]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
MIPS/user: Fix reset CPU state initialization
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "dyngen-exec.h"
22
23 #include "host-utils.h"
24
25 #include "helper.h"
26
27 #if !defined(CONFIG_USER_ONLY)
28 #include "softmmu_exec.h"
29 #endif /* !defined(CONFIG_USER_ONLY) */
30
31 #ifndef CONFIG_USER_ONLY
32 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
33 #endif
34
35 /*****************************************************************************/
36 /* Exceptions processing helpers */
37
38 void helper_raise_exception_err (uint32_t exception, int error_code)
39 {
40 #if 1
41 if (exception < 0x100)
42 qemu_log("%s: %d %d\n", __func__, exception, error_code);
43 #endif
44 env->exception_index = exception;
45 env->error_code = error_code;
46 cpu_loop_exit(env);
47 }
48
49 void helper_raise_exception (uint32_t exception)
50 {
51 helper_raise_exception_err(exception, 0);
52 }
53
54 #if !defined(CONFIG_USER_ONLY)
55 static void do_restore_state(uintptr_t pc)
56 {
57 TranslationBlock *tb;
58
59 tb = tb_find_pc (pc);
60 if (tb) {
61 cpu_restore_state(tb, env, pc);
62 }
63 }
64 #endif
65
66 #if defined(CONFIG_USER_ONLY)
67 #define HELPER_LD(name, insn, type) \
68 static inline type do_##name(target_ulong addr, int mem_idx) \
69 { \
70 return (type) insn##_raw(addr); \
71 }
72 #else
73 #define HELPER_LD(name, insn, type) \
74 static inline type do_##name(target_ulong addr, int mem_idx) \
75 { \
76 switch (mem_idx) \
77 { \
78 case 0: return (type) insn##_kernel(addr); break; \
79 case 1: return (type) insn##_super(addr); break; \
80 default: \
81 case 2: return (type) insn##_user(addr); break; \
82 } \
83 }
84 #endif
85 HELPER_LD(lbu, ldub, uint8_t)
86 HELPER_LD(lw, ldl, int32_t)
87 #ifdef TARGET_MIPS64
88 HELPER_LD(ld, ldq, int64_t)
89 #endif
90 #undef HELPER_LD
91
92 #if defined(CONFIG_USER_ONLY)
93 #define HELPER_ST(name, insn, type) \
94 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
95 { \
96 insn##_raw(addr, val); \
97 }
98 #else
99 #define HELPER_ST(name, insn, type) \
100 static inline void do_##name(target_ulong addr, type val, int mem_idx) \
101 { \
102 switch (mem_idx) \
103 { \
104 case 0: insn##_kernel(addr, val); break; \
105 case 1: insn##_super(addr, val); break; \
106 default: \
107 case 2: insn##_user(addr, val); break; \
108 } \
109 }
110 #endif
111 HELPER_ST(sb, stb, uint8_t)
112 HELPER_ST(sw, stl, uint32_t)
113 #ifdef TARGET_MIPS64
114 HELPER_ST(sd, stq, uint64_t)
115 #endif
116 #undef HELPER_ST
117
118 target_ulong helper_clo (target_ulong arg1)
119 {
120 return clo32(arg1);
121 }
122
123 target_ulong helper_clz (target_ulong arg1)
124 {
125 return clz32(arg1);
126 }
127
128 #if defined(TARGET_MIPS64)
129 target_ulong helper_dclo (target_ulong arg1)
130 {
131 return clo64(arg1);
132 }
133
134 target_ulong helper_dclz (target_ulong arg1)
135 {
136 return clz64(arg1);
137 }
138 #endif /* TARGET_MIPS64 */
139
140 /* 64 bits arithmetic for 32 bits hosts */
141 static inline uint64_t get_HILO (void)
142 {
143 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
144 }
145
146 static inline target_ulong set_HIT0_LO(uint64_t HILO)
147 {
148 target_ulong tmp;
149 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
150 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
151 return tmp;
152 }
153
154 static inline target_ulong set_HI_LOT0(uint64_t HILO)
155 {
156 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
157 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
158 return tmp;
159 }
160
161 /* Multiplication variants of the vr54xx. */
162 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
163 {
164 return set_HI_LOT0(0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
165 }
166
167 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
168 {
169 return set_HI_LOT0(0 - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
170 }
171
172 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
173 {
174 return set_HI_LOT0((int64_t)get_HILO() + (int64_t)(int32_t)arg1 *
175 (int64_t)(int32_t)arg2);
176 }
177
178 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
179 {
180 return set_HIT0_LO((int64_t)get_HILO() + (int64_t)(int32_t)arg1 *
181 (int64_t)(int32_t)arg2);
182 }
183
184 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
185 {
186 return set_HI_LOT0((uint64_t)get_HILO() + (uint64_t)(uint32_t)arg1 *
187 (uint64_t)(uint32_t)arg2);
188 }
189
190 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
191 {
192 return set_HIT0_LO((uint64_t)get_HILO() + (uint64_t)(uint32_t)arg1 *
193 (uint64_t)(uint32_t)arg2);
194 }
195
196 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
197 {
198 return set_HI_LOT0((int64_t)get_HILO() - (int64_t)(int32_t)arg1 *
199 (int64_t)(int32_t)arg2);
200 }
201
202 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
203 {
204 return set_HIT0_LO((int64_t)get_HILO() - (int64_t)(int32_t)arg1 *
205 (int64_t)(int32_t)arg2);
206 }
207
208 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
209 {
210 return set_HI_LOT0((uint64_t)get_HILO() - (uint64_t)(uint32_t)arg1 *
211 (uint64_t)(uint32_t)arg2);
212 }
213
214 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
215 {
216 return set_HIT0_LO((uint64_t)get_HILO() - (uint64_t)(uint32_t)arg1 *
217 (uint64_t)(uint32_t)arg2);
218 }
219
220 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
221 {
222 return set_HIT0_LO((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
223 }
224
225 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
226 {
227 return set_HIT0_LO((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
228 }
229
230 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
231 {
232 return set_HIT0_LO(0 - (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
233 }
234
235 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
236 {
237 return set_HIT0_LO(0 - (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
238 }
239
240 #ifdef TARGET_MIPS64
241 void helper_dmult (target_ulong arg1, target_ulong arg2)
242 {
243 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
244 }
245
246 void helper_dmultu (target_ulong arg1, target_ulong arg2)
247 {
248 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
249 }
250 #endif
251
252 #ifndef CONFIG_USER_ONLY
253
254 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
255 {
256 target_phys_addr_t lladdr;
257
258 lladdr = cpu_mips_translate_address(env, address, rw);
259
260 if (lladdr == -1LL) {
261 cpu_loop_exit(env);
262 } else {
263 return lladdr;
264 }
265 }
266
267 #define HELPER_LD_ATOMIC(name, insn) \
268 target_ulong helper_##name(target_ulong arg, int mem_idx) \
269 { \
270 env->lladdr = do_translate_address(arg, 0); \
271 env->llval = do_##insn(arg, mem_idx); \
272 return env->llval; \
273 }
274 HELPER_LD_ATOMIC(ll, lw)
275 #ifdef TARGET_MIPS64
276 HELPER_LD_ATOMIC(lld, ld)
277 #endif
278 #undef HELPER_LD_ATOMIC
279
280 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
281 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
282 { \
283 target_long tmp; \
284 \
285 if (arg2 & almask) { \
286 env->CP0_BadVAddr = arg2; \
287 helper_raise_exception(EXCP_AdES); \
288 } \
289 if (do_translate_address(arg2, 1) == env->lladdr) { \
290 tmp = do_##ld_insn(arg2, mem_idx); \
291 if (tmp == env->llval) { \
292 do_##st_insn(arg2, arg1, mem_idx); \
293 return 1; \
294 } \
295 } \
296 return 0; \
297 }
298 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
299 #ifdef TARGET_MIPS64
300 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
301 #endif
302 #undef HELPER_ST_ATOMIC
303 #endif
304
305 #ifdef TARGET_WORDS_BIGENDIAN
306 #define GET_LMASK(v) ((v) & 3)
307 #define GET_OFFSET(addr, offset) (addr + (offset))
308 #else
309 #define GET_LMASK(v) (((v) & 3) ^ 3)
310 #define GET_OFFSET(addr, offset) (addr - (offset))
311 #endif
312
313 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
314 {
315 target_ulong tmp;
316
317 tmp = do_lbu(arg2, mem_idx);
318 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
319
320 if (GET_LMASK(arg2) <= 2) {
321 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
322 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
323 }
324
325 if (GET_LMASK(arg2) <= 1) {
326 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
327 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
328 }
329
330 if (GET_LMASK(arg2) == 0) {
331 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
332 arg1 = (arg1 & 0xFFFFFF00) | tmp;
333 }
334 return (int32_t)arg1;
335 }
336
337 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
338 {
339 target_ulong tmp;
340
341 tmp = do_lbu(arg2, mem_idx);
342 arg1 = (arg1 & 0xFFFFFF00) | tmp;
343
344 if (GET_LMASK(arg2) >= 1) {
345 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
346 arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
347 }
348
349 if (GET_LMASK(arg2) >= 2) {
350 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
351 arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
352 }
353
354 if (GET_LMASK(arg2) == 3) {
355 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
356 arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
357 }
358 return (int32_t)arg1;
359 }
360
361 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
362 {
363 do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
364
365 if (GET_LMASK(arg2) <= 2)
366 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
367
368 if (GET_LMASK(arg2) <= 1)
369 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
370
371 if (GET_LMASK(arg2) == 0)
372 do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
373 }
374
375 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
376 {
377 do_sb(arg2, (uint8_t)arg1, mem_idx);
378
379 if (GET_LMASK(arg2) >= 1)
380 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
381
382 if (GET_LMASK(arg2) >= 2)
383 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
384
385 if (GET_LMASK(arg2) == 3)
