]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
target-mips: convert bitfield ops to TCG
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
27
28 void do_raise_exception_err (uint32_t exception, int error_code)
29 {
30 #if 1
31 if (logfile && exception < 0x100)
32 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33 #endif
34 env->exception_index = exception;
35 env->error_code = error_code;
36 cpu_loop_exit();
37 }
38
39 void do_raise_exception (uint32_t exception)
40 {
41 do_raise_exception_err(exception, 0);
42 }
43
44 void do_interrupt_restart (void)
45 {
46 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
47 !(env->CP0_Status & (1 << CP0St_ERL)) &&
48 !(env->hflags & MIPS_HFLAG_DM) &&
49 (env->CP0_Status & (1 << CP0St_IE)) &&
50 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
51 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
52 do_raise_exception(EXCP_EXT_INTERRUPT);
53 }
54 }
55
56 void do_restore_state (void *pc_ptr)
57 {
58 TranslationBlock *tb;
59 unsigned long pc = (unsigned long) pc_ptr;
60
61 tb = tb_find_pc (pc);
62 if (tb) {
63 cpu_restore_state (tb, env, pc, NULL);
64 }
65 }
66
67 target_ulong do_clo (target_ulong t0)
68 {
69 return clo32(t0);
70 }
71
72 target_ulong do_clz (target_ulong t0)
73 {
74 return clz32(t0);
75 }
76
77 #if defined(TARGET_MIPS64)
78 target_ulong do_dclo (target_ulong t0)
79 {
80 return clo64(t0);
81 }
82
83 target_ulong do_dclz (target_ulong t0)
84 {
85 return clz64(t0);
86 }
87 #endif /* TARGET_MIPS64 */
88
89 /* 64 bits arithmetic for 32 bits hosts */
90 static inline uint64_t get_HILO (void)
91 {
92 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
93 }
94
95 static inline void set_HILO (uint64_t HILO)
96 {
97 env->active_tc.LO[0] = (int32_t)HILO;
98 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
99 }
100
101 static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
102 {
103 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
104 t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
105 }
106
107 static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
108 {
109 t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
110 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
111 }
112
113 #if TARGET_LONG_BITS > HOST_LONG_BITS
114 void do_madd (target_ulong t0, target_ulong t1)
115 {
116 int64_t tmp;
117
118 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
119 set_HILO((int64_t)get_HILO() + tmp);
120 }
121
122 void do_maddu (target_ulong t0, target_ulong t1)
123 {
124 uint64_t tmp;
125
126 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
127 set_HILO(get_HILO() + tmp);
128 }
129
130 void do_msub (target_ulong t0, target_ulong t1)
131 {
132 int64_t tmp;
133
134 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
135 set_HILO((int64_t)get_HILO() - tmp);
136 }
137
138 void do_msubu (target_ulong t0, target_ulong t1)
139 {
140 uint64_t tmp;
141
142 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
143 set_HILO(get_HILO() - tmp);
144 }
145 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
146
147 /* Multiplication variants of the vr54xx. */
148 target_ulong do_muls (target_ulong t0, target_ulong t1)
149 {
150 set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
151
152 return t0;
153 }
154
155 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
156 {
157 set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
158
159 return t0;
160 }
161
162 target_ulong do_macc (target_ulong t0, target_ulong t1)
163 {
164 set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
165
166 return t0;
167 }
168
169 target_ulong do_macchi (target_ulong t0, target_ulong t1)
170 {
171 set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
172
173 return t0;
174 }
175
176 target_ulong do_maccu (target_ulong t0, target_ulong t1)
177 {
178 set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
179
180 return t0;
181 }
182
183 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
184 {
185 set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
186
187 return t0;
188 }
189
190 target_ulong do_msac (target_ulong t0, target_ulong t1)
191 {
192 set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
193
194 return t0;
195 }
196
197 target_ulong do_msachi (target_ulong t0, target_ulong t1)
198 {
199 set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
200
201 return t0;
202 }
203
204 target_ulong do_msacu (target_ulong t0, target_ulong t1)
205 {
206 set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
207
208 return t0;
209 }
210
211 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
212 {
213 set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
214
215 return t0;
216 }
217
218 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
219 {
220 set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
221
222 return t0;
223 }
224
225 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
226 {
227 set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
228
229 return t0;
230 }
231
232 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
233 {
234 set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
235
236 return t0;
237 }
238
239 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
240 {
241 set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
242
243 return t0;
244 }
245
246 #ifdef TARGET_MIPS64
247 void do_dmult (target_ulong t0, target_ulong t1)
248 {
249 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
250 }
251
252 void do_dmultu (target_ulong t0, target_ulong t1)
253 {
254 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
255 }
256 #endif
257
258 #ifdef TARGET_WORDS_BIGENDIAN
259 #define GET_LMASK(v) ((v) & 3)
260 #define GET_OFFSET(addr, offset) (addr + (offset))
261 #else
262 #define GET_LMASK(v) (((v) & 3) ^ 3)
263 #define GET_OFFSET(addr, offset) (addr - (offset))
264 #endif
265
266 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
267 {
268 target_ulong tmp;
269
270 #ifdef CONFIG_USER_ONLY
271 #define ldfun ldub_raw
272 #else
273 int (*ldfun)(target_ulong);
274
275 switch (mem_idx)
276 {
277 case 0: ldfun = ldub_kernel; break;
278 case 1: ldfun = ldub_super; break;
279 default:
280 case 2: ldfun = ldub_user; break;
281 }
282 #endif
283 tmp = ldfun(t0);
284 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
285
286 if (GET_LMASK(t0) <= 2) {
287 tmp = ldfun(GET_OFFSET(t0, 1));
288 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
289 }
290
291 if (GET_LMASK(t0) <= 1) {
292 tmp = ldfun(GET_OFFSET(t0, 2));
293 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
294 }
295
296 if (GET_LMASK(t0) == 0) {
297 tmp = ldfun(GET_OFFSET(t0, 3));
298 t1 = (t1 & 0xFFFFFF00) | tmp;
299 }
300 return (int32_t)t1;
301 }
302
303 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
304 {
305 target_ulong tmp;
306
307 #ifdef CONFIG_USER_ONLY
308 #define ldfun ldub_raw
309 #else
310 int (*ldfun)(target_ulong);
311
312 switch (mem_idx)
313 {
314 case 0: ldfun = ldub_kernel; break;
315 case 1: ldfun = ldub_super; break;
316 default:
317 case 2: ldfun = ldub_user; break;
318 }
319 #endif
320 tmp = ldfun(t0);
321 t1 = (t1 & 0xFFFFFF00) | tmp;
322
323 if (GET_LMASK(t0) >= 1) {
324 tmp = ldfun(GET_OFFSET(t0, -1));
325 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
326 }
327
328 if (GET_LMASK(t0) >= 2) {
329 tmp = ldfun(GET_OFFSET(t0, -2));
330 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
331 }
332
333 if (GET_LMASK(t0) == 3) {
334 tmp = ldfun(GET_OFFSET(t0, -3));
335 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
336 }
337 return (int32_t)t1;
338 }
339
340 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
341 {
342 #ifdef CONFIG_USER_ONLY
343 #define stfun stb_raw
344 #else
345 void (*stfun)(target_ulong, int);
346
347 switch (mem_idx)
348 {
349 case 0: stfun = stb_kernel; break;
350 case 1: stfun = stb_super; break;
351 default:
352 case 2: stfun = stb_user; break;
353 }
354 #endif
355 stfun(t0, (uint8_t)(t1 >> 24));
356
357 if (GET_LMASK(t0) <= 2)
358 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
359
360 if (GET_LMASK(t0) <= 1)
361 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
362
363 if (GET_LMASK(t0) == 0)
364 stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
365 }
366
367 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
368 {
369 #ifdef CONFIG_USER_ONLY
370 #define stfun stb_raw
371 #else
372 void (*stfun)(target_ulong, int);
373
374 switch (mem_idx)
375 {
376 case 0: stfun = stb_kernel; break;
377 case 1: stfun = stb_super; break;
378 default:
379 case 2: stfun = stb_user; break;
380 }
381 #endif
382 stfun(t0, (uint8_t)t1);
383
384 if (GET_LMASK(t0) >= 1)
385 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
386
387 if (GET_LMASK(t0) >= 2)
388 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
389
390 if (GET_LMASK(t0) == 3)
391 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
392 }
393
394 #if defined(TARGET_MIPS64)
395 /* "half" load and stores. We must do the memory access inline,
396 or fault handling won't work. */
397
398 #ifdef TARGET_WORDS_BIGENDIAN
399 #define GET_LMASK64(v) ((v) & 7)
400 #else
401 #define GET_LMASK64(v) (((v) & 7) ^ 7)
402 #endif
403
404 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
405 {
406 uint64_t tmp;
407
408 #ifdef CONFIG_USER_ONLY
409 #define ldfun ldub_raw
410 #else
411 int (*ldfun)(target_ulong);
412
413 switch (mem_idx)
414 {
415 case 0: ldfun = ldub_kernel; break;
416 case 1: ldfun = ldub_super; break;
417 default:
418 case 2: ldfun = ldub_user; break;
419 }
420 #endif
421 tmp = ldfun(t0);
422 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
423
424 if (GET_LMASK64(t0) <= 6) {
425 tmp = ldfun(GET_OFFSET(t0, 1));
426 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
427 }
428
429 if (GET_LMASK64(t0) <= 5) {
430 tmp = ldfun(GET_OFFSET(t0, 2));
431 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
432 }
433
434 if (GET_LMASK64(t0) <= 4) {
435 tmp = ldfun(GET_OFFSET(t0, 3));
436 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
437 }
438
439 if (GET_LMASK64(t0) <= 3) {
440 tmp = ldfun(GET_OFFSET(t0, 4));
441 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
442 }
443
444 if (GET_LMASK64(t0) <= 2) {
