]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
fdc-test: split test_media_change() test, so insert part can be reused
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "host-utils.h"
22
23 #include "helper.h"
24
25 #if !defined(CONFIG_USER_ONLY)
26 #include "softmmu_exec.h"
27 #endif /* !defined(CONFIG_USER_ONLY) */
28
29 #ifndef CONFIG_USER_ONLY
30 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
31 #endif
32
33 /*****************************************************************************/
34 /* Exceptions processing helpers */
35
36 static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
37 uint32_t exception,
38 int error_code,
39 uintptr_t pc)
40 {
41 TranslationBlock *tb;
42 #if 1
43 if (exception < 0x100)
44 qemu_log("%s: %d %d\n", __func__, exception, error_code);
45 #endif
46 env->exception_index = exception;
47 env->error_code = error_code;
48
49 if (pc) {
50 /* now we have a real cpu fault */
51 tb = tb_find_pc(pc);
52 if (tb) {
53 /* the PC is inside the translated code. It means that we have
54 a virtual CPU fault */
55 cpu_restore_state(tb, env, pc);
56 }
57 }
58
59 cpu_loop_exit(env);
60 }
61
62 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
63 uint32_t exception,
64 uintptr_t pc)
65 {
66 do_raise_exception_err(env, exception, 0, pc);
67 }
68
69 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
70 int error_code)
71 {
72 do_raise_exception_err(env, exception, error_code, 0);
73 }
74
75 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
76 {
77 do_raise_exception(env, exception, 0);
78 }
79
80 #if defined(CONFIG_USER_ONLY)
81 #define HELPER_LD(name, insn, type) \
82 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
83 int mem_idx) \
84 { \
85 return (type) insn##_raw(addr); \
86 }
87 #else
88 #define HELPER_LD(name, insn, type) \
89 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
90 int mem_idx) \
91 { \
92 switch (mem_idx) \
93 { \
94 case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
95 case 1: return (type) cpu_##insn##_super(env, addr); break; \
96 default: \
97 case 2: return (type) cpu_##insn##_user(env, addr); break; \
98 } \
99 }
100 #endif
101 HELPER_LD(lbu, ldub, uint8_t)
102 HELPER_LD(lw, ldl, int32_t)
103 #ifdef TARGET_MIPS64
104 HELPER_LD(ld, ldq, int64_t)
105 #endif
106 #undef HELPER_LD
107
108 #if defined(CONFIG_USER_ONLY)
109 #define HELPER_ST(name, insn, type) \
110 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
111 type val, int mem_idx) \
112 { \
113 insn##_raw(addr, val); \
114 }
115 #else
116 #define HELPER_ST(name, insn, type) \
117 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
118 type val, int mem_idx) \
119 { \
120 switch (mem_idx) \
121 { \
122 case 0: cpu_##insn##_kernel(env, addr, val); break; \
123 case 1: cpu_##insn##_super(env, addr, val); break; \
124 default: \
125 case 2: cpu_##insn##_user(env, addr, val); break; \
126 } \
127 }
128 #endif
129 HELPER_ST(sb, stb, uint8_t)
130 HELPER_ST(sw, stl, uint32_t)
131 #ifdef TARGET_MIPS64
132 HELPER_ST(sd, stq, uint64_t)
133 #endif
134 #undef HELPER_ST
135
136 target_ulong helper_clo (target_ulong arg1)
137 {
138 return clo32(arg1);
139 }
140
141 target_ulong helper_clz (target_ulong arg1)
142 {
143 return clz32(arg1);
144 }
145
146 #if defined(TARGET_MIPS64)
147 target_ulong helper_dclo (target_ulong arg1)
148 {
149 return clo64(arg1);
150 }
151
152 target_ulong helper_dclz (target_ulong arg1)
153 {
154 return clz64(arg1);
155 }
156 #endif /* TARGET_MIPS64 */
157
158 /* 64 bits arithmetic for 32 bits hosts */
159 static inline uint64_t get_HILO(CPUMIPSState *env)
160 {
161 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
162 }
163
164 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
165 {
166 target_ulong tmp;
167 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
168 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
169 return tmp;
170 }
171
172 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
173 {
174 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
175 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
176 return tmp;
177 }
178
179 /* Multiplication variants of the vr54xx. */
180 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
181 target_ulong arg2)
182 {
183 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
184 (int64_t)(int32_t)arg2));
185 }
186
187 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
188 target_ulong arg2)
189 {
190 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
191 (uint64_t)(uint32_t)arg2);
192 }
193
194 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
195 target_ulong arg2)
196 {
197 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
198 (int64_t)(int32_t)arg2);
199 }
200
201 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
202 target_ulong arg2)
203 {
204 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
205 (int64_t)(int32_t)arg2);
206 }
207
208 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
212 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
219 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
220 }
221
222 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
226 (int64_t)(int32_t)arg2);
227 }
228
229 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
230 target_ulong arg2)
231 {
232 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
233 (int64_t)(int32_t)arg2);
234 }
235
236 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
237 target_ulong arg2)
238 {
239 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
240 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
241 }
242
243 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
244 target_ulong arg2)
245 {
246 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
247 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
248 }
249
250 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
251 target_ulong arg2)
252 {
253 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
254 }
255
256 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
257 target_ulong arg2)
258 {
259 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
260 (uint64_t)(uint32_t)arg2);
261 }
262
263 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
264 target_ulong arg2)
265 {
266 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
267 (int64_t)(int32_t)arg2);
268 }
269
270 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
271 target_ulong arg2)
272 {
273 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
274 (uint64_t)(uint32_t)arg2);
275 }
276
277 #ifdef TARGET_MIPS64
278 void helper_dmult(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
279 {
280 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
281 }
282
283 void helper_dmultu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
284 {
285 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
286 }
287 #endif
288
289 #ifndef CONFIG_USER_ONLY
290
291 static inline hwaddr do_translate_address(CPUMIPSState *env,
292 target_ulong address,
293 int rw)
294 {
295 hwaddr lladdr;
296
297 lladdr = cpu_mips_translate_address(env, address, rw);
298
299 if (lladdr == -1LL) {
300 cpu_loop_exit(env);
301 } else {
302 return lladdr;
303 }
304 }
305
306 #define HELPER_LD_ATOMIC(name, insn) \
307 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
308 { \
309 env->lladdr = do_translate_address(env, arg, 0); \
310 env->llval = do_##insn(env, arg, mem_idx); \
311 return env->llval; \
312 }
313 HELPER_LD_ATOMIC(ll, lw)
314 #ifdef TARGET_MIPS64
315 HELPER_LD_ATOMIC(lld, ld)
316 #endif
317 #undef HELPER_LD_ATOMIC
318
319 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
320 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
321 target_ulong arg2, int mem_idx) \
322 { \
323 target_long tmp; \
324 \
325 if (arg2 & almask) { \
326 env->CP0_BadVAddr = arg2; \
327 helper_raise_exception(env, EXCP_AdES); \
328 } \
329 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
330 tmp = do_##ld_insn(env, arg2, mem_idx); \
331 if (tmp == env->llval) { \
332 do_##st_insn(env, arg2, arg1, mem_idx); \
333 return 1; \
334 } \
335 } \
336 return 0; \
337 }
338 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
339 #ifdef TARGET_MIPS64
340 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
341 #endif
342 #undef HELPER_ST_ATOMIC
343 #endif
344
345 #ifdef TARGET_WORDS_BIGENDIAN
346 #define GET_LMASK(v) ((v) & 3)
347 #define GET_OFFSET(addr, offset) (addr + (offset))
348 #else
349 #define GET_LMASK(v) (((v) & 3) ^ 3)
350 #define GET_OFFSET(addr, offset) (addr - (offset))
351 #endif
352
353 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
354 int mem_idx)
355 {
356 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
357
358 if (GET_LMASK(arg2) <= 2)
359 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
360
361 if (GET_LMASK(arg2) <= 1)
362 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
363
364 if (GET_LMASK(arg2) == 0)
365 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
366 }
367
368 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
369 int mem_idx)
370 {
371 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
372
373 if (GET_LMASK(arg2) >= 1)
374 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
375
376 if (GET_LMASK(arg2) >= 2)
377 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
378
379 if (GET_LMASK(arg2) == 3)
380 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
381 }
382
383 #if defined(TARGET_MIPS64)
384 /* "half" load and stores. We must do the memory access inline,
385 or fault handling won't work. */
386
387 #ifdef TARGET_WORDS_BIGENDIAN
388 #define GET_LMASK64(v) ((v) & 7)
389 #else
390 #define GET_LMASK64(v) (((v) & 7) ^ 7)
391 #endif
392
393 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
394 int mem_idx)
395 {
396 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
397
398 if (GET_LMASK64(arg2) <= 6)
399 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
400
401 if (GET_LMASK64(arg2) <= 5)
402 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
403
404 if (GET_LMASK64(arg2) <= 4)
405 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
406
407 if (GET_LMASK64(arg2) <= 3)
408 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
409
410 if (GET_LMASK64(arg2) <= 2)
411 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
412
413 if (GET_LMASK64(arg2) <= 1)
414 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
415
416 if (GET_LMASK64(arg2) <= 0)
417 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
418 }
419
420 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
421 int mem_idx)
422 {
423 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
424
425 if (GET_LMASK64(arg2) >= 1)
426 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
427
428 if (GET_LMASK64(arg2) >= 2)
429 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
430
431 if (GET_LMASK64(arg2) >= 3)
432 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
433
434 if (GET_LMASK64(arg2) >= 4)
435 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
436
437 if (GET_LMASK64(arg2) >= 5)
438 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
439
440 if (GET_LMASK64(arg2) >= 6)
441 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
442
443 if (GET_LMASK64(arg2) == 7)
444 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
445 }
446 #endif /* TARGET_MIPS64 */
447
448 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
449
450 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
451 uint32_t mem_idx)
452 {
453 target_ulong base_reglist = reglist & 0xf;
454 target_ulong do_r31 = reglist & 0x10;
455
456 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
457 target_ulong i;
458
459 for (i = 0; i < base_reglist; i++) {
460 env->active_tc.gpr[multiple_regs[i]] =
461 (target_long)do_lw(env, addr, mem_idx);
462 addr += 4;
463 }
464 }
465
466 if (do_r31) {
467 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
468 }
469 }
470
471 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
472 uint32_t mem_idx)
473 {
474 target_ulong base_reglist = reglist & 0xf;
475 target_ulong do_r31 = reglist & 0x10;
476
477 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
478 target_ulong i;
479
480 for (i = 0; i < base_reglist; i++) {
481 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
482 addr += 4;
483 }
484 }
485
486 if (do_r31) {
487 do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
488 }
489 }
490
491 #if defined(TARGET_MIPS64)
492 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
493 uint32_t mem_idx)
494 {
495 target_ulong base_reglist = reglist & 0xf;
496 target_ulong do_r31 = reglist & 0x10;
497
498 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
499 target_ulong i;
500
501 for (i = 0; i < base_reglist; i++) {
502 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
503 addr += 8;
504 }
505 }
506
507 if (do_r31) {
508 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
509 }
510 }
511
512 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
513 uint32_t mem_idx)
514 {
515 target_ulong base_reglist = reglist & 0xf;
516 target_ulong do_r31 = reglist & 0x10;
517
518 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
519 target_ulong i;
520
521 for (i = 0; i < base_reglist; i++) {
522 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
523 addr += 8;
524 }
525 }
526
527 if (do_r31) {
528 do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
529 }
530 }
531 #endif
532
533 #ifndef CONFIG_USER_ONLY
534 /* SMP helpers. */
535 static bool mips_vpe_is_wfi(MIPSCPU *c)
536 {
537 CPUMIPSState *env = &c->env;
538
539 /* If the VPE is halted but otherwise active, it means it's waiting for
540 an interrupt. */
541 return env->halted && mips_vpe_active(env);
542 }
543
544 static inline void mips_vpe_wake(CPUMIPSState *c)
545 {
546 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
547 because there might be other conditions that state that c should
548 be sleeping. */
549 cpu_interrupt(c, CPU_INTERRUPT_WAKE);
550 }
551
552 static inline void mips_vpe_sleep(MIPSCPU *cpu)
553 {
554 CPUMIPSState *c = &cpu->env;
555
556 /* The VPE was shut off, really go to bed.
