]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Merge branch 'ppc-next' of git://repo.or.cz/qemu/agraf
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "exec.h"
21
22 #include "host-utils.h"
23
24 #include "helper.h"
25
26 #ifndef CONFIG_USER_ONLY
27 static inline void cpu_mips_tlb_flush (CPUState *env, int flush_global);
28 #endif
29
30 /*****************************************************************************/
31 /* Exceptions processing helpers */
32
33 void helper_raise_exception_err (uint32_t exception, int error_code)
34 {
35 #if 1
36 if (exception < 0x100)
37 qemu_log("%s: %d %d\n", __func__, exception, error_code);
38 #endif
39 env->exception_index = exception;
40 env->error_code = error_code;
41 cpu_loop_exit(env);
42 }
43
44 void helper_raise_exception (uint32_t exception)
45 {
46 helper_raise_exception_err(exception, 0);
47 }
48
49 #if !defined(CONFIG_USER_ONLY)
50 static void do_restore_state (void *pc_ptr)
51 {
52 TranslationBlock *tb;
53 unsigned long pc = (unsigned long) pc_ptr;
54
55 tb = tb_find_pc (pc);
56 if (tb) {
57 cpu_restore_state(tb, env, pc);
58 }
59 }
60 #endif
61
62 #if defined(CONFIG_USER_ONLY)
63 #define HELPER_LD(name, insn, type) \
64 static inline type do_##name(target_ulong addr, int mem_idx) \
65 { \
66 return (type) insn##_raw(addr); \
67 }
68 #else
69 #define HELPER_LD(name, insn, type) \
70 static inline type do_##name(target_ulong addr, int mem_idx) \
71 { \
72 switch (mem_idx) \
73 { \
74 case 0: return (type) insn##_kernel(addr); break; \
75 case 1: return (type) insn##_super(addr); break; \
76 default: \
77 case 2: return (type) insn##_user(addr); break; \
78 } \
79 }
80 #endif
81 HELPER_LD(lbu, ldub, uint8_t)
82 HELPER_LD(lw, ldl, int32_t)
83 #ifdef TARGET_MIPS64
84 HELPER_LD(ld, ldq, int64_t)
85 #endif
86 #undef HELPER_LD
87
88 #if defined(CONFIG_USER_ONLY)
89 #define HELPER_ST(name, insn, type) \
90 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
91 { \
92 insn##_raw(addr, val); \
93 }
94 #else
95 #define HELPER_ST(name, insn, type) \
96 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
97 { \
98 switch (mem_idx) \
99 { \
100 case 0: insn##_kernel(addr, val); break; \
101 case 1: insn##_super(addr, val); break; \
102 default: \
103 case 2: insn##_user(addr, val); break; \
104 } \
105 }
106 #endif
107 HELPER_ST(sb, stb, uint8_t)
108 HELPER_ST(sw, stl, uint32_t)
109 #ifdef TARGET_MIPS64
110 HELPER_ST(sd, stq, uint64_t)
111 #endif
112 #undef HELPER_ST
113
114 target_ulong helper_clo (target_ulong arg1)
115 {
116 return clo32(arg1);
117 }
118
119 target_ulong helper_clz (target_ulong arg1)
120 {
121 return clz32(arg1);
122 }
123
124 #if defined(TARGET_MIPS64)
125 target_ulong helper_dclo (target_ulong arg1)
126 {
127 return clo64(arg1);
128 }
129
130 target_ulong helper_dclz (target_ulong arg1)
131 {
132 return clz64(arg1);
133 }
134 #endif /* TARGET_MIPS64 */
135
136 /* 64 bits arithmetic for 32 bits hosts */
137 static inline uint64_t get_HILO (void)
138 {
139 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
140 }
141
142 static inline void set_HILO (uint64_t HILO)
143 {
144 env->active_tc.LO[0] = (int32_t)HILO;
145 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
146 }
147
148 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
149 {
150 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
151 arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
152 }
153
154 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
155 {
156 arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
157 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
158 }
159
160 /* Multiplication variants of the vr54xx. */
161 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
162 {
163 set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
164
165 return arg1;
166 }
167
168 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
169 {
170 set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
171
172 return arg1;
173 }
174
175 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
176 {
177 set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
178
179 return arg1;
180 }
181
182 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
183 {
184 set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
185
186 return arg1;
187 }
188
189 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
190 {
191 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
192
193 return arg1;
194 }
195
196 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
197 {
198 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
199
200 return arg1;
201 }
202
203 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
204 {
205 set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
206
207 return arg1;
208 }
209
210 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
211 {
212 set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
213
214 return arg1;
215 }
216
217 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
218 {
219 set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
220
221 return arg1;
222 }
223
224 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
225 {
226 set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
227
228 return arg1;
229 }
230
231 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
232 {
233 set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
234
235 return arg1;
236 }
237
238 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
239 {
240 set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
241
242 return arg1;
243 }
244
245 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
246 {
247 set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
248
249 return arg1;
250 }
251
252 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
253 {
254 set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
255
256 return arg1;
257 }
258
259 #ifdef TARGET_MIPS64
260 void helper_dmult (target_ulong arg1, target_ulong arg2)
261 {
262 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
263 }
264
265 void helper_dmultu (target_ulong arg1, target_ulong arg2)
266 {
267 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
268 }
269 #endif
270
271 #ifndef CONFIG_USER_ONLY
272
273 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
274 {
275 target_phys_addr_t lladdr;
276
277 lladdr = cpu_mips_translate_address(env, address, rw);
278
279 if (lladdr == -1LL) {
280 cpu_loop_exit(env);
281 } else {
282 return lladdr;
283 }
284 }
285
286 #define HELPER_LD_ATOMIC(name, insn) \
287 target_ulong helper_##name(target_ulong arg, int mem_idx) \
288 { \
289 env->lladdr = do_translate_address(arg, 0); \
290 env->llval = do_##insn(arg, mem_idx); \
291 return env->llval; \
292 }
293 HELPER_LD_ATOMIC(ll, lw)
294 #ifdef TARGET_MIPS64
295 HELPER_LD_ATOMIC(lld, ld)
296 #endif
297 #undef HELPER_LD_ATOMIC
298
299 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
300 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
301 { \
302 target_long tmp; \
303 \
304 if (arg2 & almask) { \
305 env->CP0_BadVAddr = arg2; \
306 helper_raise_exception(EXCP_AdES); \
307 } \
308 if (do_translate_address(arg2, 1) == env->lladdr) { \
309 tmp = do_##ld_insn(arg2, mem_idx); \
310 if (tmp == env->llval) { \
311 do_##st_insn(arg2, arg1, mem_idx); \
312 return 1; \
313 } \
314 } \
315 return 0; \
316 }
317 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
318 #ifdef TARGET_MIPS64
319 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
320 #endif
321 #undef HELPER_ST_ATOMIC
322 #endif
323
324 #ifdef TARGET_WORDS_BIGENDIAN
325 #define GET_LMASK(v) ((v) & 3)
326 #define GET_OFFSET(addr, offset) (addr + (offset))
327 #else
328 #define GET_LMASK(v) (((v) & 3) ^ 3)
329 #define GET_OFFSET(addr, offset) (addr - (offset))
330 #endif
331
332 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
333 {
334 target_ulong tmp;
335
336 tmp = do_lbu(arg2, mem_idx);
337 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
338
339 if (GET_LMASK(arg2) <= 2) {
340 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
341 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
342 }
343
344 if (GET_LMASK(arg2) <= 1) {
345 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
346 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
347 }
348
349 if (GET_LMASK(arg2) == 0) {
350 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
351 arg1 = (arg1 & 0xFFFFFF00) | tmp;
352 }
353 return (int32_t)arg1;
354 }
355
356 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
357 {
358 target_ulong tmp;
359
360 tmp = do_lbu(arg2, mem_idx);
361 arg1 = (arg1 & 0xFFFFFF00) | tmp;
362
363 if (GET_LMASK(arg2) >= 1) {
364 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
365 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
366 }
367
368 if (GET_LMASK(arg2) >= 2) {
369 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
370 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
371 }
372
373 if (GET_LMASK(arg2) == 3) {
374 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
375 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
376 }
377 return (int32_t)arg1;
378 }
379
380 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
381 {
382 do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
383
384 if (GET_LMASK(arg2) <= 2)
385 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
386
387 if (GET_LMASK(arg2) <= 1)
388 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
389
390 if (GET_LMASK(arg2) == 0)
391 do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
392 }
393
394 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
395 {
396 do_sb(arg2, (uint8_t)arg1, mem_idx);
397
398 if (GET_LMASK(arg2) >= 1)
399 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
400
401 if (GET_LMASK(arg2) >= 2)
402 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
403
404 if (GET_LMASK(arg2) == 3)
405 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
406 }
407
408 #if defined(TARGET_MIPS64)
409 /* "half" load and stores. We must do the memory access inline,
410 or fault handling won't work. */
411
412 #ifdef TARGET_WORDS_BIGENDIAN
413 #define GET_LMASK64(v) ((v) & 7)
414 #else
415 #define GET_LMASK64(v) (((v) & 7) ^ 7)
416 #endif
417
418 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
419 {
420 uint64_t tmp;
421
422 tmp = do_lbu(arg2, mem_idx);
423 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
424
425 if (GET_LMASK64(arg2) <= 6) {
426 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
427 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
428 }
429
430 if (GET_LMASK64(arg2) <= 5) {
431 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
432 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
433 }
434
435 if (GET_LMASK64(arg2) <= 4) {
436 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
437 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
438 }
439
440 if (GET_LMASK64(arg2) <= 3) {
441 tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
442 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
443 }
444
445 if (GET_LMASK64(arg2) <= 2) {
446 tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
447 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
448 }
449
450 if (GET_LMASK64(arg2) <= 1) {
451 tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
452 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
453 }
454
455 if (GET_LMASK64(arg2) == 0) {
456 tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
457 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
458 }
459
460 return arg1;
461 }
462
463 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
464 {
465 uint64_t tmp;
466
467 tmp = do_lbu(arg2, mem_idx);
468 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
469
470 if (GET_LMASK64(arg2) >= 1) {
471 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
472 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
473 }
474
475 if (GET_LMASK64(arg2) >= 2) {
476 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
477 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