445 tmp = ldfun(GET_OFFSET(t0, 5));
446 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
447 }
448
449 if (GET_LMASK64(t0) <= 1) {
450 tmp = ldfun(GET_OFFSET(t0, 6));
451 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
452 }
453
454 if (GET_LMASK64(t0) == 0) {
455 tmp = ldfun(GET_OFFSET(t0, 7));
456 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
457 }
458
459 return t1;
460 }
461
462 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
463 {
464 uint64_t tmp;
465
466 #ifdef CONFIG_USER_ONLY
467 #define ldfun ldub_raw
468 #else
469 int (*ldfun)(target_ulong);
470
471 switch (mem_idx)
472 {
473 case 0: ldfun = ldub_kernel; break;
474 case 1: ldfun = ldub_super; break;
475 default:
476 case 2: ldfun = ldub_user; break;
477 }
478 #endif
479 tmp = ldfun(t0);
480 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
481
482 if (GET_LMASK64(t0) >= 1) {
483 tmp = ldfun(GET_OFFSET(t0, -1));
484 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
485 }
486
487 if (GET_LMASK64(t0) >= 2) {
488 tmp = ldfun(GET_OFFSET(t0, -2));
489 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
490 }
491
492 if (GET_LMASK64(t0) >= 3) {
493 tmp = ldfun(GET_OFFSET(t0, -3));
494 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
495 }
496
497 if (GET_LMASK64(t0) >= 4) {
498 tmp = ldfun(GET_OFFSET(t0, -4));
499 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
500 }
501
502 if (GET_LMASK64(t0) >= 5) {
503 tmp = ldfun(GET_OFFSET(t0, -5));
504 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
505 }
506
507 if (GET_LMASK64(t0) >= 6) {
508 tmp = ldfun(GET_OFFSET(t0, -6));
509 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
510 }
511
512 if (GET_LMASK64(t0) == 7) {
513 tmp = ldfun(GET_OFFSET(t0, -7));
514 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
515 }
516
517 return t1;
518 }
519
520 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
521 {
522 #ifdef CONFIG_USER_ONLY
523 #define stfun stb_raw
524 #else
525 void (*stfun)(target_ulong, int);
526
527 switch (mem_idx)
528 {
529 case 0: stfun = stb_kernel; break;
530 case 1: stfun = stb_super; break;
531 default:
532 case 2: stfun = stb_user; break;
533 }
534 #endif
535 stfun(t0, (uint8_t)(t1 >> 56));
536
537 if (GET_LMASK64(t0) <= 6)
538 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
539
540 if (GET_LMASK64(t0) <= 5)
541 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
542
543 if (GET_LMASK64(t0) <= 4)
544 stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
545
546 if (GET_LMASK64(t0) <= 3)
547 stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
548
549 if (GET_LMASK64(t0) <= 2)
550 stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
551
552 if (GET_LMASK64(t0) <= 1)
553 stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
554
555 if (GET_LMASK64(t0) <= 0)
556 stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
557 }
558
559 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
560 {
561 #ifdef CONFIG_USER_ONLY
562 #define stfun stb_raw
563 #else
564 void (*stfun)(target_ulong, int);
565
566 switch (mem_idx)
567 {
568 case 0: stfun = stb_kernel; break;
569 case 1: stfun = stb_super; break;
570 default:
571 case 2: stfun = stb_user; break;
572 }
573 #endif
574 stfun(t0, (uint8_t)t1);
575
576 if (GET_LMASK64(t0) >= 1)
577 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
578
579 if (GET_LMASK64(t0) >= 2)
580 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
581
582 if (GET_LMASK64(t0) >= 3)
583 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
584
585 if (GET_LMASK64(t0) >= 4)
586 stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
587
588 if (GET_LMASK64(t0) >= 5)
589 stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
590
591 if (GET_LMASK64(t0) >= 6)
592 stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
593
594 if (GET_LMASK64(t0) == 7)
595 stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
596 }
597 #endif /* TARGET_MIPS64 */
598
599 #ifndef CONFIG_USER_ONLY
600 /* CP0 helpers */
601 target_ulong do_mfc0_mvpcontrol (void)
602 {
603 return env->mvp->CP0_MVPControl;
604 }
605
606 target_ulong do_mfc0_mvpconf0 (void)
607 {
608 return env->mvp->CP0_MVPConf0;
609 }
610
611 target_ulong do_mfc0_mvpconf1 (void)
612 {
613 return env->mvp->CP0_MVPConf1;
614 }
615
616 target_ulong do_mfc0_random (void)
617 {
618 return (int32_t)cpu_mips_get_random(env);
619 }
620
621 target_ulong do_mfc0_tcstatus (void)
622 {
623 return env->active_tc.CP0_TCStatus;
624 }
625
626 target_ulong do_mftc0_tcstatus(void)
627 {
628 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
629
630 if (other_tc == env->current_tc)
631 return env->active_tc.CP0_TCStatus;
632 else
633 return env->tcs[other_tc].CP0_TCStatus;
634 }
635
636 target_ulong do_mfc0_tcbind (void)
637 {
638 return env->active_tc.CP0_TCBind;
639 }
640
641 target_ulong do_mftc0_tcbind(void)
642 {
643 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
644
645 if (other_tc == env->current_tc)
646 return env->active_tc.CP0_TCBind;
647 else
648 return env->tcs[other_tc].CP0_TCBind;
649 }
650
651 target_ulong do_mfc0_tcrestart (void)
652 {
653 return env->active_tc.PC;
654 }
655
656 target_ulong do_mftc0_tcrestart(void)
657 {
658 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
659
660 if (other_tc == env->current_tc)
661 return env->active_tc.PC;
662 else
663 return env->tcs[other_tc].PC;
664 }
665
666 target_ulong do_mfc0_tchalt (void)
667 {
668 return env->active_tc.CP0_TCHalt;
669 }
670
671 target_ulong do_mftc0_tchalt(void)
672 {
673 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
674
675 if (other_tc == env->current_tc)
676 return env->active_tc.CP0_TCHalt;
677 else
678 return env->tcs[other_tc].CP0_TCHalt;
679 }
680
681 target_ulong do_mfc0_tccontext (void)
682 {
683 return env->active_tc.CP0_TCContext;
684 }
685
686 target_ulong do_mftc0_tccontext(void)
687 {
688 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
689
690 if (other_tc == env->current_tc)
691 return env->active_tc.CP0_TCContext;
692 else
693 return env->tcs[other_tc].CP0_TCContext;
694 }
695
696 target_ulong do_mfc0_tcschedule (void)
697 {
698 return env->active_tc.CP0_TCSchedule;
699 }
700
701 target_ulong do_mftc0_tcschedule(void)
702 {
703 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
704
705 if (other_tc == env->current_tc)
706 return env->active_tc.CP0_TCSchedule;
707 else
708 return env->tcs[other_tc].CP0_TCSchedule;
709 }
710
711 target_ulong do_mfc0_tcschefback (void)
712 {
713 return env->active_tc.CP0_TCScheFBack;
714 }
715
716 target_ulong do_mftc0_tcschefback(void)
717 {
718 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
719
720 if (other_tc == env->current_tc)
721 return env->active_tc.CP0_TCScheFBack;
722 else
723 return env->tcs[other_tc].CP0_TCScheFBack;
724 }
725
726 target_ulong do_mfc0_count (void)
727 {
728 return (int32_t)cpu_mips_get_count(env);
729 }
730
731 target_ulong do_mftc0_entryhi(void)
732 {
733 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
734 int32_t tcstatus;
735
736 if (other_tc == env->current_tc)
737 tcstatus = env->active_tc.CP0_TCStatus;
738 else
739 tcstatus = env->tcs[other_tc].CP0_TCStatus;
740
741 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
742 }
743
744 target_ulong do_mftc0_status(void)
745 {
746 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
747 target_ulong t0;
748 int32_t tcstatus;
749
750 if (other_tc == env->current_tc)
751 tcstatus = env->active_tc.CP0_TCStatus;
752 else
753 tcstatus = env->tcs[other_tc].CP0_TCStatus;
754
755 t0 = env->CP0_Status & ~0xf1000018;
756 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
757 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
758 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
759
760 return t0;
761 }
762
763 target_ulong do_mfc0_lladdr (void)
764 {
765 return (int32_t)env->CP0_LLAddr >> 4;
766 }
767
768 target_ulong do_mfc0_watchlo (uint32_t sel)
769 {
770 return (int32_t)env->CP0_WatchLo[sel];
771 }
772
773 target_ulong do_mfc0_watchhi (uint32_t sel)
774 {
775 return env->CP0_WatchHi[sel];
776 }
777
778 target_ulong do_mfc0_debug (void)
779 {
780 target_ulong t0 = env->CP0_Debug;
781 if (env->hflags & MIPS_HFLAG_DM)
782 t0 |= 1 << CP0DB_DM;
783
784 return t0;
785 }
786
787 target_ulong do_mftc0_debug(void)
788 {
789 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
790 int32_t tcstatus;
791
792 if (other_tc == env->current_tc)
793 tcstatus = env->active_tc.CP0_Debug_tcstatus;
794 else
795 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
796
797 /* XXX: Might be wrong, check with EJTAG spec. */
798 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
799 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
800 }
801
802 #if defined(TARGET_MIPS64)
803 target_ulong do_dmfc0_tcrestart (void)
804 {
805 return env->active_tc.PC;
806 }
807
808 target_ulong do_dmfc0_tchalt (void)
809 {
810 return env->active_tc.CP0_TCHalt;
811 }
812
813 target_ulong do_dmfc0_tccontext (void)
814 {
815 return env->active_tc.CP0_TCContext;
816 }
817
818 target_ulong do_dmfc0_tcschedule (void)
819 {
820 return env->active_tc.CP0_TCSchedule;
821 }
822
823 target_ulong do_dmfc0_tcschefback (void)
824 {
825 return env->active_tc.CP0_TCScheFBack;
826 }
827
828 target_ulong do_dmfc0_lladdr (void)
829 {
830 return env->CP0_LLAddr >> 4;
831 }
832
833 target_ulong do_dmfc0_watchlo (uint32_t sel)
834 {
835 return env->CP0_WatchLo[sel];
836 }
837 #endif /* TARGET_MIPS64 */
838
839 void do_mtc0_index (target_ulong t0)
840 {
841 int num = 1;
842 unsigned int tmp = env->tlb->nb_tlb;
843
844 do {
845 tmp >>= 1;
846 num <<= 1;
847 } while (tmp);
848 env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
849 }
850
851 void do_mtc0_mvpcontrol (target_ulong t0)
852 {
853 uint32_t mask = 0;
854 uint32_t newval;
855
856 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
857 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
858 (1 << CP0MVPCo_EVP);
859 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
860 mask |= (1 << CP0MVPCo_STLB);
861 newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
862
863 // TODO: Enable/disable shared TLB, enable/disable VPEs.
