]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
target-openrisc: Remove unnecessary code generated by jump instructions
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22
23 #include "helper.h"
24
25 #if !defined(CONFIG_USER_ONLY)
26 #include "exec/softmmu_exec.h"
27 #endif /* !defined(CONFIG_USER_ONLY) */
28
29 #ifndef CONFIG_USER_ONLY
30 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
31 #endif
32
33 /*****************************************************************************/
34 /* Exceptions processing helpers */
35
36 static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
37 uint32_t exception,
38 int error_code,
39 uintptr_t pc)
40 {
41 if (exception < EXCP_SC) {
42 qemu_log("%s: %d %d\n", __func__, exception, error_code);
43 }
44 env->exception_index = exception;
45 env->error_code = error_code;
46
47 if (pc) {
48 /* now we have a real cpu fault */
49 cpu_restore_state(env, pc);
50 }
51
52 cpu_loop_exit(env);
53 }
54
55 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
56 uint32_t exception,
57 uintptr_t pc)
58 {
59 do_raise_exception_err(env, exception, 0, pc);
60 }
61
62 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
63 int error_code)
64 {
65 do_raise_exception_err(env, exception, error_code, 0);
66 }
67
68 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
69 {
70 do_raise_exception(env, exception, 0);
71 }
72
73 #if defined(CONFIG_USER_ONLY)
74 #define HELPER_LD(name, insn, type) \
75 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
76 int mem_idx) \
77 { \
78 return (type) insn##_raw(addr); \
79 }
80 #else
81 #define HELPER_LD(name, insn, type) \
82 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
83 int mem_idx) \
84 { \
85 switch (mem_idx) \
86 { \
87 case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
88 case 1: return (type) cpu_##insn##_super(env, addr); break; \
89 default: \
90 case 2: return (type) cpu_##insn##_user(env, addr); break; \
91 } \
92 }
93 #endif
94 HELPER_LD(lbu, ldub, uint8_t)
95 HELPER_LD(lw, ldl, int32_t)
96 #ifdef TARGET_MIPS64
97 HELPER_LD(ld, ldq, int64_t)
98 #endif
99 #undef HELPER_LD
100
101 #if defined(CONFIG_USER_ONLY)
102 #define HELPER_ST(name, insn, type) \
103 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
104 type val, int mem_idx) \
105 { \
106 insn##_raw(addr, val); \
107 }
108 #else
109 #define HELPER_ST(name, insn, type) \
110 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
111 type val, int mem_idx) \
112 { \
113 switch (mem_idx) \
114 { \
115 case 0: cpu_##insn##_kernel(env, addr, val); break; \
116 case 1: cpu_##insn##_super(env, addr, val); break; \
117 default: \
118 case 2: cpu_##insn##_user(env, addr, val); break; \
119 } \
120 }
121 #endif
122 HELPER_ST(sb, stb, uint8_t)
123 HELPER_ST(sw, stl, uint32_t)
124 #ifdef TARGET_MIPS64
125 HELPER_ST(sd, stq, uint64_t)
126 #endif
127 #undef HELPER_ST
128
129 target_ulong helper_clo (target_ulong arg1)
130 {
131 return clo32(arg1);
132 }
133
134 target_ulong helper_clz (target_ulong arg1)
135 {
136 return clz32(arg1);
137 }
138
139 #if defined(TARGET_MIPS64)
140 target_ulong helper_dclo (target_ulong arg1)
141 {
142 return clo64(arg1);
143 }
144
145 target_ulong helper_dclz (target_ulong arg1)
146 {
147 return clz64(arg1);
148 }
149 #endif /* TARGET_MIPS64 */
150
151 /* 64 bits arithmetic for 32 bits hosts */
152 static inline uint64_t get_HILO(CPUMIPSState *env)
153 {
154 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
155 }
156
157 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
158 {
159 target_ulong tmp;
160 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
161 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
162 return tmp;
163 }
164
165 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
166 {
167 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
168 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
169 return tmp;
170 }
171
172 /* Multiplication variants of the vr54xx. */
173 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
174 target_ulong arg2)
175 {
176 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
177 (int64_t)(int32_t)arg2));
178 }
179
180 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
181 target_ulong arg2)
182 {
183 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
184 (uint64_t)(uint32_t)arg2);
185 }
186
187 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
188 target_ulong arg2)
189 {
190 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
191 (int64_t)(int32_t)arg2);
192 }
193
194 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
195 target_ulong arg2)
196 {
197 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
198 (int64_t)(int32_t)arg2);
199 }
200
201 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
202 target_ulong arg2)
203 {
204 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
205 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
206 }
207
208 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
212 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
219 (int64_t)(int32_t)arg2);
220 }
221
222 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
226 (int64_t)(int32_t)arg2);
227 }
228
229 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
230 target_ulong arg2)
231 {
232 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
233 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
234 }
235
236 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
237 target_ulong arg2)
238 {
239 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
240 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
241 }
242
243 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
244 target_ulong arg2)
245 {
246 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
247 }
248
249 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
250 target_ulong arg2)
251 {
252 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
253 (uint64_t)(uint32_t)arg2);
254 }
255
256 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
257 target_ulong arg2)
258 {
259 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
260 (int64_t)(int32_t)arg2);
261 }
262
263 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
264 target_ulong arg2)
265 {
266 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
267 (uint64_t)(uint32_t)arg2);
268 }
269
270 #ifndef CONFIG_USER_ONLY
271
272 static inline hwaddr do_translate_address(CPUMIPSState *env,
273 target_ulong address,
274 int rw)
275 {
276 hwaddr lladdr;
277
278 lladdr = cpu_mips_translate_address(env, address, rw);
279
280 if (lladdr == -1LL) {
281 cpu_loop_exit(env);
282 } else {
283 return lladdr;
284 }
285 }
286
287 #define HELPER_LD_ATOMIC(name, insn) \
288 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
289 { \
290 env->lladdr = do_translate_address(env, arg, 0); \
291 env->llval = do_##insn(env, arg, mem_idx); \
292 return env->llval; \
293 }
294 HELPER_LD_ATOMIC(ll, lw)
295 #ifdef TARGET_MIPS64
296 HELPER_LD_ATOMIC(lld, ld)
297 #endif
298 #undef HELPER_LD_ATOMIC
299
300 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
301 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
302 target_ulong arg2, int mem_idx) \
303 { \
304 target_long tmp; \
305 \
306 if (arg2 & almask) { \
307 env->CP0_BadVAddr = arg2; \
308 helper_raise_exception(env, EXCP_AdES); \
309 } \
310 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
311 tmp = do_##ld_insn(env, arg2, mem_idx); \
312 if (tmp == env->llval) { \
313 do_##st_insn(env, arg2, arg1, mem_idx); \
314 return 1; \
315 } \
316 } \
317 return 0; \
318 }
319 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
320 #ifdef TARGET_MIPS64
321 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
322 #endif
323 #undef HELPER_ST_ATOMIC
324 #endif
325
326 #ifdef TARGET_WORDS_BIGENDIAN
327 #define GET_LMASK(v) ((v) & 3)
328 #define GET_OFFSET(addr, offset) (addr + (offset))
329 #else
330 #define GET_LMASK(v) (((v) & 3) ^ 3)
331 #define GET_OFFSET(addr, offset) (addr - (offset))
332 #endif
333
334 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
335 int mem_idx)
336 {
337 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
338
339 if (GET_LMASK(arg2) <= 2)
340 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
341
342 if (GET_LMASK(arg2) <= 1)
343 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
344
345 if (GET_LMASK(arg2) == 0)
346 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
347 }
348
349 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
350 int mem_idx)
351 {
352 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
353
354 if (GET_LMASK(arg2) >= 1)
355 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
356
357 if (GET_LMASK(arg2) >= 2)
358 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
359
360 if (GET_LMASK(arg2) == 3)
361 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
362 }
363
364 #if defined(TARGET_MIPS64)
365 /* "half" load and stores. We must do the memory access inline,
366 or fault handling won't work. */
367
368 #ifdef TARGET_WORDS_BIGENDIAN
369 #define GET_LMASK64(v) ((v) & 7)
370 #else
371 #define GET_LMASK64(v) (((v) & 7) ^ 7)
372 #endif
373
374 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
375 int mem_idx)
376 {
377 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
378
379 if (GET_LMASK64(arg2) <= 6)
380 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
381
382 if (GET_LMASK64(arg2) <= 5)
383 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
384
385 if (GET_LMASK64(arg2) <= 4)
386 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
387
388 if (GET_LMASK64(arg2) <= 3)
389 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
390
391 if (GET_LMASK64(arg2) <= 2)
392 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
393
394 if (GET_LMASK64(arg2) <= 1)
395 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
396
397 if (GET_LMASK64(arg2) <= 0)
398 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
399 }
400
401 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
402 int mem_idx)
403 {
404 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
405
406 if (GET_LMASK64(arg2) >= 1)
407 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
408
409 if (GET_LMASK64(arg2) >= 2)
410 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
411
412 if (GET_LMASK64(arg2) >= 3)
413 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
414
415 if (GET_LMASK64(arg2) >= 4)
416 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
417
418 if (GET_LMASK64(arg2) >= 5)
419 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
420
421 if (GET_LMASK64(arg2) >= 6)
422 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
423
424 if (GET_LMASK64(arg2) == 7)
425 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
426 }
427 #endif /* TARGET_MIPS64 */
428
429 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
430
431 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
432 uint32_t mem_idx)
433 {
434 target_ulong base_reglist = reglist & 0xf;
435 target_ulong do_r31 = reglist & 0x10;
436
437 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
438 target_ulong i;
439
440 for (i = 0; i < base_reglist; i++) {
441 env->active_tc.gpr[multiple_regs[i]] =
442 (target_long)do_lw(env, addr, mem_idx);
443 addr += 4;
444 }
445 }
446
447 if (do_r31) {
448 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
449 }
450 }
451
452 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
453 uint32_t mem_idx)
454 {
455 target_ulong base_reglist = reglist & 0xf;
456 target_ulong do_r31 = reglist & 0x10;
457
458 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
459 target_ulong i;
460
461 for (i = 0; i < base_reglist; i++) {
462 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
463 addr += 4;
464 }
465 }
466
467 if (do_r31) {
468 do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
469 }
470 }
471
472 #if defined(TARGET_MIPS64)
473 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
474 uint32_t mem_idx)
475 {
476 target_ulong base_reglist = reglist & 0xf;
477 target_ulong do_r31 = reglist & 0x10;
478
479 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
480 target_ulong i;
481
482 for (i = 0; i < base_reglist; i++) {
483 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
484 addr += 8;
485 }
486 }
487
488 if (do_r31) {
489 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
490 }
491 }
492
493 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
494 uint32_t mem_idx)
495 {
496 target_ulong base_reglist = reglist & 0xf;
497 target_ulong do_r31 = reglist & 0x10;
498
499 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
500 target_ulong i;
501
502 for (i = 0; i < base_reglist; i++) {
503 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
504 addr += 8;
505 }
506 }
507
508 if (do_r31) {
509 do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
510 }
511 }
512 #endif
513
514 #ifndef CONFIG_USER_ONLY
515 /* SMP helpers. */
516 static bool mips_vpe_is_wfi(MIPSCPU *c)
517 {
518 CPUState *cpu = CPU(c);
519 CPUMIPSState *env = &c->env;
520
521 /* If the VPE is halted but otherwise active, it means it's waiting for
522 an interrupt. */
523 return cpu->halted && mips_vpe_active(env);
524 }
525
526 static inline void mips_vpe_wake(MIPSCPU *c)
527 {
528 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
529 because there might be other conditions that state that c should
530 be sleeping. */
531 cpu_interrupt(CPU(c), CPU_INTERRUPT_WAKE);
532 }
533
534 static inline void mips_vpe_sleep(MIPSCPU *cpu)
535 {
536 CPUState *cs = CPU(cpu);
537
538 /* The VPE was shut off, really go to bed.