478 }
479
480 if (GET_LMASK64(arg2) >= 3) {
481 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
482 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
483 }
484
485 if (GET_LMASK64(arg2) >= 4) {
486 tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
487 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
488 }
489
490 if (GET_LMASK64(arg2) >= 5) {
491 tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
492 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
493 }
494
495 if (GET_LMASK64(arg2) >= 6) {
496 tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
497 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
498 }
499
500 if (GET_LMASK64(arg2) == 7) {
501 tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
502 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
503 }
504
505 return arg1;
506 }
507
508 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
509 {
510 do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
511
512 if (GET_LMASK64(arg2) <= 6)
513 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
514
515 if (GET_LMASK64(arg2) <= 5)
516 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
517
518 if (GET_LMASK64(arg2) <= 4)
519 do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
520
521 if (GET_LMASK64(arg2) <= 3)
522 do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
523
524 if (GET_LMASK64(arg2) <= 2)
525 do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
526
527 if (GET_LMASK64(arg2) <= 1)
528 do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
529
530 if (GET_LMASK64(arg2) <= 0)
531 do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
532 }
533
534 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
535 {
536 do_sb(arg2, (uint8_t)arg1, mem_idx);
537
538 if (GET_LMASK64(arg2) >= 1)
539 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
540
541 if (GET_LMASK64(arg2) >= 2)
542 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
543
544 if (GET_LMASK64(arg2) >= 3)
545 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
546
547 if (GET_LMASK64(arg2) >= 4)
548 do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
549
550 if (GET_LMASK64(arg2) >= 5)
551 do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
552
553 if (GET_LMASK64(arg2) >= 6)
554 do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
555
556 if (GET_LMASK64(arg2) == 7)
557 do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
558 }
559 #endif /* TARGET_MIPS64 */
560
561 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
562
563 void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
564 {
565 target_ulong base_reglist = reglist & 0xf;
566 target_ulong do_r31 = reglist & 0x10;
567 #ifdef CONFIG_USER_ONLY
568 #undef ldfun
569 #define ldfun ldl_raw
570 #else
571 uint32_t (*ldfun)(target_ulong);
572
573 switch (mem_idx)
574 {
575 case 0: ldfun = ldl_kernel; break;
576 case 1: ldfun = ldl_super; break;
577 default:
578 case 2: ldfun = ldl_user; break;
579 }
580 #endif
581
582 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
583 target_ulong i;
584
585 for (i = 0; i < base_reglist; i++) {
586 env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
587 addr += 4;
588 }
589 }
590
591 if (do_r31) {
592 env->active_tc.gpr[31] = (target_long) ldfun(addr);
593 }
594 }
595
596 void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
597 {
598 target_ulong base_reglist = reglist & 0xf;
599 target_ulong do_r31 = reglist & 0x10;
600 #ifdef CONFIG_USER_ONLY
601 #undef stfun
602 #define stfun stl_raw
603 #else
604 void (*stfun)(target_ulong, uint32_t);
605
606 switch (mem_idx)
607 {
608 case 0: stfun = stl_kernel; break;
609 case 1: stfun = stl_super; break;
610 default:
611 case 2: stfun = stl_user; break;
612 }
613 #endif
614
615 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
616 target_ulong i;
617
618 for (i = 0; i < base_reglist; i++) {
619 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
620 addr += 4;
621 }
622 }
623
624 if (do_r31) {
625 stfun(addr, env->active_tc.gpr[31]);
626 }
627 }
628
629 #if defined(TARGET_MIPS64)
630 void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
631 {
632 target_ulong base_reglist = reglist & 0xf;
633 target_ulong do_r31 = reglist & 0x10;
634 #ifdef CONFIG_USER_ONLY
635 #undef ldfun
636 #define ldfun ldq_raw
637 #else
638 uint64_t (*ldfun)(target_ulong);
639
640 switch (mem_idx)
641 {
642 case 0: ldfun = ldq_kernel; break;
643 case 1: ldfun = ldq_super; break;
644 default:
645 case 2: ldfun = ldq_user; break;
646 }
647 #endif
648
649 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
650 target_ulong i;
651
652 for (i = 0; i < base_reglist; i++) {
653 env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
654 addr += 8;
655 }
656 }
657
658 if (do_r31) {
659 env->active_tc.gpr[31] = ldfun(addr);
660 }
661 }
662
663 void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
664 {
665 target_ulong base_reglist = reglist & 0xf;
666 target_ulong do_r31 = reglist & 0x10;
667 #ifdef CONFIG_USER_ONLY
668 #undef stfun
669 #define stfun stq_raw
670 #else
671 void (*stfun)(target_ulong, uint64_t);
672
673 switch (mem_idx)
674 {
675 case 0: stfun = stq_kernel; break;
676 case 1: stfun = stq_super; break;
677 default:
678 case 2: stfun = stq_user; break;
679 }
680 #endif
681
682 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
683 target_ulong i;
684
685 for (i = 0; i < base_reglist; i++) {
686 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
687 addr += 8;
688 }
689 }
690
691 if (do_r31) {
692 stfun(addr, env->active_tc.gpr[31]);
693 }
694 }
695 #endif
696
697 #ifndef CONFIG_USER_ONLY
698 /* CP0 helpers */
699 target_ulong helper_mfc0_mvpcontrol (void)
700 {
701 return env->mvp->CP0_MVPControl;
702 }
703
704 target_ulong helper_mfc0_mvpconf0 (void)
705 {
706 return env->mvp->CP0_MVPConf0;
707 }
708
709 target_ulong helper_mfc0_mvpconf1 (void)
710 {
711 return env->mvp->CP0_MVPConf1;
712 }
713
714 target_ulong helper_mfc0_random (void)
715 {
716 return (int32_t)cpu_mips_get_random(env);
717 }
718
719 target_ulong helper_mfc0_tcstatus (void)
720 {
721 return env->active_tc.CP0_TCStatus;
722 }
723
724 target_ulong helper_mftc0_tcstatus(void)
725 {
726 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
727
728 if (other_tc == env->current_tc)
729 return env->active_tc.CP0_TCStatus;
730 else
731 return env->tcs[other_tc].CP0_TCStatus;
732 }
733
734 target_ulong helper_mfc0_tcbind (void)
735 {
736 return env->active_tc.CP0_TCBind;
737 }
738
739 target_ulong helper_mftc0_tcbind(void)
740 {
741 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
742
743 if (other_tc == env->current_tc)
744 return env->active_tc.CP0_TCBind;
745 else
746 return env->tcs[other_tc].CP0_TCBind;
747 }
748
749 target_ulong helper_mfc0_tcrestart (void)
750 {
751 return env->active_tc.PC;
752 }
753
754 target_ulong helper_mftc0_tcrestart(void)
755 {
756 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
757
758 if (other_tc == env->current_tc)
759 return env->active_tc.PC;
760 else
761 return env->tcs[other_tc].PC;
762 }
763
764 target_ulong helper_mfc0_tchalt (void)
765 {
766 return env->active_tc.CP0_TCHalt;
767 }
768
769 target_ulong helper_mftc0_tchalt(void)
770 {
771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
772
773 if (other_tc == env->current_tc)
774 return env->active_tc.CP0_TCHalt;
775 else
776 return env->tcs[other_tc].CP0_TCHalt;
777 }
778
779 target_ulong helper_mfc0_tccontext (void)
780 {
781 return env->active_tc.CP0_TCContext;
782 }
783
784 target_ulong helper_mftc0_tccontext(void)
785 {
786 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
787
788 if (other_tc == env->current_tc)
789 return env->active_tc.CP0_TCContext;
790 else
791 return env->tcs[other_tc].CP0_TCContext;
792 }
793
794 target_ulong helper_mfc0_tcschedule (void)
795 {
796 return env->active_tc.CP0_TCSchedule;
797 }
798
799 target_ulong helper_mftc0_tcschedule(void)
800 {
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
802
803 if (other_tc == env->current_tc)
804 return env->active_tc.CP0_TCSchedule;
805 else
806 return env->tcs[other_tc].CP0_TCSchedule;
807 }
808
809 target_ulong helper_mfc0_tcschefback (void)
810 {
811 return env->active_tc.CP0_TCScheFBack;
812 }
813
814 target_ulong helper_mftc0_tcschefback(void)
815 {
816 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
817
818 if (other_tc == env->current_tc)
819 return env->active_tc.CP0_TCScheFBack;
820 else
821 return env->tcs[other_tc].CP0_TCScheFBack;
822 }
823
824 target_ulong helper_mfc0_count (void)
825 {
826 return (int32_t)cpu_mips_get_count(env);
827 }
828
829 target_ulong helper_mftc0_entryhi(void)
830 {
831 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
832 int32_t tcstatus;
833
834 if (other_tc == env->current_tc)
835 tcstatus = env->active_tc.CP0_TCStatus;
836 else
837 tcstatus = env->tcs[other_tc].CP0_TCStatus;
838
839 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
840 }
841
842 target_ulong helper_mftc0_status(void)
843 {
844 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
845 target_ulong t0;
846 int32_t tcstatus;
847
848 if (other_tc == env->current_tc)
849 tcstatus = env->active_tc.CP0_TCStatus;
850 else
851 tcstatus = env->tcs[other_tc].CP0_TCStatus;
852
853 t0 = env->CP0_Status & ~0xf1000018;
854 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
855 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
856 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
857
858 return t0;
859 }
860
861 target_ulong helper_mfc0_lladdr (void)
862 {
863 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
864 }
865
866 target_ulong helper_mfc0_watchlo (uint32_t sel)
867 {
868 return (int32_t)env->CP0_WatchLo[sel];
869 }
870
871 target_ulong helper_mfc0_watchhi (uint32_t sel)
872 {
873 return env->CP0_WatchHi[sel];
874 }
875
876 target_ulong helper_mfc0_debug (void)
877 {
878 target_ulong t0 = env->CP0_Debug;
879 if (env->hflags & MIPS_HFLAG_DM)
880 t0 |= 1 << CP0DB_DM;
881
882 return t0;
883 }
884
885 target_ulong helper_mftc0_debug(void)
886 {
887 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
888 int32_t tcstatus;
889
890 if (other_tc == env->current_tc)
891 tcstatus = env->active_tc.CP0_Debug_tcstatus;
892 else
893 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
894
895 /* XXX: Might be wrong, check with EJTAG spec. */
896 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
897 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
898 }
899
900 #if defined(TARGET_MIPS64)
901 target_ulong helper_dmfc0_tcrestart (void)
902 {
903 return env->active_tc.PC;
904 }
905
906 target_ulong helper_dmfc0_tchalt (void)
907 {
908 return env->active_tc.CP0_TCHalt;
909 }
910
911 target_ulong helper_dmfc0_tccontext (void)
912 {
913 return env->active_tc.CP0_TCContext;
914 }
915
916 target_ulong helper_dmfc0_tcschedule (void)
917 {
918 return env->active_tc.CP0_TCSchedule;
919 }
920
921 target_ulong helper_dmfc0_tcschefback (void)
922 {
923 return env->active_tc.CP0_TCScheFBack;
924 }
925
926 target_ulong helper_dmfc0_lladdr (void)
927 {
928 return env->lladdr >> env->CP0_LLAddr_shift;
929 }
930
931 target_ulong helper_dmfc0_watchlo (uint32_t sel)
932 {
933 return env->CP0_WatchLo[sel];
934 }
935 #endif /* TARGET_MIPS64 */
936
937 void helper_mtc0_index (target_ulong arg1)
938 {
939 int num = 1;
940 unsigned int tmp = env->tlb->nb_tlb;
941
942 do {
943 tmp >>= 1;
944 num <<= 1;
945 } while (tmp);
946 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
947 }
948
949 void helper_mtc0_mvpcontrol (target_ulong arg1)
950 {
951 uint32_t mask = 0;
952 uint32_t newval;
953
954 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
955 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
956 (1 << CP0MVPCo_EVP);
957 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
958 mask |= (1 << CP0MVPCo_STLB);
959 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
960
961 // TODO: Enable/disable shared TLB, enable/disable VPEs.