864
865 env->mvp->CP0_MVPControl = newval;
866 }
867
868 void do_mtc0_vpecontrol (target_ulong t0)
869 {
870 uint32_t mask;
871 uint32_t newval;
872
873 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
874 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
875 newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
876
877 /* Yield scheduler intercept not implemented. */
878 /* Gating storage scheduler intercept not implemented. */
879
880 // TODO: Enable/disable TCs.
881
882 env->CP0_VPEControl = newval;
883 }
884
885 void do_mtc0_vpeconf0 (target_ulong t0)
886 {
887 uint32_t mask = 0;
888 uint32_t newval;
889
890 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
891 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
892 mask |= (0xff << CP0VPEC0_XTC);
893 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
894 }
895 newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
896
897 // TODO: TC exclusive handling due to ERL/EXL.
898
899 env->CP0_VPEConf0 = newval;
900 }
901
902 void do_mtc0_vpeconf1 (target_ulong t0)
903 {
904 uint32_t mask = 0;
905 uint32_t newval;
906
907 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
908 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
909 (0xff << CP0VPEC1_NCP1);
910 newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
911
912 /* UDI not implemented. */
913 /* CP2 not implemented. */
914
915 // TODO: Handle FPU (CP1) binding.
916
917 env->CP0_VPEConf1 = newval;
918 }
919
920 void do_mtc0_yqmask (target_ulong t0)
921 {
922 /* Yield qualifier inputs not implemented. */
923 env->CP0_YQMask = 0x00000000;
924 }
925
926 void do_mtc0_vpeopt (target_ulong t0)
927 {
928 env->CP0_VPEOpt = t0 & 0x0000ffff;
929 }
930
931 void do_mtc0_entrylo0 (target_ulong t0)
932 {
933 /* Large physaddr (PABITS) not implemented */
934 /* 1k pages not implemented */
935 env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
936 }
937
938 void do_mtc0_tcstatus (target_ulong t0)
939 {
940 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
941 uint32_t newval;
942
943 newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
944
945 // TODO: Sync with CP0_Status.
946
947 env->active_tc.CP0_TCStatus = newval;
948 }
949
950 void do_mttc0_tcstatus (target_ulong t0)
951 {
952 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
953
954 // TODO: Sync with CP0_Status.
955
956 if (other_tc == env->current_tc)
957 env->active_tc.CP0_TCStatus = t0;
958 else
959 env->tcs[other_tc].CP0_TCStatus = t0;
960 }
961
962 void do_mtc0_tcbind (target_ulong t0)
963 {
964 uint32_t mask = (1 << CP0TCBd_TBE);
965 uint32_t newval;
966
967 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
968 mask |= (1 << CP0TCBd_CurVPE);
969 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
970 env->active_tc.CP0_TCBind = newval;
971 }
972
973 void do_mttc0_tcbind (target_ulong t0)
974 {
975 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
976 uint32_t mask = (1 << CP0TCBd_TBE);
977 uint32_t newval;
978
979 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
980 mask |= (1 << CP0TCBd_CurVPE);
981 if (other_tc == env->current_tc) {
982 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
983 env->active_tc.CP0_TCBind = newval;
984 } else {
985 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
986 env->tcs[other_tc].CP0_TCBind = newval;
987 }
988 }
989
990 void do_mtc0_tcrestart (target_ulong t0)
991 {
992 env->active_tc.PC = t0;
993 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
994 env->CP0_LLAddr = 0ULL;
995 /* MIPS16 not implemented. */
996 }
997
998 void do_mttc0_tcrestart (target_ulong t0)
999 {
1000 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1001
1002 if (other_tc == env->current_tc) {
1003 env->active_tc.PC = t0;
1004 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1005 env->CP0_LLAddr = 0ULL;
1006 /* MIPS16 not implemented. */
1007 } else {
1008 env->tcs[other_tc].PC = t0;
1009 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1010 env->CP0_LLAddr = 0ULL;
1011 /* MIPS16 not implemented. */
1012 }
1013 }
1014
1015 void do_mtc0_tchalt (target_ulong t0)
1016 {
1017 env->active_tc.CP0_TCHalt = t0 & 0x1;
1018
1019 // TODO: Halt TC / Restart (if allocated+active) TC.
1020 }
1021
1022 void do_mttc0_tchalt (target_ulong t0)
1023 {
1024 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1025
1026 // TODO: Halt TC / Restart (if allocated+active) TC.
1027
1028 if (other_tc == env->current_tc)
1029 env->active_tc.CP0_TCHalt = t0;
1030 else
1031 env->tcs[other_tc].CP0_TCHalt = t0;
1032 }
1033
1034 void do_mtc0_tccontext (target_ulong t0)
1035 {
1036 env->active_tc.CP0_TCContext = t0;
1037 }
1038
1039 void do_mttc0_tccontext (target_ulong t0)
1040 {
1041 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1042
1043 if (other_tc == env->current_tc)
1044 env->active_tc.CP0_TCContext = t0;
1045 else
1046 env->tcs[other_tc].CP0_TCContext = t0;
1047 }
1048
1049 void do_mtc0_tcschedule (target_ulong t0)
1050 {
1051 env->active_tc.CP0_TCSchedule = t0;
1052 }
1053
1054 void do_mttc0_tcschedule (target_ulong t0)
1055 {
1056 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1057
1058 if (other_tc == env->current_tc)
1059 env->active_tc.CP0_TCSchedule = t0;
1060 else
1061 env->tcs[other_tc].CP0_TCSchedule = t0;
1062 }
1063
1064 void do_mtc0_tcschefback (target_ulong t0)
1065 {
1066 env->active_tc.CP0_TCScheFBack = t0;
1067 }
1068
1069 void do_mttc0_tcschefback (target_ulong t0)
1070 {
1071 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1072
1073 if (other_tc == env->current_tc)
1074 env->active_tc.CP0_TCScheFBack = t0;
1075 else
1076 env->tcs[other_tc].CP0_TCScheFBack = t0;
1077 }
1078
1079 void do_mtc0_entrylo1 (target_ulong t0)
1080 {
1081 /* Large physaddr (PABITS) not implemented */
1082 /* 1k pages not implemented */
1083 env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
1084 }
1085
1086 void do_mtc0_context (target_ulong t0)
1087 {
1088 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
1089 }
1090
1091 void do_mtc0_pagemask (target_ulong t0)
1092 {
1093 /* 1k pages not implemented */
1094 env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1095 }
1096
1097 void do_mtc0_pagegrain (target_ulong t0)
1098 {
1099 /* SmartMIPS not implemented */
1100 /* Large physaddr (PABITS) not implemented */
1101 /* 1k pages not implemented */
1102 env->CP0_PageGrain = 0;
1103 }
1104
1105 void do_mtc0_wired (target_ulong t0)
1106 {
1107 env->CP0_Wired = t0 % env->tlb->nb_tlb;
1108 }
1109
1110 void do_mtc0_srsconf0 (target_ulong t0)
1111 {
1112 env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
1113 }
1114
1115 void do_mtc0_srsconf1 (target_ulong t0)
1116 {
1117 env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
1118 }
1119
1120 void do_mtc0_srsconf2 (target_ulong t0)
1121 {
1122 env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
1123 }
1124
1125 void do_mtc0_srsconf3 (target_ulong t0)
1126 {
1127 env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
1128 }
1129
1130 void do_mtc0_srsconf4 (target_ulong t0)
1131 {
1132 env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
1133 }
1134
1135 void do_mtc0_hwrena (target_ulong t0)
1136 {
1137 env->CP0_HWREna = t0 & 0x0000000F;
1138 }
1139
1140 void do_mtc0_count (target_ulong t0)
1141 {
1142 cpu_mips_store_count(env, t0);
1143 }
1144
1145 void do_mtc0_entryhi (target_ulong t0)
1146 {
1147 target_ulong old, val;
1148
1149 /* 1k pages not implemented */
1150 val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1151 #if defined(TARGET_MIPS64)
1152 val &= env->SEGMask;
1153 #endif
1154 old = env->CP0_EntryHi;
1155 env->CP0_EntryHi = val;
1156 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1157 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1158 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1159 }
1160 /* If the ASID changes, flush qemu's TLB. */
1161 if ((old & 0xFF) != (val & 0xFF))
1162 cpu_mips_tlb_flush(env, 1);
1163 }
1164
1165 void do_mttc0_entryhi(target_ulong t0)
1166 {
1167 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1168 int32_t tcstatus;
1169
1170 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
1171 if (other_tc == env->current_tc) {
1172 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
1173 env->active_tc.CP0_TCStatus = tcstatus;
1174 } else {
1175 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
1176 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1177 }
1178 }
1179
1180 void do_mtc0_compare (target_ulong t0)
1181 {
1182 cpu_mips_store_compare(env, t0);
1183 }
1184
1185 void do_mtc0_status (target_ulong t0)
1186 {
1187 uint32_t val, old;
1188 uint32_t mask = env->CP0_Status_rw_bitmask;
1189
1190 val = t0 & mask;
1191 old = env->CP0_Status;
1192 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1193 compute_hflags(env);
1194 if (loglevel & CPU_LOG_EXEC)
1195 do_mtc0_status_debug(old, val);
1196 cpu_mips_update_irq(env);
1197 }
1198
1199 void do_mttc0_status(target_ulong t0)
1200 {
1201 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1202 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1203
1204 env->CP0_Status = t0 & ~0xf1000018;
1205 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
1206 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1207 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1208 if (other_tc == env->current_tc)
1209 env->active_tc.CP0_TCStatus = tcstatus;
1210 else
1211 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1212 }
1213
1214 void do_mtc0_intctl (target_ulong t0)
1215 {
1216 /* vectored interrupts not implemented, no performance counters. */
1217 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
1218 }
1219
1220 void do_mtc0_srsctl (target_ulong t0)
1221 {
1222 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1223 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
1224 }
1225
1226 void do_mtc0_cause (target_ulong t0)
1227 {
1228 uint32_t mask = 0x00C00300;
1229 uint32_t old = env->CP0_Cause;
1230
1231 if (env->insn_flags & ISA_MIPS32R2)
1232 mask |= 1 << CP0Ca_DC;
1233
1234 env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