539 Reset any old _WAKE requests. */
540 cs->halted = 1;
541 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
542 }
543
544 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
545 {
546 CPUMIPSState *c = &cpu->env;
547
548 /* FIXME: TC reschedule. */
549 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
550 mips_vpe_wake(cpu);
551 }
552 }
553
554 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
555 {
556 CPUMIPSState *c = &cpu->env;
557
558 /* FIXME: TC reschedule. */
559 if (!mips_vpe_active(c)) {
560 mips_vpe_sleep(cpu);
561 }
562 }
563
564 /**
565 * mips_cpu_map_tc:
566 * @env: CPU from which mapping is performed.
567 * @tc: Should point to an int with the value of the global TC index.
568 *
569 * This function will transform @tc into a local index within the
570 * returned #CPUMIPSState.
571 */
572 /* FIXME: This code assumes that all VPEs have the same number of TCs,
573 which depends on runtime setup. Can probably be fixed by
574 walking the list of CPUMIPSStates. */
575 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
576 {
577 MIPSCPU *cpu;
578 CPUState *cs;
579 CPUState *other_cs;
580 int vpe_idx;
581 int tc_idx = *tc;
582
583 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
584 /* Not allowed to address other CPUs. */
585 *tc = env->current_tc;
586 return env;
587 }
588
589 cs = CPU(mips_env_get_cpu(env));
590 vpe_idx = tc_idx / cs->nr_threads;
591 *tc = tc_idx % cs->nr_threads;
592 other_cs = qemu_get_cpu(vpe_idx);
593 if (other_cs == NULL) {
594 return env;
595 }
596 cpu = MIPS_CPU(other_cs);
597 return &cpu->env;
598 }
599
600 /* The per VPE CP0_Status register shares some fields with the per TC
601 CP0_TCStatus registers. These fields are wired to the same registers,
602 so changes to either of them should be reflected on both registers.
603
604 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
605
606 These helper call synchronizes the regs for a given cpu. */
607
608 /* Called for updates to CP0_Status. */
609 static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
610 {
611 int32_t tcstatus, *tcst;
612 uint32_t v = cpu->CP0_Status;
613 uint32_t cu, mx, asid, ksu;
614 uint32_t mask = ((1 << CP0TCSt_TCU3)
615 | (1 << CP0TCSt_TCU2)
616 | (1 << CP0TCSt_TCU1)
617 | (1 << CP0TCSt_TCU0)
618 | (1 << CP0TCSt_TMX)
619 | (3 << CP0TCSt_TKSU)
620 | (0xff << CP0TCSt_TASID));
621
622 cu = (v >> CP0St_CU0) & 0xf;
623 mx = (v >> CP0St_MX) & 0x1;
624 ksu = (v >> CP0St_KSU) & 0x3;
625 asid = env->CP0_EntryHi & 0xff;
626
627 tcstatus = cu << CP0TCSt_TCU0;
628 tcstatus |= mx << CP0TCSt_TMX;
629 tcstatus |= ksu << CP0TCSt_TKSU;
630 tcstatus |= asid;
631
632 if (tc == cpu->current_tc) {
633 tcst = &cpu->active_tc.CP0_TCStatus;
634 } else {
635 tcst = &cpu->tcs[tc].CP0_TCStatus;
636 }
637
638 *tcst &= ~mask;
639 *tcst |= tcstatus;
640 compute_hflags(cpu);
641 }
642
643 /* Called for updates to CP0_TCStatus. */
644 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
645 target_ulong v)
646 {
647 uint32_t status;
648 uint32_t tcu, tmx, tasid, tksu;
649 uint32_t mask = ((1 << CP0St_CU3)
650 | (1 << CP0St_CU2)
651 | (1 << CP0St_CU1)
652 | (1 << CP0St_CU0)
653 | (1 << CP0St_MX)
654 | (3 << CP0St_KSU));
655
656 tcu = (v >> CP0TCSt_TCU0) & 0xf;
657 tmx = (v >> CP0TCSt_TMX) & 0x1;
658 tasid = v & 0xff;
659 tksu = (v >> CP0TCSt_TKSU) & 0x3;
660
661 status = tcu << CP0St_CU0;
662 status |= tmx << CP0St_MX;
663 status |= tksu << CP0St_KSU;
664
665 cpu->CP0_Status &= ~mask;
666 cpu->CP0_Status |= status;
667
668 /* Sync the TASID with EntryHi. */
669 cpu->CP0_EntryHi &= ~0xff;
670 cpu->CP0_EntryHi = tasid;
671
672 compute_hflags(cpu);
673 }
674
675 /* Called for updates to CP0_EntryHi. */
676 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
677 {
678 int32_t *tcst;
679 uint32_t asid, v = cpu->CP0_EntryHi;
680
681 asid = v & 0xff;
682
683 if (tc == cpu->current_tc) {
684 tcst = &cpu->active_tc.CP0_TCStatus;
685 } else {
686 tcst = &cpu->tcs[tc].CP0_TCStatus;
687 }
688
689 *tcst &= ~0xff;
690 *tcst |= asid;
691 }
692
693 /* CP0 helpers */
694 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
695 {
696 return env->mvp->CP0_MVPControl;
697 }
698
699 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
700 {
701 return env->mvp->CP0_MVPConf0;
702 }
703
704 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
705 {
706 return env->mvp->CP0_MVPConf1;
707 }
708
709 target_ulong helper_mfc0_random(CPUMIPSState *env)
710 {
711 return (int32_t)cpu_mips_get_random(env);
712 }
713
714 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
715 {
716 return env->active_tc.CP0_TCStatus;
717 }
718
719 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
720 {
721 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
722 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
723
724 if (other_tc == other->current_tc)
725 return other->active_tc.CP0_TCStatus;
726 else
727 return other->tcs[other_tc].CP0_TCStatus;
728 }
729
730 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
731 {
732 return env->active_tc.CP0_TCBind;
733 }
734
735 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
736 {
737 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
738 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
739
740 if (other_tc == other->current_tc)
741 return other->active_tc.CP0_TCBind;
742 else
743 return other->tcs[other_tc].CP0_TCBind;
744 }
745
746 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
747 {
748 return env->active_tc.PC;
749 }
750
751 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
752 {
753 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
754 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
755
756 if (other_tc == other->current_tc)
757 return other->active_tc.PC;
758 else
759 return other->tcs[other_tc].PC;
760 }
761
762 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
763 {
764 return env->active_tc.CP0_TCHalt;
765 }
766
767 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
768 {
769 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
770 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
771
772 if (other_tc == other->current_tc)
773 return other->active_tc.CP0_TCHalt;
774 else
775 return other->tcs[other_tc].CP0_TCHalt;
776 }
777
778 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
779 {
780 return env->active_tc.CP0_TCContext;
781 }
782
783 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
784 {
785 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
786 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
787
788 if (other_tc == other->current_tc)
789 return other->active_tc.CP0_TCContext;
790 else
791 return other->tcs[other_tc].CP0_TCContext;
792 }
793
794 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
795 {
796 return env->active_tc.CP0_TCSchedule;
797 }
798
799 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
800 {
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
802 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
803
804 if (other_tc == other->current_tc)
805 return other->active_tc.CP0_TCSchedule;
806 else
807 return other->tcs[other_tc].CP0_TCSchedule;
808 }
809
810 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
811 {
812 return env->active_tc.CP0_TCScheFBack;
813 }
814
815 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
816 {
817 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
818 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
819
820 if (other_tc == other->current_tc)
821 return other->active_tc.CP0_TCScheFBack;
822 else
823 return other->tcs[other_tc].CP0_TCScheFBack;
824 }
825
826 target_ulong helper_mfc0_count(CPUMIPSState *env)
827 {
828 return (int32_t)cpu_mips_get_count(env);
829 }
830
831 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
832 {
833 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
834 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
835
836 return other->CP0_EntryHi;
837 }
838
839 target_ulong helper_mftc0_cause(CPUMIPSState *env)
840 {
841 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
842 int32_t tccause;
843 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
844
845 if (other_tc == other->current_tc) {
846 tccause = other->CP0_Cause;
847 } else {
848 tccause = other->CP0_Cause;
849 }
850
851 return tccause;
852 }
853
854 target_ulong helper_mftc0_status(CPUMIPSState *env)
855 {
856 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
857 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
858
859 return other->CP0_Status;
860 }
861
862 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
863 {
864 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
865 }
866
867 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
868 {
869 return (int32_t)env->CP0_WatchLo[sel];
870 }
871
872 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
873 {
874 return env->CP0_WatchHi[sel];
875 }
876
877 target_ulong helper_mfc0_debug(CPUMIPSState *env)
878 {
879 target_ulong t0 = env->CP0_Debug;
880 if (env->hflags & MIPS_HFLAG_DM)
881 t0 |= 1 << CP0DB_DM;
882
883 return t0;
884 }
885
886 target_ulong helper_mftc0_debug(CPUMIPSState *env)
887 {
888 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
889 int32_t tcstatus;
890 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
891
892 if (other_tc == other->current_tc)
893 tcstatus = other->active_tc.CP0_Debug_tcstatus;
894 else
895 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
896
897 /* XXX: Might be wrong, check with EJTAG spec. */
898 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
899 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
900 }
901
902 #if defined(TARGET_MIPS64)
903 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
904 {
905 return env->active_tc.PC;
906 }
907
908 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
909 {
910 return env->active_tc.CP0_TCHalt;
911 }
912
913 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
914 {
915 return env->active_tc.CP0_TCContext;
916 }
917
918 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
919 {
920 return env->active_tc.CP0_TCSchedule;
921 }
922
923 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
924 {
925 return env->active_tc.CP0_TCScheFBack;
926 }
927
928 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
929 {
930 return env->lladdr >> env->CP0_LLAddr_shift;
931 }
932
933 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
934 {
935 return env->CP0_WatchLo[sel];
936 }
937 #endif /* TARGET_MIPS64 */
938
939 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
940 {
941 int num = 1;
942 unsigned int tmp = env->tlb->nb_tlb;
943
944 do {
945 tmp >>= 1;
946 num <<= 1;
947 } while (tmp);
948 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
949 }
950
951 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
952 {
953 uint32_t mask = 0;
954 uint32_t newval;
955
956 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
957 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
958 (1 << CP0MVPCo_EVP);
959 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
960 mask |= (1 << CP0MVPCo_STLB);
961 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
962
963 // TODO: Enable/disable shared TLB, enable/disable VPEs.
