]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Implement missing MIPS supervisor mode bits.
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 #define GETPC() (__builtin_return_address(0))
26
27 /*****************************************************************************/
28 /* Exceptions processing helpers */
29
30 void do_raise_exception_err (uint32_t exception, int error_code)
31 {
32 #if 1
33 if (logfile && exception < 0x100)
34 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
35 #endif
36 env->exception_index = exception;
37 env->error_code = error_code;
38 T0 = 0;
39 cpu_loop_exit();
40 }
41
42 void do_raise_exception (uint32_t exception)
43 {
44 do_raise_exception_err(exception, 0);
45 }
46
47 void do_restore_state (void *pc_ptr)
48 {
49 TranslationBlock *tb;
50 unsigned long pc = (unsigned long) pc_ptr;
51
52 tb = tb_find_pc (pc);
53 cpu_restore_state (tb, env, pc, NULL);
54 }
55
56 void do_raise_exception_direct_err (uint32_t exception, int error_code)
57 {
58 do_restore_state (GETPC ());
59 do_raise_exception_err (exception, error_code);
60 }
61
62 void do_raise_exception_direct (uint32_t exception)
63 {
64 do_raise_exception_direct_err (exception, 0);
65 }
66
67 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
68 #if TARGET_LONG_BITS > HOST_LONG_BITS
69 /* Those might call libgcc functions. */
70 void do_dsll (void)
71 {
72 T0 = T0 << T1;
73 }
74
75 void do_dsll32 (void)
76 {
77 T0 = T0 << (T1 + 32);
78 }
79
80 void do_dsra (void)
81 {
82 T0 = (int64_t)T0 >> T1;
83 }
84
85 void do_dsra32 (void)
86 {
87 T0 = (int64_t)T0 >> (T1 + 32);
88 }
89
90 void do_dsrl (void)
91 {
92 T0 = T0 >> T1;
93 }
94
95 void do_dsrl32 (void)
96 {
97 T0 = T0 >> (T1 + 32);
98 }
99
100 void do_drotr (void)
101 {
102 target_ulong tmp;
103
104 if (T1) {
105 tmp = T0 << (0x40 - T1);
106 T0 = (T0 >> T1) | tmp;
107 }
108 }
109
110 void do_drotr32 (void)
111 {
112 target_ulong tmp;
113
114 if (T1) {
115 tmp = T0 << (0x40 - (32 + T1));
116 T0 = (T0 >> (32 + T1)) | tmp;
117 }
118 }
119
120 void do_dsllv (void)
121 {
122 T0 = T1 << (T0 & 0x3F);
123 }
124
125 void do_dsrav (void)
126 {
127 T0 = (int64_t)T1 >> (T0 & 0x3F);
128 }
129
130 void do_dsrlv (void)
131 {
132 T0 = T1 >> (T0 & 0x3F);
133 }
134
135 void do_drotrv (void)
136 {
137 target_ulong tmp;
138
139 T0 &= 0x3F;
140 if (T0) {
141 tmp = T1 << (0x40 - T0);
142 T0 = (T1 >> T0) | tmp;
143 } else
144 T0 = T1;
145 }
146
147 void do_dclo (void)
148 {
149 T0 = clo64(T0);
150 }
151
152 void do_dclz (void)
153 {
154 T0 = clz64(T0);
155 }
156
157 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
158 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
159
160 /* 64 bits arithmetic for 32 bits hosts */
161 #if TARGET_LONG_BITS > HOST_LONG_BITS
162 static always_inline uint64_t get_HILO (void)
163 {
164 return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
165 }
166
167 static always_inline void set_HILO (uint64_t HILO)
168 {
169 env->LO[0][env->current_tc] = (int32_t)HILO;
170 env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
171 }
172
173 void do_mult (void)
174 {
175 set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
176 }
177
178 void do_multu (void)
179 {
180 set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
181 }
182
183 void do_madd (void)
184 {
185 int64_t tmp;
186
187 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
188 set_HILO((int64_t)get_HILO() + tmp);
189 }
190
191 void do_maddu (void)
192 {
193 uint64_t tmp;
194
195 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
196 set_HILO(get_HILO() + tmp);
197 }
198
199 void do_msub (void)
200 {
201 int64_t tmp;
202
203 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
204 set_HILO((int64_t)get_HILO() - tmp);
205 }
206
207 void do_msubu (void)
208 {
209 uint64_t tmp;
210
211 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
212 set_HILO(get_HILO() - tmp);
213 }
214 #endif
215
216 #if HOST_LONG_BITS < 64
217 void do_div (void)
218 {
219 /* 64bit datatypes because we may see overflow/underflow. */
220 if (T1 != 0) {
221 env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
222 env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
223 }
224 }
225 #endif
226
227 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
228 void do_ddiv (void)
229 {
230 if (T1 != 0) {
231 lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
232 env->LO[0][env->current_tc] = res.quot;
233 env->HI[0][env->current_tc] = res.rem;
234 }
235 }
236
237 #if TARGET_LONG_BITS > HOST_LONG_BITS
238 void do_ddivu (void)
239 {
240 if (T1 != 0) {
241 env->LO[0][env->current_tc] = T0 / T1;