1235
1236 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1237 if (env->CP0_Cause & (1 << CP0Ca_DC))
1238 cpu_mips_stop_count(env);
1239 else
1240 cpu_mips_start_count(env);
1241 }
1242
1243 /* Handle the software interrupt as an hardware one, as they
1244 are very similar */
1245 if (t0 & CP0Ca_IP_mask) {
1246 cpu_mips_update_irq(env);
1247 }
1248 }
1249
1250 void do_mtc0_ebase (target_ulong t0)
1251 {
1252 /* vectored interrupts not implemented */
1253 /* Multi-CPU not implemented */
1254 env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
1255 }
1256
1257 void do_mtc0_config0 (target_ulong t0)
1258 {
1259 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
1260 }
1261
1262 void do_mtc0_config2 (target_ulong t0)
1263 {
1264 /* tertiary/secondary caches not implemented */
1265 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1266 }
1267
1268 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
1269 {
1270 /* Watch exceptions for instructions, data loads, data stores
1271 not implemented. */
1272 env->CP0_WatchLo[sel] = (t0 & ~0x7);
1273 }
1274
1275 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
1276 {
1277 env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
1278 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
1279 }
1280
1281 void do_mtc0_xcontext (target_ulong t0)
1282 {
1283 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1284 env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
1285 }
1286
1287 void do_mtc0_framemask (target_ulong t0)
1288 {
1289 env->CP0_Framemask = t0; /* XXX */
1290 }
1291
1292 void do_mtc0_debug (target_ulong t0)
1293 {
1294 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
1295 if (t0 & (1 << CP0DB_DM))
1296 env->hflags |= MIPS_HFLAG_DM;
1297 else
1298 env->hflags &= ~MIPS_HFLAG_DM;
1299 }
1300
1301 void do_mttc0_debug(target_ulong t0)
1302 {
1303 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1304 uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1305
1306 /* XXX: Might be wrong, check with EJTAG spec. */
1307 if (other_tc == env->current_tc)
1308 env->active_tc.CP0_Debug_tcstatus = val;
1309 else
1310 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1311 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1312 (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1313 }
1314
1315 void do_mtc0_performance0 (target_ulong t0)
1316 {
1317 env->CP0_Performance0 = t0 & 0x000007ff;
1318 }
1319
1320 void do_mtc0_taglo (target_ulong t0)
1321 {
1322 env->CP0_TagLo = t0 & 0xFFFFFCF6;
1323 }
1324
1325 void do_mtc0_datalo (target_ulong t0)
1326 {
1327 env->CP0_DataLo = t0; /* XXX */
1328 }
1329
1330 void do_mtc0_taghi (target_ulong t0)
1331 {
1332 env->CP0_TagHi = t0; /* XXX */
1333 }
1334
1335 void do_mtc0_datahi (target_ulong t0)
1336 {
1337 env->CP0_DataHi = t0; /* XXX */
1338 }
1339
1340 void do_mtc0_status_debug(uint32_t old, uint32_t val)
1341 {
1342 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
1343 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1344 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1345 env->CP0_Cause);
1346 switch (env->hflags & MIPS_HFLAG_KSU) {
1347 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1348 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1349 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1350 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1351 }
1352 }
1353
1354 void do_mtc0_status_irqraise_debug(void)
1355 {
1356 fprintf(logfile, "Raise pending IRQs\n");
1357 }
1358 #endif /* !CONFIG_USER_ONLY */
1359
1360 /* MIPS MT functions */
1361 target_ulong do_mftgpr(uint32_t sel)
1362 {
1363 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1364
1365 if (other_tc == env->current_tc)
1366 return env->active_tc.gpr[sel];
1367 else
1368 return env->tcs[other_tc].gpr[sel];
1369 }
1370
1371 target_ulong do_mftlo(uint32_t sel)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374
1375 if (other_tc == env->current_tc)
1376 return env->active_tc.LO[sel];
1377 else
1378 return env->tcs[other_tc].LO[sel];
1379 }
1380
1381 target_ulong do_mfthi(uint32_t sel)
1382 {
1383 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1384
1385 if (other_tc == env->current_tc)
1386 return env->active_tc.HI[sel];
1387 else
1388 return env->tcs[other_tc].HI[sel];
1389 }
1390
1391 target_ulong do_mftacx(uint32_t sel)
1392 {
1393 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1394
1395 if (other_tc == env->current_tc)
1396 return env->active_tc.ACX[sel];
1397 else
1398 return env->tcs[other_tc].ACX[sel];
1399 }
1400
1401 target_ulong do_mftdsp(void)
1402 {
1403 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1404
1405 if (other_tc == env->current_tc)
1406 return env->active_tc.DSPControl;
1407 else
1408 return env->tcs[other_tc].DSPControl;
1409 }
1410
1411 void do_mttgpr(target_ulong t0, uint32_t sel)
1412 {
1413 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1414
1415 if (other_tc == env->current_tc)
1416 env->active_tc.gpr[sel] = t0;
1417 else
1418 env->tcs[other_tc].gpr[sel] = t0;
1419 }
1420
1421 void do_mttlo(target_ulong t0, uint32_t sel)
1422 {
1423 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1424
1425 if (other_tc == env->current_tc)
1426 env->active_tc.LO[sel] = t0;
1427 else
1428 env->tcs[other_tc].LO[sel] = t0;
1429 }
1430
1431 void do_mtthi(target_ulong t0, uint32_t sel)
1432 {
1433 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1434
1435 if (other_tc == env->current_tc)
1436 env->active_tc.HI[sel] = t0;
1437 else
1438 env->tcs[other_tc].HI[sel] = t0;
1439 }
1440
1441 void do_mttacx(target_ulong t0, uint32_t sel)
1442 {
1443 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1444
1445 if (other_tc == env->current_tc)
1446 env->active_tc.ACX[sel] = t0;
1447 else
1448 env->tcs[other_tc].ACX[sel] = t0;
1449 }
1450
1451 void do_mttdsp(target_ulong t0)
1452 {
1453 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1454
1455 if (other_tc == env->current_tc)
1456 env->active_tc.DSPControl = t0;
1457 else
1458 env->tcs[other_tc].DSPControl = t0;
1459 }
1460
1461 /* MIPS MT functions */
1462 target_ulong do_dmt(target_ulong t0)
1463 {
1464 // TODO
1465 t0 = 0;
1466 // rt = t0
1467
1468 return t0;
1469 }
1470
1471 target_ulong do_emt(target_ulong t0)
1472 {
1473 // TODO
1474 t0 = 0;
1475 // rt = t0
1476
1477 return t0;
1478 }
1479
1480 target_ulong do_dvpe(target_ulong t0)
1481 {
1482 // TODO
1483 t0 = 0;
1484 // rt = t0
1485
1486 return t0;
1487 }
1488
1489 target_ulong do_evpe(target_ulong t0)
1490 {
1491 // TODO
1492 t0 = 0;
1493 // rt = t0
1494
1495 return t0;
1496 }
1497
1498 void do_fork(target_ulong t0, target_ulong t1)
1499 {
1500 // t0 = rt, t1 = rs
1501 t0 = 0;
1502 // TODO: store to TC register
1503 }
1504
1505 target_ulong do_yield(target_ulong t0)
1506 {
1507 if (t0 < 0) {
1508 /* No scheduling policy implemented. */
1509 if (t0 != -2) {
1510 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1511 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1512 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1513 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1514 do_raise_exception(EXCP_THREAD);
1515 }
1516 }
1517 } else if (t0 == 0) {
1518 if (0 /* TODO: TC underflow */) {
1519 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1520 do_raise_exception(EXCP_THREAD);
1521 } else {
1522 // TODO: Deallocate TC
1523 }
1524 } else if (t0 > 0) {
1525 /* Yield qualifier inputs not implemented. */
1526 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1527 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1528 do_raise_exception(EXCP_THREAD);
1529 }
1530 return env->CP0_YQMask;
1531 }
1532
1533 #ifndef CONFIG_USER_ONLY
1534 /* TLB management */
1535 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1536 {
1537 /* Flush qemu's TLB and discard all shadowed entries. */
1538 tlb_flush (env, flush_global);
1539 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1540 }
1541
1542 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1543 {
1544 /* Discard entries from env->tlb[first] onwards. */
1545 while (env->tlb->tlb_in_use > first) {
1546 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1547 }
1548 }
1549
1550 static void r4k_fill_tlb (int idx)
1551 {
1552 r4k_tlb_t *tlb;
1553
1554 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1555 tlb = &env->tlb->mmu.r4k.tlb[idx];
1556 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1557 #if defined(TARGET_MIPS64)
1558 tlb->VPN &= env->SEGMask;
1559 #endif
1560 tlb->ASID = env->CP0_EntryHi & 0xFF;
1561 tlb->PageMask = env->CP0_PageMask;
1562 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1563 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1564 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1565 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1566 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1567 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1568 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1569 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1570 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1571 }
1572
1573 void r4k_do_tlbwi (void)
1574 {
1575 int idx;
1576
1577 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1578
1579 /* Discard cached TLB entries. We could avoid doing this if the
1580 tlbwi is just upgrading access permissions on the current entry;
1581 that might be a further win. */
1582 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1583
1584 r4k_invalidate_tlb(env, idx, 0);
1585 r4k_fill_tlb(idx);
1586 }
1587
1588 void r4k_do_tlbwr (void)
1589 {
1590 int r = cpu_mips_get_random(env);
1591
1592 r4k_invalidate_tlb(env, r, 1);
1593 r4k_fill_tlb(r);
1594 }
1595
1596 void r4k_do_tlbp (void)
1597 {
1598 r4k_tlb_t *tlb;
1599 target_ulong mask;
1600 target_ulong tag;
1601 target_ulong VPN;
1602 uint8_t ASID;
1603 int i;
1604
1605 ASID = env->CP0_EntryHi & 0xFF;
1606 for (i = 0; i < env->tlb->nb_tlb; i++) {
1607 tlb = &env->tlb->mmu.r4k.tlb[i];
1608 /* 1k pages are not supported. */