964
965 env->mvp->CP0_MVPControl = newval;
966 }
967
968 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
969 {
970 uint32_t mask;
971 uint32_t newval;
972
973 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
974 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
975 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
976
977 /* Yield scheduler intercept not implemented. */
978 /* Gating storage scheduler intercept not implemented. */
979
980 // TODO: Enable/disable TCs.
981
982 env->CP0_VPEControl = newval;
983 }
984
985 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
986 {
987 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
988 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
989 uint32_t mask;
990 uint32_t newval;
991
992 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
993 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
994 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
995
996 /* TODO: Enable/disable TCs. */
997
998 other->CP0_VPEControl = newval;
999 }
1000
1001 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1002 {
1003 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1004 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1005 /* FIXME: Mask away return zero on read bits. */
1006 return other->CP0_VPEControl;
1007 }
1008
1009 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1010 {
1011 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1012 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1013
1014 return other->CP0_VPEConf0;
1015 }
1016
1017 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1018 {
1019 uint32_t mask = 0;
1020 uint32_t newval;
1021
1022 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1023 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1024 mask |= (0xff << CP0VPEC0_XTC);
1025 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1026 }
1027 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1028
1029 // TODO: TC exclusive handling due to ERL/EXL.
1030
1031 env->CP0_VPEConf0 = newval;
1032 }
1033
1034 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1035 {
1036 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1037 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1038 uint32_t mask = 0;
1039 uint32_t newval;
1040
1041 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1042 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1043
1044 /* TODO: TC exclusive handling due to ERL/EXL. */
1045 other->CP0_VPEConf0 = newval;
1046 }
1047
1048 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1049 {
1050 uint32_t mask = 0;
1051 uint32_t newval;
1052
1053 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1054 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1055 (0xff << CP0VPEC1_NCP1);
1056 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1057
1058 /* UDI not implemented. */
1059 /* CP2 not implemented. */
1060
1061 // TODO: Handle FPU (CP1) binding.
1062
1063 env->CP0_VPEConf1 = newval;
1064 }
1065
1066 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1067 {
1068 /* Yield qualifier inputs not implemented. */
1069 env->CP0_YQMask = 0x00000000;
1070 }
1071
1072 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1073 {
1074 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1075 }
1076
1077 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1078 {
1079 /* Large physaddr (PABITS) not implemented */
1080 /* 1k pages not implemented */
1081 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1082 }
1083
1084 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1085 {
1086 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1087 uint32_t newval;
1088
1089 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1090
1091 env->active_tc.CP0_TCStatus = newval;
1092 sync_c0_tcstatus(env, env->current_tc, newval);
1093 }
1094
1095 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1096 {
1097 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1098 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1099
1100 if (other_tc == other->current_tc)
1101 other->active_tc.CP0_TCStatus = arg1;
1102 else
1103 other->tcs[other_tc].CP0_TCStatus = arg1;
1104 sync_c0_tcstatus(other, other_tc, arg1);
1105 }
1106
1107 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1108 {
1109 uint32_t mask = (1 << CP0TCBd_TBE);
1110 uint32_t newval;
1111
1112 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1113 mask |= (1 << CP0TCBd_CurVPE);
1114 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1115 env->active_tc.CP0_TCBind = newval;
1116 }
1117
1118 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1119 {
1120 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1121 uint32_t mask = (1 << CP0TCBd_TBE);
1122 uint32_t newval;
1123 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1124
1125 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1126 mask |= (1 << CP0TCBd_CurVPE);
1127 if (other_tc == other->current_tc) {
1128 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1129 other->active_tc.CP0_TCBind = newval;
1130 } else {
1131 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1132 other->tcs[other_tc].CP0_TCBind = newval;
1133 }
1134 }
1135
1136 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1137 {
1138 env->active_tc.PC = arg1;
1139 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1140 env->lladdr = 0ULL;
1141 /* MIPS16 not implemented. */
1142 }
1143
1144 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1145 {
1146 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1147 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1148
1149 if (other_tc == other->current_tc) {
1150 other->active_tc.PC = arg1;
1151 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1152 other->lladdr = 0ULL;
1153 /* MIPS16 not implemented. */
1154 } else {
1155 other->tcs[other_tc].PC = arg1;
1156 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1157 other->lladdr = 0ULL;
1158 /* MIPS16 not implemented. */
1159 }
1160 }
1161
1162 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1163 {
1164 MIPSCPU *cpu = mips_env_get_cpu(env);
1165
1166 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1167
1168 // TODO: Halt TC / Restart (if allocated+active) TC.
1169 if (env->active_tc.CP0_TCHalt & 1) {
1170 mips_tc_sleep(cpu, env->current_tc);
1171 } else {
1172 mips_tc_wake(cpu, env->current_tc);
1173 }
1174 }
1175
1176 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1177 {
1178 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1179 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1180 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1181
1182 // TODO: Halt TC / Restart (if allocated+active) TC.
