_tc == env->current_tc)
1311 env->active_tc.CP0_Debug_tcstatus = val;
1312 else
1313 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1314 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1315 (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1316 }
1317
1318 void do_mtc0_performance0 (target_ulong t0)
1319 {
1320 env->CP0_Performance0 = t0 & 0x000007ff;
1321 }
1322
1323 void do_mtc0_taglo (target_ulong t0)
1324 {
1325 env->CP0_TagLo = t0 & 0xFFFFFCF6;
1326 }
1327
1328 void do_mtc0_datalo (target_ulong t0)
1329 {
1330 env->CP0_DataLo = t0; /* XXX */
1331 }
1332
1333 void do_mtc0_taghi (target_ulong t0)
1334 {
1335 env->CP0_TagHi = t0; /* XXX */
1336 }
1337
1338 void do_mtc0_datahi (target_ulong t0)
1339 {
1340 env->CP0_DataHi = t0; /* XXX */
1341 }
1342
1343 void do_mtc0_status_debug(uint32_t old, uint32_t val)
1344 {
1345 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1346 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1347 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1348 env->CP0_Cause);
1349 switch (env->hflags & MIPS_HFLAG_KSU) {
1350 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1351 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1352 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1353 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1354 }
1355 }
1356
1357 void do_mtc0_status_irqraise_debug(void)
1358 {
1359 qemu_log("Raise pending IRQs\n");
1360 }
1361
1362 /* MIPS MT functions */
1363 target_ulong do_mftgpr(uint32_t sel)
1364 {
1365 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1366
1367 if (other_tc == env->current_tc)
1368 return env->active_tc.gpr[sel];
1369 else
1370 return env->tcs[other_tc].gpr[sel];
1371 }
1372
1373 target_ulong do_mftlo(uint32_t sel)
1374 {
1375 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1376
1377 if (other_tc == env->current_tc)
1378 return env->active_tc.LO[sel];
1379 else
1380 return env->tcs[other_tc].LO[sel];
1381 }
1382
1383 target_ulong do_mfthi(uint32_t sel)
1384 {
1385 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1386
1387 if (other_tc == env->current_tc)
1388 return env->active_tc.HI[sel];
1389 else
1390 return env->tcs[other_tc].HI[sel];
1391 }
1392
1393 target_ulong do_mftacx(uint32_t sel)
1394 {
1395 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1396
1397 if (other_tc == env->current_tc)
1398 return env->active_tc.ACX[sel];
1399 else
1400 return env->tcs[other_tc].ACX[sel];
1401 }
1402
1403 target_ulong do_mftdsp(void)
1404 {
1405 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1406
1407 if (other_tc == env->current_tc)
1408 return env->active_tc.DSPControl;
1409 else
1410 return env->tcs[other_tc].DSPControl;
1411 }
1412
1413 void do_mttgpr(target_ulong t0, uint32_t sel)
1414 {
1415 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1416
1417 if (other_tc == env->current_tc)
1418 env->active_tc.gpr[sel] = t0;
1419 else
1420 env->tcs[other_tc].gpr[sel] = t0;
1421 }
1422
1423 void do_mttlo(target_ulong t0, uint32_t sel)
1424 {
1425 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1426
1427 if (other_tc == env->current_tc)
1428 env->active_tc.LO[sel] = t0;
1429 else
1430 env->tcs[other_tc].LO[sel] = t0;
1431 }
1432
1433 void do_mtthi(target_ulong t0, uint32_t sel)
1434 {
1435 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1436
1437 if (other_tc == env->current_tc)
1438 env->active_tc.HI[sel] = t0;
1439 else
1440 env->tcs[other_tc].HI[sel] = t0;
1441 }
1442
1443 void do_mttacx(target_ulong t0, uint32_t sel)
1444 {
1445 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1446
1447 if (other_tc == env->current_tc)
1448 env->active_tc.ACX[sel] = t0;
1449 else
1450 env->tcs[other_tc].ACX[sel] = t0;
1451 }
1452
1453 void do_mttdsp(target_ulong t0)
1454 {
1455 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1456
1457 if (other_tc == env->current_tc)
1458 env->active_tc.DSPControl = t0;
1459 else
1460 env->tcs[other_tc].DSPControl = t0;
1461 }
1462
1463 /* MIPS MT functions */
1464 target_ulong do_dmt(target_ulong t0)
1465 {
1466 // TODO
1467 t0 = 0;
1468 // rt = t0
1469
1470 return t0;
1471 }
1472
1473 target_ulong do_emt(target_ulong t0)
1474 {
1475 // TODO
1476 t0 = 0;
1477 // rt = t0
1478
1479 return t0;
1480 }
1481
1482 target_ulong do_dvpe(target_ulong t0)
1483 {
1484 // TODO
1485 t0 = 0;
1486 // rt = t0
1487
1488 return t0;
1489 }
1490
1491 target_ulong do_evpe(target_ulong t0)
1492 {
1493 // TODO
1494 t0 = 0;
1495 // rt = t0
1496
1497 return t0;
1498 }
1499 #endif /* !CONFIG_USER_ONLY */
1500
1501 void do_fork(target_ulong t0, target_ulong t1)
1502 {
1503 // t0 = rt, t1 = rs
1504 t0 = 0;
1505 // TODO: store to TC register
1506 }
1507
1508 target_ulong do_yield(target_ulong t0)
1509 {
1510 if (t0 < 0) {
1511 /* No scheduling policy implemented. */
1512 if (t0 != -2) {
1513 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1514 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1515 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1516 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1517 do_raise_exception(EXCP_THREAD);
1518 }
1519 }
1520 } else if (t0 == 0) {
1521 if (0 /* TODO: TC underflow */) {
1522 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1523 do_raise_exception(EXCP_THREAD);
1524 } else {
1525 // TODO: Deallocate TC
1526 }
1527 } else if (t0 > 0) {
1528 /* Yield qualifier inputs not implemented. */
1529 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1530 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1531 do_raise_exception(EXCP_THREAD);
1532 }
1533 return env->CP0_YQMask;
1534 }
1535
1536 #ifndef CONFIG_USER_ONLY
1537 /* TLB management */
1538 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1539 {
1540 /* Flush qemu's TLB and discard all shadowed entries. */
1541 tlb_flush (env, flush_global);
1542 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1543 }
1544
1545 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1546 {
1547 /* Discard entries from env->tlb[first] onwards. */