962
963 env->mvp->CP0_MVPControl = newval;
964 }
965
966 void helper_mtc0_vpecontrol (target_ulong arg1)
967 {
968 uint32_t mask;
969 uint32_t newval;
970
971 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
972 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
973 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
974
975 /* Yield scheduler intercept not implemented. */
976 /* Gating storage scheduler intercept not implemented. */
977
978 // TODO: Enable/disable TCs.
979
980 env->CP0_VPEControl = newval;
981 }
982
983 void helper_mtc0_vpeconf0 (target_ulong arg1)
984 {
985 uint32_t mask = 0;
986 uint32_t newval;
987
988 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
989 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
990 mask |= (0xff << CP0VPEC0_XTC);
991 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
992 }
993 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
994
995 // TODO: TC exclusive handling due to ERL/EXL.
996
997 env->CP0_VPEConf0 = newval;
998 }
999
1000 void helper_mtc0_vpeconf1 (target_ulong arg1)
1001 {
1002 uint32_t mask = 0;
1003 uint32_t newval;
1004
1005 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1006 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1007 (0xff << CP0VPEC1_NCP1);
1008 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1009
1010 /* UDI not implemented. */
1011 /* CP2 not implemented. */
1012
1013 // TODO: Handle FPU (CP1) binding.
1014
1015 env->CP0_VPEConf1 = newval;
1016 }
1017
1018 void helper_mtc0_yqmask (target_ulong arg1)
1019 {
1020 /* Yield qualifier inputs not implemented. */
1021 env->CP0_YQMask = 0x00000000;
1022 }
1023
1024 void helper_mtc0_vpeopt (target_ulong arg1)
1025 {
1026 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1027 }
1028
1029 void helper_mtc0_entrylo0 (target_ulong arg1)
1030 {
1031 /* Large physaddr (PABITS) not implemented */
1032 /* 1k pages not implemented */
1033 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1034 }
1035
1036 void helper_mtc0_tcstatus (target_ulong arg1)
1037 {
1038 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1039 uint32_t newval;
1040
1041 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1042
1043 // TODO: Sync with CP0_Status.
1044
1045 env->active_tc.CP0_TCStatus = newval;
1046 }
1047
1048 void helper_mttc0_tcstatus (target_ulong arg1)
1049 {
1050 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1051
1052 // TODO: Sync with CP0_Status.
1053
1054 if (other_tc == env->current_tc)
1055 env->active_tc.CP0_TCStatus = arg1;
1056 else
1057 env->tcs[other_tc].CP0_TCStatus = arg1;
1058 }
1059
1060 void helper_mtc0_tcbind (target_ulong arg1)
1061 {
1062 uint32_t mask = (1 << CP0TCBd_TBE);
1063 uint32_t newval;
1064
1065 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1066 mask |= (1 << CP0TCBd_CurVPE);
1067 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1068 env->active_tc.CP0_TCBind = newval;
1069 }
1070
1071 void helper_mttc0_tcbind (target_ulong arg1)
1072 {
1073 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1074 uint32_t mask = (1 << CP0TCBd_TBE);
1075 uint32_t newval;
1076
1077 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1078 mask |= (1 << CP0TCBd_CurVPE);
1079 if (other_tc == env->current_tc) {
1080 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1081 env->active_tc.CP0_TCBind = newval;
1082 } else {
1083 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1084 env->tcs[other_tc].CP0_TCBind = newval;
1085 }
1086 }
1087
1088 void helper_mtc0_tcrestart (target_ulong arg1)
1089 {
1090 env->active_tc.PC = arg1;
1091 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1092 env->lladdr = 0ULL;
1093 /* MIPS16 not implemented. */
1094 }
1095
1096 void helper_mttc0_tcrestart (target_ulong arg1)
1097 {
1098 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1099
1100 if (other_tc == env->current_tc) {
1101 env->active_tc.PC = arg1;
1102 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1103 env->lladdr = 0ULL;
1104 /* MIPS16 not implemented. */
1105 } else {
1106 env->tcs[other_tc].PC = arg1;
1107 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1108 env->lladdr = 0ULL;
1109 /* MIPS16 not implemented. */
1110 }
1111 }
1112
1113 void helper_mtc0_tchalt (target_ulong arg1)
1114 {
1115 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1116
1117 // TODO: Halt TC / Restart (if allocated+active) TC.
1118 }
1119
1120 void helper_mttc0_tchalt (target_ulong arg1)
1121 {
1122 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1123
1124 // TODO: Halt TC / Restart (if allocated+active) TC.