386 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
387 }
388
389 #if defined(TARGET_MIPS64)
390 /* "half" load and stores. We must do the memory access inline,
391 or fault handling won't work. */
392
393 #ifdef TARGET_WORDS_BIGENDIAN
394 #define GET_LMASK64(v) ((v) & 7)
395 #else
396 #define GET_LMASK64(v) (((v) & 7) ^ 7)
397 #endif
398
399 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
400 {
401 uint64_t tmp;
402
403 tmp = do_lbu(arg2, mem_idx);
404 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
405
406 if (GET_LMASK64(arg2) <= 6) {
407 tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
408 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
409 }
410
411 if (GET_LMASK64(arg2) <= 5) {
412 tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
413 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
414 }
415
416 if (GET_LMASK64(arg2) <= 4) {
417 tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
418 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
419 }
420
421 if (GET_LMASK64(arg2) <= 3) {
422 tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
423 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
424 }
425
426 if (GET_LMASK64(arg2) <= 2) {
427 tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
428 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
429 }
430
431 if (GET_LMASK64(arg2) <= 1) {
432 tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
433 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
434 }
435
436 if (GET_LMASK64(arg2) == 0) {
437 tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
438 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
439 }
440
441 return arg1;
442 }
443
444 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
445 {
446 uint64_t tmp;
447
448 tmp = do_lbu(arg2, mem_idx);
449 arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
450
451 if (GET_LMASK64(arg2) >= 1) {
452 tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
453 arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
454 }
455
456 if (GET_LMASK64(arg2) >= 2) {
457 tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
458 arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
459 }
460
461 if (GET_LMASK64(arg2) >= 3) {
462 tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
463 arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
464 }
465
466 if (GET_LMASK64(arg2) >= 4) {
467 tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
468 arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
469 }
470
471 if (GET_LMASK64(arg2) >= 5) {
472 tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
473 arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
474 }
475
476 if (GET_LMASK64(arg2) >= 6) {
477 tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
478 arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
479 }
480
481 if (GET_LMASK64(arg2) == 7) {
482 tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
483 arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
484 }
485
486 return arg1;
487 }
488
489 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
490 {
491 do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
492
493 if (GET_LMASK64(arg2) <= 6)
494 do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
495
496 if (GET_LMASK64(arg2) <= 5)
497 do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
498
499 if (GET_LMASK64(arg2) <= 4)
500 do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
501
502 if (GET_LMASK64(arg2) <= 3)
503 do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
504
505 if (GET_LMASK64(arg2) <= 2)
506 do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
507
508 if (GET_LMASK64(arg2) <= 1)
509 do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
510
511 if (GET_LMASK64(arg2) <= 0)
512 do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
513 }
514
515 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
516 {
517 do_sb(arg2, (uint8_t)arg1, mem_idx);
518
519 if (GET_LMASK64(arg2) >= 1)
520 do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
521
522 if (GET_LMASK64(arg2) >= 2)
523 do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
524
525 if (GET_LMASK64(arg2) >= 3)
526 do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
527
528 if (GET_LMASK64(arg2) >= 4)
529 do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
530
531 if (GET_LMASK64(arg2) >= 5)
532 do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
533
534 if (GET_LMASK64(arg2) >= 6)
535 do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
536
537 if (GET_LMASK64(arg2) == 7)
538 do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
539 }
540 #endif /* TARGET_MIPS64 */
541
542 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
543
544 void helper_lwm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
545 {
546 target_ulong base_reglist = reglist & 0xf;
547 target_ulong do_r31 = reglist & 0x10;
548 #ifdef CONFIG_USER_ONLY
549 #undef ldfun
550 #define ldfun ldl_raw
551 #else
552 uint32_t (*ldfun)(target_ulong);
553
554 switch (mem_idx)
555 {
556 case 0: ldfun = ldl_kernel; break;
557 case 1: ldfun = ldl_super; break;
558 default:
559 case 2: ldfun = ldl_user; break;
560 }
561 #endif
562
563 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
564 target_ulong i;
565
566 for (i = 0; i < base_reglist; i++) {
567 env->active_tc.gpr[multiple_regs[i]] = (target_long) ldfun(addr);
568 addr += 4;
569 }
570 }
571
572 if (do_r31) {
573 env->active_tc.gpr[31] = (target_long) ldfun(addr);
574 }
575 }
576
577 void helper_swm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
578 {
579 target_ulong base_reglist = reglist & 0xf;
580 target_ulong do_r31 = reglist & 0x10;
581 #ifdef CONFIG_USER_ONLY
582 #undef stfun
583 #define stfun stl_raw
584 #else
585 void (*stfun)(target_ulong, uint32_t);
586
587 switch (mem_idx)
588 {
589 case 0: stfun = stl_kernel; break;
590 case 1: stfun = stl_super; break;
591 default:
592 case 2: stfun = stl_user; break;
593 }
594 #endif
595
596 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
597 target_ulong i;
598
599 for (i = 0; i < base_reglist; i++) {
600 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
601 addr += 4;
602 }
603 }
604
605 if (do_r31) {
606 stfun(addr, env->active_tc.gpr[31]);
607 }
608 }
609
610 #if defined(TARGET_MIPS64)
611 void helper_ldm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
612 {
613 target_ulong base_reglist = reglist & 0xf;
614 target_ulong do_r31 = reglist & 0x10;
615 #ifdef CONFIG_USER_ONLY
616 #undef ldfun
617 #define ldfun ldq_raw
618 #else
619 uint64_t (*ldfun)(target_ulong);
620
621 switch (mem_idx)
622 {
623 case 0: ldfun = ldq_kernel; break;
624 case 1: ldfun = ldq_super; break;
625 default:
626 case 2: ldfun = ldq_user; break;
627 }
628 #endif
629
630 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
631 target_ulong i;
632
633 for (i = 0; i < base_reglist; i++) {
634 env->active_tc.gpr[multiple_regs[i]] = ldfun(addr);
635 addr += 8;
636 }
637 }
638
639 if (do_r31) {
640 env->active_tc.gpr[31] = ldfun(addr);
641 }
642 }
643
644 void helper_sdm (target_ulong addr, target_ulong reglist, uint32_t mem_idx)
645 {
646 target_ulong base_reglist = reglist & 0xf;
647 target_ulong do_r31 = reglist & 0x10;
648 #ifdef CONFIG_USER_ONLY
649 #undef stfun
650 #define stfun stq_raw
651 #else
652 void (*stfun)(target_ulong, uint64_t);
653
654 switch (mem_idx)
655 {
656 case 0: stfun = stq_kernel; break;
657 case 1: stfun = stq_super; break;
658 default:
659 case 2: stfun = stq_user; break;
660 }
661 #endif
662
663 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
664 target_ulong i;
665
666 for (i = 0; i < base_reglist; i++) {
667 stfun(addr, env->active_tc.gpr[multiple_regs[i]]);
668 addr += 8;
669 }
670 }
671
672 if (do_r31) {
673 stfun(addr, env->active_tc.gpr[31]);
674 }
675 }
676 #endif
677
678 #ifndef CONFIG_USER_ONLY
679 /* SMP helpers. */
680 static int mips_vpe_is_wfi(CPUMIPSState *c)
681 {
682 /* If the VPE is halted but otherwise active, it means it's waiting for
683 an interrupt. */
684 return c->halted && mips_vpe_active(c);
685 }
686
687 static inline void mips_vpe_wake(CPUMIPSState *c)
688 {
689 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
690 because there might be other conditions that state that c should
691 be sleeping. */
692 cpu_interrupt(c, CPU_INTERRUPT_WAKE);
693 }
694
695 static inline void mips_vpe_sleep(CPUMIPSState *c)
696 {
697 /* The VPE was shut off, really go to bed.
698 Reset any old _WAKE requests. */
699 c->halted = 1;
700 cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
701 }
702
703 static inline void mips_tc_wake(CPUMIPSState *c, int tc)
704 {
705 /* FIXME: TC reschedule. */
706 if (mips_vpe_active(c) && !mips_vpe_is_wfi(c)) {
707 mips_vpe_wake(c);
708 }
709 }
710
711 static inline void mips_tc_sleep(CPUMIPSState *c, int tc)
712 {
713 /* FIXME: TC reschedule. */
714 if (!mips_vpe_active(c)) {
715 mips_vpe_sleep(c);
716 }
717 }
718
719 /* tc should point to an int with the value of the global TC index.
720 This function will transform it into a local index within the
721 returned CPUMIPSState.
722
723 FIXME: This code assumes that all VPEs have the same number of TCs,
724 which depends on runtime setup. Can probably be fixed by
725 walking the list of CPUMIPSStates. */
726 static CPUMIPSState *mips_cpu_map_tc(int *tc)
727 {
728 CPUMIPSState *other;
729 int vpe_idx, nr_threads = env->nr_threads;
730 int tc_idx = *tc;
731
732 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
733 /* Not allowed to address other CPUs. */
734 *tc = env->current_tc;
735 return env;
736 }
737
738 vpe_idx = tc_idx / nr_threads;
739 *tc = tc_idx % nr_threads;
740 other = qemu_get_cpu(vpe_idx);
741 return other ? other : env;
742 }
743
744 /* The per VPE CP0_Status register shares some fields with the per TC
745 CP0_TCStatus registers. These fields are wired to the same registers,
746 so changes to either of them should be reflected on both registers.