557 Reset any old _WAKE requests. */
558 c->halted = 1;
559 cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
560 }
561
562 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
563 {
564 CPUMIPSState *c = &cpu->env;
565
566 /* FIXME: TC reschedule. */
567 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
568 mips_vpe_wake(c);
569 }
570 }
571
572 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
573 {
574 CPUMIPSState *c = &cpu->env;
575
576 /* FIXME: TC reschedule. */
577 if (!mips_vpe_active(c)) {
578 mips_vpe_sleep(cpu);
579 }
580 }
581
582 /* tc should point to an int with the value of the global TC index.
583 This function will transform it into a local index within the
584 returned CPUMIPSState.
585
586 FIXME: This code assumes that all VPEs have the same number of TCs,
587 which depends on runtime setup. Can probably be fixed by
588 walking the list of CPUMIPSStates. */
589 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
590 {
591 CPUMIPSState *other;
592 int vpe_idx, nr_threads = env->nr_threads;
593 int tc_idx = *tc;
594
595 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
596 /* Not allowed to address other CPUs. */
597 *tc = env->current_tc;
598 return env;
599 }
600
601 vpe_idx = tc_idx / nr_threads;
602 *tc = tc_idx % nr_threads;
603 other = qemu_get_cpu(vpe_idx);
604 return other ? other : env;
605 }
606
607 /* The per VPE CP0_Status register shares some fields with the per TC
608 CP0_TCStatus registers. These fields are wired to the same registers,
609 so changes to either of them should be reflected on both registers.
610
611 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
612
613 These helper call synchronizes the regs for a given cpu. */
614
615 /* Called for updates to CP0_Status. */
616 static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
617 {
618 int32_t tcstatus, *tcst;
619 uint32_t v = cpu->CP0_Status;
620 uint32_t cu, mx, asid, ksu;
621 uint32_t mask = ((1 << CP0TCSt_TCU3)
622 | (1 << CP0TCSt_TCU2)
623 | (1 << CP0TCSt_TCU1)
624 | (1 << CP0TCSt_TCU0)
625 | (1 << CP0TCSt_TMX)
626 | (3 << CP0TCSt_TKSU)
627 | (0xff << CP0TCSt_TASID));
628
629 cu = (v >> CP0St_CU0) & 0xf;
630 mx = (v >> CP0St_MX) & 0x1;
631 ksu = (v >> CP0St_KSU) & 0x3;
632 asid = env->CP0_EntryHi & 0xff;
633
634 tcstatus = cu << CP0TCSt_TCU0;
635 tcstatus |= mx << CP0TCSt_TMX;
636 tcstatus |= ksu << CP0TCSt_TKSU;
637 tcstatus |= asid;
638
639 if (tc == cpu->current_tc) {
640 tcst = &cpu->active_tc.CP0_TCStatus;
641 } else {
642 tcst = &cpu->tcs[tc].CP0_TCStatus;
643 }
644
645 *tcst &= ~mask;
646 *tcst |= tcstatus;
647 compute_hflags(cpu);
648 }
649
650 /* Called for updates to CP0_TCStatus. */
651 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
652 target_ulong v)
653 {
654 uint32_t status;
655 uint32_t tcu, tmx, tasid, tksu;
656 uint32_t mask = ((1 << CP0St_CU3)
657 | (1 << CP0St_CU2)
658 | (1 << CP0St_CU1)
659 | (1 << CP0St_CU0)
660 | (1 << CP0St_MX)
661 | (3 << CP0St_KSU));
662
663 tcu = (v >> CP0TCSt_TCU0) & 0xf;
664 tmx = (v >> CP0TCSt_TMX) & 0x1;
665 tasid = v & 0xff;
666 tksu = (v >> CP0TCSt_TKSU) & 0x3;
667
668 status = tcu << CP0St_CU0;
669 status |= tmx << CP0St_MX;
670 status |= tksu << CP0St_KSU;
671
672 cpu->CP0_Status &= ~mask;
673 cpu->CP0_Status |= status;
674
675 /* Sync the TASID with EntryHi. */
676 cpu->CP0_EntryHi &= ~0xff;
677 cpu->CP0_EntryHi = tasid;
678
679 compute_hflags(cpu);
680 }
681
682 /* Called for updates to CP0_EntryHi. */
683 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
684 {
685 int32_t *tcst;
686 uint32_t asid, v = cpu->CP0_EntryHi;
687
688 asid = v & 0xff;
689
690 if (tc == cpu->current_tc) {
691 tcst = &cpu->active_tc.CP0_TCStatus;
692 } else {
693 tcst = &cpu->tcs[tc].CP0_TCStatus;
694 }
695
696 *tcst &= ~0xff;
697 *tcst |= asid;
698 }
699
700 /* CP0 helpers */
701 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
702 {
703 return env->mvp->CP0_MVPControl;
704 }
705
706 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
707 {
708 return env->mvp->CP0_MVPConf0;
709 }
710
711 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
712 {
713 return env->mvp->CP0_MVPConf1;
714 }
715
716 target_ulong helper_mfc0_random(CPUMIPSState *env)
717 {
718 return (int32_t)cpu_mips_get_random(env);
719 }
720
721 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
722 {
723 return env->active_tc.CP0_TCStatus;
724 }
725
726 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
727 {
728 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
729 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
730
731 if (other_tc == other->current_tc)
732 return other->active_tc.CP0_TCStatus;
733 else
734 return other->tcs[other_tc].CP0_TCStatus;
735 }
736
737 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
738 {
739 return env->active_tc.CP0_TCBind;
740 }
741
742 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
743 {
744 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
745 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
746
747 if (other_tc == other->current_tc)
748 return other->active_tc.CP0_TCBind;
749 else
750 return other->tcs[other_tc].CP0_TCBind;
751 }
752
753 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
754 {
755 return env->active_tc.PC;
756 }
757
758 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
759 {
760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
761 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
762
763 if (other_tc == other->current_tc)
764 return other->active_tc.PC;
765 else
766 return other->tcs[other_tc].PC;
767 }
768
769 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
770 {
771 return env->active_tc.CP0_TCHalt;
772 }
773
774 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
775 {
776 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
777 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
778
779 if (other_tc == other->current_tc)
780 return other->active_tc.CP0_TCHalt;
781 else
782 return other->tcs[other_tc].CP0_TCHalt;
783 }
784
785 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
786 {
787 return env->active_tc.CP0_TCContext;
788 }
789
790 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
791 {
792 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
793 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
794
795 if (other_tc == other->current_tc)
796 return other->active_tc.CP0_TCContext;
797 else
798 return other->tcs[other_tc].CP0_TCContext;
799 }
800
801 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
802 {
803 return env->active_tc.CP0_TCSchedule;
804 }
805
806 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
807 {
808 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
809 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
810
811 if (other_tc == other->current_tc)
812 return other->active_tc.CP0_TCSchedule;
813 else
814 return other->tcs[other_tc].CP0_TCSchedule;
815 }
816
817 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
818 {
819 return env->active_tc.CP0_TCScheFBack;
820 }
821
822 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
823 {
824 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
825 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
826
827 if (other_tc == other->current_tc)
828 return other->active_tc.CP0_TCScheFBack;
829 else
830 return other->tcs[other_tc].CP0_TCScheFBack;
831 }
832
833 target_ulong helper_mfc0_count(CPUMIPSState *env)
834 {
835 return (int32_t)cpu_mips_get_count(env);
836 }
837
838 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
839 {
840 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
841 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
842
843 return other->CP0_EntryHi;
844 }
845
846 target_ulong helper_mftc0_cause(CPUMIPSState *env)
847 {
848 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
849 int32_t tccause;
850 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
851
852 if (other_tc == other->current_tc) {
853 tccause = other->CP0_Cause;
854 } else {
855 tccause = other->CP0_Cause;
856 }
857
858 return tccause;
859 }
860
861 target_ulong helper_mftc0_status(CPUMIPSState *env)
862 {
863 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
864 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
865
866 return other->CP0_Status;
867 }
868
869 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
870 {
871 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
872 }
873
874 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
875 {
876 return (int32_t)env->CP0_WatchLo[sel];
877 }
878
879 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
880 {
881 return env->CP0_WatchHi[sel];
882 }
883
884 target_ulong helper_mfc0_debug(CPUMIPSState *env)
885 {
886 target_ulong t0 = env->CP0_Debug;
887 if (env->hflags & MIPS_HFLAG_DM)
888 t0 |= 1 << CP0DB_DM;
889
890 return t0;
891 }
892
893 target_ulong helper_mftc0_debug(CPUMIPSState *env)
894 {
895 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
896 int32_t tcstatus;
897 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
898
899 if (other_tc == other->current_tc)
900 tcstatus = other->active_tc.CP0_Debug_tcstatus;
901 else
902 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
903
904 /* XXX: Might be wrong, check with EJTAG spec. */
905 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
906 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
907 }
908
909 #if defined(TARGET_MIPS64)
910 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
911 {
912 return env->active_tc.PC;
913 }
914
915 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
916 {
917 return env->active_tc.CP0_TCHalt;
918 }
919
920 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
921 {
922 return env->active_tc.CP0_TCContext;
923 }
924
925 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
926 {
927 return env->active_tc.CP0_TCSchedule;
928 }
929
930 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
931 {
932 return env->active_tc.CP0_TCScheFBack;
933 }
934
935 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
936 {
937 return env->lladdr >> env->CP0_LLAddr_shift;
938 }
939
940 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
941 {
942 return env->CP0_WatchLo[sel];
943 }
944 #endif /* TARGET_MIPS64 */
945
946 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
947 {
948 int num = 1;
949 unsigned int tmp = env->tlb->nb_tlb;
950
951 do {
952 tmp >>= 1;
953 num <<= 1;
954 } while (tmp);
955 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
956 }
957
958 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
959 {
960 uint32_t mask = 0;
961 uint32_t newval;
962
963 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
964 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
965 (1 << CP0MVPCo_EVP);
966 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
967 mask |= (1 << CP0MVPCo_STLB);
968 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
969
970 // TODO: Enable/disable shared TLB, enable/disable VPEs.