1548 while (env->tlb->tlb_in_use > first) {
1549 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1550 }
1551 }
1552
1553 static void r4k_fill_tlb (int idx)
1554 {
1555 r4k_tlb_t *tlb;
1556
1557 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1558 tlb = &env->tlb->mmu.r4k.tlb[idx];
1559 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1560 #if defined(TARGET_MIPS64)
1561 tlb->VPN &= env->SEGMask;
1562 #endif
1563 tlb->ASID = env->CP0_EntryHi & 0xFF;
1564 tlb->PageMask = env->CP0_PageMask;
1565 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1566 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1567 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1568 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1569 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1570 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1571 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1572 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1573 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1574 }
1575
1576 void r4k_do_tlbwi (void)
1577 {
1578 int idx;
1579
1580 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1581
1582 /* Discard cached TLB entries. We could avoid doing this if the
1583 tlbwi is just upgrading access permissions on the current entry;
1584 that might be a further win. */
1585 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1586
1587 r4k_invalidate_tlb(env, idx, 0);
1588 r4k_fill_tlb(idx);
1589 }
1590
1591 void r4k_do_tlbwr (void)
1592 {
1593 int r = cpu_mips_get_random(env);
1594
1595 r4k_invalidate_tlb(env, r, 1);
1596 r4k_fill_tlb(r);
1597 }
1598
1599 void r4k_do_tlbp (void)
1600 {
1601 r4k_tlb_t *tlb;
1602 target_ulong mask;
1603 target_ulong tag;
1604 target_ulong VPN;
1605 uint8_t ASID;
1606 int i;
1607
1608 ASID = env->CP0_EntryHi & 0xFF;
1609 for (i = 0; i < env->tlb->nb_tlb; i++) {
1610 tlb = &env->tlb->mmu.r4k.tlb[i];
1611 /* 1k pages are not supported. */
1612 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1613 tag = env->CP0_EntryHi & ~mask;
1614 VPN = tlb->VPN & ~mask;
1615 /* Check ASID, virtual page number & size */
1616 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1617 /* TLB match */
1618 env->CP0_Index = i;
1619 break;
1620 }
1621 }
1622 if (i == env->tlb->nb_tlb) {
1623 /* No match. Discard any shadow entries, if any of them match. */
1624 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1625 tlb = &env->tlb->mmu.r4k.tlb[i];
1626 /* 1k pages are not supported. */
1627 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1628 tag = env->CP0_EntryHi & ~mask;
1629 VPN = tlb->VPN & ~mask;
1630 /* Check ASID, virtual page number & size */
1631 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1632 r4k_mips_tlb_flush_extra (env, i);
1633 break;
1634 }
1635 }
1636
1637 env->CP0_Index |= 0x80000000;
1638 }
1639 }
1640
1641 void r4k_do_tlbr (void)
1642 {
1643 r4k_tlb_t *tlb;
1644 uint8_t ASID;
1645 int idx;
1646
1647 ASID = env->CP0_EntryHi & 0xFF;
1648 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1649 tlb = &env->tlb->mmu.r4k.tlb[idx];
1650
1651 /* If this will change the current ASID, flush qemu's TLB. */
1652 if (ASID != tlb->ASID)
1653 cpu_mips_tlb_flush (env, 1);
1654
1655 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1656
1657 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1658 env->CP0_PageMask = tlb->PageMask;
1659 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1660 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1661 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1662 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1663 }
1664
1665 void do_tlbwi(void)
1666 {
1667 env->tlb->do_tlbwi();
1668 }
1669
1670 void do_tlbwr(void)
1671 {
1672 env->tlb->do_tlbwr();
1673 }
1674
1675 void do_tlbp(void)
1676 {
1677 env->tlb->do_tlbp();
1678 }
1679
1680 void do_tlbr(void)
1681 {
1682 env->tlb->do_tlbr();
1683 }
1684
1685 /* Specials */
1686 target_ulong do_di (void)
1687 {
1688 target_ulong t0 = env->CP0_Status;
1689
1690 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1691 cpu_mips_update_irq(env);
1692
1693 return t0;
1694 }
1695
1696 target_ulong do_ei (void)
1697 {
1698 target_ulong t0 = env->CP0_Status;
1699
1700 env->CP0_Status = t0 | (1 << CP0St_IE);
1701 cpu_mips_update_irq(env);
1702
1703 return t0;
1704 }
1705
1706 static void debug_pre_eret (void)
1707 {
1708 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1709 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1710 env->active_tc.PC, env->CP0_EPC);
1711 if (env->CP0_Status & (1 << CP0St_ERL))
1712 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1713 if (env->hflags & MIPS_HFLAG_DM)
1714 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1715 qemu_log("\n");
1716 }
1717 }
1718
1719 static void debug_post_eret (void)
1720 {
1721 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1722 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1723 env->active_tc.PC, env->CP0_EPC);
1724 if (env->CP0_Status & (1 << CP0St_ERL))
1725 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1726 if (env->hflags & MIPS_HFLAG_DM)
1727 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1728 switch (env->hflags & MIPS_HFLAG_KSU) {
1729 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1730 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1731 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1732 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1733 }
1734 }
1735 }
1736
1737 void do_eret (void)
1738 {
1739 debug_pre_eret();
1740 if (env->CP0_Status & (1 << CP0St_ERL)) {
1741 env->active_tc.PC = env->CP0_ErrorEPC;
1742 env->CP0_Status &= ~(1 << CP0St_ERL);
1743 } else {
1744 env->active_tc.PC = env->CP0_EPC;
1745 env->CP0_Status &= ~(1 << CP0St_EXL);
1746 }
1747 compute_hflags(env);
1748 debug_post_eret();
1749 env->CP0_LLAddr = 1;
1750 }
1751
1752 void do_deret (void)
1753 {
1754 debug_pre_eret();
1755 env->active_tc.PC = env->CP0_DEPC;
1756 env->hflags &= MIPS_HFLAG_DM;