747
748 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
749
750 These helper call synchronizes the regs for a given cpu. */
751
752 /* Called for updates to CP0_Status. */
753 static void sync_c0_status(CPUMIPSState *cpu, int tc)
754 {
755 int32_t tcstatus, *tcst;
756 uint32_t v = cpu->CP0_Status;
757 uint32_t cu, mx, asid, ksu;
758 uint32_t mask = ((1 << CP0TCSt_TCU3)
759 | (1 << CP0TCSt_TCU2)
760 | (1 << CP0TCSt_TCU1)
761 | (1 << CP0TCSt_TCU0)
762 | (1 << CP0TCSt_TMX)
763 | (3 << CP0TCSt_TKSU)
764 | (0xff << CP0TCSt_TASID));
765
766 cu = (v >> CP0St_CU0) & 0xf;
767 mx = (v >> CP0St_MX) & 0x1;
768 ksu = (v >> CP0St_KSU) & 0x3;
769 asid = env->CP0_EntryHi & 0xff;
770
771 tcstatus = cu << CP0TCSt_TCU0;
772 tcstatus |= mx << CP0TCSt_TMX;
773 tcstatus |= ksu << CP0TCSt_TKSU;
774 tcstatus |= asid;
775
776 if (tc == cpu->current_tc) {
777 tcst = &cpu->active_tc.CP0_TCStatus;
778 } else {
779 tcst = &cpu->tcs[tc].CP0_TCStatus;
780 }
781
782 *tcst &= ~mask;
783 *tcst |= tcstatus;
784 compute_hflags(cpu);
785 }
786
787 /* Called for updates to CP0_TCStatus. */
788 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc, target_ulong v)
789 {
790 uint32_t status;
791 uint32_t tcu, tmx, tasid, tksu;
792 uint32_t mask = ((1 << CP0St_CU3)
793 | (1 << CP0St_CU2)
794 | (1 << CP0St_CU1)
795 | (1 << CP0St_CU0)
796 | (1 << CP0St_MX)
797 | (3 << CP0St_KSU));
798
799 tcu = (v >> CP0TCSt_TCU0) & 0xf;
800 tmx = (v >> CP0TCSt_TMX) & 0x1;
801 tasid = v & 0xff;
802 tksu = (v >> CP0TCSt_TKSU) & 0x3;
803
804 status = tcu << CP0St_CU0;
805 status |= tmx << CP0St_MX;
806 status |= tksu << CP0St_KSU;
807
808 cpu->CP0_Status &= ~mask;
809 cpu->CP0_Status |= status;
810
811 /* Sync the TASID with EntryHi. */
812 cpu->CP0_EntryHi &= ~0xff;
813 cpu->CP0_EntryHi = tasid;
814
815 compute_hflags(cpu);
816 }
817
818 /* Called for updates to CP0_EntryHi. */
819 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
820 {
821 int32_t *tcst;
822 uint32_t asid, v = cpu->CP0_EntryHi;
823
824 asid = v & 0xff;
825
826 if (tc == cpu->current_tc) {
827 tcst = &cpu->active_tc.CP0_TCStatus;
828 } else {
829 tcst = &cpu->tcs[tc].CP0_TCStatus;
830 }
831
832 *tcst &= ~0xff;
833 *tcst |= asid;
834 }
835
836 /* CP0 helpers */
837 target_ulong helper_mfc0_mvpcontrol (void)
838 {
839 return env->mvp->CP0_MVPControl;
840 }
841
842 target_ulong helper_mfc0_mvpconf0 (void)
843 {
844 return env->mvp->CP0_MVPConf0;
845 }
846
847 target_ulong helper_mfc0_mvpconf1 (void)
848 {
849 return env->mvp->CP0_MVPConf1;
850 }
851
852 target_ulong helper_mfc0_random (void)
853 {
854 return (int32_t)cpu_mips_get_random(env);
855 }
856
857 target_ulong helper_mfc0_tcstatus (void)
858 {
859 return env->active_tc.CP0_TCStatus;
860 }
861
862 target_ulong helper_mftc0_tcstatus(void)
863 {
864 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
865 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
866
867 if (other_tc == other->current_tc)
868 return other->active_tc.CP0_TCStatus;
869 else
870 return other->tcs[other_tc].CP0_TCStatus;
871 }
872
873 target_ulong helper_mfc0_tcbind (void)
874 {
875 return env->active_tc.CP0_TCBind;
876 }
877
878 target_ulong helper_mftc0_tcbind(void)
879 {
880 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
881 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
882
883 if (other_tc == other->current_tc)
884 return other->active_tc.CP0_TCBind;
885 else
886 return other->tcs[other_tc].CP0_TCBind;
887 }
888
889 target_ulong helper_mfc0_tcrestart (void)
890 {
891 return env->active_tc.PC;
892 }
893
894 target_ulong helper_mftc0_tcrestart(void)
895 {
896 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
897 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
898
899 if (other_tc == other->current_tc)
900 return other->active_tc.PC;
901 else
902 return other->tcs[other_tc].PC;
903 }
904
905 target_ulong helper_mfc0_tchalt (void)
906 {
907 return env->active_tc.CP0_TCHalt;
908 }
909
910 target_ulong helper_mftc0_tchalt(void)
911 {
912 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
913 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
914
915 if (other_tc == other->current_tc)
916 return other->active_tc.CP0_TCHalt;
917 else
918 return other->tcs[other_tc].CP0_TCHalt;
919 }
920
921 target_ulong helper_mfc0_tccontext (void)
922 {
923 return env->active_tc.CP0_TCContext;
924 }
925
926 target_ulong helper_mftc0_tccontext(void)
927 {
928 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
929 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
930
931 if (other_tc == other->current_tc)
932 return other->active_tc.CP0_TCContext;
933 else
934 return other->tcs[other_tc].CP0_TCContext;
935 }
936
937 target_ulong helper_mfc0_tcschedule (void)
938 {
939 return env->active_tc.CP0_TCSchedule;
940 }
941
942 target_ulong helper_mftc0_tcschedule(void)
943 {
944 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
945 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
946
947 if (other_tc == other->current_tc)
948 return other->active_tc.CP0_TCSchedule;
949 else
950 return other->tcs[other_tc].CP0_TCSchedule;
951 }
952
953 target_ulong helper_mfc0_tcschefback (void)
954 {
955 return env->active_tc.CP0_TCScheFBack;
956 }
957
958 target_ulong helper_mftc0_tcschefback(void)
959 {
960 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
961 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
962
963 if (other_tc == other->current_tc)
964 return other->active_tc.CP0_TCScheFBack;
965 else
966 return other->tcs[other_tc].CP0_TCScheFBack;
967 }
968
969 target_ulong helper_mfc0_count (void)
970 {
971 return (int32_t)cpu_mips_get_count(env);
972 }
973
974 target_ulong helper_mftc0_entryhi(void)
975 {
976 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
977 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
978
979 return other->CP0_EntryHi;
980 }
981
982 target_ulong helper_mftc0_cause(void)
983 {
984 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
985 int32_t tccause;
986 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
987
988 if (other_tc == other->current_tc) {
989 tccause = other->CP0_Cause;
990 } else {
991 tccause = other->CP0_Cause;
992 }
993
994 return tccause;
995 }
996
997 target_ulong helper_mftc0_status(void)
998 {
999 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1000 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1001
1002 return other->CP0_Status;
1003 }
1004
1005 target_ulong helper_mfc0_lladdr (void)
1006 {
1007 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
1008 }
1009
1010 target_ulong helper_mfc0_watchlo (uint32_t sel)
1011 {
1012 return (int32_t)env->CP0_WatchLo[sel];
1013 }
1014
1015 target_ulong helper_mfc0_watchhi (uint32_t sel)
1016 {
1017 return env->CP0_WatchHi[sel];
1018 }
1019
1020 target_ulong helper_mfc0_debug (void)
1021 {
1022 target_ulong t0 = env->CP0_Debug;
1023 if (env->hflags & MIPS_HFLAG_DM)
1024 t0 |= 1 << CP0DB_DM;
1025
1026 return t0;
1027 }
1028
1029 target_ulong helper_mftc0_debug(void)
1030 {
1031 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1032 int32_t tcstatus;
1033 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1034
1035 if (other_tc == other->current_tc)
1036 tcstatus = other->active_tc.CP0_Debug_tcstatus;
1037 else
1038 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
1039
1040 /* XXX: Might be wrong, check with EJTAG spec. */
1041 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1042 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1043 }
1044
1045 #if defined(TARGET_MIPS64)
1046 target_ulong helper_dmfc0_tcrestart (void)
1047 {
1048 return env->active_tc.PC;
1049 }
1050
1051 target_ulong helper_dmfc0_tchalt (void)
1052 {
1053 return env->active_tc.CP0_TCHalt;
1054 }
1055
1056 target_ulong helper_dmfc0_tccontext (void)
1057 {
1058 return env->active_tc.CP0_TCContext;
1059 }
1060
1061 target_ulong helper_dmfc0_tcschedule (void)
1062 {
1063 return env->active_tc.CP0_TCSchedule;
1064 }
1065
1066 target_ulong helper_dmfc0_tcschefback (void)
1067 {
1068 return env->active_tc.CP0_TCScheFBack;
1069 }
1070
1071 target_ulong helper_dmfc0_lladdr (void)
1072 {
1073 return env->lladdr >> env->CP0_LLAddr_shift;
1074 }
1075
1076 target_ulong helper_dmfc0_watchlo (uint32_t sel)
1077 {
1078 return env->CP0_WatchLo[sel];
1079 }
1080 #endif /* TARGET_MIPS64 */
1081
1082 void helper_mtc0_index (target_ulong arg1)
1083 {
1084 int num = 1;
1085 unsigned int tmp = env->tlb->nb_tlb;
1086
1087 do {
1088 tmp >>= 1;
1089 num <<= 1;
1090 } while (tmp);
1091 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
1092 }
1093
1094 void helper_mtc0_mvpcontrol (target_ulong arg1)
1095 {
1096 uint32_t mask = 0;
1097 uint32_t newval;
1098
1099 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
1100 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
1101 (1 << CP0MVPCo_EVP);
1102 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1103 mask |= (1 << CP0MVPCo_STLB);
1104 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
1105
1106 // TODO: Enable/disable shared TLB, enable/disable VPEs.
1107
1108 env->mvp->CP0_MVPControl = newval;
1109 }
1110
1111 void helper_mtc0_vpecontrol (target_ulong arg1)
1112 {
1113 uint32_t mask;
1114 uint32_t newval;
1115
1116 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1117 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1118 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
1119
1120 /* Yield scheduler intercept not implemented. */
1121 /* Gating storage scheduler intercept not implemented. */
1122
1123 // TODO: Enable/disable TCs.
1124
1125 env->CP0_VPEControl = newval;
1126 }
1127
1128 void helper_mttc0_vpecontrol(target_ulong arg1)
1129 {
1130 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1131 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1132 uint32_t mask;
1133 uint32_t newval;
1134
1135 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
1136 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
1137 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
1138
1139 /* TODO: Enable/disable TCs. */
1140
1141 other->CP0_VPEControl = newval;
1142 }
1143
1144 target_ulong helper_mftc0_vpecontrol(void)
1145 {
1146 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1147 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1148 /* FIXME: Mask away return zero on read bits. */
1149 return other->CP0_VPEControl;
1150 }
1151
1152 target_ulong helper_mftc0_vpeconf0(void)
1153 {
1154 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1155 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1156
1157 return other->CP0_VPEConf0;
1158 }
1159
1160 void helper_mtc0_vpeconf0 (target_ulong arg1)
1161 {
1162 uint32_t mask = 0;
1163 uint32_t newval;
1164
1165 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1166 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1167 mask |= (0xff << CP0VPEC0_XTC);
1168 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1169 }
1170 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1171
1172 // TODO: TC exclusive handling due to ERL/EXL.
1173
1174 env->CP0_VPEConf0 = newval;
1175 }
1176
1177 void helper_mttc0_vpeconf0(target_ulong arg1)
1178 {
1179 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1180 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1181 uint32_t mask = 0;
1182 uint32_t newval;
1183
1184 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1185 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1186
1187 /* TODO: TC exclusive handling due to ERL/EXL. */
1188 other->CP0_VPEConf0 = newval;
1189 }
1190
1191 void helper_mtc0_vpeconf1 (target_ulong arg1)
1192 {
1193 uint32_t mask = 0;
1194 uint32_t newval;
1195
1196 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1197 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1198 (0xff << CP0VPEC1_NCP1);
1199 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1200
1201 /* UDI not implemented. */
1202 /* CP2 not implemented. */
1203
1204 // TODO: Handle FPU (CP1) binding.
1205
1206 env->CP0_VPEConf1 = newval;
1207 }
1208
1209 void helper_mtc0_yqmask (target_ulong arg1)
1210 {
1211 /* Yield qualifier inputs not implemented. */
1212 env->CP0_YQMask = 0x00000000;
1213 }
1214
1215 void helper_mtc0_vpeopt (target_ulong arg1)
1216 {
1217 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1218 }
1219
1220 void helper_mtc0_entrylo0 (target_ulong arg1)
1221 {
1222 /* Large physaddr (PABITS) not implemented */
1223 /* 1k pages not implemented */
1224 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1225 }
1226
1227 void helper_mtc0_tcstatus (target_ulong arg1)
1228 {
1229 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1230 uint32_t newval;
1231
1232 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1233
1234 env->active_tc.CP0_TCStatus = newval;
1235 sync_c0_tcstatus(env, env->current_tc, newval);
1236 }
1237
1238 void helper_mttc0_tcstatus (target_ulong arg1)
1239 {
1240 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1241 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1242
1243 if (other_tc == other->current_tc)
1244 other->active_tc.CP0_TCStatus = arg1;
1245 else
1246 other->tcs[other_tc].CP0_TCStatus = arg1;
1247 sync_c0_tcstatus(other, other_tc, arg1);
1248 }
1249
1250 void helper_mtc0_tcbind (target_ulong arg1)
1251 {
1252 uint32_t mask = (1 << CP0TCBd_TBE);
1253 uint32_t newval;
1254
1255 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1256 mask |= (1 << CP0TCBd_CurVPE);
1257 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1258 env->active_tc.CP0_TCBind = newval;
1259 }
1260
1261 void helper_mttc0_tcbind (target_ulong arg1)
1262 {
1263 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1264 uint32_t mask = (1 << CP0TCBd_TBE);
1265 uint32_t newval;
1266 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1267
1268 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1269 mask |= (1 << CP0TCBd_CurVPE);
1270 if (other_tc == other->current_tc) {
1271 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1272 other->active_tc.CP0_TCBind = newval;
1273 } else {
1274 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1275 other->tcs[other_tc].CP0_TCBind = newval;
1276 }
1277 }
1278
1279 void helper_mtc0_tcrestart (target_ulong arg1)
1280 {
1281 env->active_tc.PC = arg1;
1282 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1283 env->lladdr = 0ULL;
1284 /* MIPS16 not implemented. */
1285 }
1286
1287 void helper_mttc0_tcrestart (target_ulong arg1)
1288 {
1289 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1290 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1291
1292 if (other_tc == other->current_tc) {
1293 other->active_tc.PC = arg1;
1294 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1295 other->lladdr = 0ULL;
1296 /* MIPS16 not implemented. */
1297 } else {
1298 other->tcs[other_tc].PC = arg1;
1299 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1300 other->lladdr = 0ULL;
1301 /* MIPS16 not implemented. */
1302 }
1303 }
1304
1305 void helper_mtc0_tchalt (target_ulong arg1)
1306 {
1307 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1308
1309 // TODO: Halt TC / Restart (if allocated+active) TC.