1183
1184 if (other_tc == other->current_tc)
1185 other->active_tc.CP0_TCHalt = arg1;
1186 else
1187 other->tcs[other_tc].CP0_TCHalt = arg1;
1188
1189 if (arg1 & 1) {
1190 mips_tc_sleep(other_cpu, other_tc);
1191 } else {
1192 mips_tc_wake(other_cpu, other_tc);
1193 }
1194 }
1195
1196 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1197 {
1198 env->active_tc.CP0_TCContext = arg1;
1199 }
1200
1201 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1202 {
1203 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1204 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1205
1206 if (other_tc == other->current_tc)
1207 other->active_tc.CP0_TCContext = arg1;
1208 else
1209 other->tcs[other_tc].CP0_TCContext = arg1;
1210 }
1211
1212 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1213 {
1214 env->active_tc.CP0_TCSchedule = arg1;
1215 }
1216
1217 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1218 {
1219 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1220 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1221
1222 if (other_tc == other->current_tc)
1223 other->active_tc.CP0_TCSchedule = arg1;
1224 else
1225 other->tcs[other_tc].CP0_TCSchedule = arg1;
1226 }
1227
1228 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1229 {
1230 env->active_tc.CP0_TCScheFBack = arg1;
1231 }
1232
1233 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1234 {
1235 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1236 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1237
1238 if (other_tc == other->current_tc)
1239 other->active_tc.CP0_TCScheFBack = arg1;
1240 else
1241 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1242 }
1243
1244 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1245 {
1246 /* Large physaddr (PABITS) not implemented */
1247 /* 1k pages not implemented */
1248 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1249 }
1250
1251 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1252 {
1253 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1254 }
1255
1256 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 /* 1k pages not implemented */
1259 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1260 }
1261
1262 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1263 {
1264 /* SmartMIPS not implemented */
1265 /* Large physaddr (PABITS) not implemented */
1266 /* 1k pages not implemented */
1267 env->CP0_PageGrain = 0;
1268 }
1269
1270 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1271 {
1272 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1273 }
1274
1275 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1276 {
1277 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1278 }
1279
1280 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1281 {
1282 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1283 }
1284
1285 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1286 {
1287 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1288 }
1289
1290 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1291 {
1292 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1293 }
1294
1295 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1296 {
1297 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1298 }
1299
1300 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 env->CP0_HWREna = arg1 & 0x0000000F;
1303 }
1304
1305 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1306 {
1307 cpu_mips_store_count(env, arg1);
1308 }
1309
1310 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1311 {
1312 target_ulong old, val;
1313
1314 /* 1k pages not implemented */
1315 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1316 #if defined(TARGET_MIPS64)
1317 val &= env->SEGMask;
1318 #endif
1319 old = env->CP0_EntryHi;
1320 env->CP0_EntryHi = val;
1321 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1322 sync_c0_entryhi(env, env->current_tc);
1323 }
1324 /* If the ASID changes, flush qemu's TLB. */
1325 if ((old & 0xFF) != (val & 0xFF))
1326 cpu_mips_tlb_flush(env, 1);
1327 }
1328
1329 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1330 {
1331 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1332 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1333
1334 other->CP0_EntryHi = arg1;
1335 sync_c0_entryhi(other, other_tc);
1336 }
1337
1338 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1339 {
1340 cpu_mips_store_compare(env, arg1);
1341 }
1342
1343 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1344 {
1345 uint32_t val, old;
1346 uint32_t mask = env->CP0_Status_rw_bitmask;
1347
1348 val = arg1 & mask;
1349 old = env->CP0_Status;
1350 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1351 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1352 sync_c0_status(env, env, env->current_tc);
1353 } else {
1354 compute_hflags(env);
1355 }
1356
1357 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1358 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1359 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1360 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1361 env->CP0_Cause);
1362 switch (env->hflags & MIPS_HFLAG_KSU) {
1363 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1364 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1365 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1366 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1367 }
1368 }
1369 }
1370
1371 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1375
1376 other->CP0_Status = arg1 & ~0xf1000018;
1377 sync_c0_status(env, other, other_tc);
1378 }
1379
1380 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1381 {
1382 /* vectored interrupts not implemented, no performance counters. */
1383 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1384 }
1385
1386 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1387 {
1388 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1389 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1390 }
1391
1392 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1393 {
1394 uint32_t mask = 0x00C00300;
1395 uint32_t old = cpu->CP0_Cause;
1396 int i;
1397
1398 if (cpu->insn_flags & ISA_MIPS32R2) {
1399 mask |= 1 << CP0Ca_DC;
1400 }
1401
1402 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1403
1404 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1405 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1406 cpu_mips_stop_count(cpu);
1407 } else {
1408 cpu_mips_start_count(cpu);
1409 }
1410 }
1411
1412 /* Set/reset software interrupts */
1413 for (i = 0 ; i < 2 ; i++) {
1414 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1415 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1416 }
1417 }
1418 }
1419
1420 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1421 {
1422 mtc0_cause(env, arg1);
1423 }
1424
1425 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1426 {
1427 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1428 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1429
1430 mtc0_cause(other, arg1);
1431 }
1432
1433 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1434 {
1435 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1436 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1437
1438 return other->CP0_EPC;
1439 }
1440
1441 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1442 {
1443 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1444 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1445
1446 return other->CP0_EBase;
1447 }
1448
1449 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1450 {
1451 /* vectored interrupts not implemented */
1452 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1453 }
1454
1455 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1456 {
1457 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1458 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1459 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1460 }
1461
1462 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1463 {
1464 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1465 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1466
1467 switch (idx) {
1468 case 0: return other->CP0_Config0;
1469 case 1: return other->CP0_Config1;
1470 case 2: return other->CP0_Config2;
1471 case 3: return other->CP0_Config3;
1472 /* 4 and 5 are reserved. */
1473 case 6: return other->CP0_Config6;
1474 case 7: return other->CP0_Config7;
1475 default:
1476 break;
1477 }
1478 return 0;
1479 }
1480
1481 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1482 {
1483 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1484 }
1485
1486 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1487 {
1488 /* tertiary/secondary caches not implemented */
1489 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1490 }
1491
1492 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1493 {
1494 target_long mask = env->CP0_LLAddr_rw_bitmask;
1495 arg1 = arg1 << env->CP0_LLAddr_shift;
1496 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1497 }
1498
1499 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1500 {
1501 /* Watch exceptions for instructions, data loads, data stores
1502 not implemented. */
1503 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1504 }
1505
1506 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1507 {
1508 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1509 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1510 }
1511
1512 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1513 {
1514 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1515 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1516 }
1517
1518 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1519 {
1520 env->CP0_Framemask = arg1; /* XXX */
1521 }
1522
1523 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1524 {
1525 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1526 if (arg1 & (1 << CP0DB_DM))
1527 env->hflags |= MIPS_HFLAG_DM;
1528 else
1529 env->hflags &= ~MIPS_HFLAG_DM;
1530 }
1531
1532 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1533 {
1534 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1535 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1536 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1537
1538 /* XXX: Might be wrong, check with EJTAG spec. */
1539 if (other_tc == other->current_tc)
1540 other->active_tc.CP0_Debug_tcstatus = val;
1541 else
1542 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1543 other->CP0_Debug = (other->CP0_Debug &
1544 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1545 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1546 }
1547
1548 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1549 {
1550 env->CP0_Performance0 = arg1 & 0x000007ff;
1551 }
1552
1553 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1554 {
1555 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1556 }
1557
1558 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1559 {
1560 env->CP0_DataLo = arg1; /* XXX */
1561 }
1562
1563 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1564 {
1565 env->CP0_TagHi = arg1; /* XXX */
1566 }
1567
1568 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1569 {
1570 env->CP0_DataHi = arg1; /* XXX */
1571 }
1572
1573 /* MIPS MT functions */
1574 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1575 {
1576 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1577 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1578
1579 if (other_tc == other->current_tc)
1580 return other->active_tc.gpr[sel];
1581 else
1582 return other->tcs[other_tc].gpr[sel];
1583 }
1584
1585 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1586 {
1587 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1588 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1589
1590 if (other_tc == other->current_tc)
1591 return other->active_tc.LO[sel];
1592 else
1593 return other->tcs[other_tc].LO[sel];
1594 }
1595
1596 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1597 {
1598 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1599 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1600