1609 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1610 tag = env->CP0_EntryHi & ~mask;
1611 VPN = tlb->VPN & ~mask;
1612 /* Check ASID, virtual page number & size */
1613 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1614 /* TLB match */
1615 env->CP0_Index = i;
1616 break;
1617 }
1618 }
1619 if (i == env->tlb->nb_tlb) {
1620 /* No match. Discard any shadow entries, if any of them match. */
1621 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1622 tlb = &env->tlb->mmu.r4k.tlb[i];
1623 /* 1k pages are not supported. */
1624 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1625 tag = env->CP0_EntryHi & ~mask;
1626 VPN = tlb->VPN & ~mask;
1627 /* Check ASID, virtual page number & size */
1628 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1629 r4k_mips_tlb_flush_extra (env, i);
1630 break;
1631 }
1632 }
1633
1634 env->CP0_Index |= 0x80000000;
1635 }
1636 }
1637
1638 void r4k_do_tlbr (void)
1639 {
1640 r4k_tlb_t *tlb;
1641 uint8_t ASID;
1642 int idx;
1643
1644 ASID = env->CP0_EntryHi & 0xFF;
1645 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1646 tlb = &env->tlb->mmu.r4k.tlb[idx];
1647
1648 /* If this will change the current ASID, flush qemu's TLB. */
1649 if (ASID != tlb->ASID)
1650 cpu_mips_tlb_flush (env, 1);
1651
1652 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1653
1654 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1655 env->CP0_PageMask = tlb->PageMask;
1656 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1657 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1658 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1659 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1660 }
1661
1662 /* Specials */
1663 target_ulong do_di (void)
1664 {
1665 target_ulong t0 = env->CP0_Status;
1666
1667 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1668 cpu_mips_update_irq(env);
1669
1670 return t0;
1671 }
1672
1673 target_ulong do_ei (void)
1674 {
1675 target_ulong t0 = env->CP0_Status;
1676
1677 env->CP0_Status = t0 | (1 << CP0St_IE);
1678 cpu_mips_update_irq(env);
1679
1680 return t0;
1681 }
1682
1683 void debug_pre_eret (void)
1684 {
1685 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1686 env->active_tc.PC, env->CP0_EPC);
1687 if (env->CP0_Status & (1 << CP0St_ERL))
1688 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1689 if (env->hflags & MIPS_HFLAG_DM)
1690 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1691 fputs("\n", logfile);
1692 }
1693
1694 void debug_post_eret (void)
1695 {
1696 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1697 env->active_tc.PC, env->CP0_EPC);
1698 if (env->CP0_Status & (1 << CP0St_ERL))
1699 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1700 if (env->hflags & MIPS_HFLAG_DM)
1701 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1702 switch (env->hflags & MIPS_HFLAG_KSU) {
1703 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1704 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1705 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1706 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1707 }
1708 }
1709
1710 void do_eret (void)
1711 {
1712 if (loglevel & CPU_LOG_EXEC)
1713 debug_pre_eret();
1714 if (env->CP0_Status & (1 << CP0St_ERL)) {
1715 env->active_tc.PC = env->CP0_ErrorEPC;
1716 env->CP0_Status &= ~(1 << CP0St_ERL);
1717 } else {
1718 env->active_tc.PC = env->CP0_EPC;
1719 env->CP0_Status &= ~(1 << CP0St_EXL);
1720 }
1721 compute_hflags(env);
1722 if (loglevel & CPU_LOG_EXEC)
1723 debug_post_eret();
1724 env->CP0_LLAddr = 1;
1725 }
1726
1727 void do_deret (void)
1728 {
1729 if (loglevel & CPU_LOG_EXEC)
1730 debug_pre_eret();
1731 env->active_tc.PC = env->CP0_DEPC;
1732 env->hflags &= MIPS_HFLAG_DM;
1733 compute_hflags(env);
1734 if (loglevel & CPU_LOG_EXEC)
1735 debug_post_eret();
1736 env->CP0_LLAddr = 1;
1737 }
1738 #endif /* !CONFIG_USER_ONLY */
1739
1740 target_ulong do_rdhwr_cpunum(void)
1741 {
1742 if ((env->hflags & MIPS_HFLAG_CP0) ||
1743 (env->CP0_HWREna & (1 << 0)))
1744 return env->CP0_EBase & 0x3ff;
1745 else
1746 do_raise_exception(EXCP_RI);
1747
1748 return 0;
1749 }
1750
1751 target_ulong do_rdhwr_synci_step(void)
1752 {
1753 if ((env->hflags & MIPS_HFLAG_CP0) ||
1754 (env->CP0_HWREna & (1 << 1)))
1755 return env->SYNCI_Step;
1756 else
1757 do_raise_exception(EXCP_RI);
1758
1759 return 0;
1760 }
1761
1762 target_ulong do_rdhwr_cc(void)
1763 {
1764 if ((env->hflags & MIPS_HFLAG_CP0) ||
1765 (env->CP0_HWREna & (1 << 2)))
1766 return env->CP0_Count;
1767 else
1768 do_raise_exception(EXCP_RI);
1769
1770 return 0;
1771 }
1772
1773 target_ulong do_rdhwr_ccres(void)
1774 {
1775 if ((env->hflags & MIPS_HFLAG_CP0) ||
1776 (env->CP0_HWREna & (1 << 3)))
1777 return env->CCRes;
1778 else
1779 do_raise_exception(EXCP_RI);
1780
1781 return 0;
1782 }
1783
1784 /* Bit shuffle operations. */
1785 target_ulong do_wsbh(target_ulong t1)
1786 {
1787 return (int32_t)(((t1 << 8) & ~0x00FF00FF) | ((t1 >> 8) & 0x00FF00FF));
1788 }
1789
1790 #if defined(TARGET_MIPS64)
1791 target_ulong do_dsbh(target_ulong t1)
1792 {
1793 return ((t1 << 8) & ~0x00FF00FF00FF00FFULL) | ((t1 >> 8) & 0x00FF00FF00FF00FFULL);
1794 }
1795
1796 target_ulong do_dshd(target_ulong t1)
1797 {
1798 t1 = ((t1 << 16) & ~0x0000FFFF0000FFFFULL) | ((t1 >> 16) & 0x0000FFFF0000FFFFULL);
1799 return (t1 << 32) | (t1 >> 32);
1800 }
1801 #endif
1802
1803 void do_pmon (int function)
1804 {
1805 function /= 2;
1806 switch (function) {
1807 case 2: /* TODO: char inbyte(int waitflag); */
1808 if (env->active_tc.gpr[4] == 0)
1809 env->active_tc.gpr[2] = -1;
1810 /* Fall through */
1811 case 11: /* TODO: char inbyte (void); */
1812 env->active_tc.gpr[2] = -1;
1813 break;
1814 case 3:
1815 case 12:
1816 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1817 break;
1818 case 17:
1819 break;
1820 case 158:
1821 {
1822 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1823 printf("%s", fmt);
1824 }
1825 break;
1826 }
1827 }
1828
1829 void do_wait (void)
1830 {
1831 env->halted = 1;
1832 do_raise_exception(EXCP_HLT);
1833 }
1834
1835 #if !defined(CONFIG_USER_ONLY)
1836
1837 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1838
1839 #define MMUSUFFIX _mmu
1840 #define ALIGNED_ONLY
1841
1842 #define SHIFT 0
1843 #include "softmmu_template.h"
1844
1845 #define SHIFT 1
1846 #include "softmmu_template.h"
1847
1848 #define SHIFT 2
1849 #include "softmmu_template.h"
1850
1851 #define SHIFT 3
1852 #include "softmmu_template.h"
1853
1854 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1855 {
1856 env->CP0_BadVAddr = addr;
1857 do_restore_state (retaddr);
1858 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1859 }
1860
1861 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1862 {
1863 TranslationBlock *tb;
1864 CPUState *saved_env;
1865 unsigned long pc;
1866 int ret;
1867
1868 /* XXX: hack to restore env in all cases, even if not called from
1869 generated code */
1870 saved_env = env;
1871 env = cpu_single_env;
1872 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1873 if (ret) {
1874 if (retaddr) {
1875 /* now we have a real cpu fault */
1876 pc = (unsigned long)retaddr;
1877 tb = tb_find_pc(pc);
1878 if (tb) {
1879 /* the PC is inside the translated code. It means that we have
1880 a virtual CPU fault */
1881 cpu_restore_state(tb, env, pc, NULL);
1882 }
1883 }
1884 do_raise_exception_err(env->exception_index, env->error_code);
1885 }
1886 env = saved_env;
1887 }
1888
1889 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1890 int unused, int size)
1891 {
1892 if (is_exec)
1893 do_raise_exception(EXCP_IBE);
1894 else
1895 do_raise_exception(EXCP_DBE);
1896 }
1897 #endif /* !CONFIG_USER_ONLY */
1898
1899 /* Complex FPU operations which may need stack space. */
1900
1901 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1902 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1903 #define FLOAT_TWO32 make_float32(1 << 30)
1904 #define FLOAT_TWO64 make_float64(1ULL << 62)
1905 #define FLOAT_QNAN32 0x7fbfffff
1906 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1907 #define FLOAT_SNAN32 0x7fffffff
1908 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1909
1910 /* convert MIPS rounding mode in FCR31 to IEEE library */
1911 unsigned int ieee_rm[] = {
1912 float_round_nearest_even,
1913 float_round_to_zero,
1914 float_round_up,
1915 float_round_down
1916 };
1917
1918 #define RESTORE_ROUNDING_MODE \
1919 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1920
1921 target_ulong do_cfc1 (uint32_t reg)
1922 {
1923 target_ulong t0;
1924
1925 switch (reg) {
1926 case 0:
1927 t0 = (int32_t)env->active_fpu.fcr0;
1928 break;
1929 case 25:
1930 t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
1931 break;
1932 case 26:
1933 t0 = env->active_fpu.fcr31 & 0x0003f07c;
1934 break;
1935 case 28:
1936 t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
1937 break;
1938 default:
1939 t0 = (int32_t)env->active_fpu.fcr31;
1940 break;
1941 }
1942
1943 return t0;
1944 }
1945
1946 void do_ctc1 (target_ulong t0, uint32_t reg)
1947 {
1948 switch(reg) {
1949 case 25:
1950 if (t0 & 0xffffff00)
1951 return;
1952 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
1953 ((t0 & 0x1) << 23);
1954 break;
1955 case 26:
1956 if (t0 & 0x007c0000)
1957 return;
1958 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
1959 break;
1960 case 28:
1961 if (t0 & 0x007c0000)
1962 return;
1963 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
1964 ((t0 & 0x4) << 22);
1965 break;
1966 case 31:
1967 if (t0 & 0x007c0000)
1968 return;
1969 env->active_fpu.fcr31 = t0;
1970 break;
1971 default:
1972 return;
1973 }
1974 /* set rounding mode */
1975 RESTORE_ROUNDING_MODE;
1976 set_float_exception_flags(0, &env->active_fpu.fp_status);
1977 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
1978 do_raise_exception(EXCP_FPE);
1979 }
1980
1981 static inline char ieee_ex_to_mips(char xcpt)
1982 {
1983 return (xcpt & float_flag_inexact) >> 5 |
1984 (xcpt & float_flag_underflow) >> 3 |
1985 (xcpt & float_flag_overflow) >> 1 |
1986 (xcpt & float_flag_divbyzero) << 1 |
1987 (xcpt & float_flag_invalid) << 4;