971
972 env->mvp->CP0_MVPControl = newval;
973 }
974
975 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
976 {
977 uint32_t mask;
978 uint32_t newval;
979
980 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
981 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
982 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
983
984 /* Yield scheduler intercept not implemented. */
985 /* Gating storage scheduler intercept not implemented. */
986
987 // TODO: Enable/disable TCs.
988
989 env->CP0_VPEControl = newval;
990 }
991
992 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
993 {
994 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
995 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
996 uint32_t mask;
997 uint32_t newval;
998
999 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1000 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1001 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1002
1003 /* TODO: Enable/disable TCs. */
1004
1005 other->CP0_VPEControl = newval;
1006 }
1007
1008 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1009 {
1010 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1011 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1012 /* FIXME: Mask away return zero on read bits. */
1013 return other->CP0_VPEControl;
1014 }
1015
1016 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1017 {
1018 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1019 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1020
1021 return other->CP0_VPEConf0;
1022 }
1023
1024 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1025 {
1026 uint32_t mask = 0;
1027 uint32_t newval;
1028
1029 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1030 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1031 mask |= (0xff << CP0VPEC0_XTC);
1032 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1033 }
1034 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1035
1036 // TODO: TC exclusive handling due to ERL/EXL.
1037
1038 env->CP0_VPEConf0 = newval;
1039 }
1040
1041 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1042 {
1043 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1044 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1045 uint32_t mask = 0;
1046 uint32_t newval;
1047
1048 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1049 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1050
1051 /* TODO: TC exclusive handling due to ERL/EXL. */
1052 other->CP0_VPEConf0 = newval;
1053 }
1054
1055 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1056 {
1057 uint32_t mask = 0;
1058 uint32_t newval;
1059
1060 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1061 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1062 (0xff << CP0VPEC1_NCP1);
1063 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1064
1065 /* UDI not implemented. */
1066 /* CP2 not implemented. */
1067
1068 // TODO: Handle FPU (CP1) binding.
1069
1070 env->CP0_VPEConf1 = newval;
1071 }
1072
1073 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1074 {
1075 /* Yield qualifier inputs not implemented. */
1076 env->CP0_YQMask = 0x00000000;
1077 }
1078
1079 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1080 {
1081 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1082 }
1083
1084 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1085 {
1086 /* Large physaddr (PABITS) not implemented */
1087 /* 1k pages not implemented */
1088 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1089 }
1090
1091 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1092 {
1093 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1094 uint32_t newval;
1095
1096 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1097
1098 env->active_tc.CP0_TCStatus = newval;
1099 sync_c0_tcstatus(env, env->current_tc, newval);
1100 }
1101
1102 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1103 {
1104 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1105 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1106
1107 if (other_tc == other->current_tc)
1108 other->active_tc.CP0_TCStatus = arg1;
1109 else
1110 other->tcs[other_tc].CP0_TCStatus = arg1;
1111 sync_c0_tcstatus(other, other_tc, arg1);
1112 }
1113
1114 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1115 {
1116 uint32_t mask = (1 << CP0TCBd_TBE);
1117 uint32_t newval;
1118
1119 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1120 mask |= (1 << CP0TCBd_CurVPE);
1121 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1122 env->active_tc.CP0_TCBind = newval;
1123 }
1124
1125 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1126 {
1127 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1128 uint32_t mask = (1 << CP0TCBd_TBE);
1129 uint32_t newval;
1130 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1131
1132 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1133 mask |= (1 << CP0TCBd_CurVPE);
1134 if (other_tc == other->current_tc) {
1135 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1136 other->active_tc.CP0_TCBind = newval;
1137 } else {
1138 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1139 other->tcs[other_tc].CP0_TCBind = newval;
1140 }
1141 }
1142
1143 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1144 {
1145 env->active_tc.PC = arg1;
1146 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1147 env->lladdr = 0ULL;
1148 /* MIPS16 not implemented. */
1149 }
1150
1151 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1152 {
1153 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1154 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1155
1156 if (other_tc == other->current_tc) {
1157 other->active_tc.PC = arg1;
1158 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1159 other->lladdr = 0ULL;
1160 /* MIPS16 not implemented. */
1161 } else {
1162 other->tcs[other_tc].PC = arg1;
1163 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1164 other->lladdr = 0ULL;
1165 /* MIPS16 not implemented. */
1166 }
1167 }
1168
1169 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1170 {
1171 MIPSCPU *cpu = mips_env_get_cpu(env);
1172
1173 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1174
1175 // TODO: Halt TC / Restart (if allocated+active) TC.
1176 if (env->active_tc.CP0_TCHalt & 1) {
1177 mips_tc_sleep(cpu, env->current_tc);
1178 } else {
1179 mips_tc_wake(cpu, env->current_tc);
1180 }
1181 }
1182
1183 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1184 {
1185 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1186 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1187 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1188
1189 // TODO: Halt TC / Restart (if allocated+active) TC.