1601 if (other_tc == other->current_tc)
1602 return other->active_tc.HI[sel];
1603 else
1604 return other->tcs[other_tc].HI[sel];
1605 }
1606
1607 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1608 {
1609 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1610 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1611
1612 if (other_tc == other->current_tc)
1613 return other->active_tc.ACX[sel];
1614 else
1615 return other->tcs[other_tc].ACX[sel];
1616 }
1617
1618 target_ulong helper_mftdsp(CPUMIPSState *env)
1619 {
1620 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1621 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1622
1623 if (other_tc == other->current_tc)
1624 return other->active_tc.DSPControl;
1625 else
1626 return other->tcs[other_tc].DSPControl;
1627 }
1628
1629 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1630 {
1631 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1632 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1633
1634 if (other_tc == other->current_tc)
1635 other->active_tc.gpr[sel] = arg1;
1636 else
1637 other->tcs[other_tc].gpr[sel] = arg1;
1638 }
1639
1640 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1641 {
1642 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1643 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1644
1645 if (other_tc == other->current_tc)
1646 other->active_tc.LO[sel] = arg1;
1647 else
1648 other->tcs[other_tc].LO[sel] = arg1;
1649 }
1650
1651 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1652 {
1653 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1654 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1655
1656 if (other_tc == other->current_tc)
1657 other->active_tc.HI[sel] = arg1;
1658 else
1659 other->tcs[other_tc].HI[sel] = arg1;
1660 }
1661
1662 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1663 {
1664 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1665 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1666
1667 if (other_tc == other->current_tc)
1668 other->active_tc.ACX[sel] = arg1;
1669 else
1670 other->tcs[other_tc].ACX[sel] = arg1;
1671 }
1672
1673 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1674 {
1675 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1676 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1677
1678 if (other_tc == other->current_tc)
1679 other->active_tc.DSPControl = arg1;
1680 else
1681 other->tcs[other_tc].DSPControl = arg1;
1682 }
1683
1684 /* MIPS MT functions */
1685 target_ulong helper_dmt(void)
1686 {
1687 // TODO
1688 return 0;
1689 }
1690
1691 target_ulong helper_emt(void)
1692 {
1693 // TODO
1694 return 0;
1695 }
1696
1697 target_ulong helper_dvpe(CPUMIPSState *env)
1698 {
1699 CPUState *other_cs = first_cpu;
1700 target_ulong prev = env->mvp->CP0_MVPControl;
1701
1702 CPU_FOREACH(other_cs) {
1703 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1704 /* Turn off all VPEs except the one executing the dvpe. */
1705 if (&other_cpu->env != env) {
1706 other_cpu->env.mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1707 mips_vpe_sleep(other_cpu);
1708 }
1709 }
1710 return prev;
1711 }
1712
1713 target_ulong helper_evpe(CPUMIPSState *env)
1714 {
1715 CPUState *other_cs = first_cpu;
1716 target_ulong prev = env->mvp->CP0_MVPControl;
1717
1718 CPU_FOREACH(other_cs) {
1719 MIPSCPU *other_cpu = MIPS_CPU(other_cs);
1720
1721 if (&other_cpu->env != env
1722 /* If the VPE is WFI, don't disturb its sleep. */
1723 && !mips_vpe_is_wfi(other_cpu)) {
1724 /* Enable the VPE. */
1725 other_cpu->env.mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1726 mips_vpe_wake(other_cpu); /* And wake it up. */
1727 }
1728 }
1729 return prev;
1730 }
1731 #endif /* !CONFIG_USER_ONLY */
1732
1733 void helper_fork(target_ulong arg1, target_ulong arg2)
1734 {
1735 // arg1 = rt, arg2 = rs
1736 // TODO: store to TC register
1737 }
1738
1739 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1740 {
1741 target_long arg1 = arg;
1742
1743 if (arg1 < 0) {
1744 /* No scheduling policy implemented. */
1745 if (arg1 != -2) {
1746 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1747 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1748 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1749 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1750 helper_raise_exception(env, EXCP_THREAD);
1751 }
1752 }
1753 } else if (arg1 == 0) {
1754 if (0 /* TODO: TC underflow */) {
1755 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1756 helper_raise_exception(env, EXCP_THREAD);
1757 } else {
1758 // TODO: Deallocate TC
1759 }
1760 } else if (arg1 > 0) {
1761 /* Yield qualifier inputs not implemented. */
1762 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1763 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1764 helper_raise_exception(env, EXCP_THREAD);
1765 }
1766 return env->CP0_YQMask;
1767 }
1768
1769 #ifndef CONFIG_USER_ONLY
1770 /* TLB management */
1771 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1772 {
1773 /* Flush qemu's TLB and discard all shadowed entries. */
1774 tlb_flush (env, flush_global);
1775 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1776 }
1777
1778 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1779 {
1780 /* Discard entries from env->tlb[first] onwards. */
1781 while (env->tlb->tlb_in_use > first) {
1782 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1783 }
1784 }
1785
1786 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1787 {
1788 r4k_tlb_t *tlb;
1789
1790 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1791 tlb = &env->tlb->mmu.r4k.tlb[idx];
1792 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1793 #if defined(TARGET_MIPS64)
1794 tlb->VPN &= env->SEGMask;
1795 #endif
1796 tlb->ASID = env->CP0_EntryHi & 0xFF;
1797 tlb->PageMask = env->CP0_PageMask;
1798 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1799 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1800 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1801 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1802 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1803 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1804 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1805 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1806 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1807 }
1808
1809 void r4k_helper_tlbwi(CPUMIPSState *env)
1810 {
1811 r4k_tlb_t *tlb;
1812 int idx;
1813 target_ulong VPN;
1814 uint8_t ASID;
1815 bool G, V0, D0, V1, D1;
1816
1817 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1818 tlb = &env->tlb->mmu.r4k.tlb[idx];
1819 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1820 #if defined(TARGET_MIPS64)
1821 VPN &= env->SEGMask;
1822 #endif
1823 ASID = env->CP0_EntryHi & 0xff;
1824 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1825 V0 = (env->CP0_EntryLo0 & 2) != 0;
1826 D0 = (env->CP0_EntryLo0 & 4) != 0;
1827 V1 = (env->CP0_EntryLo1 & 2) != 0;
1828 D1 = (env->CP0_EntryLo1 & 4) != 0;
1829
1830 /* Discard cached TLB entries, unless tlbwi is just upgrading access
1831 permissions on the current entry. */
1832 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
1833 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
1834 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
1835 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1836 }
1837
1838 r4k_invalidate_tlb(env, idx, 0);
1839 r4k_fill_tlb(env, idx);
1840 }
1841
1842 void r4k_helper_tlbwr(CPUMIPSState *env)
1843 {
1844 int r = cpu_mips_get_random(env);
1845
1846 r4k_invalidate_tlb(env, r, 1);
1847 r4k_fill_tlb(env, r);
1848 }
1849
1850 void r4k_helper_tlbp(CPUMIPSState *env)
1851 {
1852 r4k_tlb_t *tlb;
1853 target_ulong mask;
1854 target_ulong tag;
1855 target_ulong VPN;
1856 uint8_t ASID;
1857 int i;
1858
1859 ASID = env->CP0_EntryHi & 0xFF;
1860 for (i = 0; i < env->tlb->nb_tlb; i++) {
1861 tlb = &env->tlb->mmu.r4k.tlb[i];
1862 /* 1k pages are not supported. */
1863 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1864 tag = env->CP0_EntryHi & ~mask;
1865 VPN = tlb->VPN & ~mask;
1866 #if defined(TARGET_MIPS64)
1867 tag &= env->SEGMask;
1868 #endif
1869 /* Check ASID, virtual page number & size */
1870 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1871 /* TLB match */
1872 env->CP0_Index = i;
1873 break;
1874 }
1875 }
1876 if (i == env->tlb->nb_tlb) {
1877 /* No match. Discard any shadow entries, if any of them match. */
1878 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1879 tlb = &env->tlb->mmu.r4k.tlb[i];
1880 /* 1k pages are not supported. */
1881 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1882 tag = env->CP0_EntryHi & ~mask;
1883 VPN = tlb->VPN & ~mask;
1884 #if defined(TARGET_MIPS64)
1885 tag &= env->SEGMask;
1886 #endif
1887 /* Check ASID, virtual page number & size */
1888 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1889 r4k_mips_tlb_flush_extra (env, i);
1890 break;
1891 }
1892 }
1893
1894 env->CP0_Index |= 0x80000000;
1895 }
1896 }
1897
1898 void r4k_helper_tlbr(CPUMIPSState *env)
1899 {
1900 r4k_tlb_t *tlb;
1901 uint8_t ASID;
1902 int idx;
1903
1904 ASID = env->CP0_EntryHi & 0xFF;
1905 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1906 tlb = &env->tlb->mmu.r4k.tlb[idx];
1907
1908 /* If this will change the current ASID, flush qemu's TLB. */
1909 if (ASID != tlb->ASID)
1910 cpu_mips_tlb_flush (env, 1);
1911
1912 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1913
1914 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1915 env->CP0_PageMask = tlb->PageMask;
1916 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1917 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1918 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1919 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1920 }
1921
1922 void helper_tlbwi(CPUMIPSState *env)
1923 {
1924 env->tlb->helper_tlbwi(env);
1925 }
1926
1927 void helper_tlbwr(CPUMIPSState *env)
1928 {
1929 env->tlb->helper_tlbwr(env);
1930 }
1931
1932 void helper_tlbp(CPUMIPSState *env)
1933 {
1934 env->tlb->helper_tlbp(env);
1935 }
1936
1937 void helper_tlbr(CPUMIPSState *env)
1938 {
1939 env->tlb->helper_tlbr(env);
1940 }
1941
1942 /* Specials */
1943 target_ulong helper_di(CPUMIPSState *env)
1944 {
1945 target_ulong t0 = env->CP0_Status;
1946
1947 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1948 return t0;
1949 }
1950
1951 target_ulong helper_ei(CPUMIPSState *env)
1952 {
1953 target_ulong t0 = env->CP0_Status;
1954
1955 env->CP0_Status = t0 | (1 << CP0St_IE);
1956 return t0;
1957 }
1958
1959 static void debug_pre_eret(CPUMIPSState *env)
1960 {
1961 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1962 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1963 env->active_tc.PC, env->CP0_EPC);
1964 if (env->CP0_Status & (1 << CP0St_ERL))
1965 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1966 if (env->hflags & MIPS_HFLAG_DM)
1967 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1968 qemu_log("\n");
1969 }
1970 }
1971
1972 static void debug_post_eret(CPUMIPSState *env)
1973 {
1974 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1975 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1976 env->active_tc.PC, env->CP0_EPC);
1977 if (env->CP0_Status & (1 << CP0St_ERL))
1978 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1979 if (env->hflags & MIPS_HFLAG_DM)
1980 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1981 switch (env->hflags & MIPS_HFLAG_KSU) {
1982 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1983 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1984 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1985 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1986 }
1987 }
1988 }
1989
1990 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
1991 {
1992 env->active_tc.PC = error_pc & ~(target_ulong)1;
1993 if (error_pc & 1) {
1994 env->hflags |= MIPS_HFLAG_M16;
1995 } else {
1996 env->hflags &= ~(MIPS_HFLAG_M16);
1997 }
1998 }
1999
2000 void helper_eret(CPUMIPSState *env)
2001 {