1988 }
1989
1990 static inline char mips_ex_to_ieee(char xcpt)
1991 {
1992 return (xcpt & FP_INEXACT) << 5 |
1993 (xcpt & FP_UNDERFLOW) << 3 |
1994 (xcpt & FP_OVERFLOW) << 1 |
1995 (xcpt & FP_DIV0) >> 1 |
1996 (xcpt & FP_INVALID) >> 4;
1997 }
1998
1999 static inline void update_fcr31(void)
2000 {
2001 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2002
2003 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2004 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2005 do_raise_exception(EXCP_FPE);
2006 else
2007 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2008 }
2009
2010 /* Float support.
2011 Single precition routines have a "s" suffix, double precision a
2012 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2013 paired single lower "pl", paired single upper "pu". */
2014
2015 /* unary operations, modifying fp status */
2016 uint64_t do_float_sqrt_d(uint64_t fdt0)
2017 {
2018 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2019 }
2020
2021 uint32_t do_float_sqrt_s(uint32_t fst0)
2022 {
2023 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2024 }
2025
2026 uint64_t do_float_cvtd_s(uint32_t fst0)
2027 {
2028 uint64_t fdt2;
2029
2030 set_float_exception_flags(0, &env->active_fpu.fp_status);
2031 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2032 update_fcr31();
2033 return fdt2;
2034 }
2035
2036 uint64_t do_float_cvtd_w(uint32_t wt0)
2037 {
2038 uint64_t fdt2;
2039
2040 set_float_exception_flags(0, &env->active_fpu.fp_status);
2041 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2042 update_fcr31();
2043 return fdt2;
2044 }
2045
2046 uint64_t do_float_cvtd_l(uint64_t dt0)
2047 {
2048 uint64_t fdt2;
2049
2050 set_float_exception_flags(0, &env->active_fpu.fp_status);
2051 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2052 update_fcr31();
2053 return fdt2;
2054 }
2055
2056 uint64_t do_float_cvtl_d(uint64_t fdt0)
2057 {
2058 uint64_t dt2;
2059
2060 set_float_exception_flags(0, &env->active_fpu.fp_status);
2061 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2062 update_fcr31();
2063 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2064 dt2 = FLOAT_SNAN64;
2065 return dt2;
2066 }
2067
2068 uint64_t do_float_cvtl_s(uint32_t fst0)
2069 {
2070 uint64_t dt2;
2071
2072 set_float_exception_flags(0, &env->active_fpu.fp_status);
2073 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2074 update_fcr31();
2075 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2076 dt2 = FLOAT_SNAN64;
2077 return dt2;
2078 }
2079
2080 uint64_t do_float_cvtps_pw(uint64_t dt0)
2081 {
2082 uint32_t fst2;
2083 uint32_t fsth2;
2084
2085 set_float_exception_flags(0, &env->active_fpu.fp_status);
2086 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2087 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2088 update_fcr31();
2089 return ((uint64_t)fsth2 << 32) | fst2;
2090 }
2091
2092 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
2093 {
2094 uint32_t wt2;
2095 uint32_t wth2;
2096
2097 set_float_exception_flags(0, &env->active_fpu.fp_status);
2098 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2099 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2100 update_fcr31();
2101 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2102 wt2 = FLOAT_SNAN32;
2103 wth2 = FLOAT_SNAN32;
2104 }
2105 return ((uint64_t)wth2 << 32) | wt2;
2106 }
2107
2108 uint32_t do_float_cvts_d(uint64_t fdt0)
2109 {
2110 uint32_t fst2;
2111
2112 set_float_exception_flags(0, &env->active_fpu.fp_status);
2113 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2114 update_fcr31();
2115 return fst2;
2116 }
2117
2118 uint32_t do_float_cvts_w(uint32_t wt0)
2119 {
2120 uint32_t fst2;
2121
2122 set_float_exception_flags(0, &env->active_fpu.fp_status);
2123 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2124 update_fcr31();
2125 return fst2;
2126 }
2127
2128 uint32_t do_float_cvts_l(uint64_t dt0)
2129 {
2130 uint32_t fst2;
2131
2132 set_float_exception_flags(0, &env->active_fpu.fp_status);
2133 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2134 update_fcr31();
2135 return fst2;
2136 }
2137
2138 uint32_t do_float_cvts_pl(uint32_t wt0)
2139 {
2140 uint32_t wt2;
2141
2142 set_float_exception_flags(0, &env->active_fpu.fp_status);
2143 wt2 = wt0;
2144 update_fcr31();
2145 return wt2;
2146 }
2147
2148 uint32_t do_float_cvts_pu(uint32_t wth0)
2149 {
2150 uint32_t wt2;
2151
2152 set_float_exception_flags(0, &env->active_fpu.fp_status);
2153 wt2 = wth0;
2154 update_fcr31();
2155 return wt2;
2156 }
2157
2158 uint32_t do_float_cvtw_s(uint32_t fst0)
2159 {
2160 uint32_t wt2;
2161
2162 set_float_exception_flags(0, &env->active_fpu.fp_status);
2163 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2164 update_fcr31();
2165 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2166 wt2 = FLOAT_SNAN32;
2167 return wt2;
2168 }
2169
2170 uint32_t do_float_cvtw_d(uint64_t fdt0)
2171 {
2172 uint32_t wt2;
2173
2174 set_float_exception_flags(0, &env->active_fpu.fp_status);
2175 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2176 update_fcr31();
2177 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2178 wt2 = FLOAT_SNAN32;
2179 return wt2;
2180 }
2181
2182 uint64_t do_float_roundl_d(uint64_t fdt0)
2183 {
2184 uint64_t dt2;
2185
2186 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2187 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2188 RESTORE_ROUNDING_MODE;
2189 update_fcr31();
2190 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2191 dt2 = FLOAT_SNAN64;
2192 return dt2;
2193 }
2194
2195 uint64_t do_float_roundl_s(uint32_t fst0)
2196 {
2197 uint64_t dt2;
2198
2199 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2200 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2201 RESTORE_ROUNDING_MODE;
2202 update_fcr31();
2203 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2204 dt2 = FLOAT_SNAN64;
2205 return dt2;
2206 }
2207
2208 uint32_t do_float_roundw_d(uint64_t fdt0)
2209 {
2210 uint32_t wt2;
2211
2212 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2213 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2214 RESTORE_ROUNDING_MODE;
2215 update_fcr31();
2216 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2217 wt2 = FLOAT_SNAN32;
2218 return wt2;
2219 }
2220
2221 uint32_t do_float_roundw_s(uint32_t fst0)
2222 {
2223 uint32_t wt2;
2224
2225 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2226 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2227 RESTORE_ROUNDING_MODE;
2228 update_fcr31();
2229 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2230 wt2 = FLOAT_SNAN32;
2231 return wt2;
2232 }
2233
2234 uint64_t do_float_truncl_d(uint64_t fdt0)
2235 {
2236 uint64_t dt2;
2237
2238 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2239 update_fcr31();
2240 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2241 dt2 = FLOAT_SNAN64;
2242 return dt2;
2243 }
2244
2245 uint64_t do_float_truncl_s(uint32_t fst0)
2246 {
2247 uint64_t dt2;
2248
2249 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2250 update_fcr31();
2251 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2252 dt2 = FLOAT_SNAN64;
2253 return dt2;
2254 }
2255
2256 uint32_t do_float_truncw_d(uint64_t fdt0)
2257 {
2258 uint32_t wt2;
2259
2260 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2261 update_fcr31();
2262 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2263 wt2 = FLOAT_SNAN32;
2264 return wt2;
2265 }
2266
2267 uint32_t do_float_truncw_s(uint32_t fst0)
2268 {
2269 uint32_t wt2;
2270
2271 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2272 update_fcr31();
2273 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2274 wt2 = FLOAT_SNAN32;
2275 return wt2;
2276 }
2277
2278 uint64_t do_float_ceill_d(uint64_t fdt0)
2279 {
2280 uint64_t dt2;
2281
2282 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2283 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2284 RESTORE_ROUNDING_MODE;
2285 update_fcr31();
2286 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2287 dt2 = FLOAT_SNAN64;
2288 return dt2;
2289 }
2290
2291 uint64_t do_float_ceill_s(uint32_t fst0)
2292 {
2293 uint64_t dt2;
2294
2295 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2296 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2297 RESTORE_ROUNDING_MODE;
2298 update_fcr31();
2299 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2300 dt2 = FLOAT_SNAN64;
2301 return dt2;
2302 }
2303
2304 uint32_t do_float_ceilw_d(uint64_t fdt0)
2305 {
2306 uint32_t wt2;
2307
2308 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2309 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2310 RESTORE_ROUNDING_MODE;
2311 update_fcr31();
2312 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2313 wt2 = FLOAT_SNAN32;
2314 return wt2;
2315 }
2316
2317 uint32_t do_float_ceilw_s(uint32_t fst0)
2318 {
2319 uint32_t wt2;
2320
2321 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2322 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2323 RESTORE_ROUNDING_MODE;
2324 update_fcr31();
2325 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2326 wt2 = FLOAT_SNAN32;
2327 return wt2;
2328 }
2329
2330 uint64_t do_float_floorl_d(uint64_t fdt0)
2331 {
2332 uint64_t dt2;
2333
2334 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2335 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2336 RESTORE_ROUNDING_MODE;
2337 update_fcr31();
2338 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2339 dt2 = FLOAT_SNAN64;
2340 return dt2;
2341 }
2342
2343 uint64_t do_float_floorl_s(uint32_t fst0)
2344 {
2345 uint64_t dt2;
2346
2347 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2348 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2349 RESTORE_ROUNDING_MODE;
2350 update_fcr31();
2351 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2352 dt2 = FLOAT_SNAN64;
2353 return dt2;
2354 }
2355
2356 uint32_t do_float_floorw_d(uint64_t fdt0)
2357 {
2358 uint32_t wt2;
2359
2360 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2361 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2362 RESTORE_ROUNDING_MODE;
2363 update_fcr31();