1757 compute_hflags(env);
1758 debug_post_eret();
1759 env->CP0_LLAddr = 1;
1760 }
1761 #endif /* !CONFIG_USER_ONLY */
1762
1763 target_ulong do_rdhwr_cpunum(void)
1764 {
1765 if ((env->hflags & MIPS_HFLAG_CP0) ||
1766 (env->CP0_HWREna & (1 << 0)))
1767 return env->CP0_EBase & 0x3ff;
1768 else
1769 do_raise_exception(EXCP_RI);
1770
1771 return 0;
1772 }
1773
1774 target_ulong do_rdhwr_synci_step(void)
1775 {
1776 if ((env->hflags & MIPS_HFLAG_CP0) ||
1777 (env->CP0_HWREna & (1 << 1)))
1778 return env->SYNCI_Step;
1779 else
1780 do_raise_exception(EXCP_RI);
1781
1782 return 0;
1783 }
1784
1785 target_ulong do_rdhwr_cc(void)
1786 {
1787 if ((env->hflags & MIPS_HFLAG_CP0) ||
1788 (env->CP0_HWREna & (1 << 2)))
1789 return env->CP0_Count;
1790 else
1791 do_raise_exception(EXCP_RI);
1792
1793 return 0;
1794 }
1795
1796 target_ulong do_rdhwr_ccres(void)
1797 {
1798 if ((env->hflags & MIPS_HFLAG_CP0) ||
1799 (env->CP0_HWREna & (1 << 3)))
1800 return env->CCRes;
1801 else
1802 do_raise_exception(EXCP_RI);
1803
1804 return 0;
1805 }
1806
1807 void do_pmon (int function)
1808 {
1809 function /= 2;
1810 switch (function) {
1811 case 2: /* TODO: char inbyte(int waitflag); */
1812 if (env->active_tc.gpr[4] == 0)
1813 env->active_tc.gpr[2] = -1;
1814 /* Fall through */
1815 case 11: /* TODO: char inbyte (void); */
1816 env->active_tc.gpr[2] = -1;
1817 break;
1818 case 3:
1819 case 12:
1820 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1821 break;
1822 case 17:
1823 break;
1824 case 158:
1825 {
1826 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1827 printf("%s", fmt);
1828 }
1829 break;
1830 }
1831 }
1832
1833 void do_wait (void)
1834 {
1835 env->halted = 1;
1836 do_raise_exception(EXCP_HLT);
1837 }
1838
1839 #if !defined(CONFIG_USER_ONLY)
1840
1841 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1842
1843 #define MMUSUFFIX _mmu
1844 #define ALIGNED_ONLY
1845
1846 #define SHIFT 0
1847 #include "softmmu_template.h"
1848
1849 #define SHIFT 1
1850 #include "softmmu_template.h"
1851
1852 #define SHIFT 2
1853 #include "softmmu_template.h"
1854
1855 #define SHIFT 3
1856 #include "softmmu_template.h"
1857
1858 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1859 {
1860 env->CP0_BadVAddr = addr;
1861 do_restore_state (retaddr);
1862 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1863 }
1864
1865 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1866 {
1867 TranslationBlock *tb;
1868 CPUState *saved_env;
1869 unsigned long pc;
1870 int ret;
1871
1872 /* XXX: hack to restore env in all cases, even if not called from
1873 generated code */
1874 saved_env = env;
1875 env = cpu_single_env;
1876 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1877 if (ret) {
1878 if (retaddr) {
1879 /* now we have a real cpu fault */
1880 pc = (unsigned long)retaddr;
1881 tb = tb_find_pc(pc);
1882 if (tb) {
1883 /* the PC is inside the translated code. It means that we have
1884 a virtual CPU fault */
1885 cpu_restore_state(tb, env, pc, NULL);
1886 }
1887 }
1888 do_raise_exception_err(env->exception_index, env->error_code);
1889 }
1890 env = saved_env;
1891 }
1892
1893 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1894 int unused, int size)
1895 {
1896 if (is_exec)
1897 do_raise_exception(EXCP_IBE);
1898 else
1899 do_raise_exception(EXCP_DBE);
1900 }
1901 #endif /* !CONFIG_USER_ONLY */
1902
1903 /* Complex FPU operations which may need stack space. */
1904
1905 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1906 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1907 #define FLOAT_TWO32 make_float32(1 << 30)
1908 #define FLOAT_TWO64 make_float64(1ULL << 62)
1909 #define FLOAT_QNAN32 0x7fbfffff
1910 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1911 #define FLOAT_SNAN32 0x7fffffff
1912 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1913
1914 /* convert MIPS rounding mode in FCR31 to IEEE library */
1915 unsigned int ieee_rm[] = {
1916 float_round_nearest_even,
1917 float_round_to_zero,
1918 float_round_up,
1919 float_round_down
1920 };
1921
1922 #define RESTORE_ROUNDING_MODE \
1923 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1924
1925 target_ulong do_cfc1 (uint32_t reg)
1926 {
1927 target_ulong t0;
1928
1929 switch (reg) {
1930 case 0:
1931 t0 = (int32_t)env->active_fpu.fcr0;
1932 break;
1933 case 25:
1934 t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
1935 break;
1936 case 26:
1937 t0 = env->active_fpu.fcr31 & 0x0003f07c;
1938 break;
1939 case 28:
1940 t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
1941 break;
1942 default:
1943 t0 = (int32_t)env->active_fpu.fcr31;
1944 break;
1945 }
1946
1947 return t0;
1948 }
1949
1950 void do_ctc1 (target_ulong t0, uint32_t reg)
1951 {
1952 switch(reg) {
1953 case 25:
1954 if (t0 & 0xffffff00)
1955 return;
1956 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
1957 ((t0 & 0x1) << 23);
1958 break;
1959 case 26:
1960 if (t0 & 0x007c0000)
1961 return;
1962 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
1963 break;
1964 case 28:
1965 if (t0 & 0x007c0000)
1966 return;
1967 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
1968 ((t0 & 0x4) << 22);
1969 break;
1970 case 31:
1971 if (t0 & 0x007c0000)
1972 return;
1973 env->active_fpu.fcr31 = t0;
1974 break;
1975 default:
1976 return;
1977 }
1978 /* set rounding mode */
1979 RESTORE_ROUNDING_MODE;
1980 set_float_exception_flags(0, &env->active_fpu.fp_status);
1981 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
1982 do_raise_exception(EXCP_FPE);
1983 }
1984
1985 static inline char ieee_ex_to_mips(char xcpt)
1986 {
1987 return (xcpt & float_flag_inexact) >> 5 |
1988 (xcpt & float_flag_underflow) >> 3 |
1989 (xcpt & float_flag_overflow) >> 1 |
1990 (xcpt & float_flag_divbyzero) << 1 |
1991 (xcpt & float_flag_invalid) << 4;
1992 }
1993
1994 static inline char mips_ex_to_ieee(char xcpt)
1995 {
1996 return (xcpt & FP_INEXACT) << 5 |
1997 (xcpt & FP_UNDERFLOW) << 3 |
1998 (xcpt & FP_OVERFLOW) << 1 |
1999 (xcpt & FP_DIV0) >> 1 |