1310 if (env->active_tc.CP0_TCHalt & 1) {
1311 mips_tc_sleep(env, env->current_tc);
1312 } else {
1313 mips_tc_wake(env, env->current_tc);
1314 }
1315 }
1316
1317 void helper_mttc0_tchalt (target_ulong arg1)
1318 {
1319 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1320 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1321
1322 // TODO: Halt TC / Restart (if allocated+active) TC.
1323
1324 if (other_tc == other->current_tc)
1325 other->active_tc.CP0_TCHalt = arg1;
1326 else
1327 other->tcs[other_tc].CP0_TCHalt = arg1;
1328
1329 if (arg1 & 1) {
1330 mips_tc_sleep(other, other_tc);
1331 } else {
1332 mips_tc_wake(other, other_tc);
1333 }
1334 }
1335
1336 void helper_mtc0_tccontext (target_ulong arg1)
1337 {
1338 env->active_tc.CP0_TCContext = arg1;
1339 }
1340
1341 void helper_mttc0_tccontext (target_ulong arg1)
1342 {
1343 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1344 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1345
1346 if (other_tc == other->current_tc)
1347 other->active_tc.CP0_TCContext = arg1;
1348 else
1349 other->tcs[other_tc].CP0_TCContext = arg1;
1350 }
1351
1352 void helper_mtc0_tcschedule (target_ulong arg1)
1353 {
1354 env->active_tc.CP0_TCSchedule = arg1;
1355 }
1356
1357 void helper_mttc0_tcschedule (target_ulong arg1)
1358 {
1359 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1360 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1361
1362 if (other_tc == other->current_tc)
1363 other->active_tc.CP0_TCSchedule = arg1;
1364 else
1365 other->tcs[other_tc].CP0_TCSchedule = arg1;
1366 }
1367
1368 void helper_mtc0_tcschefback (target_ulong arg1)
1369 {
1370 env->active_tc.CP0_TCScheFBack = arg1;
1371 }
1372
1373 void helper_mttc0_tcschefback (target_ulong arg1)
1374 {
1375 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1376 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1377
1378 if (other_tc == other->current_tc)
1379 other->active_tc.CP0_TCScheFBack = arg1;
1380 else
1381 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1382 }
1383
1384 void helper_mtc0_entrylo1 (target_ulong arg1)
1385 {
1386 /* Large physaddr (PABITS) not implemented */
1387 /* 1k pages not implemented */
1388 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1389 }
1390
1391 void helper_mtc0_context (target_ulong arg1)
1392 {
1393 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1394 }
1395
1396 void helper_mtc0_pagemask (target_ulong arg1)
1397 {
1398 /* 1k pages not implemented */
1399 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1400 }
1401
1402 void helper_mtc0_pagegrain (target_ulong arg1)
1403 {
1404 /* SmartMIPS not implemented */
1405 /* Large physaddr (PABITS) not implemented */
1406 /* 1k pages not implemented */
1407 env->CP0_PageGrain = 0;
1408 }
1409
1410 void helper_mtc0_wired (target_ulong arg1)
1411 {
1412 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1413 }
1414
1415 void helper_mtc0_srsconf0 (target_ulong arg1)
1416 {
1417 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1418 }
1419
1420 void helper_mtc0_srsconf1 (target_ulong arg1)
1421 {
1422 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1423 }
1424
1425 void helper_mtc0_srsconf2 (target_ulong arg1)
1426 {
1427 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1428 }
1429
1430 void helper_mtc0_srsconf3 (target_ulong arg1)
1431 {
1432 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1433 }
1434
1435 void helper_mtc0_srsconf4 (target_ulong arg1)
1436 {
1437 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1438 }
1439
1440 void helper_mtc0_hwrena (target_ulong arg1)
1441 {
1442 env->CP0_HWREna = arg1 & 0x0000000F;
1443 }
1444
1445 void helper_mtc0_count (target_ulong arg1)
1446 {
1447 cpu_mips_store_count(env, arg1);
1448 }
1449
1450 void helper_mtc0_entryhi (target_ulong arg1)
1451 {
1452 target_ulong old, val;
1453
1454 /* 1k pages not implemented */
1455 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1456 #if defined(TARGET_MIPS64)
1457 val &= env->SEGMask;
1458 #endif
1459 old = env->CP0_EntryHi;
1460 env->CP0_EntryHi = val;
1461 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1462 sync_c0_entryhi(env, env->current_tc);
1463 }
1464 /* If the ASID changes, flush qemu's TLB. */
1465 if ((old & 0xFF) != (val & 0xFF))
1466 cpu_mips_tlb_flush(env, 1);
1467 }
1468
1469 void helper_mttc0_entryhi(target_ulong arg1)
1470 {
1471 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1472 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1473
1474 other->CP0_EntryHi = arg1;
1475 sync_c0_entryhi(other, other_tc);
1476 }
1477
1478 void helper_mtc0_compare (target_ulong arg1)
1479 {
1480 cpu_mips_store_compare(env, arg1);
1481 }
1482
1483 void helper_mtc0_status (target_ulong arg1)
1484 {
1485 uint32_t val, old;
1486 uint32_t mask = env->CP0_Status_rw_bitmask;
1487
1488 val = arg1 & mask;
1489 old = env->CP0_Status;
1490 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1491 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1492 sync_c0_status(env, env->current_tc);
1493 } else {
1494 compute_hflags(env);
1495 }
1496
1497 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1498 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1499 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1500 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1501 env->CP0_Cause);
1502 switch (env->hflags & MIPS_HFLAG_KSU) {
1503 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1504 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1505 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1506 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1507 }
1508 }
1509 }
1510
1511 void helper_mttc0_status(target_ulong arg1)
1512 {
1513 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1514 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1515
1516 other->CP0_Status = arg1 & ~0xf1000018;
1517 sync_c0_status(other, other_tc);
1518 }
1519
1520 void helper_mtc0_intctl (target_ulong arg1)
1521 {
1522 /* vectored interrupts not implemented, no performance counters. */
1523 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1524 }
1525
1526 void helper_mtc0_srsctl (target_ulong arg1)
1527 {
1528 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1529 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1530 }
1531
1532 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1533 {
1534 uint32_t mask = 0x00C00300;
1535 uint32_t old = cpu->CP0_Cause;
1536 int i;
1537
1538 if (cpu->insn_flags & ISA_MIPS32R2) {
1539 mask |= 1 << CP0Ca_DC;
1540 }
1541
1542 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1543
1544 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1545 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1546 cpu_mips_stop_count(cpu);
1547 } else {
1548 cpu_mips_start_count(cpu);
1549 }
1550 }
1551
1552 /* Set/reset software interrupts */
1553 for (i = 0 ; i < 2 ; i++) {
1554 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1555 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1556 }
1557 }
1558 }
1559
1560 void helper_mtc0_cause(target_ulong arg1)
1561 {
1562 mtc0_cause(env, arg1);
1563 }
1564
1565 void helper_mttc0_cause(target_ulong arg1)
1566 {
1567 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1568 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1569
1570 mtc0_cause(other, arg1);
1571 }
1572
1573 target_ulong helper_mftc0_epc(void)
1574 {
1575 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1576 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1577
1578 return other->CP0_EPC;
1579 }
1580
1581 target_ulong helper_mftc0_ebase(void)
1582 {
1583 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1584 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1585
1586 return other->CP0_EBase;
1587 }
1588
1589 void helper_mtc0_ebase (target_ulong arg1)
1590 {
1591 /* vectored interrupts not implemented */
1592 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1593 }
1594
1595 void helper_mttc0_ebase(target_ulong arg1)
1596 {
1597 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1598 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1599 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1600 }
1601
1602 target_ulong helper_mftc0_configx(target_ulong idx)
1603 {
1604 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1605 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1606
1607 switch (idx) {
1608 case 0: return other->CP0_Config0;
1609 case 1: return other->CP0_Config1;
1610 case 2: return other->CP0_Config2;
1611 case 3: return other->CP0_Config3;
1612 /* 4 and 5 are reserved. */
1613 case 6: return other->CP0_Config6;
1614 case 7: return other->CP0_Config7;
1615 default:
1616 break;
1617 }
1618 return 0;
1619 }
1620
1621 void helper_mtc0_config0 (target_ulong arg1)
1622 {
1623 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1624 }
1625
1626 void helper_mtc0_config2 (target_ulong arg1)
1627 {
1628 /* tertiary/secondary caches not implemented */
1629 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1630 }
1631
1632 void helper_mtc0_lladdr (target_ulong arg1)
1633 {
1634 target_long mask = env->CP0_LLAddr_rw_bitmask;
1635 arg1 = arg1 << env->CP0_LLAddr_shift;
1636 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1637 }
1638
1639 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1640 {
1641 /* Watch exceptions for instructions, data loads, data stores
1642 not implemented. */
1643 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1644 }
1645
1646 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1647 {
1648 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1649 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1650 }
1651
1652 void helper_mtc0_xcontext (target_ulong arg1)
1653 {
1654 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1655 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1656 }
1657
1658 void helper_mtc0_framemask (target_ulong arg1)
1659 {
1660 env->CP0_Framemask = arg1; /* XXX */
1661 }
1662
1663 void helper_mtc0_debug (target_ulong arg1)
1664 {
1665 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1666 if (arg1 & (1 << CP0DB_DM))