2002 debug_pre_eret(env);
2003 if (env->CP0_Status & (1 << CP0St_ERL)) {
2004 set_pc(env, env->CP0_ErrorEPC);
2005 env->CP0_Status &= ~(1 << CP0St_ERL);
2006 } else {
2007 set_pc(env, env->CP0_EPC);
2008 env->CP0_Status &= ~(1 << CP0St_EXL);
2009 }
2010 compute_hflags(env);
2011 debug_post_eret(env);
2012 env->lladdr = 1;
2013 }
2014
2015 void helper_deret(CPUMIPSState *env)
2016 {
2017 debug_pre_eret(env);
2018 set_pc(env, env->CP0_DEPC);
2019
2020 env->hflags &= MIPS_HFLAG_DM;
2021 compute_hflags(env);
2022 debug_post_eret(env);
2023 env->lladdr = 1;
2024 }
2025 #endif /* !CONFIG_USER_ONLY */
2026
2027 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2028 {
2029 if ((env->hflags & MIPS_HFLAG_CP0) ||
2030 (env->CP0_HWREna & (1 << 0)))
2031 return env->CP0_EBase & 0x3ff;
2032 else
2033 helper_raise_exception(env, EXCP_RI);
2034
2035 return 0;
2036 }
2037
2038 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2039 {
2040 if ((env->hflags & MIPS_HFLAG_CP0) ||
2041 (env->CP0_HWREna & (1 << 1)))
2042 return env->SYNCI_Step;
2043 else
2044 helper_raise_exception(env, EXCP_RI);
2045
2046 return 0;
2047 }
2048
2049 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2050 {
2051 if ((env->hflags & MIPS_HFLAG_CP0) ||
2052 (env->CP0_HWREna & (1 << 2)))
2053 return env->CP0_Count;
2054 else
2055 helper_raise_exception(env, EXCP_RI);
2056
2057 return 0;
2058 }
2059
2060 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2061 {
2062 if ((env->hflags & MIPS_HFLAG_CP0) ||
2063 (env->CP0_HWREna & (1 << 3)))
2064 return env->CCRes;
2065 else
2066 helper_raise_exception(env, EXCP_RI);
2067
2068 return 0;
2069 }
2070
2071 void helper_pmon(CPUMIPSState *env, int function)
2072 {
2073 function /= 2;
2074 switch (function) {
2075 case 2: /* TODO: char inbyte(int waitflag); */
2076 if (env->active_tc.gpr[4] == 0)
2077 env->active_tc.gpr[2] = -1;
2078 /* Fall through */
2079 case 11: /* TODO: char inbyte (void); */
2080 env->active_tc.gpr[2] = -1;
2081 break;
2082 case 3:
2083 case 12:
2084 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2085 break;
2086 case 17:
2087 break;
2088 case 158:
2089 {
2090 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2091 printf("%s", fmt);
2092 }
2093 break;
2094 }
2095 }
2096
2097 void helper_wait(CPUMIPSState *env)
2098 {
2099 CPUState *cs = CPU(mips_env_get_cpu(env));
2100
2101 cs->halted = 1;
2102 cpu_reset_interrupt(cs, CPU_INTERRUPT_WAKE);
2103 helper_raise_exception(env, EXCP_HLT);
2104 }
2105
2106 #if !defined(CONFIG_USER_ONLY)
2107
2108 static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
2109 target_ulong addr, int is_write,
2110 int is_user, uintptr_t retaddr);
2111
2112 #define MMUSUFFIX _mmu
2113 #define ALIGNED_ONLY
2114
2115 #define SHIFT 0
2116 #include "exec/softmmu_template.h"
2117
2118 #define SHIFT 1
2119 #include "exec/softmmu_template.h"
2120
2121 #define SHIFT 2
2122 #include "exec/softmmu_template.h"
2123
2124 #define SHIFT 3
2125 #include "exec/softmmu_template.h"
2126
2127 static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
2128 int is_write, int is_user, uintptr_t retaddr)
2129 {
2130 env->CP0_BadVAddr = addr;
2131 do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
2132 }
2133
2134 void tlb_fill(CPUMIPSState *env, target_ulong addr, int is_write, int mmu_idx,
2135 uintptr_t retaddr)
2136 {
2137 int ret;
2138
2139 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
2140 if (ret) {
2141 do_raise_exception_err(env, env->exception_index,
2142 env->error_code, retaddr);
2143 }
2144 }
2145
2146 void mips_cpu_unassigned_access(CPUState *cs, hwaddr addr,
2147 bool is_write, bool is_exec, int unused,
2148 unsigned size)
2149 {
2150 MIPSCPU *cpu = MIPS_CPU(cs);
2151 CPUMIPSState *env = &cpu->env;
2152
2153 if (is_exec) {
2154 helper_raise_exception(env, EXCP_IBE);
2155 } else {
2156 helper_raise_exception(env, EXCP_DBE);
2157 }
2158 }
2159 #endif /* !CONFIG_USER_ONLY */
2160
2161 /* Complex FPU operations which may need stack space. */
2162
2163 #define FLOAT_TWO32 make_float32(1 << 30)
2164 #define FLOAT_TWO64 make_float64(1ULL << 62)
2165 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2166 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2167
2168 /* convert MIPS rounding mode in FCR31 to IEEE library */
2169 static unsigned int ieee_rm[] = {
2170 float_round_nearest_even,
2171 float_round_to_zero,
2172 float_round_up,
2173 float_round_down
2174 };
2175
2176 static inline void restore_rounding_mode(CPUMIPSState *env)
2177 {
2178 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
2179 &env->active_fpu.fp_status);
2180 }
2181
2182 static inline void restore_flush_mode(CPUMIPSState *env)
2183 {
2184 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0,
2185 &env->active_fpu.fp_status);
2186 }
2187
2188 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2189 {
2190 target_ulong arg1;
2191
2192 switch (reg) {
2193 case 0:
2194 arg1 = (int32_t)env->active_fpu.fcr0;
2195 break;
2196 case 25:
2197 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2198 break;
2199 case 26:
2200 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2201 break;
2202 case 28:
2203 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2204 break;
2205 default:
2206 arg1 = (int32_t)env->active_fpu.fcr31;
2207 break;
2208 }
2209
2210 return arg1;
2211 }
2212
2213 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t reg)
2214 {
2215 switch(reg) {
2216 case 25:
2217 if (arg1 & 0xffffff00)
2218 return;
2219 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2220 ((arg1 & 0x1) << 23);
2221 break;
2222 case 26:
2223 if (arg1 & 0x007c0000)
2224 return;
2225 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2226 break;
2227 case 28:
2228 if (arg1 & 0x007c0000)
2229 return;
2230 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2231 ((arg1 & 0x4) << 22);
2232 break;
2233 case 31:
2234 if (arg1 & 0x007c0000)
2235 return;
2236 env->active_fpu.fcr31 = arg1;
2237 break;
2238 default:
2239 return;
2240 }
2241 /* set rounding mode */
2242 restore_rounding_mode(env);
2243 /* set flush-to-zero mode */
2244 restore_flush_mode(env);
2245 set_float_exception_flags(0, &env->active_fpu.fp_status);
2246 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2247 do_raise_exception(env, EXCP_FPE, GETPC());
2248 }
2249
2250 static inline int ieee_ex_to_mips(int xcpt)
2251 {
2252 int ret = 0;
2253 if (xcpt) {
2254 if (xcpt & float_flag_invalid) {
2255 ret |= FP_INVALID;
2256 }
2257 if (xcpt & float_flag_overflow) {
2258 ret |= FP_OVERFLOW;
2259 }
2260 if (xcpt & float_flag_underflow) {
2261 ret |= FP_UNDERFLOW;
2262 }
2263 if (xcpt & float_flag_divbyzero) {
2264 ret |= FP_DIV0;
2265 }
2266 if (xcpt & float_flag_inexact) {
2267 ret |= FP_INEXACT;
2268 }
2269 }
2270 return ret;
2271 }
2272
2273 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2274 {
2275 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2276
2277 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2278
2279 if (tmp) {
2280 set_float_exception_flags(0, &env->active_fpu.fp_status);
2281
2282 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2283 do_raise_exception(env, EXCP_FPE, pc);
2284 } else {
2285 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2286 }
2287 }
2288 }
2289
2290 /* Float support.
2291 Single precition routines have a "s" suffix, double precision a
2292 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2293 paired single lower "pl", paired single upper "pu". */
2294
2295 /* unary operations, modifying fp status */
2296 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2297 {
2298 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2299 update_fcr31(env, GETPC());
2300 return fdt0;
2301 }
2302
2303 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2304 {
2305 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2306 update_fcr31(env, GETPC());
2307 return fst0;
2308 }
2309
2310 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2311 {
2312 uint64_t fdt2;
2313
2314 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2315 update_fcr31(env, GETPC());
2316 return fdt2;
2317 }
2318
2319 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2320 {
2321 uint64_t fdt2;
2322
2323 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2324 update_fcr31(env, GETPC());
2325 return fdt2;
2326 }
2327
2328 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2329 {
2330 uint64_t fdt2;
2331
2332 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2333 update_fcr31(env, GETPC());
2334 return fdt2;
2335 }
2336
2337 uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
2338 {
2339 uint64_t dt2;
2340
2341 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2342 if (get_float_exception_flags(&env->active_fpu.fp_status)
2343 & (float_flag_invalid | float_flag_overflow)) {
2344 dt2 = FP_TO_INT64_OVERFLOW;
2345 }
2346 update_fcr31(env, GETPC());
2347 return dt2;
2348 }
2349
2350 uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
2351 {
2352 uint64_t dt2;
2353
2354 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2355 if (get_float_exception_flags(&env->active_fpu.fp_status)
2356 & (float_flag_invalid | float_flag_overflow)) {
2357 dt2 = FP_TO_INT64_OVERFLOW;
2358 }
2359 update_fcr31(env, GETPC());
2360 return dt2;
2361 }
2362
2363 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2364 {
2365 uint32_t fst2;
2366 uint32_t fsth2;
2367
2368 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2369 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2370 update_fcr31(env, GETPC());
2371 return ((uint64_t)fsth2 << 32) | fst2;
2372 }
2373
2374 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2375 {
2376 uint32_t wt2;
2377 uint32_t wth2;
2378 int excp, excph;
2379
2380 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2381 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2382 if (excp & (float_flag_overflow | float_flag_invalid)) {
2383 wt2 = FP_TO_INT32_OVERFLOW;
2384 }
2385
2386 set_float_exception_flags(0, &env->active_fpu.fp_status);
2387 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2388 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2389 if (excph & (float_flag_overflow | float_flag_invalid)) {
2390 wth2 = FP_TO_INT32_OVERFLOW;
2391 }
2392
2393 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2394 update_fcr31(env, GETPC());
2395
2396 return ((uint64_t)wth2 << 32) | wt2;
2397 }
2398
2399 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2400 {
2401 uint32_t fst2;
2402
2403 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2404 update_fcr31(env, GETPC());
2405 return fst2;
2406 }
2407
2408 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2409 {
2410 uint32_t fst2;
2411
2412 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2413 update_fcr31(env, GETPC());
2414 return fst2;
2415 }
2416
2417 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2418 {
2419 uint32_t fst2;
2420
2421 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2422 update_fcr31(env, GETPC());
2423 return fst2;
2424 }
2425
2426 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2427 {
2428 uint32_t wt2;
2429
2430 wt2 = wt0;
2431 update_fcr31(env, GETPC());
2432 return wt2;
2433 }
2434
2435 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2436 {
2437 uint32_t wt2;
2438
2439 wt2 = wth0;
2440 update_fcr31(env, GETPC());
2441 return wt2;
2442 }
2443
2444 uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
2445 {
2446 uint32_t wt2;
2447
2448 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2449 update_fcr31(env, GETPC());
2450 if (get_float_exception_flags(&env->active_fpu.fp_status)
2451 & (float_flag_invalid | float_flag_overflow)) {
2452 wt2 = FP_TO_INT32_OVERFLOW;
2453 }
2454 return wt2;
2455 }
2456
2457 uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
2458 {
2459 uint32_t wt2;
2460
2461 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2462 if (get_float_exception_flags(&env->active_fpu.fp_status)
2463 & (float_flag_invalid | float_flag_overflow)) {
2464 wt2 = FP_TO_INT32_OVERFLOW;
2465 }
2466 update_fcr31(env, GETPC());