2000 (xcpt & FP_INVALID) >> 4;
2001 }
2002
2003 static inline void update_fcr31(void)
2004 {
2005 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2006
2007 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2008 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2009 do_raise_exception(EXCP_FPE);
2010 else
2011 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2012 }
2013
2014 /* Float support.
2015 Single precition routines have a "s" suffix, double precision a
2016 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2017 paired single lower "pl", paired single upper "pu". */
2018
2019 /* unary operations, modifying fp status */
2020 uint64_t do_float_sqrt_d(uint64_t fdt0)
2021 {
2022 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2023 }
2024
2025 uint32_t do_float_sqrt_s(uint32_t fst0)
2026 {
2027 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2028 }
2029
2030 uint64_t do_float_cvtd_s(uint32_t fst0)
2031 {
2032 uint64_t fdt2;
2033
2034 set_float_exception_flags(0, &env->active_fpu.fp_status);
2035 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2036 update_fcr31();
2037 return fdt2;
2038 }
2039
2040 uint64_t do_float_cvtd_w(uint32_t wt0)
2041 {
2042 uint64_t fdt2;
2043
2044 set_float_exception_flags(0, &env->active_fpu.fp_status);
2045 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2046 update_fcr31();
2047 return fdt2;
2048 }
2049
2050 uint64_t do_float_cvtd_l(uint64_t dt0)
2051 {
2052 uint64_t fdt2;
2053
2054 set_float_exception_flags(0, &env->active_fpu.fp_status);
2055 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2056 update_fcr31();
2057 return fdt2;
2058 }
2059
2060 uint64_t do_float_cvtl_d(uint64_t fdt0)
2061 {
2062 uint64_t dt2;
2063
2064 set_float_exception_flags(0, &env->active_fpu.fp_status);
2065 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2066 update_fcr31();
2067 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2068 dt2 = FLOAT_SNAN64;
2069 return dt2;
2070 }
2071
2072 uint64_t do_float_cvtl_s(uint32_t fst0)
2073 {
2074 uint64_t dt2;
2075
2076 set_float_exception_flags(0, &env->active_fpu.fp_status);
2077 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2078 update_fcr31();
2079 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2080 dt2 = FLOAT_SNAN64;
2081 return dt2;
2082 }
2083
2084 uint64_t do_float_cvtps_pw(uint64_t dt0)
2085 {
2086 uint32_t fst2;
2087 uint32_t fsth2;
2088
2089 set_float_exception_flags(0, &env->active_fpu.fp_status);
2090 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2091 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2092 update_fcr31();
2093 return ((uint64_t)fsth2 << 32) | fst2;
2094 }
2095
2096 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
2097 {
2098 uint32_t wt2;
2099 uint32_t wth2;
2100
2101 set_float_exception_flags(0, &env->active_fpu.fp_status);
2102 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2103 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2104 update_fcr31();
2105 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2106 wt2 = FLOAT_SNAN32;
2107 wth2 = FLOAT_SNAN32;
2108 }
2109 return ((uint64_t)wth2 << 32) | wt2;
2110 }
2111
2112 uint32_t do_float_cvts_d(uint64_t fdt0)
2113 {
2114 uint32_t fst2;
2115
2116 set_float_exception_flags(0, &env->active_fpu.fp_status);
2117 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2118 update_fcr31();
2119 return fst2;
2120 }
2121
2122 uint32_t do_float_cvts_w(uint32_t wt0)
2123 {
2124 uint32_t fst2;
2125
2126 set_float_exception_flags(0, &env->active_fpu.fp_status);
2127 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2128 update_fcr31();
2129 return fst2;
2130 }
2131
2132 uint32_t do_float_cvts_l(uint64_t dt0)
2133 {
2134 uint32_t fst2;
2135
2136 set_float_exception_flags(0, &env->active_fpu.fp_status);
2137 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2138 update_fcr31();
2139 return fst2;
2140 }
2141
2142 uint32_t do_float_cvts_pl(uint32_t wt0)
2143 {
2144 uint32_t wt2;
2145
2146 set_float_exception_flags(0, &env->active_fpu.fp_status);
2147 wt2 = wt0;
2148 update_fcr31();
2149 return wt2;
2150 }
2151
2152 uint32_t do_float_cvts_pu(uint32_t wth0)
2153 {
2154 uint32_t wt2;
2155
2156 set_float_exception_flags(0, &env->active_fpu.fp_status);
2157 wt2 = wth0;
2158 update_fcr31();
2159 return wt2;
2160 }
2161
2162 uint32_t do_float_cvtw_s(uint32_t fst0)
2163 {
2164 uint32_t wt2;
2165
2166 set_float_exception_flags(0, &env->active_fpu.fp_status);
2167 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2168 update_fcr31();
2169 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2170 wt2 = FLOAT_SNAN32;
2171 return wt2;
2172 }
2173
2174 uint32_t do_float_cvtw_d(uint64_t fdt0)
2175 {
2176 uint32_t wt2;
2177
2178 set_float_exception_flags(0, &env->active_fpu.fp_status);
2179 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2180 update_fcr31();
2181 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2182 wt2 = FLOAT_SNAN32;
2183 return wt2;
2184 }
2185
2186 uint64_t do_float_roundl_d(uint64_t fdt0)
2187 {
2188 uint64_t dt2;
2189
2190 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2191 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2192 RESTORE_ROUNDING_MODE;
2193 update_fcr31();
2194 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2195 dt2 = FLOAT_SNAN64;
2196 return dt2;
2197 }
2198
2199 uint64_t do_float_roundl_s(uint32_t fst0)
2200 {
2201 uint64_t dt2;
2202
2203 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2204 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2205 RESTORE_ROUNDING_MODE;
2206 update_fcr31();
2207 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2208 dt2 = FLOAT_SNAN64;
2209 return dt2;
2210 }
2211
2212 uint32_t do_float_roundw_d(uint64_t fdt0)
2213 {
2214 uint32_t wt2;
2215
2216 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2217 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2218 RESTORE_ROUNDING_MODE;
2219 update_fcr31();
2220 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2221 wt2 = FLOAT_SNAN32;