242 env->HI[0][env->current_tc] = T0 % T1;
243 }
244 }
245 #endif
246 #endif /* TARGET_MIPSN32 || TARGET_MIPS64 */
247
248 #if defined(CONFIG_USER_ONLY)
249 void do_mfc0_random (void)
250 {
251 cpu_abort(env, "mfc0 random\n");
252 }
253
254 void do_mfc0_count (void)
255 {
256 cpu_abort(env, "mfc0 count\n");
257 }
258
259 void cpu_mips_store_count(CPUState *env, uint32_t value)
260 {
261 cpu_abort(env, "mtc0 count\n");
262 }
263
264 void cpu_mips_store_compare(CPUState *env, uint32_t value)
265 {
266 cpu_abort(env, "mtc0 compare\n");
267 }
268
269 void cpu_mips_start_count(CPUState *env)
270 {
271 cpu_abort(env, "start count\n");
272 }
273
274 void cpu_mips_stop_count(CPUState *env)
275 {
276 cpu_abort(env, "stop count\n");
277 }
278
279 void cpu_mips_update_irq(CPUState *env)
280 {
281 cpu_abort(env, "mtc0 status / mtc0 cause\n");
282 }
283
284 void do_mtc0_status_debug(uint32_t old, uint32_t val)
285 {
286 cpu_abort(env, "mtc0 status debug\n");
287 }
288
289 void do_mtc0_status_irqraise_debug (void)
290 {
291 cpu_abort(env, "mtc0 status irqraise debug\n");
292 }
293
294 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
295 {
296 cpu_abort(env, "mips_tlb_flush\n");
297 }
298
299 #else
300
301 /* CP0 helpers */
302 void do_mfc0_random (void)
303 {
304 T0 = (int32_t)cpu_mips_get_random(env);
305 }
306
307 void do_mfc0_count (void)
308 {
309 T0 = (int32_t)cpu_mips_get_count(env);
310 }
311
312 void do_mtc0_status_debug(uint32_t old, uint32_t val)
313 {
314 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
315 old, old & env->CP0_Cause & CP0Ca_IP_mask,
316 val, val & env->CP0_Cause & CP0Ca_IP_mask,
317 env->CP0_Cause);
318 switch (env->hflags & MIPS_HFLAG_KSU) {
319 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
320 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
321 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
322 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
323 }
324 }
325
326 void do_mtc0_status_irqraise_debug(void)
327 {
328 fprintf(logfile, "Raise pending IRQs\n");
329 }
330
331 void fpu_handle_exception(void)
332 {
333 #ifdef CONFIG_SOFTFLOAT
334 int flags = get_float_exception_flags(&env->fpu->fp_status);
335 unsigned int cpuflags = 0, enable, cause = 0;
336
337 enable = GET_FP_ENABLE(env->fpu->fcr31);
338
339 /* determine current flags */
340 if (flags & float_flag_invalid) {
341 cpuflags |= FP_INVALID;
342 cause |= FP_INVALID & enable;
343 }
344 if (flags & float_flag_divbyzero) {
345 cpuflags |= FP_DIV0;
346 cause |= FP_DIV0 & enable;
347 }
348 if (flags & float_flag_overflow) {
349 cpuflags |= FP_OVERFLOW;
350 cause |= FP_OVERFLOW & enable;
351 }
352 if (flags & float_flag_underflow) {
353 cpuflags |= FP_UNDERFLOW;
354 cause |= FP_UNDERFLOW & enable;
355 }
356 if (flags & float_flag_inexact) {
357 cpuflags |= FP_INEXACT;
358 cause |= FP_INEXACT & enable;
359 }
360 SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
361 SET_FP_CAUSE(env->fpu->fcr31, cause);
362 #else
363 SET_FP_FLAGS(env->fpu->fcr31, 0);
364 SET_FP_CAUSE(env->fpu->fcr31, 0);
365 #endif
366 }
367
368 /* TLB management */
369 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
370 {
371 /* Flush qemu's TLB and discard all shadowed entries. */
372 tlb_flush (env, flush_global);
373 env->tlb->tlb_in_use = env->tlb->nb_tlb;
374 }
375
376 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
377 {
378 /* Discard entries from env->tlb[first] onwards. */
379 while (env->tlb->tlb_in_use > first) {
380 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
381 }
382 }
383
384 static void r4k_fill_tlb (int idx)
385 {
386 r4k_tlb_t *tlb;
387
388 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
389 tlb = &env->tlb->mmu.r4k.tlb[idx];
390 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
391 #if defined(TARGET_MIPSN32) || defined(TARGET_MIPS64)
392 tlb->VPN &= env->SEGMask;
393 #endif
394 tlb->ASID = env->CP0_EntryHi & 0xFF;
395 tlb->PageMask = env->CP0_PageMask;
396 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
397 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
398 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
399 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
400 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
401 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
402 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
403 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
404 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
405 }
406
407 void r4k_do_tlbwi (void)
408 {
409 /* Discard cached TLB entries. We could avoid doing this if the