1125
1126 if (other_tc == env->current_tc)
1127 env->active_tc.CP0_TCHalt = arg1;
1128 else
1129 env->tcs[other_tc].CP0_TCHalt = arg1;
1130 }
1131
1132 void helper_mtc0_tccontext (target_ulong arg1)
1133 {
1134 env->active_tc.CP0_TCContext = arg1;
1135 }
1136
1137 void helper_mttc0_tccontext (target_ulong arg1)
1138 {
1139 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1140
1141 if (other_tc == env->current_tc)
1142 env->active_tc.CP0_TCContext = arg1;
1143 else
1144 env->tcs[other_tc].CP0_TCContext = arg1;
1145 }
1146
1147 void helper_mtc0_tcschedule (target_ulong arg1)
1148 {
1149 env->active_tc.CP0_TCSchedule = arg1;
1150 }
1151
1152 void helper_mttc0_tcschedule (target_ulong arg1)
1153 {
1154 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1155
1156 if (other_tc == env->current_tc)
1157 env->active_tc.CP0_TCSchedule = arg1;
1158 else
1159 env->tcs[other_tc].CP0_TCSchedule = arg1;
1160 }
1161
1162 void helper_mtc0_tcschefback (target_ulong arg1)
1163 {
1164 env->active_tc.CP0_TCScheFBack = arg1;
1165 }
1166
1167 void helper_mttc0_tcschefback (target_ulong arg1)
1168 {
1169 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1170
1171 if (other_tc == env->current_tc)
1172 env->active_tc.CP0_TCScheFBack = arg1;
1173 else
1174 env->tcs[other_tc].CP0_TCScheFBack = arg1;
1175 }
1176
1177 void helper_mtc0_entrylo1 (target_ulong arg1)
1178 {
1179 /* Large physaddr (PABITS) not implemented */
1180 /* 1k pages not implemented */
1181 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1182 }
1183
1184 void helper_mtc0_context (target_ulong arg1)
1185 {
1186 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1187 }
1188
1189 void helper_mtc0_pagemask (target_ulong arg1)
1190 {
1191 /* 1k pages not implemented */
1192 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1193 }
1194
1195 void helper_mtc0_pagegrain (target_ulong arg1)
1196 {
1197 /* SmartMIPS not implemented */
1198 /* Large physaddr (PABITS) not implemented */
1199 /* 1k pages not implemented */
1200 env->CP0_PageGrain = 0;
1201 }
1202
1203 void helper_mtc0_wired (target_ulong arg1)
1204 {
1205 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1206 }
1207
1208 void helper_mtc0_srsconf0 (target_ulong arg1)
1209 {
1210 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1211 }
1212
1213 void helper_mtc0_srsconf1 (target_ulong arg1)
1214 {
1215 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1216 }
1217
1218 void helper_mtc0_srsconf2 (target_ulong arg1)
1219 {
1220 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1221 }
1222
1223 void helper_mtc0_srsconf3 (target_ulong arg1)
1224 {
1225 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1226 }
1227
1228 void helper_mtc0_srsconf4 (target_ulong arg1)
1229 {
1230 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1231 }
1232
1233 void helper_mtc0_hwrena (target_ulong arg1)
1234 {
1235 env->CP0_HWREna = arg1 & 0x0000000F;
1236 }
1237
1238 void helper_mtc0_count (target_ulong arg1)
1239 {
1240 cpu_mips_store_count(env, arg1);
1241 }
1242
1243 void helper_mtc0_entryhi (target_ulong arg1)
1244 {
1245 target_ulong old, val;
1246
1247 /* 1k pages not implemented */
1248 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1249 #if defined(TARGET_MIPS64)
1250 val &= env->SEGMask;
1251 #endif
1252 old = env->CP0_EntryHi;
1253 env->CP0_EntryHi = val;
1254 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1255 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1256 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1257 }
1258 /* If the ASID changes, flush qemu's TLB. */
1259 if ((old & 0xFF) != (val & 0xFF))
1260 cpu_mips_tlb_flush(env, 1);
1261 }
1262
1263 void helper_mttc0_entryhi(target_ulong arg1)
1264 {
1265 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1266 int32_t tcstatus;
1267
1268 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1269 if (other_tc == env->current_tc) {
1270 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1271 env->active_tc.CP0_TCStatus = tcstatus;
1272 } else {
1273 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1274 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1275 }
1276 }
1277
1278 void helper_mtc0_compare (target_ulong arg1)
1279 {
1280 cpu_mips_store_compare(env, arg1);
1281 }
1282
1283 void helper_mtc0_status (target_ulong arg1)
1284 {
1285 uint32_t val, old;
1286 uint32_t mask = env->CP0_Status_rw_bitmask;
1287
1288 val = arg1 & mask;
1289 old = env->CP0_Status;
1290 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1291 compute_hflags(env);
1292 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1293 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1294 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1295 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1296 env->CP0_Cause);
1297 switch (env->hflags & MIPS_HFLAG_KSU) {
1298 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1299 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1300 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1301 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1302 }
1303 }
1304 }
1305
1306 void helper_mttc0_status(target_ulong arg1)
1307 {
1308 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1309 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1310
1311 env->CP0_Status = arg1 & ~0xf1000018;
1312 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1313 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1314 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1315 if (other_tc == env->current_tc)
1316 env->active_tc.CP0_TCStatus = tcstatus;
1317 else
1318 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1319 }
1320
1321 void helper_mtc0_intctl (target_ulong arg1)
1322 {
1323 /* vectored interrupts not implemented, no performance counters. */
1324 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1325 }
1326
1327 void helper_mtc0_srsctl (target_ulong arg1)
1328 {
1329 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1330 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1331 }
1332
1333 void helper_mtc0_cause (target_ulong arg1)
1334 {
1335 uint32_t mask = 0x00C00300;
1336 uint32_t old = env->CP0_Cause;
1337 int i;
1338
1339 if (env->insn_flags & ISA_MIPS32R2)
1340 mask |= 1 << CP0Ca_DC;
1341
1342 env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1343
1344 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1345 if (env->CP0_Cause & (1 << CP0Ca_DC))
1346 cpu_mips_stop_count(env);
1347 else
1348 cpu_mips_start_count(env);
1349 }
1350
1351 /* Set/reset software interrupts */
1352 for (i = 0 ; i < 2 ; i++) {
1353 if ((old ^ env->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1354 cpu_mips_soft_irq(env, i, env->CP0_Cause & (1 << (CP0Ca_IP + i)));
1355 }
1356 }
1357 }
1358
1359 void helper_mtc0_ebase (target_ulong arg1)
1360 {
1361 /* vectored interrupts not implemented */
1362 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1363 }
1364
1365 void helper_mtc0_config0 (target_ulong arg1)
1366 {
1367 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1368 }
1369
1370 void helper_mtc0_config2 (target_ulong arg1)
1371 {
1372 /* tertiary/secondary caches not implemented */
1373 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1374 }
1375
1376 void helper_mtc0_lladdr (target_ulong arg1)
1377 {
1378 target_long mask = env->CP0_LLAddr_rw_bitmask;
1379 arg1 = arg1 << env->CP0_LLAddr_shift;
1380 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1381 }
1382
1383 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1384 {
1385 /* Watch exceptions for instructions, data loads, data stores
1386 not implemented. */
1387 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1388 }
1389
1390 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1391 {
1392 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1393 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1394 }
1395
1396 void helper_mtc0_xcontext (target_ulong arg1)
1397 {
1398 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1399 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1400 }
1401
1402 void helper_mtc0_framemask (target_ulong arg1)
1403 {
1404 env->CP0_Framemask = arg1; /* XXX */
1405 }
1406
1407 void helper_mtc0_debug (target_ulong arg1)
1408 {
1409 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1410 if (arg1 & (1 << CP0DB_DM))
1411 env->hflags |= MIPS_HFLAG_DM;
1412 else
1413 env->hflags &= ~MIPS_HFLAG_DM;
1414 }
1415
1416 void helper_mttc0_debug(target_ulong arg1)
1417 {
1418 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1419 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1420
1421 /* XXX: Might be wrong, check with EJTAG spec. */
1422 if (other_tc == env->current_tc)
1423 env->active_tc.CP0_Debug_tcstatus = val;
1424 else
1425 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1426 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1427 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1428 }
1429
1430 void helper_mtc0_performance0 (target_ulong arg1)
1431 {
1432 env->CP0_Performance0 = arg1 & 0x000007ff;
1433 }
1434
1435 void helper_mtc0_taglo (target_ulong arg1)
1436 {
1437 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1438 }
1439
1440 void helper_mtc0_datalo (target_ulong arg1)
1441 {
1442 env->CP0_DataLo = arg1; /* XXX */
1443 }
1444
1445 void helper_mtc0_taghi (target_ulong arg1)
1446 {
1447 env->CP0_TagHi = arg1; /* XXX */
1448 }
1449
1450 void helper_mtc0_datahi (target_ulong arg1)
1451 {
1452 env->CP0_DataHi = arg1; /* XXX */
1453 }
1454
1455 /* MIPS MT functions */
1456 target_ulong helper_mftgpr(uint32_t sel)
1457 {
1458 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1459
1460 if (other_tc == env->current_tc)
1461 return env->active_tc.gpr[sel];
1462 else
1463 return env->tcs[other_tc].gpr[sel];
1464 }
1465
1466 target_ulong helper_mftlo(uint32_t sel)
1467 {
1468 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1469
1470 if (other_tc == env->current_tc)
1471 return env->active_tc.LO[sel];
1472 else
1473 return env->tcs[other_tc].LO[sel];
1474 }
1475
1476 target_ulong helper_mfthi(uint32_t sel)
1477 {
1478 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1479
1480 if (other_tc == env->current_tc)
1481 return env->active_tc.HI[sel];
1482 else
1483 return env->tcs[other_tc].HI[sel];
1484 }
1485
1486 target_ulong helper_mftacx(uint32_t sel)
1487 {
1488 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1489
1490 if (other_tc == env->current_tc)
1491 return env->active_tc.ACX[sel];
1492 else
1493 return env->tcs[other_tc].ACX[sel];
1494 }
1495
1496 target_ulong helper_mftdsp(void)
1497 {
1498 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1499
1500 if (other_tc == env->current_tc)
1501 return env->active_tc.DSPControl;
1502 else
1503 return env->tcs[other_tc].DSPControl;
1504 }
1505
1506 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1507 {
1508 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1509
1510 if (other_tc == env->current_tc)
1511 env->active_tc.gpr[sel] = arg1;
1512 else
1513 env->tcs[other_tc].gpr[sel] = arg1;
1514 }
1515
1516 void helper_mttlo(target_ulong arg1, uint32_t sel)
1517 {
1518 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1519
1520 if (other_tc == env->current_tc)
1521 env->active_tc.LO[sel] = arg1;
1522 else
1523 env->tcs[other_tc].LO[sel] = arg1;
1524 }
1525
1526 void helper_mtthi(target_ulong arg1, uint32_t sel)
1527 {
1528 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1529