2222 return wt2;
2223 }
2224
2225 uint32_t do_float_roundw_s(uint32_t fst0)
2226 {
2227 uint32_t wt2;
2228
2229 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2230 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2231 RESTORE_ROUNDING_MODE;
2232 update_fcr31();
2233 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2234 wt2 = FLOAT_SNAN32;
2235 return wt2;
2236 }
2237
2238 uint64_t do_float_truncl_d(uint64_t fdt0)
2239 {
2240 uint64_t dt2;
2241
2242 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2243 update_fcr31();
2244 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2245 dt2 = FLOAT_SNAN64;
2246 return dt2;
2247 }
2248
2249 uint64_t do_float_truncl_s(uint32_t fst0)
2250 {
2251 uint64_t dt2;
2252
2253 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2254 update_fcr31();
2255 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2256 dt2 = FLOAT_SNAN64;
2257 return dt2;
2258 }
2259
2260 uint32_t do_float_truncw_d(uint64_t fdt0)
2261 {
2262 uint32_t wt2;
2263
2264 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2265 update_fcr31();
2266 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2267 wt2 = FLOAT_SNAN32;
2268 return wt2;
2269 }
2270
2271 uint32_t do_float_truncw_s(uint32_t fst0)
2272 {
2273 uint32_t wt2;
2274
2275 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2276 update_fcr31();
2277 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2278 wt2 = FLOAT_SNAN32;
2279 return wt2;
2280 }
2281
2282 uint64_t do_float_ceill_d(uint64_t fdt0)
2283 {
2284 uint64_t dt2;
2285
2286 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2287 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2288 RESTORE_ROUNDING_MODE;
2289 update_fcr31();
2290 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2291 dt2 = FLOAT_SNAN64;
2292 return dt2;
2293 }
2294
2295 uint64_t do_float_ceill_s(uint32_t fst0)
2296 {
2297 uint64_t dt2;
2298
2299 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2300 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2301 RESTORE_ROUNDING_MODE;
2302 update_fcr31();
2303 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2304 dt2 = FLOAT_SNAN64;
2305 return dt2;
2306 }
2307
2308 uint32_t do_float_ceilw_d(uint64_t fdt0)
2309 {
2310 uint32_t wt2;
2311
2312 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2313 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2314 RESTORE_ROUNDING_MODE;
2315 update_fcr31();
2316 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2317 wt2 = FLOAT_SNAN32;
2318 return wt2;
2319 }
2320
2321 uint32_t do_float_ceilw_s(uint32_t fst0)
2322 {
2323 uint32_t wt2;
2324
2325 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2326 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2327 RESTORE_ROUNDING_MODE;
2328 update_fcr31();
2329 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2330 wt2 = FLOAT_SNAN32;
2331 return wt2;
2332 }
2333
2334 uint64_t do_float_floorl_d(uint64_t fdt0)
2335 {
2336 uint64_t dt2;
2337
2338 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2339 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2340 RESTORE_ROUNDING_MODE;
2341 update_fcr31();
2342 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2343 dt2 = FLOAT_SNAN64;
2344 return dt2;
2345 }
2346
2347 uint64_t do_float_floorl_s(uint32_t fst0)
2348 {
2349 uint64_t dt2;
2350
2351 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2352 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2353 RESTORE_ROUNDING_MODE;
2354 update_fcr31();
2355 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2356 dt2 = FLOAT_SNAN64;
2357 return dt2;
2358 }
2359
2360 uint32_t do_float_floorw_d(uint64_t fdt0)
2361 {
2362 uint32_t wt2;
2363
2364 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2365 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2366 RESTORE_ROUNDING_MODE;
2367 update_fcr31();
2368 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2369 wt2 = FLOAT_SNAN32;
2370 return wt2;
2371 }
2372
2373 uint32_t do_float_floorw_s(uint32_t fst0)
2374 {
2375 uint32_t wt2;
2376
2377 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2378 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2379 RESTORE_ROUNDING_MODE;
2380 update_fcr31();
2381 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2382 wt2 = FLOAT_SNAN32;
2383 return wt2;
2384 }
2385
2386 /* unary operations, not modifying fp status */
2387 #define FLOAT_UNOP(name) \
2388 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2389 { \
2390 return float64_ ## name(fdt0); \
2391 } \
2392 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2393 { \
2394 return float32_ ## name(fst0); \
2395 } \
2396 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2397 { \
2398 uint32_t wt0; \
2399 uint32_t wth0; \
2400 \
2401 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2402 wth0 = float32_ ## name(fdt0 >> 32); \
2403 return ((uint64_t)wth0 << 32) | wt0; \
2404 }
2405 FLOAT_UNOP(abs)
2406 FLOAT_UNOP(chs)
2407 #undef FLOAT_UNOP
2408
2409 /* MIPS specific unary operations */
2410 uint64_t do_float_recip_d(uint64_t fdt0)
2411 {
2412 uint64_t fdt2;
2413
2414 set_float_exception_flags(0, &env->active_fpu.fp_status);
2415 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2416 update_fcr31();
2417 return fdt2;
2418 }
2419
2420 uint32_t do_float_recip_s(uint32_t fst0)
2421 {
2422 uint32_t fst2;
2423
2424 set_float_exception_flags(0, &env->active_fpu.fp_status);
2425 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2426 update_fcr31();
2427 return fst2;
2428 }
2429
2430 uint64_t do_float_rsqrt_d(uint64_t fdt0)
2431 {
2432 uint64_t fdt2;
2433
2434 set_float_exception_flags(0, &env->active_fpu.fp_status);
2435 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2436 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2437 update_fcr31();
2438 return fdt2;
2439 }
2440
2441 uint32_t do_float_rsqrt_s(uint32_t fst0)
2442 {
2443 uint32_t fst2;
2444
2445 set_float_exception_flags(0, &env->active_fpu.fp_status);