1667 env->hflags |= MIPS_HFLAG_DM;
1668 else
1669 env->hflags &= ~MIPS_HFLAG_DM;
1670 }
1671
1672 void helper_mttc0_debug(target_ulong arg1)
1673 {
1674 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1675 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1676 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1677
1678 /* XXX: Might be wrong, check with EJTAG spec. */
1679 if (other_tc == other->current_tc)
1680 other->active_tc.CP0_Debug_tcstatus = val;
1681 else
1682 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1683 other->CP0_Debug = (other->CP0_Debug &
1684 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1685 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1686 }
1687
1688 void helper_mtc0_performance0 (target_ulong arg1)
1689 {
1690 env->CP0_Performance0 = arg1 & 0x000007ff;
1691 }
1692
1693 void helper_mtc0_taglo (target_ulong arg1)
1694 {
1695 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1696 }
1697
1698 void helper_mtc0_datalo (target_ulong arg1)
1699 {
1700 env->CP0_DataLo = arg1; /* XXX */
1701 }
1702
1703 void helper_mtc0_taghi (target_ulong arg1)
1704 {
1705 env->CP0_TagHi = arg1; /* XXX */
1706 }
1707
1708 void helper_mtc0_datahi (target_ulong arg1)
1709 {
1710 env->CP0_DataHi = arg1; /* XXX */
1711 }
1712
1713 /* MIPS MT functions */
1714 target_ulong helper_mftgpr(uint32_t sel)
1715 {
1716 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1717 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1718
1719 if (other_tc == other->current_tc)
1720 return other->active_tc.gpr[sel];
1721 else
1722 return other->tcs[other_tc].gpr[sel];
1723 }
1724
1725 target_ulong helper_mftlo(uint32_t sel)
1726 {
1727 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1728 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1729
1730 if (other_tc == other->current_tc)
1731 return other->active_tc.LO[sel];
1732 else
1733 return other->tcs[other_tc].LO[sel];
1734 }
1735
1736 target_ulong helper_mfthi(uint32_t sel)
1737 {
1738 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1739 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1740
1741 if (other_tc == other->current_tc)
1742 return other->active_tc.HI[sel];
1743 else
1744 return other->tcs[other_tc].HI[sel];
1745 }
1746
1747 target_ulong helper_mftacx(uint32_t sel)
1748 {
1749 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1750 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1751
1752 if (other_tc == other->current_tc)
1753 return other->active_tc.ACX[sel];
1754 else
1755 return other->tcs[other_tc].ACX[sel];
1756 }
1757
1758 target_ulong helper_mftdsp(void)
1759 {
1760 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1761 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1762
1763 if (other_tc == other->current_tc)
1764 return other->active_tc.DSPControl;
1765 else
1766 return other->tcs[other_tc].DSPControl;
1767 }
1768
1769 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1770 {
1771 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1772 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1773
1774 if (other_tc == other->current_tc)
1775 other->active_tc.gpr[sel] = arg1;
1776 else
1777 other->tcs[other_tc].gpr[sel] = arg1;
1778 }
1779
1780 void helper_mttlo(target_ulong arg1, uint32_t sel)
1781 {
1782 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1783 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1784
1785 if (other_tc == other->current_tc)
1786 other->active_tc.LO[sel] = arg1;
1787 else
1788 other->tcs[other_tc].LO[sel] = arg1;
1789 }
1790
1791 void helper_mtthi(target_ulong arg1, uint32_t sel)
1792 {
1793 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1794 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1795
1796 if (other_tc == other->current_tc)
1797 other->active_tc.HI[sel] = arg1;
1798 else
1799 other->tcs[other_tc].HI[sel] = arg1;
1800 }
1801
1802 void helper_mttacx(target_ulong arg1, uint32_t sel)
1803 {
1804 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1805 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1806
1807 if (other_tc == other->current_tc)
1808 other->active_tc.ACX[sel] = arg1;
1809 else
1810 other->tcs[other_tc].ACX[sel] = arg1;
1811 }
1812
1813 void helper_mttdsp(target_ulong arg1)
1814 {
1815 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1816 CPUMIPSState *other = mips_cpu_map_tc(&other_tc);
1817
1818 if (other_tc == other->current_tc)
1819 other->active_tc.DSPControl = arg1;
1820 else
1821 other->tcs[other_tc].DSPControl = arg1;
1822 }
1823
1824 /* MIPS MT functions */
1825 target_ulong helper_dmt(void)
1826 {
1827 // TODO
1828 return 0;
1829 }
1830
1831 target_ulong helper_emt(void)
1832 {
1833 // TODO
1834 return 0;
1835 }
1836
1837 target_ulong helper_dvpe(void)
1838 {
1839 CPUMIPSState *other_cpu = first_cpu;
1840 target_ulong prev = env->mvp->CP0_MVPControl;
1841
1842 do {
1843 /* Turn off all VPEs except the one executing the dvpe. */
1844 if (other_cpu != env) {
1845 other_cpu->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1846 mips_vpe_sleep(other_cpu);
1847 }
1848 other_cpu = other_cpu->next_cpu;
1849 } while (other_cpu);
1850 return prev;
1851 }
1852
1853 target_ulong helper_evpe(void)
1854 {
1855 CPUMIPSState *other_cpu = first_cpu;
1856 target_ulong prev = env->mvp->CP0_MVPControl;
1857
1858 do {
1859 if (other_cpu != env
1860 /* If the VPE is WFI, don't disturb its sleep. */
1861 && !mips_vpe_is_wfi(other_cpu)) {
1862 /* Enable the VPE. */
1863 other_cpu->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1864 mips_vpe_wake(other_cpu); /* And wake it up. */
1865 }
1866 other_cpu = other_cpu->next_cpu;
1867 } while (other_cpu);
1868 return prev;
1869 }
1870 #endif /* !CONFIG_USER_ONLY */
1871
1872 void helper_fork(target_ulong arg1, target_ulong arg2)
1873 {
1874 // arg1 = rt, arg2 = rs
1875 arg1 = 0;
1876 // TODO: store to TC register
1877 }
1878
1879 target_ulong helper_yield(target_ulong arg)
1880 {
1881 target_long arg1 = arg;
1882
1883 if (arg1 < 0) {
1884 /* No scheduling policy implemented. */
1885 if (arg1 != -2) {
1886 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1887 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1888 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1889 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1890 helper_raise_exception(EXCP_THREAD);
1891 }
1892 }
1893 } else if (arg1 == 0) {
1894 if (0 /* TODO: TC underflow */) {
1895 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1896 helper_raise_exception(EXCP_THREAD);
1897 } else {
1898 // TODO: Deallocate TC
1899 }
1900 } else if (arg1 > 0) {
1901 /* Yield qualifier inputs not implemented. */
1902 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1903 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1904 helper_raise_exception(EXCP_THREAD);
1905 }
1906 return env->CP0_YQMask;
1907 }
1908
1909 #ifndef CONFIG_USER_ONLY
1910 /* TLB management */
1911 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1912 {
1913 /* Flush qemu's TLB and discard all shadowed entries. */
1914 tlb_flush (env, flush_global);
1915 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1916 }
1917
1918 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1919 {
1920 /* Discard entries from env->tlb[first] onwards. */
1921 while (env->tlb->tlb_in_use > first) {
1922 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1923 }
1924 }
1925
1926 static void r4k_fill_tlb (int idx)
1927 {
1928 r4k_tlb_t *tlb;
1929
1930 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1931 tlb = &env->tlb->mmu.r4k.tlb[idx];
1932 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1933 #if defined(TARGET_MIPS64)
1934 tlb->VPN &= env->SEGMask;
1935 #endif
1936 tlb->ASID = env->CP0_EntryHi & 0xFF;
1937 tlb->PageMask = env->CP0_PageMask;
1938 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1939 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1940 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1941 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1942 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1943 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1944 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1945 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1946 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1947 }
1948
1949 void r4k_helper_tlbwi (void)
1950 {
1951 int idx;
1952
1953 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1954
1955 /* Discard cached TLB entries. We could avoid doing this if the
1956 tlbwi is just upgrading access permissions on the current entry;
1957 that might be a further win. */
1958 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1959
1960 r4k_invalidate_tlb(env, idx, 0);
1961 r4k_fill_tlb(idx);
1962 }
1963
1964 void r4k_helper_tlbwr (void)
1965 {
1966 int r = cpu_mips_get_random(env);
1967
1968 r4k_invalidate_tlb(env, r, 1);
1969 r4k_fill_tlb(r);
1970 }
1971
1972 void r4k_helper_tlbp (void)
1973 {
1974 r4k_tlb_t *tlb;
1975 target_ulong mask;
1976 target_ulong tag;
1977 target_ulong VPN;
1978 uint8_t ASID;
1979 int i;
1980
1981 ASID = env->CP0_EntryHi & 0xFF;
1982 for (i = 0; i < env->tlb->nb_tlb; i++) {
1983 tlb = &env->tlb->mmu.r4k.tlb[i];
1984 /* 1k pages are not supported. */
1985 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1986 tag = env->CP0_EntryHi & ~mask;
1987 VPN = tlb->VPN & ~mask;
1988 /* Check ASID, virtual page number & size */
1989 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1990 /* TLB match */
1991 env->CP0_Index = i;
1992 break;
1993 }
1994 }
1995 if (i == env->tlb->nb_tlb) {
1996 /* No match. Discard any shadow entries, if any of them match. */
1997 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1998 tlb = &env->tlb->mmu.r4k.tlb[i];
1999 /* 1k pages are not supported. */
2000 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
2001 tag = env->CP0_EntryHi & ~mask;
2002 VPN = tlb->VPN & ~mask;
2003 /* Check ASID, virtual page number & size */
2004 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
2005 r4k_mips_tlb_flush_extra (env, i);
2006 break;
2007 }
2008 }
2009
2010 env->CP0_Index |= 0x80000000;