1190
1191 if (other_tc == other->current_tc)
1192 other->active_tc.CP0_TCHalt = arg1;
1193 else
1194 other->tcs[other_tc].CP0_TCHalt = arg1;
1195
1196 if (arg1 & 1) {
1197 mips_tc_sleep(other_cpu, other_tc);
1198 } else {
1199 mips_tc_wake(other_cpu, other_tc);
1200 }
1201 }
1202
1203 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1204 {
1205 env->active_tc.CP0_TCContext = arg1;
1206 }
1207
1208 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1209 {
1210 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1211 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1212
1213 if (other_tc == other->current_tc)
1214 other->active_tc.CP0_TCContext = arg1;
1215 else
1216 other->tcs[other_tc].CP0_TCContext = arg1;
1217 }
1218
1219 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1220 {
1221 env->active_tc.CP0_TCSchedule = arg1;
1222 }
1223
1224 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1225 {
1226 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1227 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1228
1229 if (other_tc == other->current_tc)
1230 other->active_tc.CP0_TCSchedule = arg1;
1231 else
1232 other->tcs[other_tc].CP0_TCSchedule = arg1;
1233 }
1234
1235 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1236 {
1237 env->active_tc.CP0_TCScheFBack = arg1;
1238 }
1239
1240 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1241 {
1242 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1243 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1244
1245 if (other_tc == other->current_tc)
1246 other->active_tc.CP0_TCScheFBack = arg1;
1247 else
1248 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1249 }
1250
1251 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1252 {
1253 /* Large physaddr (PABITS) not implemented */
1254 /* 1k pages not implemented */
1255 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1256 }
1257
1258 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1259 {
1260 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1261 }
1262
1263 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1264 {
1265 /* 1k pages not implemented */
1266 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1267 }
1268
1269 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1270 {
1271 /* SmartMIPS not implemented */
1272 /* Large physaddr (PABITS) not implemented */
1273 /* 1k pages not implemented */
1274 env->CP0_PageGrain = 0;
1275 }
1276
1277 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1278 {
1279 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1280 }
1281
1282 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1283 {
1284 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1285 }
1286
1287 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1288 {
1289 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1290 }
1291
1292 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1293 {
1294 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1295 }
1296
1297 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1298 {
1299 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1300 }
1301
1302 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1303 {
1304 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1305 }
1306
1307 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1308 {
1309 env->CP0_HWREna = arg1 & 0x0000000F;
1310 }
1311
1312 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1313 {
1314 cpu_mips_store_count(env, arg1);
1315 }
1316
1317 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1318 {
1319 target_ulong old, val;
1320
1321 /* 1k pages not implemented */
1322 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1323 #if defined(TARGET_MIPS64)
1324 val &= env->SEGMask;
1325 #endif
1326 old = env->CP0_EntryHi;
1327 env->CP0_EntryHi = val;
1328 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1329 sync_c0_entryhi(env, env->current_tc);
1330 }
1331 /* If the ASID changes, flush qemu's TLB. */
1332 if ((old & 0xFF) != (val & 0xFF))
1333 cpu_mips_tlb_flush(env, 1);
1334 }
1335
1336 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1337 {
1338 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1339 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1340
1341 other->CP0_EntryHi = arg1;
1342 sync_c0_entryhi(other, other_tc);
1343 }
1344
1345 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1346 {
1347 cpu_mips_store_compare(env, arg1);
1348 }
1349
1350 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1351 {
1352 uint32_t val, old;
1353 uint32_t mask = env->CP0_Status_rw_bitmask;
1354
1355 val = arg1 & mask;
1356 old = env->CP0_Status;
1357 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1358 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1359 sync_c0_status(env, env, env->current_tc);
1360 } else {
1361 compute_hflags(env);
1362 }
1363
1364 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1365 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1366 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1367 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1368 env->CP0_Cause);
1369 switch (env->hflags & MIPS_HFLAG_KSU) {
1370 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1371 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1372 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1373 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1374 }
1375 }
1376 }
1377
1378 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1379 {
1380 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1381 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1382
1383 other->CP0_Status = arg1 & ~0xf1000018;
1384 sync_c0_status(env, other, other_tc);
1385 }
1386
1387 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1388 {
1389 /* vectored interrupts not implemented, no performance counters. */
1390 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1391 }
1392
1393 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1394 {
1395 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1396 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1397 }
1398
1399 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1400 {
1401 uint32_t mask = 0x00C00300;
1402 uint32_t old = cpu->CP0_Cause;
1403 int i;
1404
1405 if (cpu->insn_flags & ISA_MIPS32R2) {
1406 mask |= 1 << CP0Ca_DC;
1407 }
1408
1409 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1410
1411 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1412 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1413 cpu_mips_stop_count(cpu);
1414 } else {
1415 cpu_mips_start_count(cpu);
1416 }
1417 }
1418
1419 /* Set/reset software interrupts */
1420 for (i = 0 ; i < 2 ; i++) {
1421 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1422 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1423 }
1424 }
1425 }
1426
1427 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1428 {
1429 mtc0_cause(env, arg1);
1430 }
1431
1432 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1433 {
1434 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1435 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1436
1437 mtc0_cause(other, arg1);
1438 }
1439
1440 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1441 {
1442 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1443 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1444
1445 return other->CP0_EPC;
1446 }
1447
1448 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1449 {
1450 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1451 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1452
1453 return other->CP0_EBase;
1454 }
1455
1456 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1457 {
1458 /* vectored interrupts not implemented */
1459 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1460 }
1461
1462 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1463 {
1464 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1465 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1466 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1467 }
1468
1469 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1470 {
1471 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1472 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1473
1474 switch (idx) {
1475 case 0: return other->CP0_Config0;
1476 case 1: return other->CP0_Config1;
1477 case 2: return other->CP0_Config2;
1478 case 3: return other->CP0_Config3;
1479 /* 4 and 5 are reserved. */
1480 case 6: return other->CP0_Config6;
1481 case 7: return other->CP0_Config7;
1482 default:
1483 break;
1484 }
1485 return 0;
1486 }
1487
1488 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1489 {
1490 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1491 }
1492
1493 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1494 {
1495 /* tertiary/secondary caches not implemented */
1496 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1497 }
1498
1499 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1500 {
1501 target_long mask = env->CP0_LLAddr_rw_bitmask;
1502 arg1 = arg1 << env->CP0_LLAddr_shift;
1503 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1504 }
1505
1506 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1507 {
1508 /* Watch exceptions for instructions, data loads, data stores
1509 not implemented. */
1510 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1511 }
1512
1513 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1514 {
1515 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1516 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1517 }
1518
1519 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1520 {
1521 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1522 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1523 }
1524
1525 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1526 {
1527 env->CP0_Framemask = arg1; /* XXX */
1528 }
1529
1530 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1531 {
1532 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1533 if (arg1 & (1 << CP0DB_DM))
1534 env->hflags |= MIPS_HFLAG_DM;
1535 else
1536 env->hflags &= ~MIPS_HFLAG_DM;
1537 }
1538
1539 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1540 {
1541 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1542 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1543 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1544
1545 /* XXX: Might be wrong, check with EJTAG spec. */
1546 if (other_tc == other->current_tc)
1547 other->active_tc.CP0_Debug_tcstatus = val;
1548 else
1549 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1550 other->CP0_Debug = (other->CP0_Debug &
1551 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1552 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1553 }
1554
1555 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1556 {
1557 env->CP0_Performance0 = arg1 & 0x000007ff;
1558 }
1559
1560 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1561 {
1562 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1563 }
1564
1565 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1566 {
1567 env->CP0_DataLo = arg1; /* XXX */
1568 }
1569
1570 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1571 {
1572 env->CP0_TagHi = arg1; /* XXX */
1573 }
1574
1575 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1576 {
1577 env->CP0_DataHi = arg1; /* XXX */
1578 }
1579
1580 /* MIPS MT functions */
1581 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1582 {
1583 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1584 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1585
1586 if (other_tc == other->current_tc)
1587 return other->active_tc.gpr[sel];
1588 else
1589 return other->tcs[other_tc].gpr[sel];
1590 }
1591
1592 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1593 {
1594 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1595 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1596
1597 if (other_tc == other->current_tc)
1598 return other->active_tc.LO[sel];