2446 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2447 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2448 update_fcr31();
2449 return fst2;
2450 }
2451
2452 uint64_t do_float_recip1_d(uint64_t fdt0)
2453 {
2454 uint64_t fdt2;
2455
2456 set_float_exception_flags(0, &env->active_fpu.fp_status);
2457 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2458 update_fcr31();
2459 return fdt2;
2460 }
2461
2462 uint32_t do_float_recip1_s(uint32_t fst0)
2463 {
2464 uint32_t fst2;
2465
2466 set_float_exception_flags(0, &env->active_fpu.fp_status);
2467 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2468 update_fcr31();
2469 return fst2;
2470 }
2471
2472 uint64_t do_float_recip1_ps(uint64_t fdt0)
2473 {
2474 uint32_t fst2;
2475 uint32_t fsth2;
2476
2477 set_float_exception_flags(0, &env->active_fpu.fp_status);
2478 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2479 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2480 update_fcr31();
2481 return ((uint64_t)fsth2 << 32) | fst2;
2482 }
2483
2484 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
2485 {
2486 uint64_t fdt2;
2487
2488 set_float_exception_flags(0, &env->active_fpu.fp_status);
2489 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2490 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2491 update_fcr31();
2492 return fdt2;
2493 }
2494
2495 uint32_t do_float_rsqrt1_s(uint32_t fst0)
2496 {
2497 uint32_t fst2;
2498
2499 set_float_exception_flags(0, &env->active_fpu.fp_status);
2500 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2501 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2502 update_fcr31();
2503 return fst2;
2504 }
2505
2506 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
2507 {
2508 uint32_t fst2;
2509 uint32_t fsth2;
2510
2511 set_float_exception_flags(0, &env->active_fpu.fp_status);
2512 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2513 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2514 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2515 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2516 update_fcr31();
2517 return ((uint64_t)fsth2 << 32) | fst2;
2518 }
2519
2520 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2521
2522 /* binary operations */
2523 #define FLOAT_BINOP(name) \
2524 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2525 { \
2526 uint64_t dt2; \
2527 \
2528 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2529 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2530 update_fcr31(); \
2531 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2532 dt2 = FLOAT_QNAN64; \
2533 return dt2; \
2534 } \
2535 \
2536 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2537 { \
2538 uint32_t wt2; \
2539 \
2540 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2541 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2542 update_fcr31(); \
2543 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2544 wt2 = FLOAT_QNAN32; \
2545 return wt2; \
2546 } \
2547 \
2548 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2549 { \
2550 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2551 uint32_t fsth0 = fdt0 >> 32; \
2552 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2553 uint32_t fsth1 = fdt1 >> 32; \
2554 uint32_t wt2; \
2555 uint32_t wth2; \
2556 \
2557 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2558 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2559 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2560 update_fcr31(); \
2561 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2562 wt2 = FLOAT_QNAN32; \
2563 wth2 = FLOAT_QNAN32; \
2564 } \
2565 return ((uint64_t)wth2 << 32) | wt2; \
2566 }
2567
2568 FLOAT_BINOP(add)
2569 FLOAT_BINOP(sub)
2570 FLOAT_BINOP(mul)
2571 FLOAT_BINOP(div)
2572 #undef FLOAT_BINOP
2573
2574 /* ternary operations */
2575 #define FLOAT_TERNOP(name1, name2) \
2576 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2577 uint64_t fdt2) \
2578 { \
2579 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2580 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2581 } \
2582 \
2583 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2584 uint32_t fst2) \
2585 { \
2586 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2587 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2588 } \
2589 \
2590 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2591 uint64_t fdt2) \
2592 { \
2593 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2594 uint32_t fsth0 = fdt0 >> 32; \
2595 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2596 uint32_t fsth1 = fdt1 >> 32; \
2597 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2598 uint32_t fsth2 = fdt2 >> 32; \
2599 \
2600 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2601 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2602 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2603 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2604 return ((uint64_t)fsth2 << 32) | fst2; \
2605 }
2606
2607 FLOAT_TERNOP(mul, add)
2608 FLOAT_TERNOP(mul, sub)
2609 #undef FLOAT_TERNOP
2610
2611 /* negated ternary operations */
2612 #define FLOAT_NTERNOP(name1, name2) \
2613 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2614 uint64_t fdt2) \
2615 { \
2616 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2617 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2618 return float64_chs(fdt2); \
2619 } \
2620 \
2621 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2622 uint32_t fst2) \
2623 { \
2624 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2625 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2626 return float32_chs(fst2); \
2627 } \
2628 \
2629 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2630 uint64_t fdt2) \
2631 { \
2632 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2633 uint32_t fsth0 = fdt0 >> 32; \
2634 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2635 uint32_t fsth1 = fdt1 >> 32; \
2636 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2637 uint32_t fsth2 = fdt2 >> 32; \