2011 }
2012 }
2013
2014 void r4k_helper_tlbr (void)
2015 {
2016 r4k_tlb_t *tlb;
2017 uint8_t ASID;
2018 int idx;
2019
2020 ASID = env->CP0_EntryHi & 0xFF;
2021 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
2022 tlb = &env->tlb->mmu.r4k.tlb[idx];
2023
2024 /* If this will change the current ASID, flush qemu's TLB. */
2025 if (ASID != tlb->ASID)
2026 cpu_mips_tlb_flush (env, 1);
2027
2028 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
2029
2030 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
2031 env->CP0_PageMask = tlb->PageMask;
2032 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
2033 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
2034 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
2035 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
2036 }
2037
2038 void helper_tlbwi(void)
2039 {
2040 env->tlb->helper_tlbwi();
2041 }
2042
2043 void helper_tlbwr(void)
2044 {
2045 env->tlb->helper_tlbwr();
2046 }
2047
2048 void helper_tlbp(void)
2049 {
2050 env->tlb->helper_tlbp();
2051 }
2052
2053 void helper_tlbr(void)
2054 {
2055 env->tlb->helper_tlbr();
2056 }
2057
2058 /* Specials */
2059 target_ulong helper_di (void)
2060 {
2061 target_ulong t0 = env->CP0_Status;
2062
2063 env->CP0_Status = t0 & ~(1 << CP0St_IE);
2064 return t0;
2065 }
2066
2067 target_ulong helper_ei (void)
2068 {
2069 target_ulong t0 = env->CP0_Status;
2070
2071 env->CP0_Status = t0 | (1 << CP0St_IE);
2072 return t0;
2073 }
2074
2075 static void debug_pre_eret (void)
2076 {
2077 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2078 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2079 env->active_tc.PC, env->CP0_EPC);
2080 if (env->CP0_Status & (1 << CP0St_ERL))
2081 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2082 if (env->hflags & MIPS_HFLAG_DM)
2083 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2084 qemu_log("\n");
2085 }
2086 }
2087
2088 static void debug_post_eret (void)
2089 {
2090 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
2091 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
2092 env->active_tc.PC, env->CP0_EPC);
2093 if (env->CP0_Status & (1 << CP0St_ERL))
2094 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
2095 if (env->hflags & MIPS_HFLAG_DM)
2096 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
2097 switch (env->hflags & MIPS_HFLAG_KSU) {
2098 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
2099 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
2100 case MIPS_HFLAG_KM: qemu_log("\n"); break;
2101 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
2102 }
2103 }
2104 }
2105
2106 static void set_pc (target_ulong error_pc)
2107 {
2108 env->active_tc.PC = error_pc & ~(target_ulong)1;
2109 if (error_pc & 1) {
2110 env->hflags |= MIPS_HFLAG_M16;
2111 } else {
2112 env->hflags &= ~(MIPS_HFLAG_M16);
2113 }
2114 }
2115
2116 void helper_eret (void)
2117 {
2118 debug_pre_eret();
2119 if (env->CP0_Status & (1 << CP0St_ERL)) {
2120 set_pc(env->CP0_ErrorEPC);
2121 env->CP0_Status &= ~(1 << CP0St_ERL);
2122 } else {
2123 set_pc(env->CP0_EPC);
2124 env->CP0_Status &= ~(1 << CP0St_EXL);
2125 }
2126 compute_hflags(env);
2127 debug_post_eret();
2128 env->lladdr = 1;
2129 }
2130
2131 void helper_deret (void)
2132 {
2133 debug_pre_eret();
2134 set_pc(env->CP0_DEPC);
2135
2136 env->hflags &= MIPS_HFLAG_DM;
2137 compute_hflags(env);
2138 debug_post_eret();
2139 env->lladdr = 1;
2140 }
2141 #endif /* !CONFIG_USER_ONLY */
2142
2143 target_ulong helper_rdhwr_cpunum(void)
2144 {
2145 if ((env->hflags & MIPS_HFLAG_CP0) ||
2146 (env->CP0_HWREna & (1 << 0)))
2147 return env->CP0_EBase & 0x3ff;
2148 else
2149 helper_raise_exception(EXCP_RI);
2150
2151 return 0;
2152 }
2153
2154 target_ulong helper_rdhwr_synci_step(void)
2155 {
2156 if ((env->hflags & MIPS_HFLAG_CP0) ||
2157 (env->CP0_HWREna & (1 << 1)))
2158 return env->SYNCI_Step;
2159 else
2160 helper_raise_exception(EXCP_RI);
2161
2162 return 0;
2163 }
2164
2165 target_ulong helper_rdhwr_cc(void)
2166 {
2167 if ((env->hflags & MIPS_HFLAG_CP0) ||
2168 (env->CP0_HWREna & (1 << 2)))
2169 return env->CP0_Count;
2170 else
2171 helper_raise_exception(EXCP_RI);
2172
2173 return 0;
2174 }
2175
2176 target_ulong helper_rdhwr_ccres(void)
2177 {
2178 if ((env->hflags & MIPS_HFLAG_CP0) ||
2179 (env->CP0_HWREna & (1 << 3)))
2180 return env->CCRes;
2181 else
2182 helper_raise_exception(EXCP_RI);
2183
2184 return 0;
2185 }
2186
2187 void helper_pmon (int function)
2188 {
2189 function /= 2;
2190 switch (function) {
2191 case 2: /* TODO: char inbyte(int waitflag); */
2192 if (env->active_tc.gpr[4] == 0)
2193 env->active_tc.gpr[2] = -1;
2194 /* Fall through */
2195 case 11: /* TODO: char inbyte (void); */
2196 env->active_tc.gpr[2] = -1;
2197 break;
2198 case 3:
2199 case 12:
2200 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2201 break;
2202 case 17:
2203 break;
2204 case 158:
2205 {
2206 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2207 printf("%s", fmt);
2208 }
2209 break;
2210 }
2211 }
2212
2213 void helper_wait (void)
2214 {
2215 env->halted = 1;
2216 cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
2217 helper_raise_exception(EXCP_HLT);
2218 }
2219
2220 #if !defined(CONFIG_USER_ONLY)
2221
2222 static void QEMU_NORETURN do_unaligned_access(target_ulong addr, int is_write,
2223 int is_user, uintptr_t retaddr);
2224
2225 #define MMUSUFFIX _mmu
2226 #define ALIGNED_ONLY
2227
2228 #define SHIFT 0
2229 #include "softmmu_template.h"
2230
2231 #define SHIFT 1
2232 #include "softmmu_template.h"
2233
2234 #define SHIFT 2
2235 #include "softmmu_template.h"
2236
2237 #define SHIFT 3
2238 #include "softmmu_template.h"
2239
2240 static void do_unaligned_access(target_ulong addr, int is_write,
2241 int is_user, uintptr_t retaddr)
2242 {
2243 env->CP0_BadVAddr = addr;
2244 do_restore_state (retaddr);
2245 helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
2246 }
2247
2248 void tlb_fill(CPUMIPSState *env1, target_ulong addr, int is_write, int mmu_idx,
2249 uintptr_t retaddr)
2250 {
2251 TranslationBlock *tb;
2252 CPUMIPSState *saved_env;
2253 int ret;
2254
2255 saved_env = env;
2256 env = env1;
2257 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
2258 if (ret) {
2259 if (retaddr) {
2260 /* now we have a real cpu fault */
2261 tb = tb_find_pc(retaddr);
2262 if (tb) {
2263 /* the PC is inside the translated code. It means that we have
2264 a virtual CPU fault */
2265 cpu_restore_state(tb, env, retaddr);
2266 }
2267 }
2268 helper_raise_exception_err(env->exception_index, env->error_code);
2269 }
2270 env = saved_env;
2271 }
2272
2273 void cpu_unassigned_access(CPUMIPSState *env1, target_phys_addr_t addr,
2274 int is_write, int is_exec, int unused, int size)
2275 {
2276 env = env1;
2277
2278 if (is_exec)
2279 helper_raise_exception(EXCP_IBE);
2280 else
2281 helper_raise_exception(EXCP_DBE);
2282 }
2283 #endif /* !CONFIG_USER_ONLY */
2284
2285 /* Complex FPU operations which may need stack space. */
2286
2287 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2288 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2289 #define FLOAT_TWO32 make_float32(1 << 30)
2290 #define FLOAT_TWO64 make_float64(1ULL << 62)
2291 #define FLOAT_QNAN32 0x7fbfffff
2292 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2293 #define FLOAT_SNAN32 0x7fffffff
2294 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2295
2296 /* convert MIPS rounding mode in FCR31 to IEEE library */
2297 static unsigned int ieee_rm[] = {
2298 float_round_nearest_even,
2299 float_round_to_zero,
2300 float_round_up,
2301 float_round_down
2302 };
2303
2304 #define RESTORE_ROUNDING_MODE \
2305 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2306
2307 #define RESTORE_FLUSH_MODE \
2308 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2309
2310 target_ulong helper_cfc1 (uint32_t reg)
2311 {
2312 target_ulong arg1;
2313
2314 switch (reg) {
2315 case 0:
2316 arg1 = (int32_t)env->active_fpu.fcr0;
2317 break;
2318 case 25:
2319 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2320 break;
2321 case 26:
2322 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2323 break;
2324 case 28:
2325 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2326 break;
2327 default:
2328 arg1 = (int32_t)env->active_fpu.fcr31;
2329 break;
2330 }
2331
2332 return arg1;
2333 }
2334
2335 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2336 {
2337 switch(reg) {
2338 case 25:
2339 if (arg1 & 0xffffff00)
2340 return;
2341 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2342 ((arg1 & 0x1) << 23);
2343 break;
2344 case 26:
2345 if (arg1 & 0x007c0000)
2346 return;
2347 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2348 break;
2349 case 28:
2350 if (arg1 & 0x007c0000)
2351 return;
2352 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2353 ((arg1 & 0x4) << 22);
2354 break;
2355 case 31:
2356 if (arg1 & 0x007c0000)
2357 return;
2358 env->active_fpu.fcr31 = arg1;
2359 break;
2360 default:
2361 return;
2362 }
2363 /* set rounding mode */
2364 RESTORE_ROUNDING_MODE;
2365 /* set flush-to-zero mode */
2366 RESTORE_FLUSH_MODE;
2367 set_float_exception_flags(0, &env->active_fpu.fp_status);
2368 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2369 helper_raise_exception(EXCP_FPE);
2370 }
2371
2372 static inline int ieee_ex_to_mips(int xcpt)
2373 {
2374 int ret = 0;
2375 if (xcpt) {
2376 if (xcpt & float_flag_invalid) {
2377 ret |= FP_INVALID;
2378 }
2379 if (xcpt & float_flag_overflow) {
2380 ret |= FP_OVERFLOW;
2381 }
2382 if (xcpt & float_flag_underflow) {
2383 ret |= FP_UNDERFLOW;
2384 }
2385 if (xcpt & float_flag_divbyzero) {
2386 ret |= FP_DIV0;
2387 }
2388 if (xcpt & float_flag_inexact) {
2389 ret |= FP_INEXACT;
2390 }
2391 }
2392 return ret;
2393 }
2394
2395 static inline void update_fcr31(void)
2396 {
2397 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2398
2399 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2400 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2401 helper_raise_exception(EXCP_FPE);
2402 else
2403 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2404 }
2405
2406 /* Float support.