1599 else
1600 return other->tcs[other_tc].LO[sel];
1601 }
1602
1603 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1604 {
1605 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1606 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1607
1608 if (other_tc == other->current_tc)
1609 return other->active_tc.HI[sel];
1610 else
1611 return other->tcs[other_tc].HI[sel];
1612 }
1613
1614 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1615 {
1616 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1617 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1618
1619 if (other_tc == other->current_tc)
1620 return other->active_tc.ACX[sel];
1621 else
1622 return other->tcs[other_tc].ACX[sel];
1623 }
1624
1625 target_ulong helper_mftdsp(CPUMIPSState *env)
1626 {
1627 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1628 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1629
1630 if (other_tc == other->current_tc)
1631 return other->active_tc.DSPControl;
1632 else
1633 return other->tcs[other_tc].DSPControl;
1634 }
1635
1636 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1637 {
1638 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1639 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1640
1641 if (other_tc == other->current_tc)
1642 other->active_tc.gpr[sel] = arg1;
1643 else
1644 other->tcs[other_tc].gpr[sel] = arg1;
1645 }
1646
1647 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1648 {
1649 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1650 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1651
1652 if (other_tc == other->current_tc)
1653 other->active_tc.LO[sel] = arg1;
1654 else
1655 other->tcs[other_tc].LO[sel] = arg1;
1656 }
1657
1658 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1659 {
1660 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1661 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1662
1663 if (other_tc == other->current_tc)
1664 other->active_tc.HI[sel] = arg1;
1665 else
1666 other->tcs[other_tc].HI[sel] = arg1;
1667 }
1668
1669 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1670 {
1671 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1672 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1673
1674 if (other_tc == other->current_tc)
1675 other->active_tc.ACX[sel] = arg1;
1676 else
1677 other->tcs[other_tc].ACX[sel] = arg1;
1678 }
1679
1680 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1681 {
1682 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1683 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1684
1685 if (other_tc == other->current_tc)
1686 other->active_tc.DSPControl = arg1;
1687 else
1688 other->tcs[other_tc].DSPControl = arg1;
1689 }
1690
1691 /* MIPS MT functions */
1692 target_ulong helper_dmt(void)
1693 {
1694 // TODO
1695 return 0;
1696 }
1697
1698 target_ulong helper_emt(void)
1699 {
1700 // TODO
1701 return 0;
1702 }
1703
1704 target_ulong helper_dvpe(CPUMIPSState *env)
1705 {
1706 CPUMIPSState *other_cpu_env = first_cpu;
1707 target_ulong prev = env->mvp->CP0_MVPControl;
1708
1709 do {
1710 /* Turn off all VPEs except the one executing the dvpe. */
1711 if (other_cpu_env != env) {
1712 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1713
1714 other_cpu_env->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1715 mips_vpe_sleep(other_cpu);
1716 }
1717 other_cpu_env = other_cpu_env->next_cpu;
1718 } while (other_cpu_env);
1719 return prev;
1720 }
1721
1722 target_ulong helper_evpe(CPUMIPSState *env)
1723 {
1724 CPUMIPSState *other_cpu_env = first_cpu;
1725 target_ulong prev = env->mvp->CP0_MVPControl;
1726
1727 do {
1728 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1729
1730 if (other_cpu_env != env
1731 /* If the VPE is WFI, don't disturb its sleep. */
1732 && !mips_vpe_is_wfi(other_cpu)) {
1733 /* Enable the VPE. */
1734 other_cpu_env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1735 mips_vpe_wake(other_cpu_env); /* And wake it up. */
1736 }
1737 other_cpu_env = other_cpu_env->next_cpu;
1738 } while (other_cpu_env);
1739 return prev;
1740 }
1741 #endif /* !CONFIG_USER_ONLY */
1742
1743 void helper_fork(target_ulong arg1, target_ulong arg2)
1744 {
1745 // arg1 = rt, arg2 = rs
1746 arg1 = 0;
1747 // TODO: store to TC register
1748 }
1749
1750 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1751 {
1752 target_long arg1 = arg;
1753
1754 if (arg1 < 0) {
1755 /* No scheduling policy implemented. */
1756 if (arg1 != -2) {
1757 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1758 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1759 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1760 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1761 helper_raise_exception(env, EXCP_THREAD);
1762 }
1763 }
1764 } else if (arg1 == 0) {
1765 if (0 /* TODO: TC underflow */) {
1766 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1767 helper_raise_exception(env, EXCP_THREAD);
1768 } else {
1769 // TODO: Deallocate TC
1770 }
1771 } else if (arg1 > 0) {
1772 /* Yield qualifier inputs not implemented. */
1773 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1774 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1775 helper_raise_exception(env, EXCP_THREAD);
1776 }
1777 return env->CP0_YQMask;
1778 }
1779
1780 #ifndef CONFIG_USER_ONLY
1781 /* TLB management */
1782 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1783 {
1784 /* Flush qemu's TLB and discard all shadowed entries. */
1785 tlb_flush (env, flush_global);
1786 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1787 }
1788
1789 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1790 {
1791 /* Discard entries from env->tlb[first] onwards. */
1792 while (env->tlb->tlb_in_use > first) {
1793 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1794 }
1795 }
1796
1797 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1798 {
1799 r4k_tlb_t *tlb;
1800
1801 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1802 tlb = &env->tlb->mmu.r4k.tlb[idx];
1803 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1804 #if defined(TARGET_MIPS64)
1805 tlb->VPN &= env->SEGMask;
1806 #endif
1807 tlb->ASID = env->CP0_EntryHi & 0xFF;
1808 tlb->PageMask = env->CP0_PageMask;
1809 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1810 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1811 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1812 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1813 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1814 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1815 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1816 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1817 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1818 }
1819
1820 void r4k_helper_tlbwi(CPUMIPSState *env)
1821 {
1822 r4k_tlb_t *tlb;
1823 int idx;
1824 target_ulong VPN;
1825 uint8_t ASID;
1826 bool G, V0, D0, V1, D1;
1827
1828 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1829 tlb = &env->tlb->mmu.r4k.tlb[idx];
1830 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1831 #if defined(TARGET_MIPS64)
1832 VPN &= env->SEGMask;
1833 #endif
1834 ASID = env->CP0_EntryHi & 0xff;
1835 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1836 V0 = (env->CP0_EntryLo0 & 2) != 0;
1837 D0 = (env->CP0_EntryLo0 & 4) != 0;
1838 V1 = (env->CP0_EntryLo1 & 2) != 0;
1839 D1 = (env->CP0_EntryLo1 & 4) != 0;
1840
1841 /* Discard cached TLB entries, unless tlbwi is just upgrading access
1842 permissions on the current entry. */
1843 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
1844 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
1845 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
1846 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1847 }
1848
1849 r4k_invalidate_tlb(env, idx, 0);
1850 r4k_fill_tlb(env, idx);
1851 }
1852
1853 void r4k_helper_tlbwr(CPUMIPSState *env)
1854 {
1855 int r = cpu_mips_get_random(env);
1856
1857 r4k_invalidate_tlb(env, r, 1);
1858 r4k_fill_tlb(env, r);
1859 }
1860
1861 void r4k_helper_tlbp(CPUMIPSState *env)
1862 {
1863 r4k_tlb_t *tlb;
1864 target_ulong mask;
1865 target_ulong tag;
1866 target_ulong VPN;
1867 uint8_t ASID;
1868 int i;
1869
1870 ASID = env->CP0_EntryHi & 0xFF;
1871 for (i = 0; i < env->tlb->nb_tlb; i++) {
1872 tlb = &env->tlb->mmu.r4k.tlb[i];
1873 /* 1k pages are not supported. */
1874 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1875 tag = env->CP0_EntryHi & ~mask;
1876 VPN = tlb->VPN & ~mask;
1877 #if defined(TARGET_MIPS64)
1878 tag &= env->SEGMask;
1879 #endif
1880 /* Check ASID, virtual page number & size */
1881 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1882 /* TLB match */
1883 env->CP0_Index = i;
1884 break;
1885 }
1886 }
1887 if (i == env->tlb->nb_tlb) {
1888 /* No match. Discard any shadow entries, if any of them match. */
1889 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1890 tlb = &env->tlb->mmu.r4k.tlb[i];
1891 /* 1k pages are not supported. */
1892 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1893 tag = env->CP0_EntryHi & ~mask;
1894 VPN = tlb->VPN & ~mask;
1895 #if defined(TARGET_MIPS64)
1896 tag &= env->SEGMask;
1897 #endif
1898 /* Check ASID, virtual page number & size */
1899 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1900 r4k_mips_tlb_flush_extra (env, i);
1901 break;
1902 }
1903 }
1904
1905 env->CP0_Index |= 0x80000000;
1906 }
1907 }
1908
1909 void r4k_helper_tlbr(CPUMIPSState *env)
1910 {
1911 r4k_tlb_t *tlb;
1912 uint8_t ASID;
1913 int idx;
1914
1915 ASID = env->CP0_EntryHi & 0xFF;
1916 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1917 tlb = &env->tlb->mmu.r4k.tlb[idx];
1918
1919 /* If this will change the current ASID, flush qemu's TLB. */
1920 if (ASID != tlb->ASID)
1921 cpu_mips_tlb_flush (env, 1);
1922
1923 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1924
1925 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1926 env->CP0_PageMask = tlb->PageMask;
1927 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1928 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1929 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1930 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1931 }
1932
1933 void helper_tlbwi(CPUMIPSState *env)
1934 {
1935 env->tlb->helper_tlbwi(env);
1936 }
1937
1938 void helper_tlbwr(CPUMIPSState *env)
1939 {
1940 env->tlb->helper_tlbwr(env);
1941 }
1942
1943 void helper_tlbp(CPUMIPSState *env)
1944 {
1945 env->tlb->helper_tlbp(env);
1946 }
1947
1948 void helper_tlbr(CPUMIPSState *env)
1949 {
1950 env->tlb->helper_tlbr(env);
1951 }
1952
1953 /* Specials */
1954 target_ulong helper_di(CPUMIPSState *env)
1955 {
1956 target_ulong t0 = env->CP0_Status;
1957
1958 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1959 return t0;
1960 }
1961
1962 target_ulong helper_ei(CPUMIPSState *env)
1963 {
1964 target_ulong t0 = env->CP0_Status;
1965
1966 env->CP0_Status = t0 | (1 << CP0St_IE);
1967 return t0;
1968 }
1969
1970 static void debug_pre_eret(CPUMIPSState *env)
1971 {
1972 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1973 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1974 env->active_tc.PC, env->CP0_EPC);
1975 if (env->CP0_Status & (1 << CP0St_ERL))
1976 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1977 if (env->hflags & MIPS_HFLAG_DM)
1978 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1979 qemu_log("\n");
1980 }
1981 }
1982
1983 static void debug_post_eret(CPUMIPSState *env)
1984 {
1985 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1986 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1987 env->active_tc.PC, env->CP0_EPC);
1988 if (env->CP0_Status & (1 << CP0St_ERL))
1989 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1990 if (env->hflags & MIPS_HFLAG_DM)
1991 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1992 switch (env->hflags & MIPS_HFLAG_KSU) {
1993 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1994 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1995 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1996 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1997 }