2364 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2365 wt2 = FLOAT_SNAN32;
2366 return wt2;
2367 }
2368
2369 uint32_t do_float_floorw_s(uint32_t fst0)
2370 {
2371 uint32_t wt2;
2372
2373 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2374 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2375 RESTORE_ROUNDING_MODE;
2376 update_fcr31();
2377 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2378 wt2 = FLOAT_SNAN32;
2379 return wt2;
2380 }
2381
2382 /* unary operations, not modifying fp status */
2383 #define FLOAT_UNOP(name) \
2384 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2385 { \
2386 return float64_ ## name(fdt0); \
2387 } \
2388 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2389 { \
2390 return float32_ ## name(fst0); \
2391 } \
2392 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2393 { \
2394 uint32_t wt0; \
2395 uint32_t wth0; \
2396 \
2397 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2398 wth0 = float32_ ## name(fdt0 >> 32); \
2399 return ((uint64_t)wth0 << 32) | wt0; \
2400 }
2401 FLOAT_UNOP(abs)
2402 FLOAT_UNOP(chs)
2403 #undef FLOAT_UNOP
2404
2405 /* MIPS specific unary operations */
2406 uint64_t do_float_recip_d(uint64_t fdt0)
2407 {
2408 uint64_t fdt2;
2409
2410 set_float_exception_flags(0, &env->active_fpu.fp_status);
2411 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2412 update_fcr31();
2413 return fdt2;
2414 }
2415
2416 uint32_t do_float_recip_s(uint32_t fst0)
2417 {
2418 uint32_t fst2;
2419
2420 set_float_exception_flags(0, &env->active_fpu.fp_status);
2421 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2422 update_fcr31();
2423 return fst2;
2424 }
2425
2426 uint64_t do_float_rsqrt_d(uint64_t fdt0)
2427 {
2428 uint64_t fdt2;
2429
2430 set_float_exception_flags(0, &env->active_fpu.fp_status);
2431 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2432 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2433 update_fcr31();
2434 return fdt2;
2435 }
2436
2437 uint32_t do_float_rsqrt_s(uint32_t fst0)
2438 {
2439 uint32_t fst2;
2440
2441 set_float_exception_flags(0, &env->active_fpu.fp_status);
2442 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2443 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2444 update_fcr31();
2445 return fst2;
2446 }
2447
2448 uint64_t do_float_recip1_d(uint64_t fdt0)
2449 {
2450 uint64_t fdt2;
2451
2452 set_float_exception_flags(0, &env->active_fpu.fp_status);
2453 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2454 update_fcr31();
2455 return fdt2;
2456 }
2457
2458 uint32_t do_float_recip1_s(uint32_t fst0)
2459 {
2460 uint32_t fst2;
2461
2462 set_float_exception_flags(0, &env->active_fpu.fp_status);
2463 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2464 update_fcr31();
2465 return fst2;
2466 }
2467
2468 uint64_t do_float_recip1_ps(uint64_t fdt0)
2469 {
2470 uint32_t fst2;
2471 uint32_t fsth2;
2472
2473 set_float_exception_flags(0, &env->active_fpu.fp_status);
2474 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2475 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2476 update_fcr31();
2477 return ((uint64_t)fsth2 << 32) | fst2;
2478 }
2479
2480 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
2481 {
2482 uint64_t fdt2;
2483
2484 set_float_exception_flags(0, &env->active_fpu.fp_status);
2485 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2486 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2487 update_fcr31();
2488 return fdt2;
2489 }
2490
2491 uint32_t do_float_rsqrt1_s(uint32_t fst0)
2492 {
2493 uint32_t fst2;
2494
2495 set_float_exception_flags(0, &env->active_fpu.fp_status);
2496 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2497 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2498 update_fcr31();
2499 return fst2;
2500 }
2501
2502 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
2503 {
2504 uint32_t fst2;
2505 uint32_t fsth2;
2506
2507 set_float_exception_flags(0, &env->active_fpu.fp_status);
2508 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2509 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2510 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2511 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2512 update_fcr31();
2513 return ((uint64_t)fsth2 << 32) | fst2;
2514 }
2515
2516 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2517
2518 /* binary operations */
2519 #define FLOAT_BINOP(name) \
2520 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2521 { \
2522 uint64_t dt2; \
2523 \
2524 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2525 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2526 update_fcr31(); \
2527 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2528 dt2 = FLOAT_QNAN64; \
2529 return dt2; \
2530 } \
2531 \
2532 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2533 { \
2534 uint32_t wt2; \
2535 \
2536 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2537 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2538 update_fcr31(); \
2539 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2540 wt2 = FLOAT_QNAN32; \
2541 return wt2; \
2542 } \
2543 \
2544 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2545 { \
2546 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2547 uint32_t fsth0 = fdt0 >> 32; \
2548 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2549 uint32_t fsth1 = fdt1 >> 32; \
2550 uint32_t wt2; \
2551 uint32_t wth2; \
2552 \
2553 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2554 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2555 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2556 update_fcr31(); \
2557 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2558 wt2 = FLOAT_QNAN32; \
2559 wth2 = FLOAT_QNAN32; \
2560 } \
2561 return ((uint64_t)wth2 << 32) | wt2; \
2562 }
2563
2564 FLOAT_BINOP(add)
2565 FLOAT_BINOP(sub)
2566 FLOAT_BINOP(mul)
2567 FLOAT_BINOP(div)
2568 #undef FLOAT_BINOP
2569
2570 /* ternary operations */
2571 #define FLOAT_TERNOP(name1, name2) \
2572 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2573 uint64_t fdt2) \
2574 { \
2575 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2576 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2577 } \
2578 \
2579 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2580 uint32_t fst2) \
2581 { \
2582 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2583 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2584 } \
2585 \
2586 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2587 uint64_t fdt2) \
2588 { \
2589 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2590 uint32_t fsth0 = fdt0 >> 32; \
2591 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2592 uint32_t fsth1 = fdt1 >> 32; \
2593 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2594 uint32_t fsth2 = fdt2 >> 32; \
2595 \
2596 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2597 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2598 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2599 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2600 return ((uint64_t)fsth2 << 32) | fst2; \
2601 }
2602
2603 FLOAT_TERNOP(mul, add)
2604 FLOAT_TERNOP(mul, sub)
2605 #undef FLOAT_TERNOP
2606
2607 /* negated ternary operations */
2608 #define FLOAT_NTERNOP(name1, name2) \
2609 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2610 uint64_t fdt2) \
2611 { \
2612 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2613 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2614 return float64_chs(fdt2); \
2615 } \
2616 \
2617 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2618 uint32_t fst2) \
2619 { \
2620 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2621 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2622 return float32_chs(fst2); \
2623 } \
2624 \
2625 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2626 uint64_t fdt2) \
2627 { \
2628 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2629 uint32_t fsth0 = fdt0 >> 32; \
2630 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2631 uint32_t fsth1 = fdt1 >> 32; \
2632 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2633 uint32_t fsth2 = fdt2 >> 32; \
2634 \
2635 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2636 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2637 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2638 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2639 fst2 = float32_chs(fst2); \
2640 fsth2 = float32_chs(fsth2); \
2641 return ((uint64_t)fsth2 << 32) | fst2; \
2642 }
2643
2644 FLOAT_NTERNOP(mul, add)
2645 FLOAT_NTERNOP(mul, sub)
2646 #undef FLOAT_NTERNOP
2647
2648 /* MIPS specific binary operations */
2649 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2650 {
2651 set_float_exception_flags(0, &env->active_fpu.fp_status);
2652 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2653 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2654 update_fcr31();
2655 return fdt2;
2656 }
2657
2658 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
2659 {
2660 set_float_exception_flags(0, &env->active_fpu.fp_status);
2661 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2662 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2663 update_fcr31();
2664 return fst2;
2665 }
2666
2667 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2668 {
2669 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2670 uint32_t fsth0 = fdt0 >> 32;
2671 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2672 uint32_t fsth2 = fdt2 >> 32;
2673
2674 set_float_exception_flags(0, &env->active_fpu.fp_status);
2675 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2676 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2677 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2678 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2679 update_fcr31();
2680 return ((uint64_t)fsth2 << 32) | fst2;
2681 }
2682
2683 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2684 {
2685 set_float_exception_flags(0, &env->active_fpu.fp_status);