2467 return wt2;
2468 }
2469
2470 uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
2471 {
2472 uint64_t dt2;
2473
2474 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2475 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2476 restore_rounding_mode(env);
2477 if (get_float_exception_flags(&env->active_fpu.fp_status)
2478 & (float_flag_invalid | float_flag_overflow)) {
2479 dt2 = FP_TO_INT64_OVERFLOW;
2480 }
2481 update_fcr31(env, GETPC());
2482 return dt2;
2483 }
2484
2485 uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
2486 {
2487 uint64_t dt2;
2488
2489 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2490 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2491 restore_rounding_mode(env);
2492 if (get_float_exception_flags(&env->active_fpu.fp_status)
2493 & (float_flag_invalid | float_flag_overflow)) {
2494 dt2 = FP_TO_INT64_OVERFLOW;
2495 }
2496 update_fcr31(env, GETPC());
2497 return dt2;
2498 }
2499
2500 uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
2501 {
2502 uint32_t wt2;
2503
2504 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2505 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2506 restore_rounding_mode(env);
2507 if (get_float_exception_flags(&env->active_fpu.fp_status)
2508 & (float_flag_invalid | float_flag_overflow)) {
2509 wt2 = FP_TO_INT32_OVERFLOW;
2510 }
2511 update_fcr31(env, GETPC());
2512 return wt2;
2513 }
2514
2515 uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
2516 {
2517 uint32_t wt2;
2518
2519 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2520 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2521 restore_rounding_mode(env);
2522 if (get_float_exception_flags(&env->active_fpu.fp_status)
2523 & (float_flag_invalid | float_flag_overflow)) {
2524 wt2 = FP_TO_INT32_OVERFLOW;
2525 }
2526 update_fcr31(env, GETPC());
2527 return wt2;
2528 }
2529
2530 uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
2531 {
2532 uint64_t dt2;
2533
2534 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2535 if (get_float_exception_flags(&env->active_fpu.fp_status)
2536 & (float_flag_invalid | float_flag_overflow)) {
2537 dt2 = FP_TO_INT64_OVERFLOW;
2538 }
2539 update_fcr31(env, GETPC());
2540 return dt2;
2541 }
2542
2543 uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
2544 {
2545 uint64_t dt2;
2546
2547 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2548 if (get_float_exception_flags(&env->active_fpu.fp_status)
2549 & (float_flag_invalid | float_flag_overflow)) {
2550 dt2 = FP_TO_INT64_OVERFLOW;
2551 }
2552 update_fcr31(env, GETPC());
2553 return dt2;
2554 }
2555
2556 uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
2557 {
2558 uint32_t wt2;
2559
2560 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2561 if (get_float_exception_flags(&env->active_fpu.fp_status)
2562 & (float_flag_invalid | float_flag_overflow)) {
2563 wt2 = FP_TO_INT32_OVERFLOW;
2564 }
2565 update_fcr31(env, GETPC());
2566 return wt2;
2567 }
2568
2569 uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
2570 {
2571 uint32_t wt2;
2572
2573 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2574 if (get_float_exception_flags(&env->active_fpu.fp_status)
2575 & (float_flag_invalid | float_flag_overflow)) {
2576 wt2 = FP_TO_INT32_OVERFLOW;
2577 }
2578 update_fcr31(env, GETPC());
2579 return wt2;
2580 }
2581
2582 uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
2583 {
2584 uint64_t dt2;
2585
2586 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2587 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2588 restore_rounding_mode(env);
2589 if (get_float_exception_flags(&env->active_fpu.fp_status)
2590 & (float_flag_invalid | float_flag_overflow)) {
2591 dt2 = FP_TO_INT64_OVERFLOW;
2592 }
2593 update_fcr31(env, GETPC());
2594 return dt2;
2595 }
2596
2597 uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
2598 {
2599 uint64_t dt2;
2600
2601 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2602 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2603 restore_rounding_mode(env);
2604 if (get_float_exception_flags(&env->active_fpu.fp_status)
2605 & (float_flag_invalid | float_flag_overflow)) {
2606 dt2 = FP_TO_INT64_OVERFLOW;
2607 }
2608 update_fcr31(env, GETPC());
2609 return dt2;
2610 }
2611
2612 uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
2613 {
2614 uint32_t wt2;
2615
2616 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2617 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2618 restore_rounding_mode(env);
2619 if (get_float_exception_flags(&env->active_fpu.fp_status)
2620 & (float_flag_invalid | float_flag_overflow)) {
2621 wt2 = FP_TO_INT32_OVERFLOW;
2622 }
2623 update_fcr31(env, GETPC());
2624 return wt2;
2625 }
2626
2627 uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
2628 {
2629 uint32_t wt2;
2630
2631 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2632 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2633 restore_rounding_mode(env);
2634 if (get_float_exception_flags(&env->active_fpu.fp_status)
2635 & (float_flag_invalid | float_flag_overflow)) {
2636 wt2 = FP_TO_INT32_OVERFLOW;
2637 }
2638 update_fcr31(env, GETPC());
2639 return wt2;
2640 }
2641
2642 uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
2643 {
2644 uint64_t dt2;
2645
2646 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2647 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2648 restore_rounding_mode(env);
2649 if (get_float_exception_flags(&env->active_fpu.fp_status)
2650 & (float_flag_invalid | float_flag_overflow)) {
2651 dt2 = FP_TO_INT64_OVERFLOW;
2652 }
2653 update_fcr31(env, GETPC());
2654 return dt2;
2655 }
2656
2657 uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
2658 {
2659 uint64_t dt2;
2660
2661 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2662 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2663 restore_rounding_mode(env);
2664 if (get_float_exception_flags(&env->active_fpu.fp_status)
2665 & (float_flag_invalid | float_flag_overflow)) {
2666 dt2 = FP_TO_INT64_OVERFLOW;
2667 }
2668 update_fcr31(env, GETPC());
2669 return dt2;
2670 }
2671
2672 uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
2673 {
2674 uint32_t wt2;
2675
2676 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2677 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2678 restore_rounding_mode(env);
2679 if (get_float_exception_flags(&env->active_fpu.fp_status)
2680 & (float_flag_invalid | float_flag_overflow)) {
2681 wt2 = FP_TO_INT32_OVERFLOW;
2682 }
2683 update_fcr31(env, GETPC());
2684 return wt2;
2685 }
2686
2687 uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
2688 {
2689 uint32_t wt2;
2690
2691 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2692 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2693 restore_rounding_mode(env);
2694 if (get_float_exception_flags(&env->active_fpu.fp_status)
2695 & (float_flag_invalid | float_flag_overflow)) {
2696 wt2 = FP_TO_INT32_OVERFLOW;
2697 }
2698 update_fcr31(env, GETPC());
2699 return wt2;
2700 }
2701
2702 /* unary operations, not modifying fp status */
2703 #define FLOAT_UNOP(name) \
2704 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2705 { \
2706 return float64_ ## name(fdt0); \
2707 } \
2708 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2709 { \
2710 return float32_ ## name(fst0); \
2711 } \
2712 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2713 { \
2714 uint32_t wt0; \
2715 uint32_t wth0; \
2716 \
2717 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2718 wth0 = float32_ ## name(fdt0 >> 32); \
2719 return ((uint64_t)wth0 << 32) | wt0; \
2720 }
2721 FLOAT_UNOP(abs)
2722 FLOAT_UNOP(chs)
2723 #undef FLOAT_UNOP
2724
2725 /* MIPS specific unary operations */
2726 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
2727 {
2728 uint64_t fdt2;
2729
2730 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2731 update_fcr31(env, GETPC());
2732 return fdt2;
2733 }
2734
2735 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
2736 {
2737 uint32_t fst2;
2738
2739 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2740 update_fcr31(env, GETPC());
2741 return fst2;
2742 }
2743
2744 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
2745 {
2746 uint64_t fdt2;
2747
2748 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2749 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2750 update_fcr31(env, GETPC());
2751 return fdt2;
2752 }
2753
2754 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
2755 {
2756 uint32_t fst2;
2757
2758 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2759 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2760 update_fcr31(env, GETPC());
2761 return fst2;
2762 }
2763
2764 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
2765 {
2766 uint64_t fdt2;
2767
2768 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2769 update_fcr31(env, GETPC());
2770 return fdt2;
2771 }
2772
2773 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
2774 {
2775 uint32_t fst2;
2776
2777 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2778 update_fcr31(env, GETPC());
2779 return fst2;
2780 }
2781
2782 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
2783 {
2784 uint32_t fst2;
2785 uint32_t fsth2;
2786
2787 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2788 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
2789 update_fcr31(env, GETPC());
2790 return ((uint64_t)fsth2 << 32) | fst2;
2791 }
2792
2793 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
2794 {
2795 uint64_t fdt2;
2796
2797 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2798 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2799 update_fcr31(env, GETPC());
2800 return fdt2;
2801 }
2802
2803 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
2804 {
2805 uint32_t fst2;
2806
2807 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2808 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2809 update_fcr31(env, GETPC());
2810 return fst2;
2811 }
2812
2813 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
2814 {
2815 uint32_t fst2;
2816 uint32_t fsth2;
2817
2818 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2819 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2820 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2821 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
2822 update_fcr31(env, GETPC());
2823 return ((uint64_t)fsth2 << 32) | fst2;
2824 }
2825
2826 #define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
2827
2828 /* binary operations */
2829 #define FLOAT_BINOP(name) \
2830 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2831 uint64_t fdt0, uint64_t fdt1) \
2832 { \
2833 uint64_t dt2; \
2834 \
2835 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2836 update_fcr31(env, GETPC()); \
2837 return dt2; \
2838 } \
2839 \
2840 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2841 uint32_t fst0, uint32_t fst1) \
2842 { \
2843 uint32_t wt2; \
2844 \
2845 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2846 update_fcr31(env, GETPC()); \
2847 return wt2; \
2848 } \
2849 \
2850 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2851 uint64_t fdt0, \
2852 uint64_t fdt1) \
2853 { \
2854 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2855 uint32_t fsth0 = fdt0 >> 32; \
2856 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2857 uint32_t fsth1 = fdt1 >> 32; \
2858 uint32_t wt2; \
2859 uint32_t wth2; \
2860 \
2861 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2862 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2863 update_fcr31(env, GETPC()); \
2864 return ((uint64_t)wth2 << 32) | wt2; \
2865 }
2866
2867 FLOAT_BINOP(add)
2868 FLOAT_BINOP(sub)
2869 FLOAT_BINOP(mul)
2870 FLOAT_BINOP(div)
2871 #undef FLOAT_BINOP
2872
2873 #define UNFUSED_FMA(prefix, a, b, c, flags) \
2874 { \
2875 a = prefix##_mul(a, b, &env->active_fpu.fp_status); \
2876 if ((flags) & float_muladd_negate_c) { \
2877 a = prefix##_sub(a, c, &env->active_fpu.fp_status); \
2878 } else { \
2879 a = prefix##_add(a, c, &env->active_fpu.fp_status); \
2880 } \
2881 if ((flags) & float_muladd_negate_result) { \