2407 Single precition routines have a "s" suffix, double precision a
2408 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2409 paired single lower "pl", paired single upper "pu". */
2410
2411 /* unary operations, modifying fp status */
2412 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2413 {
2414 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2415 }
2416
2417 uint32_t helper_float_sqrt_s(uint32_t fst0)
2418 {
2419 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2420 }
2421
2422 uint64_t helper_float_cvtd_s(uint32_t fst0)
2423 {
2424 uint64_t fdt2;
2425
2426 set_float_exception_flags(0, &env->active_fpu.fp_status);
2427 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2428 update_fcr31();
2429 return fdt2;
2430 }
2431
2432 uint64_t helper_float_cvtd_w(uint32_t wt0)
2433 {
2434 uint64_t fdt2;
2435
2436 set_float_exception_flags(0, &env->active_fpu.fp_status);
2437 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2438 update_fcr31();
2439 return fdt2;
2440 }
2441
2442 uint64_t helper_float_cvtd_l(uint64_t dt0)
2443 {
2444 uint64_t fdt2;
2445
2446 set_float_exception_flags(0, &env->active_fpu.fp_status);
2447 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2448 update_fcr31();
2449 return fdt2;
2450 }
2451
2452 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2453 {
2454 uint64_t dt2;
2455
2456 set_float_exception_flags(0, &env->active_fpu.fp_status);
2457 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2458 update_fcr31();
2459 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2460 dt2 = FLOAT_SNAN64;
2461 return dt2;
2462 }
2463
2464 uint64_t helper_float_cvtl_s(uint32_t fst0)
2465 {
2466 uint64_t dt2;
2467
2468 set_float_exception_flags(0, &env->active_fpu.fp_status);
2469 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2470 update_fcr31();
2471 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2472 dt2 = FLOAT_SNAN64;
2473 return dt2;
2474 }
2475
2476 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2477 {
2478 uint32_t fst2;
2479 uint32_t fsth2;
2480
2481 set_float_exception_flags(0, &env->active_fpu.fp_status);
2482 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2483 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2484 update_fcr31();
2485 return ((uint64_t)fsth2 << 32) | fst2;
2486 }
2487
2488 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2489 {
2490 uint32_t wt2;
2491 uint32_t wth2;
2492
2493 set_float_exception_flags(0, &env->active_fpu.fp_status);
2494 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2495 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2496 update_fcr31();
2497 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2498 wt2 = FLOAT_SNAN32;
2499 wth2 = FLOAT_SNAN32;
2500 }
2501 return ((uint64_t)wth2 << 32) | wt2;
2502 }
2503
2504 uint32_t helper_float_cvts_d(uint64_t fdt0)
2505 {
2506 uint32_t fst2;
2507
2508 set_float_exception_flags(0, &env->active_fpu.fp_status);
2509 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2510 update_fcr31();
2511 return fst2;
2512 }
2513
2514 uint32_t helper_float_cvts_w(uint32_t wt0)
2515 {
2516 uint32_t fst2;
2517
2518 set_float_exception_flags(0, &env->active_fpu.fp_status);
2519 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2520 update_fcr31();
2521 return fst2;
2522 }
2523
2524 uint32_t helper_float_cvts_l(uint64_t dt0)
2525 {
2526 uint32_t fst2;
2527
2528 set_float_exception_flags(0, &env->active_fpu.fp_status);
2529 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2530 update_fcr31();
2531 return fst2;
2532 }
2533
2534 uint32_t helper_float_cvts_pl(uint32_t wt0)
2535 {
2536 uint32_t wt2;
2537
2538 set_float_exception_flags(0, &env->active_fpu.fp_status);
2539 wt2 = wt0;
2540 update_fcr31();
2541 return wt2;
2542 }
2543
2544 uint32_t helper_float_cvts_pu(uint32_t wth0)
2545 {
2546 uint32_t wt2;
2547
2548 set_float_exception_flags(0, &env->active_fpu.fp_status);
2549 wt2 = wth0;
2550 update_fcr31();
2551 return wt2;
2552 }
2553
2554 uint32_t helper_float_cvtw_s(uint32_t fst0)
2555 {
2556 uint32_t wt2;
2557
2558 set_float_exception_flags(0, &env->active_fpu.fp_status);
2559 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2560 update_fcr31();
2561 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2562 wt2 = FLOAT_SNAN32;
2563 return wt2;
2564 }
2565
2566 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2567 {
2568 uint32_t wt2;
2569
2570 set_float_exception_flags(0, &env->active_fpu.fp_status);
2571 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2572 update_fcr31();
2573 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2574 wt2 = FLOAT_SNAN32;
2575 return wt2;
2576 }
2577
2578 uint64_t helper_float_roundl_d(uint64_t fdt0)
2579 {
2580 uint64_t dt2;
2581
2582 set_float_exception_flags(0, &env->active_fpu.fp_status);
2583 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2584 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2585 RESTORE_ROUNDING_MODE;
2586 update_fcr31();
2587 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2588 dt2 = FLOAT_SNAN64;
2589 return dt2;
2590 }
2591
2592 uint64_t helper_float_roundl_s(uint32_t fst0)
2593 {
2594 uint64_t dt2;
2595
2596 set_float_exception_flags(0, &env->active_fpu.fp_status);
2597 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2598 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2599 RESTORE_ROUNDING_MODE;
2600 update_fcr31();
2601 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2602 dt2 = FLOAT_SNAN64;
2603 return dt2;
2604 }
2605
2606 uint32_t helper_float_roundw_d(uint64_t fdt0)
2607 {
2608 uint32_t wt2;
2609
2610 set_float_exception_flags(0, &env->active_fpu.fp_status);
2611 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2612 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2613 RESTORE_ROUNDING_MODE;
2614 update_fcr31();
2615 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2616 wt2 = FLOAT_SNAN32;
2617 return wt2;
2618 }
2619
2620 uint32_t helper_float_roundw_s(uint32_t fst0)
2621 {
2622 uint32_t wt2;
2623
2624 set_float_exception_flags(0, &env->active_fpu.fp_status);
2625 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2626 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2627 RESTORE_ROUNDING_MODE;
2628 update_fcr31();
2629 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2630 wt2 = FLOAT_SNAN32;
2631 return wt2;
2632 }
2633
2634 uint64_t helper_float_truncl_d(uint64_t fdt0)
2635 {
2636 uint64_t dt2;
2637
2638 set_float_exception_flags(0, &env->active_fpu.fp_status);
2639 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2640 update_fcr31();
2641 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2642 dt2 = FLOAT_SNAN64;
2643 return dt2;
2644 }
2645
2646 uint64_t helper_float_truncl_s(uint32_t fst0)
2647 {
2648 uint64_t dt2;
2649
2650 set_float_exception_flags(0, &env->active_fpu.fp_status);
2651 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2652 update_fcr31();
2653 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2654 dt2 = FLOAT_SNAN64;
2655 return dt2;
2656 }
2657
2658 uint32_t helper_float_truncw_d(uint64_t fdt0)
2659 {
2660 uint32_t wt2;
2661
2662 set_float_exception_flags(0, &env->active_fpu.fp_status);
2663 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2664 update_fcr31();
2665 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2666 wt2 = FLOAT_SNAN32;
2667 return wt2;
2668 }
2669
2670 uint32_t helper_float_truncw_s(uint32_t fst0)
2671 {
2672 uint32_t wt2;
2673
2674 set_float_exception_flags(0, &env->active_fpu.fp_status);
2675 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2676 update_fcr31();
2677 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2678 wt2 = FLOAT_SNAN32;
2679 return wt2;
2680 }
2681
2682 uint64_t helper_float_ceill_d(uint64_t fdt0)
2683 {
2684 uint64_t dt2;
2685
2686 set_float_exception_flags(0, &env->active_fpu.fp_status);
2687 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2688 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2689 RESTORE_ROUNDING_MODE;
2690 update_fcr31();
2691 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2692 dt2 = FLOAT_SNAN64;
2693 return dt2;
2694 }
2695
2696 uint64_t helper_float_ceill_s(uint32_t fst0)
2697 {
2698 uint64_t dt2;
2699
2700 set_float_exception_flags(0, &env->active_fpu.fp_status);
2701 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2702 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2703 RESTORE_ROUNDING_MODE;
2704 update_fcr31();
2705 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2706 dt2 = FLOAT_SNAN64;
2707 return dt2;
2708 }
2709
2710 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2711 {
2712 uint32_t wt2;
2713
2714 set_float_exception_flags(0, &env->active_fpu.fp_status);
2715 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2716 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2717 RESTORE_ROUNDING_MODE;
2718 update_fcr31();
2719 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2720 wt2 = FLOAT_SNAN32;
2721 return wt2;
2722 }
2723
2724 uint32_t helper_float_ceilw_s(uint32_t fst0)
2725 {
2726 uint32_t wt2;
2727
2728 set_float_exception_flags(0, &env->active_fpu.fp_status);
2729 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2730 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2731 RESTORE_ROUNDING_MODE;
2732 update_fcr31();
2733 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2734 wt2 = FLOAT_SNAN32;
2735 return wt2;
2736 }
2737
2738 uint64_t helper_float_floorl_d(uint64_t fdt0)
2739 {
2740 uint64_t dt2;
2741
2742 set_float_exception_flags(0, &env->active_fpu.fp_status);
2743 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2744 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2745 RESTORE_ROUNDING_MODE;
2746 update_fcr31();
2747 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2748 dt2 = FLOAT_SNAN64;
2749 return dt2;
2750 }
2751
2752 uint64_t helper_float_floorl_s(uint32_t fst0)
2753 {
2754 uint64_t dt2;
2755
2756 set_float_exception_flags(0, &env->active_fpu.fp_status);
2757 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2758 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2759 RESTORE_ROUNDING_MODE;
2760 update_fcr31();
2761 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2762 dt2 = FLOAT_SNAN64;
2763 return dt2;
2764 }
2765
2766 uint32_t helper_float_floorw_d(uint64_t fdt0)
2767 {
2768 uint32_t wt2;
2769
2770 set_float_exception_flags(0, &env->active_fpu.fp_status);
2771 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2772 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2773 RESTORE_ROUNDING_MODE;
2774 update_fcr31();
2775 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2776 wt2 = FLOAT_SNAN32;
2777 return wt2;
2778 }
2779
2780 uint32_t helper_float_floorw_s(uint32_t fst0)
2781 {
2782 uint32_t wt2;
2783
2784 set_float_exception_flags(0, &env->active_fpu.fp_status);
2785 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2786 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2787 RESTORE_ROUNDING_MODE;
2788 update_fcr31();
2789 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2790 wt2 = FLOAT_SNAN32;
2791 return wt2;
2792 }
2793
2794 /* unary operations, not modifying fp status */
2795 #define FLOAT_UNOP(name) \
2796 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2797 { \
2798 return float64_ ## name(fdt0); \
2799 } \
2800 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2801 { \
2802 return float32_ ## name(fst0); \
2803 } \
2804 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2805 { \
2806 uint32_t wt0; \
2807 uint32_t wth0; \
2808 \
2809 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2810 wth0 = float32_ ## name(fdt0 >> 32); \
2811 return ((uint64_t)wth0 << 32) | wt0; \
2812 }
2813 FLOAT_UNOP(abs)
2814 FLOAT_UNOP(chs)
2815 #undef FLOAT_UNOP
2816
2817 /* MIPS specific unary operations */
2818 uint64_t helper_float_recip_d(uint64_t fdt0)
2819 {
2820 uint64_t fdt2;
2821
2822 set_float_exception_flags(0, &env->active_fpu.fp_status);
2823 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2824 update_fcr31();
2825 return fdt2;
2826 }
2827
2828 uint32_t helper_float_recip_s(uint32_t fst0)
2829 {
2830 uint32_t fst2;
2831
2832 set_float_exception_flags(0, &env->active_fpu.fp_status);
2833 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2834 update_fcr31();
2835 return fst2;
2836 }
2837
2838 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2839 {
2840 uint64_t fdt2;
2841
2842 set_float_exception_flags(0, &env->active_fpu.fp_status);
2843 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2844 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2845 update_fcr31();
2846 return fdt2;
2847 }
2848
2849 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2850 {
2851 uint32_t fst2;
2852
2853 set_float_exception_flags(0, &env->active_fpu.fp_status);
2854 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2855 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2856 update_fcr31();
2857 return fst2;
2858 }
2859
2860 uint64_t helper_float_recip1_d(uint64_t fdt0)
2861 {
2862 uint64_t fdt2;
2863
2864 set_float_exception_flags(0, &env->active_fpu.fp_status);
2865 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2866 update_fcr31();
2867 return fdt2;
2868 }
2869
2870 uint32_t helper_float_recip1_s(uint32_t fst0)
2871 {
2872 uint32_t fst2;
2873
2874 set_float_exception_flags(0, &env->active_fpu.fp_status);
2875 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2876 update_fcr31();
2877 return fst2;
2878 }
2879
2880 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2881 {
2882 uint32_t fst2;
2883 uint32_t fsth2;
2884
2885 set_float_exception_flags(0, &env->active_fpu.fp_status);
2886 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2887 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2888 update_fcr31();
2889 return ((uint64_t)fsth2 << 32) | fst2;
2890 }
2891
2892 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2893 {
2894 uint64_t fdt2;
2895
2896 set_float_exception_flags(0, &env->active_fpu.fp_status);
2897 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2898 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2899 update_fcr31();
2900 return fdt2;
2901 }
2902
2903 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2904 {
2905 uint32_t fst2;
2906
2907 set_float_exception_flags(0, &env->active_fpu.fp_status);
2908 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2909 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2910 update_fcr31();
2911 return fst2;
2912 }
2913
2914 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2915 {
2916 uint32_t fst2;
2917 uint32_t fsth2;
2918
2919 set_float_exception_flags(0, &env->active_fpu.fp_status);
2920 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2921 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2922 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2923 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2924 update_fcr31();
2925 return ((uint64_t)fsth2 << 32) | fst2;
2926 }
2927
2928 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2929
2930 /* binary operations */
2931 #define FLOAT_BINOP(name) \
2932 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2933 { \
2934 uint64_t dt2; \
2935 \