2686 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2687 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2688 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2689 update_fcr31();
2690 return fdt2;
2691 }
2692
2693 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2694 {
2695 set_float_exception_flags(0, &env->active_fpu.fp_status);
2696 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2697 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2698 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2699 update_fcr31();
2700 return fst2;
2701 }
2702
2703 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2704 {
2705 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2706 uint32_t fsth0 = fdt0 >> 32;
2707 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2708 uint32_t fsth2 = fdt2 >> 32;
2709
2710 set_float_exception_flags(0, &env->active_fpu.fp_status);
2711 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2712 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2713 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2714 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2715 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2716 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2717 update_fcr31();
2718 return ((uint64_t)fsth2 << 32) | fst2;
2719 }
2720
2721 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2722 {
2723 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2724 uint32_t fsth0 = fdt0 >> 32;
2725 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2726 uint32_t fsth1 = fdt1 >> 32;
2727 uint32_t fst2;
2728 uint32_t fsth2;
2729
2730 set_float_exception_flags(0, &env->active_fpu.fp_status);
2731 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2732 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2733 update_fcr31();
2734 return ((uint64_t)fsth2 << 32) | fst2;
2735 }
2736
2737 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2738 {
2739 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2740 uint32_t fsth0 = fdt0 >> 32;
2741 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2742 uint32_t fsth1 = fdt1 >> 32;
2743 uint32_t fst2;
2744 uint32_t fsth2;
2745
2746 set_float_exception_flags(0, &env->active_fpu.fp_status);
2747 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2748 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2749 update_fcr31();
2750 return ((uint64_t)fsth2 << 32) | fst2;
2751 }
2752
2753 /* compare operations */
2754 #define FOP_COND_D(op, cond) \
2755 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2756 { \
2757 int c = cond; \
2758 update_fcr31(); \
2759 if (c) \
2760 SET_FP_COND(cc, env->active_fpu); \
2761 else \
2762 CLEAR_FP_COND(cc, env->active_fpu); \
2763 } \
2764 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2765 { \
2766 int c; \
2767 fdt0 = float64_abs(fdt0); \
2768 fdt1 = float64_abs(fdt1); \
2769 c = cond; \
2770 update_fcr31(); \
2771 if (c) \
2772 SET_FP_COND(cc, env->active_fpu); \
2773 else \
2774 CLEAR_FP_COND(cc, env->active_fpu); \
2775 }
2776
2777 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2778 {
2779 if (float64_is_signaling_nan(a) ||
2780 float64_is_signaling_nan(b) ||
2781 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2782 float_raise(float_flag_invalid, status);
2783 return 1;
2784 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2785 return 1;
2786 } else {
2787 return 0;
2788 }
2789 }
2790
2791 /* NOTE: the comma operator will make "cond" to eval to false,
2792 * but float*_is_unordered() is still called. */
2793 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2794 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2795 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2796 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2797 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2798 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2799 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2800 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2801 /* NOTE: the comma operator will make "cond" to eval to false,
2802 * but float*_is_unordered() is still called. */
2803 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2804 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2805 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2806 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2807 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2808 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2809 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2810 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2811
2812 #define FOP_COND_S(op, cond) \
2813 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2814 { \
2815 int c = cond; \
2816 update_fcr31(); \
2817 if (c) \
2818 SET_FP_COND(cc, env->active_fpu); \
2819 else \
2820 CLEAR_FP_COND(cc, env->active_fpu); \
2821 } \
2822 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2823 { \
2824 int c; \
2825 fst0 = float32_abs(fst0); \
2826 fst1 = float32_abs(fst1); \
2827 c = cond; \
2828 update_fcr31(); \
2829 if (c) \
2830 SET_FP_COND(cc, env->active_fpu); \
2831 else \
2832 CLEAR_FP_COND(cc, env->active_fpu); \
2833 }
2834
2835 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2836 {
2837 if (float32_is_signaling_nan(a) ||
2838 float32_is_signaling_nan(b) ||
2839 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2840 float_raise(float_flag_invalid, status);
2841 return 1;
2842 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2843 return 1;
2844 } else {
2845 return 0;
2846 }
2847 }
2848
2849 /* NOTE: the comma operator will make "cond" to eval to false,
2850 * but float*_is_unordered() is still called. */
2851 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2852 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2853 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2854 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2855 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2856 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2857 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2858 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2859 /* NOTE: the comma operator will make "cond" to eval to false,
2860 * but float*_is_unordered() is still called. */
2861 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2862 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2863 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2864 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2865 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2866 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2867 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2868 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2869
2870 #define FOP_COND_PS(op, condl, condh) \
2871 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2872 { \
2873 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2874 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2875 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2876 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2877 int cl = condl; \
2878 int ch = condh; \
2879 \
2880 update_fcr31(); \
2881 if (cl) \
2882 SET_FP_COND(cc, env->active_fpu); \
2883 else \
2884 CLEAR_FP_COND(cc, env->active_fpu); \
2885 if (ch) \
2886 SET_FP_COND(cc + 1, env->active_fpu); \
2887 else \
2888 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2889 } \
2890 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2891 { \
2892 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2893 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2894 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2895 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2896 int cl = condl; \
2897 int ch = condh; \
2898 \
2899 update_fcr31(); \
2900 if (cl) \
2901 SET_FP_COND(cc, env->active_fpu); \
2902 else \
2903 CLEAR_FP_COND(cc, env->active_fpu); \
2904 if (ch) \
2905 SET_FP_COND(cc + 1, env->active_fpu); \
2906 else \
2907 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2908 }
2909
2910 /* NOTE: the comma operator will make "cond" to eval to false,
2911 * but float*_is_unordered() is still called. */
2912 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
2913 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2914 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
2915 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
2916 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2917 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2918 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2919 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2920 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2921 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2922 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2923 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2924 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2925 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2926 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2927 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2928 /* NOTE: the comma operator will make "cond" to eval to false,
2929 * but float*_is_unordered() is still called. */
2930 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
2931 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2932 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
2933 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
2934 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2935 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2936 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2937 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2938 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2939 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2940 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2941 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2942 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2943 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2944 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2945 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))