2638 \
2639 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2640 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2641 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2642 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2643 fst2 = float32_chs(fst2); \
2644 fsth2 = float32_chs(fsth2); \
2645 return ((uint64_t)fsth2 << 32) | fst2; \
2646 }
2647
2648 FLOAT_NTERNOP(mul, add)
2649 FLOAT_NTERNOP(mul, sub)
2650 #undef FLOAT_NTERNOP
2651
2652 /* MIPS specific binary operations */
2653 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2654 {
2655 set_float_exception_flags(0, &env->active_fpu.fp_status);
2656 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2657 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2658 update_fcr31();
2659 return fdt2;
2660 }
2661
2662 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
2663 {
2664 set_float_exception_flags(0, &env->active_fpu.fp_status);
2665 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2666 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2667 update_fcr31();
2668 return fst2;
2669 }
2670
2671 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2672 {
2673 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2674 uint32_t fsth0 = fdt0 >> 32;
2675 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2676 uint32_t fsth2 = fdt2 >> 32;
2677
2678 set_float_exception_flags(0, &env->active_fpu.fp_status);
2679 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2680 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2681 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2682 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2683 update_fcr31();
2684 return ((uint64_t)fsth2 << 32) | fst2;
2685 }
2686
2687 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2688 {
2689 set_float_exception_flags(0, &env->active_fpu.fp_status);
2690 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2691 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2692 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2693 update_fcr31();
2694 return fdt2;
2695 }
2696
2697 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2698 {
2699 set_float_exception_flags(0, &env->active_fpu.fp_status);
2700 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2701 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2702 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2703 update_fcr31();
2704 return fst2;
2705 }
2706
2707 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2708 {
2709 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2710 uint32_t fsth0 = fdt0 >> 32;
2711 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2712 uint32_t fsth2 = fdt2 >> 32;
2713
2714 set_float_exception_flags(0, &env->active_fpu.fp_status);
2715 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2716 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2717 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2718 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2719 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2720 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2721 update_fcr31();
2722 return ((uint64_t)fsth2 << 32) | fst2;
2723 }
2724
2725 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2726 {
2727 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2728 uint32_t fsth0 = fdt0 >> 32;
2729 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2730 uint32_t fsth1 = fdt1 >> 32;
2731 uint32_t fst2;
2732 uint32_t fsth2;
2733
2734 set_float_exception_flags(0, &env->active_fpu.fp_status);
2735 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2736 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2737 update_fcr31();
2738 return ((uint64_t)fsth2 << 32) | fst2;
2739 }
2740
2741 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2742 {
2743 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2744 uint32_t fsth0 = fdt0 >> 32;
2745 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2746 uint32_t fsth1 = fdt1 >> 32;
2747 uint32_t fst2;
2748 uint32_t fsth2;
2749
2750 set_float_exception_flags(0, &env->active_fpu.fp_status);
2751 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2752 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2753 update_fcr31();
2754 return ((uint64_t)fsth2 << 32) | fst2;
2755 }
2756
2757 /* compare operations */
2758 #define FOP_COND_D(op, cond) \
2759 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2760 { \
2761 int c = cond; \
2762 update_fcr31(); \
2763 if (c) \
2764 SET_FP_COND(cc, env->active_fpu); \
2765 else \
2766 CLEAR_FP_COND(cc, env->active_fpu); \
2767 } \
2768 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2769 { \
2770 int c; \
2771 fdt0 = float64_abs(fdt0); \
2772 fdt1 = float64_abs(fdt1); \
2773 c = cond; \
2774 update_fcr31(); \
2775 if (c) \
2776 SET_FP_COND(cc, env->active_fpu); \
2777 else \
2778 CLEAR_FP_COND(cc, env->active_fpu); \
2779 }
2780
2781 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2782 {
2783 if (float64_is_signaling_nan(a) ||
2784 float64_is_signaling_nan(b) ||
2785 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2786 float_raise(float_flag_invalid, status);
2787 return 1;
2788 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2789 return 1;
2790 } else {
2791 return 0;
2792 }
2793 }
2794
2795 /* NOTE: the comma operator will make "cond" to eval to false,
2796 * but float*_is_unordered() is still called. */
2797 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2798 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2799 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2800 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2801 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2802 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2803 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2804 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2805 /* NOTE: the comma operator will make "cond" to eval to false,
2806 * but float*_is_unordered() is still called. */