2882 a = prefix##_chs(a); \
2883 } \
2884 }
2885
2886 /* FMA based operations */
2887 #define FLOAT_FMA(name, type) \
2888 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2889 uint64_t fdt0, uint64_t fdt1, \
2890 uint64_t fdt2) \
2891 { \
2892 UNFUSED_FMA(float64, fdt0, fdt1, fdt2, type); \
2893 update_fcr31(env, GETPC()); \
2894 return fdt0; \
2895 } \
2896 \
2897 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2898 uint32_t fst0, uint32_t fst1, \
2899 uint32_t fst2) \
2900 { \
2901 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
2902 update_fcr31(env, GETPC()); \
2903 return fst0; \
2904 } \
2905 \
2906 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2907 uint64_t fdt0, uint64_t fdt1, \
2908 uint64_t fdt2) \
2909 { \
2910 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2911 uint32_t fsth0 = fdt0 >> 32; \
2912 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2913 uint32_t fsth1 = fdt1 >> 32; \
2914 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2915 uint32_t fsth2 = fdt2 >> 32; \
2916 \
2917 UNFUSED_FMA(float32, fst0, fst1, fst2, type); \
2918 UNFUSED_FMA(float32, fsth0, fsth1, fsth2, type); \
2919 update_fcr31(env, GETPC()); \
2920 return ((uint64_t)fsth0 << 32) | fst0; \
2921 }
2922 FLOAT_FMA(madd, 0)
2923 FLOAT_FMA(msub, float_muladd_negate_c)
2924 FLOAT_FMA(nmadd, float_muladd_negate_result)
2925 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
2926 #undef FLOAT_FMA
2927
2928 /* MIPS specific binary operations */
2929 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2930 {
2931 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2932 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
2933 update_fcr31(env, GETPC());
2934 return fdt2;
2935 }
2936
2937 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2938 {
2939 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2940 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2941 update_fcr31(env, GETPC());
2942 return fst2;
2943 }
2944
2945 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2946 {
2947 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2948 uint32_t fsth0 = fdt0 >> 32;
2949 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2950 uint32_t fsth2 = fdt2 >> 32;
2951
2952 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2953 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2954 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2955 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
2956 update_fcr31(env, GETPC());
2957 return ((uint64_t)fsth2 << 32) | fst2;
2958 }
2959
2960 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2961 {
2962 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2963 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
2964 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2965 update_fcr31(env, GETPC());
2966 return fdt2;
2967 }
2968
2969 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2970 {
2971 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2972 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2973 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2974 update_fcr31(env, GETPC());
2975 return fst2;
2976 }
2977
2978 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2979 {
2980 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2981 uint32_t fsth0 = fdt0 >> 32;
2982 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2983 uint32_t fsth2 = fdt2 >> 32;
2984
2985 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2986 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2987 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2988 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
2989 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2990 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2991 update_fcr31(env, GETPC());
2992 return ((uint64_t)fsth2 << 32) | fst2;
2993 }
2994
2995 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2996 {
2997 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2998 uint32_t fsth0 = fdt0 >> 32;
2999 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3000 uint32_t fsth1 = fdt1 >> 32;
3001 uint32_t fst2;
3002 uint32_t fsth2;
3003
3004 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3005 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3006 update_fcr31(env, GETPC());
3007 return ((uint64_t)fsth2 << 32) | fst2;
3008 }
3009
3010 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3011 {
3012 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3013 uint32_t fsth0 = fdt0 >> 32;
3014 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3015 uint32_t fsth1 = fdt1 >> 32;
3016 uint32_t fst2;
3017 uint32_t fsth2;
3018
3019 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3020 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3021 update_fcr31(env, GETPC());
3022 return ((uint64_t)fsth2 << 32) | fst2;
3023 }
3024
3025 /* compare operations */
3026 #define FOP_COND_D(op, cond) \
3027 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3028 uint64_t fdt1, int cc) \
3029 { \
3030 int c; \
3031 c = cond; \
3032 update_fcr31(env, GETPC()); \
3033 if (c) \
3034 SET_FP_COND(cc, env->active_fpu); \
3035 else \
3036 CLEAR_FP_COND(cc, env->active_fpu); \
3037 } \
3038 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3039 uint64_t fdt1, int cc) \
3040 { \
3041 int c; \
3042 fdt0 = float64_abs(fdt0); \
3043 fdt1 = float64_abs(fdt1); \
3044 c = cond; \
3045 update_fcr31(env, GETPC()); \
3046 if (c) \
3047 SET_FP_COND(cc, env->active_fpu); \
3048 else \
3049 CLEAR_FP_COND(cc, env->active_fpu); \
3050 }
3051
3052 /* NOTE: the comma operator will make "cond" to eval to false,
3053 * but float64_unordered_quiet() is still called. */
3054 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3055 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3056 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3057 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3058 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3059 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3060 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3061 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3062 /* NOTE: the comma operator will make "cond" to eval to false,
3063 * but float64_unordered() is still called. */
3064 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3065 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3066 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3067 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3068 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3069 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3070 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3071 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3072
3073 #define FOP_COND_S(op, cond) \
3074 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3075 uint32_t fst1, int cc) \
3076 { \
3077 int c; \
3078 c = cond; \
3079 update_fcr31(env, GETPC()); \
3080 if (c) \
3081 SET_FP_COND(cc, env->active_fpu); \
3082 else \
3083 CLEAR_FP_COND(cc, env->active_fpu); \
3084 } \
3085 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3086 uint32_t fst1, int cc) \
3087 { \
3088 int c; \
3089 fst0 = float32_abs(fst0); \
3090 fst1 = float32_abs(fst1); \
3091 c = cond; \
3092 update_fcr31(env, GETPC()); \
3093 if (c) \
3094 SET_FP_COND(cc, env->active_fpu); \
3095 else \
3096 CLEAR_FP_COND(cc, env->active_fpu); \
3097 }
3098
3099 /* NOTE: the comma operator will make "cond" to eval to false,
3100 * but float32_unordered_quiet() is still called. */
3101 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3102 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3103 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3104 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3105 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3106 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3107 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3108 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3109 /* NOTE: the comma operator will make "cond" to eval to false,
3110 * but float32_unordered() is still called. */
3111 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3112 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3113 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3114 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3115 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3116 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3117 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3118 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3119
3120 #define FOP_COND_PS(op, condl, condh) \
3121 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3122 uint64_t fdt1, int cc) \
3123 { \
3124 uint32_t fst0, fsth0, fst1, fsth1; \
3125 int ch, cl; \
3126 fst0 = fdt0 & 0XFFFFFFFF; \
3127 fsth0 = fdt0 >> 32; \
3128 fst1 = fdt1 & 0XFFFFFFFF; \
3129 fsth1 = fdt1 >> 32; \
3130 cl = condl; \
3131 ch = condh; \
3132 update_fcr31(env, GETPC()); \
3133 if (cl) \
3134 SET_FP_COND(cc, env->active_fpu); \
3135 else \
3136 CLEAR_FP_COND(cc, env->active_fpu); \
3137 if (ch) \
3138 SET_FP_COND(cc + 1, env->active_fpu); \
3139 else \
3140 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3141 } \
3142 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3143 uint64_t fdt1, int cc) \
3144 { \
3145 uint32_t fst0, fsth0, fst1, fsth1; \
3146 int ch, cl; \
3147 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3148 fsth0 = float32_abs(fdt0 >> 32); \
3149 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3150 fsth1 = float32_abs(fdt1 >> 32); \
3151 cl = condl; \
3152 ch = condh; \
3153 update_fcr31(env, GETPC()); \
3154 if (cl) \
3155 SET_FP_COND(cc, env->active_fpu); \
3156 else \
3157 CLEAR_FP_COND(cc, env->active_fpu); \
3158 if (ch) \
3159 SET_FP_COND(cc + 1, env->active_fpu); \
3160 else \
3161 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3162 }
3163
3164 /* NOTE: the comma operator will make "cond" to eval to false,
3165 * but float32_unordered_quiet() is still called. */
3166 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3167 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3168 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3169 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3170 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3171 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3172 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3173 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3174 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3175 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3176 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3177 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3178 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3179 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3180 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3181 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3182 /* NOTE: the comma operator will make "cond" to eval to false,
3183 * but float32_unordered() is still called. */
3184 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3185 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3186 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3187 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3188 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3189 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3190 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3191 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3192 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3193 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3194 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3195 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3196 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3197 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3198 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3199 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))