1530 if (other_tc == env->current_tc)
1531 env->active_tc.HI[sel] = arg1;
1532 else
1533 env->tcs[other_tc].HI[sel] = arg1;
1534 }
1535
1536 void helper_mttacx(target_ulong arg1, uint32_t sel)
1537 {
1538 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1539
1540 if (other_tc == env->current_tc)
1541 env->active_tc.ACX[sel] = arg1;
1542 else
1543 env->tcs[other_tc].ACX[sel] = arg1;
1544 }
1545
1546 void helper_mttdsp(target_ulong arg1)
1547 {
1548 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1549
1550 if (other_tc == env->current_tc)
1551 env->active_tc.DSPControl = arg1;
1552 else
1553 env->tcs[other_tc].DSPControl = arg1;
1554 }
1555
1556 /* MIPS MT functions */
1557 target_ulong helper_dmt(void)
1558 {
1559 // TODO
1560 return 0;
1561 }
1562
1563 target_ulong helper_emt(void)
1564 {
1565 // TODO
1566 return 0;
1567 }
1568
1569 target_ulong helper_dvpe(void)
1570 {
1571 // TODO
1572 return 0;
1573 }
1574
1575 target_ulong helper_evpe(void)
1576 {
1577 // TODO
1578 return 0;
1579 }
1580 #endif /* !CONFIG_USER_ONLY */
1581
1582 void helper_fork(target_ulong arg1, target_ulong arg2)
1583 {
1584 // arg1 = rt, arg2 = rs
1585 arg1 = 0;
1586 // TODO: store to TC register
1587 }
1588
1589 target_ulong helper_yield(target_ulong arg)
1590 {
1591 target_long arg1 = arg;
1592
1593 if (arg1 < 0) {
1594 /* No scheduling policy implemented. */
1595 if (arg1 != -2) {
1596 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1597 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1598 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1599 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1600 helper_raise_exception(EXCP_THREAD);
1601 }
1602 }
1603 } else if (arg1 == 0) {
1604 if (0 /* TODO: TC underflow */) {
1605 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1606 helper_raise_exception(EXCP_THREAD);
1607 } else {
1608 // TODO: Deallocate TC
1609 }
1610 } else if (arg1 > 0) {
1611 /* Yield qualifier inputs not implemented. */
1612 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1613 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1614 helper_raise_exception(EXCP_THREAD);
1615 }
1616 return env->CP0_YQMask;
1617 }
1618
1619 #ifndef CONFIG_USER_ONLY
1620 /* TLB management */
1621 static void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1622 {
1623 /* Flush qemu's TLB and discard all shadowed entries. */
1624 tlb_flush (env, flush_global);
1625 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1626 }
1627
1628 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1629 {
1630 /* Discard entries from env->tlb[first] onwards. */
1631 while (env->tlb->tlb_in_use > first) {
1632 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1633 }
1634 }
1635
1636 static void r4k_fill_tlb (int idx)
1637 {
1638 r4k_tlb_t *tlb;
1639
1640 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1641 tlb = &env->tlb->mmu.r4k.tlb[idx];
1642 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1643 #if defined(TARGET_MIPS64)
1644 tlb->VPN &= env->SEGMask;
1645 #endif
1646 tlb->ASID = env->CP0_EntryHi & 0xFF;
1647 tlb->PageMask = env->CP0_PageMask;
1648 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1649 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1650 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1651 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1652 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1653 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1654 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1655 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1656 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1657 }
1658
1659 void r4k_helper_tlbwi (void)
1660 {
1661 int idx;
1662
1663 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1664
1665 /* Discard cached TLB entries. We could avoid doing this if the
1666 tlbwi is just upgrading access permissions on the current entry;
1667 that might be a further win. */
1668 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1669
1670 r4k_invalidate_tlb(env, idx, 0);
1671 r4k_fill_tlb(idx);
1672 }
1673
1674 void r4k_helper_tlbwr (void)
1675 {
1676 int r = cpu_mips_get_random(env);
1677
1678 r4k_invalidate_tlb(env, r, 1);
1679 r4k_fill_tlb(r);
1680 }
1681
1682 void r4k_helper_tlbp (void)
1683 {
1684 r4k_tlb_t *tlb;
1685 target_ulong mask;
1686 target_ulong tag;
1687 target_ulong VPN;
1688 uint8_t ASID;
1689 int i;
1690
1691 ASID = env->CP0_EntryHi & 0xFF;
1692 for (i = 0; i < env->tlb->nb_tlb; i++) {
1693 tlb = &env->tlb->mmu.r4k.tlb[i];
1694 /* 1k pages are not supported. */
1695 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1696 tag = env->CP0_EntryHi & ~mask;
1697 VPN = tlb->VPN & ~mask;
1698 /* Check ASID, virtual page number & size */
1699 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1700 /* TLB match */
1701 env->CP0_Index = i;
1702 break;
1703 }
1704 }
1705 if (i == env->tlb->nb_tlb) {
1706 /* No match. Discard any shadow entries, if any of them match. */
1707 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1708 tlb = &env->tlb->mmu.r4k.tlb[i];
1709 /* 1k pages are not supported. */
1710 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1711 tag = env->CP0_EntryHi & ~mask;
1712 VPN = tlb->VPN & ~mask;
1713 /* Check ASID, virtual page number & size */
1714 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1715 r4k_mips_tlb_flush_extra (env, i);
1716 break;
1717 }
1718 }
1719
1720 env->CP0_Index |= 0x80000000;
1721 }
1722 }
1723
1724 void r4k_helper_tlbr (void)
1725 {
1726 r4k_tlb_t *tlb;
1727 uint8_t ASID;
1728 int idx;
1729
1730 ASID = env->CP0_EntryHi & 0xFF;
1731 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1732 tlb = &env->tlb->mmu.r4k.tlb[idx];
1733
1734 /* If this will change the current ASID, flush qemu's TLB. */
1735 if (ASID != tlb->ASID)
1736 cpu_mips_tlb_flush (env, 1);
1737
1738 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1739
1740 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1741 env->CP0_PageMask = tlb->PageMask;
1742 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1743 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1744 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1745 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1746 }
1747
1748 void helper_tlbwi(void)
1749 {
1750 env->tlb->helper_tlbwi();
1751 }
1752
1753 void helper_tlbwr(void)
1754 {
1755 env->tlb->helper_tlbwr();
1756 }
1757
1758 void helper_tlbp(void)
1759 {
1760 env->tlb->helper_tlbp();
1761 }
1762
1763 void helper_tlbr(void)
1764 {
1765 env->tlb->helper_tlbr();
1766 }
1767
1768 /* Specials */
1769 target_ulong helper_di (void)
1770 {
1771 target_ulong t0 = env->CP0_Status;
1772
1773 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1774 return t0;
1775 }
1776
1777 target_ulong helper_ei (void)
1778 {
1779 target_ulong t0 = env->CP0_Status;
1780
1781 env->CP0_Status = t0 | (1 << CP0St_IE);
1782 return t0;
1783 }
1784
1785 static void debug_pre_eret (void)
1786 {
1787 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1788 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1789 env->active_tc.PC, env->CP0_EPC);
1790 if (env->CP0_Status & (1 << CP0St_ERL))
1791 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1792 if (env->hflags & MIPS_HFLAG_DM)
1793 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1794 qemu_log("\n");
1795 }
1796 }
1797
1798 static void debug_post_eret (void)
1799 {
1800 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1801 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1802 env->active_tc.PC, env->CP0_EPC);
1803 if (env->CP0_Status & (1 << CP0St_ERL))
1804 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1805 if (env->hflags & MIPS_HFLAG_DM)
1806 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1807 switch (env->hflags & MIPS_HFLAG_KSU) {
1808 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1809 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1810 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1811 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1812 }
1813 }
1814 }
1815
1816 static void set_pc (target_ulong error_pc)
1817 {
1818 env->active_tc.PC = error_pc & ~(target_ulong)1;
1819 if (error_pc & 1) {
1820 env->hflags |= MIPS_HFLAG_M16;
1821 } else {
1822 env->hflags &= ~(MIPS_HFLAG_M16);
1823 }
1824 }
1825
1826 void helper_eret (void)
1827 {
1828 debug_pre_eret();
1829 if (env->CP0_Status & (1 << CP0St_ERL)) {
1830 set_pc(env->CP0_ErrorEPC);
1831 env->CP0_Status &= ~(1 << CP0St_ERL);
1832 } else {
1833 set_pc(env->CP0_EPC);
1834 env->CP0_Status &= ~(1 << CP0St_EXL);
1835 }
1836 compute_hflags(env);
1837 debug_post_eret();
1838 env->lladdr = 1;
1839 }
1840
1841 void helper_deret (void)
1842 {
1843 debug_pre_eret();
1844 set_pc(env->CP0_DEPC);
1845
1846 env->hflags &= MIPS_HFLAG_DM;
1847 compute_hflags(env);
1848 debug_post_eret();
1849 env->lladdr = 1;
1850 }
1851 #endif /* !CONFIG_USER_ONLY */
1852
1853 target_ulong helper_rdhwr_cpunum(void)
1854 {
1855 if ((env->hflags & MIPS_HFLAG_CP0) ||
1856 (env->CP0_HWREna & (1 << 0)))
1857 return env->CP0_EBase & 0x3ff;
1858 else
1859 helper_raise_exception(EXCP_RI);
1860
1861 return 0;
1862 }
1863
1864 target_ulong helper_rdhwr_synci_step(void)
1865 {
1866 if ((env->hflags & MIPS_HFLAG_CP0) ||
1867 (env->CP0_HWREna & (1 << 1)))
1868 return env->SYNCI_Step;
1869 else
1870 helper_raise_exception(EXCP_RI);
1871
1872 return 0;
1873 }
1874
1875 target_ulong helper_rdhwr_cc(void)
1876 {
1877 if ((env->hflags & MIPS_HFLAG_CP0) ||
1878 (env->CP0_HWREna & (1 << 2)))
1879 return env->CP0_Count;
1880 else
1881 helper_raise_exception(EXCP_RI);
1882
1883 return 0;
1884 }
1885
1886 target_ulong helper_rdhwr_ccres(void)
1887 {
1888 if ((env->hflags & MIPS_HFLAG_CP0) ||
1889 (env->CP0_HWREna & (1 << 3)))
1890 return env->CCRes;
1891 else
1892 helper_raise_exception(EXCP_RI);
1893
1894 return 0;
1895 }
1896
1897 void helper_pmon (int function)
1898 {
1899 function /= 2;
1900 switch (function) {
1901 case 2: /* TODO: char inbyte(int waitflag); */
1902 if (env->active_tc.gpr[4] == 0)
1903 env->active_tc.gpr[2] = -1;
1904 /* Fall through */
1905 case 11: /* TODO: char inbyte (void); */
1906 env->active_tc.gpr[2] = -1;
1907 break;
1908 case 3:
1909 case 12:
1910 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1911 break;
1912 case 17:
1913 break;
1914 case 158:
1915 {
1916 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1917 printf("%s", fmt);
1918 }
1919 break;
1920 }
1921 }
1922
1923 void helper_wait (void)
1924 {
1925 env->halted = 1;
1926 helper_raise_exception(EXCP_HLT);
1927 }
1928
1929 #if !defined(CONFIG_USER_ONLY)
1930
1931 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1932
1933 #define MMUSUFFIX _mmu
1934 #define ALIGNED_ONLY
1935
1936 #define SHIFT 0
1937 #include "softmmu_template.h"
1938
1939 #define SHIFT 1
1940 #include "softmmu_template.h"
1941
1942 #define SHIFT 2
1943 #include "softmmu_template.h"
1944
1945 #define SHIFT 3
1946 #include "softmmu_template.h"
1947
1948 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1949 {
1950 env->CP0_BadVAddr = addr;
1951 do_restore_state (retaddr);
1952 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1953 }
1954
1955 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1956 {
1957 TranslationBlock *tb;
1958 CPUState *saved_env;
1959 unsigned long pc;
1960 int ret;
1961
1962 /* XXX: hack to restore env in all cases, even if not called from