1998 }
1999 }
2000
2001 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
2002 {
2003 env->active_tc.PC = error_pc & ~(target_ulong)1;
2004 if (error_pc & 1) {
2005 env->hflags |= MIPS_HFLAG_M16;
2006 } else {
2007 env->hflags &= ~(MIPS_HFLAG_M16);
2008 }
2009 }
2010
2011 void helper_eret(CPUMIPSState *env)
2012 {
2013 debug_pre_eret(env);
2014 if (env->CP0_Status & (1 << CP0St_ERL)) {
2015 set_pc(env, env->CP0_ErrorEPC);
2016 env->CP0_Status &= ~(1 << CP0St_ERL);
2017 } else {
2018 set_pc(env, env->CP0_EPC);
2019 env->CP0_Status &= ~(1 << CP0St_EXL);
2020 }
2021 compute_hflags(env);
2022 debug_post_eret(env);
2023 env->lladdr = 1;
2024 }
2025
2026 void helper_deret(CPUMIPSState *env)
2027 {
2028 debug_pre_eret(env);
2029 set_pc(env, env->CP0_DEPC);
2030
2031 env->hflags &= MIPS_HFLAG_DM;
2032 compute_hflags(env);
2033 debug_post_eret(env);
2034 env->lladdr = 1;
2035 }
2036 #endif /* !CONFIG_USER_ONLY */
2037
2038 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2039 {
2040 if ((env->hflags & MIPS_HFLAG_CP0) ||
2041 (env->CP0_HWREna & (1 << 0)))
2042 return env->CP0_EBase & 0x3ff;
2043 else
2044 helper_raise_exception(env, EXCP_RI);
2045
2046 return 0;
2047 }
2048
2049 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2050 {
2051 if ((env->hflags & MIPS_HFLAG_CP0) ||
2052 (env->CP0_HWREna & (1 << 1)))
2053 return env->SYNCI_Step;
2054 else
2055 helper_raise_exception(env, EXCP_RI);
2056
2057 return 0;
2058 }
2059
2060 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2061 {
2062 if ((env->hflags & MIPS_HFLAG_CP0) ||
2063 (env->CP0_HWREna & (1 << 2)))
2064 return env->CP0_Count;
2065 else
2066 helper_raise_exception(env, EXCP_RI);
2067
2068 return 0;
2069 }
2070
2071 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2072 {
2073 if ((env->hflags & MIPS_HFLAG_CP0) ||
2074 (env->CP0_HWREna & (1 << 3)))
2075 return env->CCRes;
2076 else
2077 helper_raise_exception(env, EXCP_RI);
2078
2079 return 0;
2080 }
2081
2082 void helper_pmon(CPUMIPSState *env, int function)
2083 {
2084 function /= 2;
2085 switch (function) {
2086 case 2: /* TODO: char inbyte(int waitflag); */
2087 if (env->active_tc.gpr[4] == 0)
2088 env->active_tc.gpr[2] = -1;
2089 /* Fall through */
2090 case 11: /* TODO: char inbyte (void); */
2091 env->active_tc.gpr[2] = -1;
2092 break;
2093 case 3:
2094 case 12:
2095 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2096 break;
2097 case 17:
2098 break;
2099 case 158:
2100 {
2101 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2102 printf("%s", fmt);
2103 }
2104 break;
2105 }
2106 }
2107
2108 void helper_wait(CPUMIPSState *env)
2109 {
2110 env->halted = 1;
2111 cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
2112 helper_raise_exception(env, EXCP_HLT);
2113 }
2114
2115 #if !defined(CONFIG_USER_ONLY)
2116
2117 static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
2118 target_ulong addr, int is_write,
2119 int is_user, uintptr_t retaddr);
2120
2121 #define MMUSUFFIX _mmu
2122 #define ALIGNED_ONLY
2123
2124 #define SHIFT 0
2125 #include "softmmu_template.h"
2126
2127 #define SHIFT 1
2128 #include "softmmu_template.h"
2129
2130 #define SHIFT 2
2131 #include "softmmu_template.h"
2132
2133 #define SHIFT 3
2134 #include "softmmu_template.h"
2135
2136 static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
2137 int is_write, int is_user, uintptr_t retaddr)
2138 {
2139 env->CP0_BadVAddr = addr;
2140 do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
2141 }
2142
2143 void tlb_fill(CPUMIPSState *env, target_ulong addr, int is_write, int mmu_idx,
2144 uintptr_t retaddr)
2145 {
2146 int ret;
2147
2148 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
2149 if (ret) {
2150 do_raise_exception_err(env, env->exception_index,
2151 env->error_code, retaddr);
2152 }
2153 }
2154
2155 void cpu_unassigned_access(CPUMIPSState *env, hwaddr addr,
2156 int is_write, int is_exec, int unused, int size)
2157 {
2158 if (is_exec)
2159 helper_raise_exception(env, EXCP_IBE);
2160 else
2161 helper_raise_exception(env, EXCP_DBE);
2162 }
2163 #endif /* !CONFIG_USER_ONLY */
2164
2165 /* Complex FPU operations which may need stack space. */
2166
2167 #define FLOAT_TWO32 make_float32(1 << 30)
2168 #define FLOAT_TWO64 make_float64(1ULL << 62)
2169 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2170 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2171
2172 /* convert MIPS rounding mode in FCR31 to IEEE library */
2173 static unsigned int ieee_rm[] = {
2174 float_round_nearest_even,
2175 float_round_to_zero,
2176 float_round_up,
2177 float_round_down
2178 };
2179
2180 #define RESTORE_ROUNDING_MODE \
2181 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2182
2183 #define RESTORE_FLUSH_MODE \
2184 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2185
2186 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2187 {
2188 target_ulong arg1;
2189
2190 switch (reg) {
2191 case 0:
2192 arg1 = (int32_t)env->active_fpu.fcr0;
2193 break;
2194 case 25:
2195 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2196 break;
2197 case 26:
2198 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2199 break;
2200 case 28:
2201 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2202 break;
2203 default:
2204 arg1 = (int32_t)env->active_fpu.fcr31;
2205 break;
2206 }
2207
2208 return arg1;
2209 }
2210
2211 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t reg)
2212 {
2213 switch(reg) {
2214 case 25:
2215 if (arg1 & 0xffffff00)
2216 return;
2217 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2218 ((arg1 & 0x1) << 23);
2219 break;
2220 case 26:
2221 if (arg1 & 0x007c0000)
2222 return;
2223 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2224 break;
2225 case 28:
2226 if (arg1 & 0x007c0000)
2227 return;
2228 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2229 ((arg1 & 0x4) << 22);
2230 break;
2231 case 31:
2232 if (arg1 & 0x007c0000)
2233 return;
2234 env->active_fpu.fcr31 = arg1;
2235 break;
2236 default:
2237 return;
2238 }
2239 /* set rounding mode */
2240 RESTORE_ROUNDING_MODE;
2241 /* set flush-to-zero mode */
2242 RESTORE_FLUSH_MODE;
2243 set_float_exception_flags(0, &env->active_fpu.fp_status);
2244 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2245 do_raise_exception(env, EXCP_FPE, GETPC());
2246 }
2247
2248 static inline int ieee_ex_to_mips(int xcpt)
2249 {
2250 int ret = 0;
2251 if (xcpt) {
2252 if (xcpt & float_flag_invalid) {
2253 ret |= FP_INVALID;
2254 }
2255 if (xcpt & float_flag_overflow) {
2256 ret |= FP_OVERFLOW;
2257 }
2258 if (xcpt & float_flag_underflow) {
2259 ret |= FP_UNDERFLOW;
2260 }
2261 if (xcpt & float_flag_divbyzero) {
2262 ret |= FP_DIV0;
2263 }
2264 if (xcpt & float_flag_inexact) {
2265 ret |= FP_INEXACT;
2266 }
2267 }
2268 return ret;
2269 }
2270
2271 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2272 {
2273 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2274
2275 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2276
2277 if (tmp) {
2278 set_float_exception_flags(0, &env->active_fpu.fp_status);
2279
2280 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2281 do_raise_exception(env, EXCP_FPE, pc);
2282 } else {
2283 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2284 }
2285 }
2286 }
2287
2288 /* Float support.
2289 Single precition routines have a "s" suffix, double precision a
2290 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2291 paired single lower "pl", paired single upper "pu". */
2292
2293 /* unary operations, modifying fp status */
2294 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2295 {
2296 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2297 update_fcr31(env, GETPC());
2298 return fdt0;
2299 }
2300
2301 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2302 {
2303 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2304 update_fcr31(env, GETPC());
2305 return fst0;
2306 }
2307
2308 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2309 {
2310 uint64_t fdt2;
2311
2312 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2313 update_fcr31(env, GETPC());
2314 return fdt2;
2315 }
2316
2317 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2318 {
2319 uint64_t fdt2;
2320
2321 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2322 update_fcr31(env, GETPC());
2323 return fdt2;
2324 }
2325
2326 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2327 {
2328 uint64_t fdt2;
2329
2330 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2331 update_fcr31(env, GETPC());
2332 return fdt2;
2333 }
2334
2335 uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
2336 {
2337 uint64_t dt2;
2338
2339 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2340 if (get_float_exception_flags(&env->active_fpu.fp_status)
2341 & (float_flag_invalid | float_flag_overflow)) {
2342 dt2 = FP_TO_INT64_OVERFLOW;
2343 }
2344 update_fcr31(env, GETPC());
2345 return dt2;
2346 }
2347
2348 uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
2349 {
2350 uint64_t dt2;
2351
2352 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2353 if (get_float_exception_flags(&env->active_fpu.fp_status)
2354 & (float_flag_invalid | float_flag_overflow)) {
2355 dt2 = FP_TO_INT64_OVERFLOW;
2356 }
2357 update_fcr31(env, GETPC());
2358 return dt2;
2359 }
2360
2361 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2362 {
2363 uint32_t fst2;
2364 uint32_t fsth2;
2365
2366 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2367 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2368 update_fcr31(env, GETPC());
2369 return ((uint64_t)fsth2 << 32) | fst2;
2370 }
2371
2372 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2373 {
2374 uint32_t wt2;
2375 uint32_t wth2;
2376 int excp, excph;
2377
2378 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2379 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2380 if (excp & (float_flag_overflow | float_flag_invalid)) {
2381 wt2 = FP_TO_INT32_OVERFLOW;
2382 }
2383
2384 set_float_exception_flags(0, &env->active_fpu.fp_status);
2385 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2386 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2387 if (excph & (float_flag_overflow | float_flag_invalid)) {
2388 wth2 = FP_TO_INT32_OVERFLOW;
2389 }
2390
2391 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2392 update_fcr31(env, GETPC());
2393
2394 return ((uint64_t)wth2 << 32) | wt2;
2395 }
2396
2397 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2398 {
2399 uint32_t fst2;
2400
2401 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2402 update_fcr31(env, GETPC());
2403 return fst2;
2404 }
2405
2406 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2407 {
2408 uint32_t fst2;
2409
2410 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2411 update_fcr31(env, GETPC());
2412 return fst2;
2413 }
2414
2415 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2416 {
2417 uint32_t fst2;
2418
2419 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2420 update_fcr31(env, GETPC());
2421 return fst2;
2422 }
2423
2424 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2425 {
2426 uint32_t wt2;
2427
2428 wt2 = wt0;
2429 update_fcr31(env, GETPC());
2430 return wt2;
2431 }
2432
2433 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2434 {
2435 uint32_t wt2;
2436
2437 wt2 = wth0;
2438 update_fcr31(env, GETPC());
2439 return wt2;
2440 }
2441
2442 uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
2443 {
2444 uint32_t wt2;
2445
2446 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2447 update_fcr31(env, GETPC());
2448 if (get_float_exception_flags(&env->active_fpu.fp_status)
2449 & (float_flag_invalid | float_flag_overflow)) {
2450 wt2 = FP_TO_INT32_OVERFLOW;
2451 }
2452 return wt2;
2453 }
2454
2455 uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
2456 {
2457 uint32_t wt2;
2458
2459 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2460 if (get_float_exception_flags(&env->active_fpu.fp_status)