2936 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2937 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2938 update_fcr31(); \
2939 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2940 dt2 = FLOAT_QNAN64; \
2941 return dt2; \
2942 } \
2943 \
2944 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2945 { \
2946 uint32_t wt2; \
2947 \
2948 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2949 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2950 update_fcr31(); \
2951 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2952 wt2 = FLOAT_QNAN32; \
2953 return wt2; \
2954 } \
2955 \
2956 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2957 { \
2958 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2959 uint32_t fsth0 = fdt0 >> 32; \
2960 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2961 uint32_t fsth1 = fdt1 >> 32; \
2962 uint32_t wt2; \
2963 uint32_t wth2; \
2964 \
2965 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2966 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2967 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2968 update_fcr31(); \
2969 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2970 wt2 = FLOAT_QNAN32; \
2971 wth2 = FLOAT_QNAN32; \
2972 } \
2973 return ((uint64_t)wth2 << 32) | wt2; \
2974 }
2975
2976 FLOAT_BINOP(add)
2977 FLOAT_BINOP(sub)
2978 FLOAT_BINOP(mul)
2979 FLOAT_BINOP(div)
2980 #undef FLOAT_BINOP
2981
2982 /* ternary operations */
2983 #define FLOAT_TERNOP(name1, name2) \
2984 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2985 uint64_t fdt2) \
2986 { \
2987 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2988 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2989 } \
2990 \
2991 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2992 uint32_t fst2) \
2993 { \
2994 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2995 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2996 } \
2997 \
2998 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2999 uint64_t fdt2) \
3000 { \
3001 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3002 uint32_t fsth0 = fdt0 >> 32; \
3003 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3004 uint32_t fsth1 = fdt1 >> 32; \
3005 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3006 uint32_t fsth2 = fdt2 >> 32; \
3007 \
3008 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
3009 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
3010 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
3011 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
3012 return ((uint64_t)fsth2 << 32) | fst2; \
3013 }
3014
3015 FLOAT_TERNOP(mul, add)
3016 FLOAT_TERNOP(mul, sub)
3017 #undef FLOAT_TERNOP
3018
3019 /* negated ternary operations */
3020 #define FLOAT_NTERNOP(name1, name2) \
3021 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
3022 uint64_t fdt2) \
3023 { \
3024 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
3025 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
3026 return float64_chs(fdt2); \
3027 } \
3028 \
3029 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
3030 uint32_t fst2) \
3031 { \
3032 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
3033 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
3034 return float32_chs(fst2); \
3035 } \
3036 \
3037 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
3038 uint64_t fdt2) \
3039 { \
3040 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
3041 uint32_t fsth0 = fdt0 >> 32; \
3042 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
3043 uint32_t fsth1 = fdt1 >> 32; \
3044 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
3045 uint32_t fsth2 = fdt2 >> 32; \
3046 \
3047 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
3048 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
3049 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
3050 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
3051 fst2 = float32_chs(fst2); \
3052 fsth2 = float32_chs(fsth2); \
3053 return ((uint64_t)fsth2 << 32) | fst2; \
3054 }
3055
3056 FLOAT_NTERNOP(mul, add)
3057 FLOAT_NTERNOP(mul, sub)
3058 #undef FLOAT_NTERNOP
3059
3060 /* MIPS specific binary operations */
3061 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
3062 {
3063 set_float_exception_flags(0, &env->active_fpu.fp_status);
3064 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3065 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
3066 update_fcr31();
3067 return fdt2;
3068 }
3069
3070 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
3071 {
3072 set_float_exception_flags(0, &env->active_fpu.fp_status);
3073 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3074 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
3075 update_fcr31();
3076 return fst2;
3077 }
3078
3079 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
3080 {
3081 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3082 uint32_t fsth0 = fdt0 >> 32;
3083 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3084 uint32_t fsth2 = fdt2 >> 32;
3085
3086 set_float_exception_flags(0, &env->active_fpu.fp_status);
3087 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3088 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3089 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
3090 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
3091 update_fcr31();
3092 return ((uint64_t)fsth2 << 32) | fst2;
3093 }
3094
3095 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
3096 {
3097 set_float_exception_flags(0, &env->active_fpu.fp_status);
3098 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
3099 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
3100 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
3101 update_fcr31();
3102 return fdt2;
3103 }
3104
3105 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
3106 {
3107 set_float_exception_flags(0, &env->active_fpu.fp_status);
3108 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3109 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
3110 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3111 update_fcr31();
3112 return fst2;
3113 }
3114
3115 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
3116 {
3117 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3118 uint32_t fsth0 = fdt0 >> 32;
3119 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
3120 uint32_t fsth2 = fdt2 >> 32;
3121
3122 set_float_exception_flags(0, &env->active_fpu.fp_status);
3123 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
3124 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
3125 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
3126 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
3127 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
3128 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
3129 update_fcr31();
3130 return ((uint64_t)fsth2 << 32) | fst2;
3131 }
3132
3133 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
3134 {
3135 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3136 uint32_t fsth0 = fdt0 >> 32;
3137 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3138 uint32_t fsth1 = fdt1 >> 32;
3139 uint32_t fst2;
3140 uint32_t fsth2;
3141
3142 set_float_exception_flags(0, &env->active_fpu.fp_status);
3143 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
3144 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
3145 update_fcr31();
3146 return ((uint64_t)fsth2 << 32) | fst2;
3147 }
3148
3149 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
3150 {
3151 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3152 uint32_t fsth0 = fdt0 >> 32;
3153 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3154 uint32_t fsth1 = fdt1 >> 32;
3155 uint32_t fst2;
3156 uint32_t fsth2;
3157
3158 set_float_exception_flags(0, &env->active_fpu.fp_status);
3159 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3160 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3161 update_fcr31();
3162 return ((uint64_t)fsth2 << 32) | fst2;
3163 }
3164
3165 /* compare operations */
3166 #define FOP_COND_D(op, cond) \
3167 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3168 { \
3169 int c; \
3170 set_float_exception_flags(0, &env->active_fpu.fp_status); \
3171 c = cond; \
3172 update_fcr31(); \
3173 if (c) \
3174 SET_FP_COND(cc, env->active_fpu); \
3175 else \
3176 CLEAR_FP_COND(cc, env->active_fpu); \
3177 } \
3178 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3179 { \
3180 int c; \
3181 set_float_exception_flags(0, &env->active_fpu.fp_status); \
3182 fdt0 = float64_abs(fdt0); \
3183 fdt1 = float64_abs(fdt1); \
3184 c = cond; \
3185 update_fcr31(); \
3186 if (c) \
3187 SET_FP_COND(cc, env->active_fpu); \
3188 else \
3189 CLEAR_FP_COND(cc, env->active_fpu); \
3190 }
3191
3192 /* NOTE: the comma operator will make "cond" to eval to false,
3193 * but float64_unordered_quiet() is still called. */
3194 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3195 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3196 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3197 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3198 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3199 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3200 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3201 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3202 /* NOTE: the comma operator will make "cond" to eval to false,
3203 * but float64_unordered() is still called. */
3204 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3205 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3206 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3207 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3208 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3209 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3210 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3211 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3212
3213 #define FOP_COND_S(op, cond) \
3214 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
3215 { \
3216 int c; \
3217 set_float_exception_flags(0, &env->active_fpu.fp_status); \
3218 c = cond; \
3219 update_fcr31(); \
3220 if (c) \
3221 SET_FP_COND(cc, env->active_fpu); \
3222 else \
3223 CLEAR_FP_COND(cc, env->active_fpu); \
3224 } \
3225 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
3226 { \
3227 int c; \
3228 set_float_exception_flags(0, &env->active_fpu.fp_status); \
3229 fst0 = float32_abs(fst0); \
3230 fst1 = float32_abs(fst1); \
3231 c = cond; \
3232 update_fcr31(); \
3233 if (c) \
3234 SET_FP_COND(cc, env->active_fpu); \
3235 else \
3236 CLEAR_FP_COND(cc, env->active_fpu); \
3237 }
3238
3239 /* NOTE: the comma operator will make "cond" to eval to false,
3240 * but float32_unordered_quiet() is still called. */
3241 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3242 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3243 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3244 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3245 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3246 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3247 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3248 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3249 /* NOTE: the comma operator will make "cond" to eval to false,
3250 * but float32_unordered() is still called. */
3251 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3252 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3253 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3254 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3255 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3256 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3257 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3258 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3259
3260 #define FOP_COND_PS(op, condl, condh) \
3261 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3262 { \
3263 uint32_t fst0, fsth0, fst1, fsth1; \
3264 int ch, cl; \
3265 set_float_exception_flags(0, &env->active_fpu.fp_status); \
3266 fst0 = fdt0 & 0XFFFFFFFF; \
3267 fsth0 = fdt0 >> 32; \
3268 fst1 = fdt1 & 0XFFFFFFFF; \
3269 fsth1 = fdt1 >> 32; \
3270 cl = condl; \
3271 ch = condh; \
3272 update_fcr31(); \
3273 if (cl) \
3274 SET_FP_COND(cc, env->active_fpu); \
3275 else \
3276 CLEAR_FP_COND(cc, env->active_fpu); \
3277 if (ch) \
3278 SET_FP_COND(cc + 1, env->active_fpu); \
3279 else \
3280 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3281 } \
3282 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3283 { \
3284 uint32_t fst0, fsth0, fst1, fsth1; \
3285 int ch, cl; \
3286 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3287 fsth0 = float32_abs(fdt0 >> 32); \
3288 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3289 fsth1 = float32_abs(fdt1 >> 32); \
3290 cl = condl; \
3291 ch = condh; \
3292 update_fcr31(); \
3293 if (cl) \
3294 SET_FP_COND(cc, env->active_fpu); \
3295 else \
3296 CLEAR_FP_COND(cc, env->active_fpu); \
3297 if (ch) \
3298 SET_FP_COND(cc + 1, env->active_fpu); \
3299 else \
3300 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3301 }
3302
3303 /* NOTE: the comma operator will make "cond" to eval to false,
3304 * but float32_unordered_quiet() is still called. */
3305 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3306 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3307 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3308 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3309 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3310 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3311 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3312 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3313 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3314 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3315 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3316 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3317 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3318 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3319 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3320 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3321 /* NOTE: the comma operator will make "cond" to eval to false,
3322 * but float32_unordered() is still called. */
3323 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3324 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3325 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3326 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3327 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3328 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3329 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3330 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3331 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3332 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3333 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3334 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3335 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3336 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3337 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3338 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))