1963 generated code */
1964 saved_env = env;
1965 env = cpu_single_env;
1966 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1967 if (ret) {
1968 if (retaddr) {
1969 /* now we have a real cpu fault */
1970 pc = (unsigned long)retaddr;
1971 tb = tb_find_pc(pc);
1972 if (tb) {
1973 /* the PC is inside the translated code. It means that we have
1974 a virtual CPU fault */
1975 cpu_restore_state(tb, env, pc);
1976 }
1977 }
1978 helper_raise_exception_err(env->exception_index, env->error_code);
1979 }
1980 env = saved_env;
1981 }
1982
1983 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1984 int unused, int size)
1985 {
1986 if (is_exec)
1987 helper_raise_exception(EXCP_IBE);
1988 else
1989 helper_raise_exception(EXCP_DBE);
1990 }
1991 #endif /* !CONFIG_USER_ONLY */
1992
1993 /* Complex FPU operations which may need stack space. */
1994
1995 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1996 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1997 #define FLOAT_TWO32 make_float32(1 << 30)
1998 #define FLOAT_TWO64 make_float64(1ULL << 62)
1999 #define FLOAT_QNAN32 0x7fbfffff
2000 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2001 #define FLOAT_SNAN32 0x7fffffff
2002 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2003
2004 /* convert MIPS rounding mode in FCR31 to IEEE library */
2005 static unsigned int ieee_rm[] = {
2006 float_round_nearest_even,
2007 float_round_to_zero,
2008 float_round_up,
2009 float_round_down
2010 };
2011
2012 #define RESTORE_ROUNDING_MODE \
2013 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2014
2015 #define RESTORE_FLUSH_MODE \
2016 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2017
2018 target_ulong helper_cfc1 (uint32_t reg)
2019 {
2020 target_ulong arg1;
2021
2022 switch (reg) {
2023 case 0:
2024 arg1 = (int32_t)env->active_fpu.fcr0;
2025 break;
2026 case 25:
2027 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2028 break;
2029 case 26:
2030 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2031 break;
2032 case 28:
2033 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2034 break;
2035 default:
2036 arg1 = (int32_t)env->active_fpu.fcr31;
2037 break;
2038 }
2039
2040 return arg1;
2041 }
2042
2043 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2044 {
2045 switch(reg) {
2046 case 25:
2047 if (arg1 & 0xffffff00)
2048 return;
2049 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2050 ((arg1 & 0x1) << 23);
2051 break;
2052 case 26:
2053 if (arg1 & 0x007c0000)
2054 return;
2055 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2056 break;
2057 case 28:
2058 if (arg1 & 0x007c0000)
2059 return;
2060 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2061 ((arg1 & 0x4) << 22);
2062 break;
2063 case 31:
2064 if (arg1 & 0x007c0000)
2065 return;
2066 env->active_fpu.fcr31 = arg1;
2067 break;
2068 default:
2069 return;
2070 }
2071 /* set rounding mode */
2072 RESTORE_ROUNDING_MODE;
2073 /* set flush-to-zero mode */
2074 RESTORE_FLUSH_MODE;
2075 set_float_exception_flags(0, &env->active_fpu.fp_status);
2076 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2077 helper_raise_exception(EXCP_FPE);
2078 }
2079
2080 static inline int ieee_ex_to_mips(int xcpt)
2081 {
2082 int ret = 0;
2083 if (xcpt) {
2084 if (xcpt & float_flag_invalid) {
2085 ret |= FP_INVALID;
2086 }
2087 if (xcpt & float_flag_overflow) {
2088 ret |= FP_OVERFLOW;
2089 }
2090 if (xcpt & float_flag_underflow) {
2091 ret |= FP_UNDERFLOW;
2092 }
2093 if (xcpt & float_flag_divbyzero) {
2094 ret |= FP_DIV0;
2095 }
2096 if (xcpt & float_flag_inexact) {
2097 ret |= FP_INEXACT;
2098 }
2099 }
2100 return ret;
2101 }
2102
2103 static inline void update_fcr31(void)
2104 {
2105 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2106
2107 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2108 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2109 helper_raise_exception(EXCP_FPE);
2110 else
2111 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2112 }
2113
2114 /* Float support.
2115 Single precition routines have a "s" suffix, double precision a
2116 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2117 paired single lower "pl", paired single upper "pu". */
2118
2119 /* unary operations, modifying fp status */
2120 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2121 {
2122 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2123 }
2124
2125 uint32_t helper_float_sqrt_s(uint32_t fst0)
2126 {
2127 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2128 }
2129
2130 uint64_t helper_float_cvtd_s(uint32_t fst0)
2131 {
2132 uint64_t fdt2;
2133
2134 set_float_exception_flags(0, &env->active_fpu.fp_status);
2135 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2136 update_fcr31();
2137 return fdt2;
2138 }
2139
2140 uint64_t helper_float_cvtd_w(uint32_t wt0)
2141 {
2142 uint64_t fdt2;
2143
2144 set_float_exception_flags(0, &env->active_fpu.fp_status);
2145 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2146 update_fcr31();
2147 return fdt2;
2148 }
2149
2150 uint64_t helper_float_cvtd_l(uint64_t dt0)
2151 {
2152 uint64_t fdt2;
2153
2154 set_float_exception_flags(0, &env->active_fpu.fp_status);
2155 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2156 update_fcr31();
2157 return fdt2;
2158 }
2159
2160 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2161 {
2162 uint64_t dt2;
2163
2164 set_float_exception_flags(0, &env->active_fpu.fp_status);
2165 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2166 update_fcr31();
2167 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2168 dt2 = FLOAT_SNAN64;
2169 return dt2;
2170 }
2171
2172 uint64_t helper_float_cvtl_s(uint32_t fst0)
2173 {
2174 uint64_t dt2;
2175
2176 set_float_exception_flags(0, &env->active_fpu.fp_status);
2177 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2178 update_fcr31();
2179 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2180 dt2 = FLOAT_SNAN64;
2181 return dt2;
2182 }
2183
2184 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2185 {
2186 uint32_t fst2;
2187 uint32_t fsth2;
2188
2189 set_float_exception_flags(0, &env->active_fpu.fp_status);
2190 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2191 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2192 update_fcr31();
2193 return ((uint64_t)fsth2 << 32) | fst2;
2194 }
2195
2196 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2197 {
2198 uint32_t wt2;
2199 uint32_t wth2;
2200
2201 set_float_exception_flags(0, &env->active_fpu.fp_status);
2202 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2203 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2204 update_fcr31();
2205 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2206 wt2 = FLOAT_SNAN32;
2207 wth2 = FLOAT_SNAN32;
2208 }
2209 return ((uint64_t)wth2 << 32) | wt2;
2210 }
2211
2212 uint32_t helper_float_cvts_d(uint64_t fdt0)
2213 {
2214 uint32_t fst2;
2215
2216 set_float_exception_flags(0, &env->active_fpu.fp_status);
2217 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2218 update_fcr31();
2219 return fst2;
2220 }
2221
2222 uint32_t helper_float_cvts_w(uint32_t wt0)
2223 {
2224 uint32_t fst2;
2225
2226 set_float_exception_flags(0, &env->active_fpu.fp_status);
2227 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2228 update_fcr31();
2229 return fst2;
2230 }
2231
2232 uint32_t helper_float_cvts_l(uint64_t dt0)
2233 {
2234 uint32_t fst2;
2235
2236 set_float_exception_flags(0, &env->active_fpu.fp_status);
2237 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2238 update_fcr31();
2239 return fst2;
2240 }
2241
2242 uint32_t helper_float_cvts_pl(uint32_t wt0)
2243 {
2244 uint32_t wt2;
2245
2246 set_float_exception_flags(0, &env->active_fpu.fp_status);
2247 wt2 = wt0;
2248 update_fcr31();
2249 return wt2;
2250 }
2251
2252 uint32_t helper_float_cvts_pu(uint32_t wth0)
2253 {
2254 uint32_t wt2;
2255
2256 set_float_exception_flags(0, &env->active_fpu.fp_status);
2257 wt2 = wth0;
2258 update_fcr31();
2259 return wt2;
2260 }
2261
2262 uint32_t helper_float_cvtw_s(uint32_t fst0)
2263 {
2264 uint32_t wt2;
2265
2266 set_float_exception_flags(0, &env->active_fpu.fp_status);
2267 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2268 update_fcr31();
2269 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2270 wt2 = FLOAT_SNAN32;
2271 return wt2;
2272 }
2273
2274 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2275 {
2276 uint32_t wt2;
2277
2278 set_float_exception_flags(0, &env->active_fpu.fp_status);
2279 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2280 update_fcr31();
2281 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2282 wt2 = FLOAT_SNAN32;
2283 return wt2;
2284 }
2285
2286 uint64_t helper_float_roundl_d(uint64_t fdt0)
2287 {
2288 uint64_t dt2;
2289
2290 set_float_exception_flags(0, &env->active_fpu.fp_status);
2291 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2292 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2293 RESTORE_ROUNDING_MODE;
2294 update_fcr31();
2295 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2296 dt2 = FLOAT_SNAN64;
2297 return dt2;
2298 }
2299
2300 uint64_t helper_float_roundl_s(uint32_t fst0)
2301 {
2302 uint64_t dt2;
2303
2304 set_float_exception_flags(0, &env->active_fpu.fp_status);
2305 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2306 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2307 RESTORE_ROUNDING_MODE;
2308 update_fcr31();
2309 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2310 dt2 = FLOAT_SNAN64;
2311 return dt2;
2312 }
2313
2314 uint32_t helper_float_roundw_d(uint64_t fdt0)
2315 {
2316 uint32_t wt2;
2317
2318 set_float_exception_flags(0, &env->active_fpu.fp_status);
2319 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2320 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2321 RESTORE_ROUNDING_MODE;
2322 update_fcr31();
2323 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2324 wt2 = FLOAT_SNAN32;
2325 return wt2;
2326 }
2327
2328 uint32_t helper_float_roundw_s(uint32_t fst0)
2329 {
2330 uint32_t wt2;
2331
2332 set_float_exception_flags(0, &env->active_fpu.fp_status);
2333 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2334 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2335 RESTORE_ROUNDING_MODE;
2336 update_fcr31();
2337 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2338 wt2 = FLOAT_SNAN32;
2339 return wt2;
2340 }
2341
2342 uint64_t helper_float_truncl_d(uint64_t fdt0)
2343 {
2344 uint64_t dt2;
2345
2346 set_float_exception_flags(0, &env->active_fpu.fp_status);
2347 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2348 update_fcr31();
2349 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2350 dt2 = FLOAT_SNAN64;
2351 return dt2;
2352 }
2353
2354 uint64_t helper_float_truncl_s(uint32_t fst0)
2355 {
2356 uint64_t dt2;
2357
2358 set_float_exception_flags(0, &env->active_fpu.fp_status);
2359 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2360 update_fcr31();
2361 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2362 dt2 = FLOAT_SNAN64;
2363 return dt2;
2364 }
2365
2366 uint32_t helper_float_truncw_d(uint64_t fdt0)
2367 {
2368 uint32_t wt2;
2369
2370 set_float_exception_flags(0, &env->active_fpu.fp_status);
2371 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2372 update_fcr31();
2373 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2374 wt2 = FLOAT_SNAN32;
2375 return wt2;
2376 }
2377
2378 uint32_t helper_float_truncw_s(uint32_t fst0)
2379 {
2380 uint32_t wt2;
2381