2461 & (float_flag_invalid | float_flag_overflow)) {
2462 wt2 = FP_TO_INT32_OVERFLOW;
2463 }
2464 update_fcr31(env, GETPC());
2465 return wt2;
2466 }
2467
2468 uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
2469 {
2470 uint64_t dt2;
2471
2472 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2473 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2474 RESTORE_ROUNDING_MODE;
2475 if (get_float_exception_flags(&env->active_fpu.fp_status)
2476 & (float_flag_invalid | float_flag_overflow)) {
2477 dt2 = FP_TO_INT64_OVERFLOW;
2478 }
2479 update_fcr31(env, GETPC());
2480 return dt2;
2481 }
2482
2483 uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
2484 {
2485 uint64_t dt2;
2486
2487 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2488 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2489 RESTORE_ROUNDING_MODE;
2490 if (get_float_exception_flags(&env->active_fpu.fp_status)
2491 & (float_flag_invalid | float_flag_overflow)) {
2492 dt2 = FP_TO_INT64_OVERFLOW;
2493 }
2494 update_fcr31(env, GETPC());
2495 return dt2;
2496 }
2497
2498 uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
2499 {
2500 uint32_t wt2;
2501
2502 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2503 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2504 RESTORE_ROUNDING_MODE;
2505 if (get_float_exception_flags(&env->active_fpu.fp_status)
2506 & (float_flag_invalid | float_flag_overflow)) {
2507 wt2 = FP_TO_INT32_OVERFLOW;
2508 }
2509 update_fcr31(env, GETPC());
2510 return wt2;
2511 }
2512
2513 uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
2514 {
2515 uint32_t wt2;
2516
2517 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2518 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2519 RESTORE_ROUNDING_MODE;
2520 if (get_float_exception_flags(&env->active_fpu.fp_status)
2521 & (float_flag_invalid | float_flag_overflow)) {
2522 wt2 = FP_TO_INT32_OVERFLOW;
2523 }
2524 update_fcr31(env, GETPC());
2525 return wt2;
2526 }
2527
2528 uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
2529 {
2530 uint64_t dt2;
2531
2532 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2533 if (get_float_exception_flags(&env->active_fpu.fp_status)
2534 & (float_flag_invalid | float_flag_overflow)) {
2535 dt2 = FP_TO_INT64_OVERFLOW;
2536 }
2537 update_fcr31(env, GETPC());
2538 return dt2;
2539 }
2540
2541 uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
2542 {
2543 uint64_t dt2;
2544
2545 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2546 if (get_float_exception_flags(&env->active_fpu.fp_status)
2547 & (float_flag_invalid | float_flag_overflow)) {
2548 dt2 = FP_TO_INT64_OVERFLOW;
2549 }
2550 update_fcr31(env, GETPC());
2551 return dt2;
2552 }
2553
2554 uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
2555 {
2556 uint32_t wt2;
2557
2558 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2559 if (get_float_exception_flags(&env->active_fpu.fp_status)
2560 & (float_flag_invalid | float_flag_overflow)) {
2561 wt2 = FP_TO_INT32_OVERFLOW;
2562 }
2563 update_fcr31(env, GETPC());
2564 return wt2;
2565 }
2566
2567 uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
2568 {
2569 uint32_t wt2;
2570
2571 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2572 if (get_float_exception_flags(&env->active_fpu.fp_status)
2573 & (float_flag_invalid | float_flag_overflow)) {
2574 wt2 = FP_TO_INT32_OVERFLOW;
2575 }
2576 update_fcr31(env, GETPC());
2577 return wt2;
2578 }
2579
2580 uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
2581 {
2582 uint64_t dt2;
2583
2584 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2585 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2586 RESTORE_ROUNDING_MODE;
2587 if (get_float_exception_flags(&env->active_fpu.fp_status)
2588 & (float_flag_invalid | float_flag_overflow)) {
2589 dt2 = FP_TO_INT64_OVERFLOW;
2590 }
2591 update_fcr31(env, GETPC());
2592 return dt2;
2593 }
2594
2595 uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
2596 {
2597 uint64_t dt2;
2598
2599 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2600 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2601 RESTORE_ROUNDING_MODE;
2602 if (get_float_exception_flags(&env->active_fpu.fp_status)
2603 & (float_flag_invalid | float_flag_overflow)) {
2604 dt2 = FP_TO_INT64_OVERFLOW;
2605 }
2606 update_fcr31(env, GETPC());
2607 return dt2;
2608 }
2609
2610 uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
2611 {
2612 uint32_t wt2;
2613
2614 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2615 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2616 RESTORE_ROUNDING_MODE;
2617 if (get_float_exception_flags(&env->active_fpu.fp_status)
2618 & (float_flag_invalid | float_flag_overflow)) {
2619 wt2 = FP_TO_INT32_OVERFLOW;
2620 }
2621 update_fcr31(env, GETPC());
2622 return wt2;
2623 }
2624
2625 uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
2626 {
2627 uint32_t wt2;
2628
2629 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2630 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2631 RESTORE_ROUNDING_MODE;
2632 if (get_float_exception_flags(&env->active_fpu.fp_status)
2633 & (float_flag_invalid | float_flag_overflow)) {
2634 wt2 = FP_TO_INT32_OVERFLOW;
2635 }
2636 update_fcr31(env, GETPC());
2637 return wt2;
2638 }
2639
2640 uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
2641 {
2642 uint64_t dt2;
2643
2644 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2645 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2646 RESTORE_ROUNDING_MODE;
2647 if (get_float_exception_flags(&env->active_fpu.fp_status)
2648 & (float_flag_invalid | float_flag_overflow)) {
2649 dt2 = FP_TO_INT64_OVERFLOW;
2650 }
2651 update_fcr31(env, GETPC());
2652 return dt2;
2653 }
2654
2655 uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
2656 {
2657 uint64_t dt2;
2658
2659 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2660 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2661 RESTORE_ROUNDING_MODE;
2662 if (get_float_exception_flags(&env->active_fpu.fp_status)
2663 & (float_flag_invalid | float_flag_overflow)) {
2664 dt2 = FP_TO_INT64_OVERFLOW;
2665 }
2666 update_fcr31(env, GETPC());
2667 return dt2;
2668 }
2669
2670 uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
2671 {
2672 uint32_t wt2;
2673
2674 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2675 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2676 RESTORE_ROUNDING_MODE;
2677 if (get_float_exception_flags(&env->active_fpu.fp_status)
2678 & (float_flag_invalid | float_flag_overflow)) {
2679 wt2 = FP_TO_INT32_OVERFLOW;
2680 }
2681 update_fcr31(env, GETPC());
2682 return wt2;
2683 }
2684
2685 uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
2686 {
2687 uint32_t wt2;
2688
2689 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2690 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2691 RESTORE_ROUNDING_MODE;
2692 if (get_float_exception_flags(&env->active_fpu.fp_status)
2693 & (float_flag_invalid | float_flag_overflow)) {
2694 wt2 = FP_TO_INT32_OVERFLOW;
2695 }
2696 update_fcr31(env, GETPC());
2697 return wt2;
2698 }
2699
2700 /* unary operations, not modifying fp status */
2701 #define FLOAT_UNOP(name) \
2702 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2703 { \
2704 return float64_ ## name(fdt0); \
2705 } \
2706 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2707 { \
2708 return float32_ ## name(fst0); \
2709 } \
2710 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2711 { \
2712 uint32_t wt0; \
2713 uint32_t wth0; \
2714 \
2715 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2716 wth0 = float32_ ## name(fdt0 >> 32); \
2717 return ((uint64_t)wth0 << 32) | wt0; \
2718 }
2719 FLOAT_UNOP(abs)
2720 FLOAT_UNOP(chs)
2721 #undef FLOAT_UNOP
2722
2723 /* MIPS specific unary operations */
2724 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
2725 {
2726 uint64_t fdt2;
2727
2728 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2729 update_fcr31(env, GETPC());
2730 return fdt2;
2731 }
2732
2733 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
2734 {
2735 uint32_t fst2;
2736
2737 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2738 update_fcr31(env, GETPC());
2739 return fst2;
2740 }
2741
2742 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
2743 {
2744 uint64_t fdt2;
2745
2746 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2747 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2748 update_fcr31(env, GETPC());
2749 return fdt2;
2750 }
2751
2752 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
2753 {
2754 uint32_t fst2;
2755
2756 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2757 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2758 update_fcr31(env, GETPC());
2759 return fst2;
2760 }
2761
2762 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
2763 {
2764 uint64_t fdt2;
2765
2766 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2767 update_fcr31(env, GETPC());
2768 return fdt2;
2769 }
2770
2771 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
2772 {
2773 uint32_t fst2;
2774
2775 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2776 update_fcr31(env, GETPC());
2777 return fst2;
2778 }
2779
2780 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
2781 {
2782 uint32_t fst2;
2783 uint32_t fsth2;
2784
2785 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2786 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
2787 update_fcr31(env, GETPC());
2788 return ((uint64_t)fsth2 << 32) | fst2;
2789 }
2790
2791 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
2792 {
2793 uint64_t fdt2;
2794
2795 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2796 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2797 update_fcr31(env, GETPC());
2798 return fdt2;
2799 }
2800
2801 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
2802 {
2803 uint32_t fst2;
2804
2805 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2806 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2807 update_fcr31(env, GETPC());
2808 return fst2;
2809 }
2810
2811 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
2812 {
2813 uint32_t fst2;
2814 uint32_t fsth2;
2815
2816 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2817 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2818 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2819 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
2820 update_fcr31(env, GETPC());
2821 return ((uint64_t)fsth2 << 32) | fst2;
2822 }
2823
2824 #define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
2825
2826 /* binary operations */
2827 #define FLOAT_BINOP(name) \
2828 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2829 uint64_t fdt0, uint64_t fdt1) \
2830 { \
2831 uint64_t dt2; \
2832 \
2833 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2834 update_fcr31(env, GETPC()); \
2835 return dt2; \
2836 } \
2837 \
2838 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2839 uint32_t fst0, uint32_t fst1) \
2840 { \
2841 uint32_t wt2; \
2842 \
2843 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2844 update_fcr31(env, GETPC()); \
2845 return wt2; \
2846 } \
2847 \
2848 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2849 uint64_t fdt0, \
2850 uint64_t fdt1) \
2851 { \
2852 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2853 uint32_t fsth0 = fdt0 >> 32; \
2854 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2855 uint32_t fsth1 = fdt1 >> 32; \
2856 uint32_t wt2; \
2857 uint32_t wth2; \
2858 \
2859 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2860 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2861 update_fcr31(env, GETPC()); \
2862 return ((uint64_t)wth2 << 32) | wt2; \
2863 }
2864
2865 FLOAT_BINOP(add)
2866 FLOAT_BINOP(sub)
2867 FLOAT_BINOP(mul)
2868 FLOAT_BINOP(div)
2869 #undef FLOAT_BINOP
2870
2871 /* FMA based operations */
2872 #define FLOAT_FMA(name, type) \
2873 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2874 uint64_t fdt0, uint64_t fdt1, \