2807 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2808 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2809 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2810 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2811 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2812 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2813 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2814 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2815
2816 #define FOP_COND_S(op, cond) \
2817 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2818 { \
2819 int c = cond; \
2820 update_fcr31(); \
2821 if (c) \
2822 SET_FP_COND(cc, env->active_fpu); \
2823 else \
2824 CLEAR_FP_COND(cc, env->active_fpu); \
2825 } \
2826 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2827 { \
2828 int c; \
2829 fst0 = float32_abs(fst0); \
2830 fst1 = float32_abs(fst1); \
2831 c = cond; \
2832 update_fcr31(); \
2833 if (c) \
2834 SET_FP_COND(cc, env->active_fpu); \
2835 else \
2836 CLEAR_FP_COND(cc, env->active_fpu); \
2837 }
2838
2839 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2840 {
2841 if (float32_is_signaling_nan(a) ||
2842 float32_is_signaling_nan(b) ||
2843 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2844 float_raise(float_flag_invalid, status);
2845 return 1;
2846 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2847 return 1;
2848 } else {
2849 return 0;
2850 }
2851 }
2852
2853 /* NOTE: the comma operator will make "cond" to eval to false,
2854 * but float*_is_unordered() is still called. */
2855 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2856 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2857 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2858 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2859 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2860 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2861 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2862 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2863 /* NOTE: the comma operator will make "cond" to eval to false,
2864 * but float*_is_unordered() is still called. */
2865 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2866 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2867 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2868 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2869 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2870 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2871 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2872 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2873
2874 #define FOP_COND_PS(op, condl, condh) \
2875 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2876 { \
2877 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2878 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2879 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2880 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2881 int cl = condl; \
2882 int ch = condh; \
2883 \
2884 update_fcr31(); \
2885 if (cl) \
2886 SET_FP_COND(cc, env->active_fpu); \
2887 else \
2888 CLEAR_FP_COND(cc, env->active_fpu); \
2889 if (ch) \
2890 SET_FP_COND(cc + 1, env->active_fpu); \
2891 else \
2892 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2893 } \
2894 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2895 { \
2896 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2897 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2898 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2899 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2900 int cl = condl; \
2901 int ch = condh; \
2902 \
2903 update_fcr31(); \
2904 if (cl) \
2905 SET_FP_COND(cc, env->active_fpu); \
2906 else \
2907 CLEAR_FP_COND(cc, env->active_fpu); \
2908 if (ch) \
2909 SET_FP_COND(cc + 1, env->active_fpu); \
2910 else \
2911 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2912 }
2913
2914 /* NOTE: the comma operator will make "cond" to eval to false,
2915 * but float*_is_unordered() is still called. */
2916 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
2917 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2918 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
2919 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
2920 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2921 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2922 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2923 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2924 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2925 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2926 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2927 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2928 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2929 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2930 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2931 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2932 /* NOTE: the comma operator will make "cond" to eval to false,
2933 * but float*_is_unordered() is still called. */
2934 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
2935 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2936 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
2937 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
2938 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2939 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2940 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2941 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2942 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2943 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2944 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2945 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2946 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2947 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2948 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2949 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))