2382 set_float_exception_flags(0, &env->active_fpu.fp_status);
2383 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2384 update_fcr31();
2385 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2386 wt2 = FLOAT_SNAN32;
2387 return wt2;
2388 }
2389
2390 uint64_t helper_float_ceill_d(uint64_t fdt0)
2391 {
2392 uint64_t dt2;
2393
2394 set_float_exception_flags(0, &env->active_fpu.fp_status);
2395 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2396 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2397 RESTORE_ROUNDING_MODE;
2398 update_fcr31();
2399 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2400 dt2 = FLOAT_SNAN64;
2401 return dt2;
2402 }
2403
2404 uint64_t helper_float_ceill_s(uint32_t fst0)
2405 {
2406 uint64_t dt2;
2407
2408 set_float_exception_flags(0, &env->active_fpu.fp_status);
2409 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2410 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2411 RESTORE_ROUNDING_MODE;
2412 update_fcr31();
2413 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2414 dt2 = FLOAT_SNAN64;
2415 return dt2;
2416 }
2417
2418 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2419 {
2420 uint32_t wt2;
2421
2422 set_float_exception_flags(0, &env->active_fpu.fp_status);
2423 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2424 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2425 RESTORE_ROUNDING_MODE;
2426 update_fcr31();
2427 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2428 wt2 = FLOAT_SNAN32;
2429 return wt2;
2430 }
2431
2432 uint32_t helper_float_ceilw_s(uint32_t fst0)
2433 {
2434 uint32_t wt2;
2435
2436 set_float_exception_flags(0, &env->active_fpu.fp_status);
2437 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2438 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2439 RESTORE_ROUNDING_MODE;
2440 update_fcr31();
2441 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2442 wt2 = FLOAT_SNAN32;
2443 return wt2;
2444 }
2445
2446 uint64_t helper_float_floorl_d(uint64_t fdt0)
2447 {
2448 uint64_t dt2;
2449
2450 set_float_exception_flags(0, &env->active_fpu.fp_status);
2451 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2452 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2453 RESTORE_ROUNDING_MODE;
2454 update_fcr31();
2455 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2456 dt2 = FLOAT_SNAN64;
2457 return dt2;
2458 }
2459
2460 uint64_t helper_float_floorl_s(uint32_t fst0)
2461 {
2462 uint64_t dt2;
2463
2464 set_float_exception_flags(0, &env->active_fpu.fp_status);
2465 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2466 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2467 RESTORE_ROUNDING_MODE;
2468 update_fcr31();
2469 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2470 dt2 = FLOAT_SNAN64;
2471 return dt2;
2472 }
2473
2474 uint32_t helper_float_floorw_d(uint64_t fdt0)
2475 {
2476 uint32_t wt2;
2477
2478 set_float_exception_flags(0, &env->active_fpu.fp_status);
2479 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2480 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2481 RESTORE_ROUNDING_MODE;
2482 update_fcr31();
2483 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2484 wt2 = FLOAT_SNAN32;
2485 return wt2;
2486 }
2487
2488 uint32_t helper_float_floorw_s(uint32_t fst0)
2489 {
2490 uint32_t wt2;
2491
2492 set_float_exception_flags(0, &env->active_fpu.fp_status);
2493 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2494 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2495 RESTORE_ROUNDING_MODE;
2496 update_fcr31();
2497 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2498 wt2 = FLOAT_SNAN32;
2499 return wt2;
2500 }
2501
2502 /* unary operations, not modifying fp status */
2503 #define FLOAT_UNOP(name) \
2504 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2505 { \
2506 return float64_ ## name(fdt0); \
2507 } \
2508 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2509 { \
2510 return float32_ ## name(fst0); \
2511 } \
2512 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2513 { \
2514 uint32_t wt0; \
2515 uint32_t wth0; \
2516 \
2517 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2518 wth0 = float32_ ## name(fdt0 >> 32); \
2519 return ((uint64_t)wth0 << 32) | wt0; \
2520 }
2521 FLOAT_UNOP(abs)
2522 FLOAT_UNOP(chs)
2523 #undef FLOAT_UNOP
2524
2525 /* MIPS specific unary operations */
2526 uint64_t helper_float_recip_d(uint64_t fdt0)
2527 {
2528 uint64_t fdt2;
2529
2530 set_float_exception_flags(0, &env->active_fpu.fp_status);
2531 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2532 update_fcr31();
2533 return fdt2;
2534 }
2535
2536 uint32_t helper_float_recip_s(uint32_t fst0)
2537 {
2538 uint32_t fst2;
2539
2540 set_float_exception_flags(0, &env->active_fpu.fp_status);
2541 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2542 update_fcr31();
2543 return fst2;
2544 }
2545
2546 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2547 {
2548 uint64_t fdt2;
2549
2550 set_float_exception_flags(0, &env->active_fpu.fp_status);
2551 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2552 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2553 update_fcr31();
2554 return fdt2;
2555 }
2556
2557 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2558 {
2559 uint32_t fst2;
2560
2561 set_float_exception_flags(0, &env->active_fpu.fp_status);
2562 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2563 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2564 update_fcr31();
2565 return fst2;
2566 }
2567
2568 uint64_t helper_float_recip1_d(uint64_t fdt0)
2569 {
2570 uint64_t fdt2;
2571
2572 set_float_exception_flags(0, &env->active_fpu.fp_status);
2573 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2574 update_fcr31();
2575 return fdt2;
2576 }
2577
2578 uint32_t helper_float_recip1_s(uint32_t fst0)
2579 {
2580 uint32_t fst2;
2581
2582 set_float_exception_flags(0, &env->active_fpu.fp_status);
2583 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2584 update_fcr31();
2585 return fst2;
2586 }
2587
2588 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2589 {
2590 uint32_t fst2;
2591 uint32_t fsth2;
2592
2593 set_float_exception_flags(0, &env->active_fpu.fp_status);
2594 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2595 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2596 update_fcr31();
2597 return ((uint64_t)fsth2 << 32) | fst2;
2598 }
2599
2600 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2601 {
2602 uint64_t fdt2;
2603
2604 set_float_exception_flags(0, &env->active_fpu.fp_status);
2605 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2606 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2607 update_fcr31();
2608 return fdt2;
2609 }
2610
2611 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2612 {
2613 uint32_t fst2;
2614
2615 set_float_exception_flags(0, &env->active_fpu.fp_status);
2616 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2617 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2618 update_fcr31();
2619 return fst2;
2620 }
2621
2622 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2623 {
2624 uint32_t fst2;
2625 uint32_t fsth2;
2626
2627 set_float_exception_flags(0, &env->active_fpu.fp_status);
2628 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2629 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2630 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2631 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2632 update_fcr31();
2633 return ((uint64_t)fsth2 << 32) | fst2;
2634 }
2635
2636 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2637
2638 /* binary operations */
2639 #define FLOAT_BINOP(name) \
2640 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2641 { \
2642 uint64_t dt2; \
2643 \
2644 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2645 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2646 update_fcr31(); \
2647 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2648 dt2 = FLOAT_QNAN64; \
2649 return dt2; \
2650 } \
2651 \
2652 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2653 { \
2654 uint32_t wt2; \
2655 \
2656 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2657 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2658 update_fcr31(); \
2659 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2660 wt2 = FLOAT_QNAN32; \
2661 return wt2; \
2662 } \
2663 \
2664 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2665 { \
2666 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2667 uint32_t fsth0 = fdt0 >> 32; \
2668 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2669 uint32_t fsth1 = fdt1 >> 32; \
2670 uint32_t wt2; \
2671 uint32_t wth2; \
2672 \
2673 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2674 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2675 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2676 update_fcr31(); \
2677 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2678 wt2 = FLOAT_QNAN32; \
2679 wth2 = FLOAT_QNAN32; \
2680 } \
2681 return ((uint64_t)wth2 << 32) | wt2; \
2682 }
2683
2684 FLOAT_BINOP(add)
2685 FLOAT_BINOP(sub)
2686 FLOAT_BINOP(mul)
2687 FLOAT_BINOP(div)
2688 #undef FLOAT_BINOP
2689
2690 /* ternary operations */
2691 #define FLOAT_TERNOP(name1, name2) \
2692 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2693 uint64_t fdt2) \
2694 { \
2695 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2696 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2697 } \
2698 \
2699 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2700 uint32_t fst2) \
2701 { \
2702 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2703 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2704 } \
2705 \
2706 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2707 uint64_t fdt2) \
2708 { \
2709 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2710 uint32_t fsth0 = fdt0 >> 32; \
2711 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2712 uint32_t fsth1 = fdt1 >> 32; \
2713 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2714 uint32_t fsth2 = fdt2 >> 32; \
2715 \
2716 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2717 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2718 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2719 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2720 return ((uint64_t)fsth2 << 32) | fst2; \
2721 }
2722
2723 FLOAT_TERNOP(mul, add)
2724 FLOAT_TERNOP(mul, sub)
2725 #undef FLOAT_TERNOP
2726
2727 /* negated ternary operations */
2728 #define FLOAT_NTERNOP(name1, name2) \
2729 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2730 uint64_t fdt2) \
2731 { \
2732 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2733 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2734 return float64_chs(fdt2); \
2735 } \
2736 \
2737 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2738 uint32_t fst2) \
2739 { \
2740 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2741 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2742 return float32_chs(fst2); \
2743 } \
2744 \
2745 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2746 uint64_t fdt2) \
2747 { \
2748 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2749 uint32_t fsth0 = fdt0 >> 32; \
2750 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2751 uint32_t fsth1 = fdt1 >> 32; \
2752 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2753 uint32_t fsth2 = fdt2 >> 32; \
2754 \