2875 uint64_t fdt2) \
2876 { \
2877 fdt0 = float64_muladd(fdt0, fdt1, fdt2, type, \
2878 &env->active_fpu.fp_status); \
2879 update_fcr31(env, GETPC()); \
2880 return fdt0; \
2881 } \
2882 \
2883 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2884 uint32_t fst0, uint32_t fst1, \
2885 uint32_t fst2) \
2886 { \
2887 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2888 &env->active_fpu.fp_status); \
2889 update_fcr31(env, GETPC()); \
2890 return fst0; \
2891 } \
2892 \
2893 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2894 uint64_t fdt0, uint64_t fdt1, \
2895 uint64_t fdt2) \
2896 { \
2897 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2898 uint32_t fsth0 = fdt0 >> 32; \
2899 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2900 uint32_t fsth1 = fdt1 >> 32; \
2901 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2902 uint32_t fsth2 = fdt2 >> 32; \
2903 \
2904 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2905 &env->active_fpu.fp_status); \
2906 fsth0 = float32_muladd(fsth0, fsth1, fsth2, type, \
2907 &env->active_fpu.fp_status); \
2908 update_fcr31(env, GETPC()); \
2909 return ((uint64_t)fsth0 << 32) | fst0; \
2910 }
2911 FLOAT_FMA(madd, 0)
2912 FLOAT_FMA(msub, float_muladd_negate_c)
2913 FLOAT_FMA(nmadd, float_muladd_negate_result)
2914 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
2915 #undef FLOAT_FMA
2916
2917 /* MIPS specific binary operations */
2918 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2919 {
2920 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2921 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
2922 update_fcr31(env, GETPC());
2923 return fdt2;
2924 }
2925
2926 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2927 {
2928 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2929 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2930 update_fcr31(env, GETPC());
2931 return fst2;
2932 }
2933
2934 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2935 {
2936 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2937 uint32_t fsth0 = fdt0 >> 32;
2938 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2939 uint32_t fsth2 = fdt2 >> 32;
2940
2941 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2942 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2943 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2944 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
2945 update_fcr31(env, GETPC());
2946 return ((uint64_t)fsth2 << 32) | fst2;
2947 }
2948
2949 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2950 {
2951 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2952 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
2953 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2954 update_fcr31(env, GETPC());
2955 return fdt2;
2956 }
2957
2958 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2959 {
2960 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2961 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2962 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2963 update_fcr31(env, GETPC());
2964 return fst2;
2965 }
2966
2967 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2968 {
2969 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2970 uint32_t fsth0 = fdt0 >> 32;
2971 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2972 uint32_t fsth2 = fdt2 >> 32;
2973
2974 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2975 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2976 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2977 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
2978 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2979 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2980 update_fcr31(env, GETPC());
2981 return ((uint64_t)fsth2 << 32) | fst2;
2982 }
2983
2984 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2985 {
2986 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2987 uint32_t fsth0 = fdt0 >> 32;
2988 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2989 uint32_t fsth1 = fdt1 >> 32;
2990 uint32_t fst2;
2991 uint32_t fsth2;
2992
2993 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2994 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2995 update_fcr31(env, GETPC());
2996 return ((uint64_t)fsth2 << 32) | fst2;
2997 }
2998
2999 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
3000 {
3001 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3002 uint32_t fsth0 = fdt0 >> 32;
3003 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3004 uint32_t fsth1 = fdt1 >> 32;
3005 uint32_t fst2;
3006 uint32_t fsth2;
3007
3008 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3009 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3010 update_fcr31(env, GETPC());
3011 return ((uint64_t)fsth2 << 32) | fst2;
3012 }
3013
3014 /* compare operations */
3015 #define FOP_COND_D(op, cond) \
3016 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3017 uint64_t fdt1, int cc) \
3018 { \
3019 int c; \
3020 c = cond; \
3021 update_fcr31(env, GETPC()); \
3022 if (c) \
3023 SET_FP_COND(cc, env->active_fpu); \
3024 else \
3025 CLEAR_FP_COND(cc, env->active_fpu); \
3026 } \
3027 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3028 uint64_t fdt1, int cc) \
3029 { \
3030 int c; \
3031 fdt0 = float64_abs(fdt0); \
3032 fdt1 = float64_abs(fdt1); \
3033 c = cond; \
3034 update_fcr31(env, GETPC()); \
3035 if (c) \
3036 SET_FP_COND(cc, env->active_fpu); \
3037 else \
3038 CLEAR_FP_COND(cc, env->active_fpu); \
3039 }
3040
3041 /* NOTE: the comma operator will make "cond" to eval to false,
3042 * but float64_unordered_quiet() is still called. */
3043 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3044 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3045 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3046 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3047 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3048 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3049 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3050 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3051 /* NOTE: the comma operator will make "cond" to eval to false,
3052 * but float64_unordered() is still called. */
3053 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3054 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3055 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3056 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3057 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3058 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3059 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3060 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3061
3062 #define FOP_COND_S(op, cond) \
3063 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3064 uint32_t fst1, int cc) \
3065 { \
3066 int c; \
3067 c = cond; \
3068 update_fcr31(env, GETPC()); \
3069 if (c) \
3070 SET_FP_COND(cc, env->active_fpu); \
3071 else \
3072 CLEAR_FP_COND(cc, env->active_fpu); \
3073 } \
3074 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3075 uint32_t fst1, int cc) \
3076 { \
3077 int c; \
3078 fst0 = float32_abs(fst0); \
3079 fst1 = float32_abs(fst1); \
3080 c = cond; \
3081 update_fcr31(env, GETPC()); \
3082 if (c) \
3083 SET_FP_COND(cc, env->active_fpu); \
3084 else \
3085 CLEAR_FP_COND(cc, env->active_fpu); \
3086 }
3087
3088 /* NOTE: the comma operator will make "cond" to eval to false,
3089 * but float32_unordered_quiet() is still called. */
3090 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3091 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3092 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3093 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3094 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3095 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3096 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3097 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3098 /* NOTE: the comma operator will make "cond" to eval to false,
3099 * but float32_unordered() is still called. */
3100 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3101 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3102 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3103 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3104 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3105 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3106 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3107 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3108
3109 #define FOP_COND_PS(op, condl, condh) \
3110 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3111 uint64_t fdt1, int cc) \
3112 { \
3113 uint32_t fst0, fsth0, fst1, fsth1; \
3114 int ch, cl; \
3115 fst0 = fdt0 & 0XFFFFFFFF; \
3116 fsth0 = fdt0 >> 32; \
3117 fst1 = fdt1 & 0XFFFFFFFF; \
3118 fsth1 = fdt1 >> 32; \
3119 cl = condl; \
3120 ch = condh; \
3121 update_fcr31(env, GETPC()); \
3122 if (cl) \
3123 SET_FP_COND(cc, env->active_fpu); \
3124 else \
3125 CLEAR_FP_COND(cc, env->active_fpu); \
3126 if (ch) \
3127 SET_FP_COND(cc + 1, env->active_fpu); \
3128 else \
3129 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3130 } \
3131 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3132 uint64_t fdt1, int cc) \
3133 { \
3134 uint32_t fst0, fsth0, fst1, fsth1; \
3135 int ch, cl; \
3136 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3137 fsth0 = float32_abs(fdt0 >> 32); \
3138 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3139 fsth1 = float32_abs(fdt1 >> 32); \
3140 cl = condl; \
3141 ch = condh; \
3142 update_fcr31(env, GETPC()); \
3143 if (cl) \
3144 SET_FP_COND(cc, env->active_fpu); \
3145 else \
3146 CLEAR_FP_COND(cc, env->active_fpu); \
3147 if (ch) \
3148 SET_FP_COND(cc + 1, env->active_fpu); \
3149 else \
3150 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3151 }
3152
3153 /* NOTE: the comma operator will make "cond" to eval to false,
3154 * but float32_unordered_quiet() is still called. */
3155 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3156 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3157 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3158 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3159 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3160 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3161 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3162 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3163 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3164 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3165 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3166 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3167 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3168 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3169 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3170 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3171 /* NOTE: the comma operator will make "cond" to eval to false,
3172 * but float32_unordered() is still called. */
3173 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3174 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3175 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3176 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3177 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3178 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3179 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3180 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3181 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3182 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3183 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3184 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3185 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3186 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3187 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3188 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))