2755 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2756 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2757 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2758 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2759 fst2 = float32_chs(fst2); \
2760 fsth2 = float32_chs(fsth2); \
2761 return ((uint64_t)fsth2 << 32) | fst2; \
2762 }
2763
2764 FLOAT_NTERNOP(mul, add)
2765 FLOAT_NTERNOP(mul, sub)
2766 #undef FLOAT_NTERNOP
2767
2768 /* MIPS specific binary operations */
2769 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2770 {
2771 set_float_exception_flags(0, &env->active_fpu.fp_status);
2772 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2773 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2774 update_fcr31();
2775 return fdt2;
2776 }
2777
2778 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2779 {
2780 set_float_exception_flags(0, &env->active_fpu.fp_status);
2781 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2782 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2783 update_fcr31();
2784 return fst2;
2785 }
2786
2787 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2788 {
2789 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2790 uint32_t fsth0 = fdt0 >> 32;
2791 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2792 uint32_t fsth2 = fdt2 >> 32;
2793
2794 set_float_exception_flags(0, &env->active_fpu.fp_status);
2795 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2796 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2797 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2798 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2799 update_fcr31();
2800 return ((uint64_t)fsth2 << 32) | fst2;
2801 }
2802
2803 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2804 {
2805 set_float_exception_flags(0, &env->active_fpu.fp_status);
2806 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2807 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2808 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2809 update_fcr31();
2810 return fdt2;
2811 }
2812
2813 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2814 {
2815 set_float_exception_flags(0, &env->active_fpu.fp_status);
2816 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2817 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2818 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2819 update_fcr31();
2820 return fst2;
2821 }
2822
2823 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2824 {
2825 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2826 uint32_t fsth0 = fdt0 >> 32;
2827 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2828 uint32_t fsth2 = fdt2 >> 32;
2829
2830 set_float_exception_flags(0, &env->active_fpu.fp_status);
2831 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2832 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2833 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2834 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2835 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2836 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2837 update_fcr31();
2838 return ((uint64_t)fsth2 << 32) | fst2;
2839 }
2840
2841 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2842 {
2843 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2844 uint32_t fsth0 = fdt0 >> 32;
2845 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2846 uint32_t fsth1 = fdt1 >> 32;
2847 uint32_t fst2;
2848 uint32_t fsth2;
2849
2850 set_float_exception_flags(0, &env->active_fpu.fp_status);
2851 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2852 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2853 update_fcr31();
2854 return ((uint64_t)fsth2 << 32) | fst2;
2855 }
2856
2857 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2858 {
2859 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2860 uint32_t fsth0 = fdt0 >> 32;
2861 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2862 uint32_t fsth1 = fdt1 >> 32;
2863 uint32_t fst2;
2864 uint32_t fsth2;
2865
2866 set_float_exception_flags(0, &env->active_fpu.fp_status);
2867 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2868 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2869 update_fcr31();
2870 return ((uint64_t)fsth2 << 32) | fst2;
2871 }
2872
2873 /* compare operations */
2874 #define FOP_COND_D(op, cond) \
2875 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2876 { \
2877 int c; \
2878 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2879 c = cond; \
2880 update_fcr31(); \
2881 if (c) \
2882 SET_FP_COND(cc, env->active_fpu); \
2883 else \
2884 CLEAR_FP_COND(cc, env->active_fpu); \
2885 } \
2886 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2887 { \
2888 int c; \
2889 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2890 fdt0 = float64_abs(fdt0); \
2891 fdt1 = float64_abs(fdt1); \
2892 c = cond; \
2893 update_fcr31(); \
2894 if (c) \
2895 SET_FP_COND(cc, env->active_fpu); \
2896 else \
2897 CLEAR_FP_COND(cc, env->active_fpu); \
2898 }
2899
2900 /* NOTE: the comma operator will make "cond" to eval to false,
2901 * but float64_unordered_quiet() is still called. */
2902 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
2903 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
2904 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2905 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2906 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2907 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2908 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2909 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
2910 /* NOTE: the comma operator will make "cond" to eval to false,
2911 * but float64_unordered() is still called. */
2912 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
2913 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
2914 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2915 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2916 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2917 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2918 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2919 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2920
2921 #define FOP_COND_S(op, cond) \
2922 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2923 { \
2924 int c; \
2925 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2926 c = cond; \
2927 update_fcr31(); \
2928 if (c) \
2929 SET_FP_COND(cc, env->active_fpu); \
2930 else \
2931 CLEAR_FP_COND(cc, env->active_fpu); \
2932 } \
2933 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2934 { \
2935 int c; \
2936 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2937 fst0 = float32_abs(fst0); \
2938 fst1 = float32_abs(fst1); \
2939 c = cond; \
2940 update_fcr31(); \
2941 if (c) \
2942 SET_FP_COND(cc, env->active_fpu); \
2943 else \
2944 CLEAR_FP_COND(cc, env->active_fpu); \
2945 }
2946
2947 /* NOTE: the comma operator will make "cond" to eval to false,
2948 * but float32_unordered_quiet() is still called. */
2949 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
2950 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
2951 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
2952 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
2953 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
2954 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
2955 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
2956 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
2957 /* NOTE: the comma operator will make "cond" to eval to false,
2958 * but float32_unordered() is still called. */
2959 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
2960 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
2961 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2962 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2963 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2964 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2965 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
2966 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2967
2968 #define FOP_COND_PS(op, condl, condh) \
2969 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2970 { \
2971 uint32_t fst0, fsth0, fst1, fsth1; \
2972 int ch, cl; \
2973 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2974 fst0 = fdt0 & 0XFFFFFFFF; \
2975 fsth0 = fdt0 >> 32; \
2976 fst1 = fdt1 & 0XFFFFFFFF; \
2977 fsth1 = fdt1 >> 32; \
2978 cl = condl; \
2979 ch = condh; \
2980 update_fcr31(); \
2981 if (cl) \
2982 SET_FP_COND(cc, env->active_fpu); \
2983 else \
2984 CLEAR_FP_COND(cc, env->active_fpu); \
2985 if (ch) \
2986 SET_FP_COND(cc + 1, env->active_fpu); \
2987 else \
2988 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2989 } \
2990 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2991 { \
2992 uint32_t fst0, fsth0, fst1, fsth1; \
2993 int ch, cl; \
2994 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2995 fsth0 = float32_abs(fdt0 >> 32); \
2996 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2997 fsth1 = float32_abs(fdt1 >> 32); \
2998 cl = condl; \
2999 ch = condh; \
3000 update_fcr31(); \
3001 if (cl) \
3002 SET_FP_COND(cc, env->active_fpu); \
3003 else \
3004 CLEAR_FP_COND(cc, env->active_fpu); \
3005 if (ch) \
3006 SET_FP_COND(cc + 1, env->active_fpu); \
3007 else \
3008 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3009 }
3010
3011 /* NOTE: the comma operator will make "cond" to eval to false,
3012 * but float32_unordered_quiet() is still called. */
3013 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3014 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3015 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3016 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3017 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3018 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3019 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3020 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3021 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3022 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3023 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3024 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3025 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3026 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3027 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3028 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3029 /* NOTE: the comma operator will make "cond" to eval to false,
3030 * but float32_unordered() is still called. */
3031 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3032 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3033 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3034 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3035 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3036 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3037 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3038 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3039 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3040 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3041 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3042 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3043 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3044 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3045 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3046 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))