410 tlbwi is just upgrading access permissions on the current entry;
411 that might be a further win. */
412 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
413
414 r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
415 r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
416 }
417
418 void r4k_do_tlbwr (void)
419 {
420 int r = cpu_mips_get_random(env);
421
422 r4k_invalidate_tlb(env, r, 1);
423 r4k_fill_tlb(r);
424 }
425
426 void r4k_do_tlbp (void)
427 {
428 r4k_tlb_t *tlb;
429 target_ulong mask;
430 target_ulong tag;
431 target_ulong VPN;
432 uint8_t ASID;
433 int i;
434
435 ASID = env->CP0_EntryHi & 0xFF;
436 for (i = 0; i < env->tlb->nb_tlb; i++) {
437 tlb = &env->tlb->mmu.r4k.tlb[i];
438 /* 1k pages are not supported. */
439 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
440 tag = env->CP0_EntryHi & ~mask;
441 VPN = tlb->VPN & ~mask;
442 /* Check ASID, virtual page number & size */
443 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
444 /* TLB match */
445 env->CP0_Index = i;
446 break;
447 }
448 }
449 if (i == env->tlb->nb_tlb) {
450 /* No match. Discard any shadow entries, if any of them match. */
451 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
452 tlb = &env->tlb->mmu.r4k.tlb[i];
453 /* 1k pages are not supported. */
454 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
455 tag = env->CP0_EntryHi & ~mask;
456 VPN = tlb->VPN & ~mask;
457 /* Check ASID, virtual page number & size */
458 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
459 r4k_mips_tlb_flush_extra (env, i);
460 break;
461 }
462 }
463
464 env->CP0_Index |= 0x80000000;
465 }
466 }
467
468 void r4k_do_tlbr (void)
469 {
470 r4k_tlb_t *tlb;
471 uint8_t ASID;
472
473 ASID = env->CP0_EntryHi & 0xFF;
474 tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
475
476 /* If this will change the current ASID, flush qemu's TLB. */
477 if (ASID != tlb->ASID)
478 cpu_mips_tlb_flush (env, 1);
479
480 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
481
482 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
483 env->CP0_PageMask = tlb->PageMask;
484 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
485 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
486 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
487 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
488 }
489
490 #endif /* !CONFIG_USER_ONLY */
491
492 void dump_ldst (const unsigned char *func)
493 {
494 if (loglevel)
495 fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
496 }
497
498 void dump_sc (void)
499 {
500 if (loglevel) {
501 fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
502 T1, T0, env->CP0_LLAddr);
503 }
504 }
505
506 void debug_pre_eret (void)
507 {
508 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
509 env->PC[env->current_tc], env->CP0_EPC);
510 if (env->CP0_Status & (1 << CP0St_ERL))
511 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
512 if (env->hflags & MIPS_HFLAG_DM)
513 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
514 fputs("\n", logfile);
515 }
516
517 void debug_post_eret (void)
518 {
519 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
520 env->PC[env->current_tc], env->CP0_EPC);
521 if (env->CP0_Status & (1 << CP0St_ERL))
522 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
523 if (env->hflags & MIPS_HFLAG_DM)
524 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
525 switch (env->hflags & MIPS_HFLAG_KSU) {
526 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
527 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
528 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
529 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
530 }
531 }
532
533 void do_pmon (int function)
534 {
535 function /= 2;
536 switch (function) {
537 case 2: /* TODO: char inbyte(int waitflag); */
538 if (env->gpr[4][env->current_tc] == 0)
539 env->gpr[2][env->current_tc] = -1;
540 /* Fall through */
541 case 11: /* TODO: char inbyte (void); */
542 env->gpr[2][env->current_tc] = -1;
543 break;
544 case 3:
545 case 12:
546 printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
547 break;
548 case 17:
549 break;
550 case 158:
551 {
552 unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
553 printf("%s", fmt);
554 }
555 break;
556 }
557 }
558
559 #if !defined(CONFIG_USER_ONLY)
560
561 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
562
563 #define MMUSUFFIX _mmu
564 #define ALIGNED_ONLY
565
566 #define SHIFT 0
567 #include "softmmu_template.h"
568
569 #define SHIFT 1
570 #include "softmmu_template.h"
571
572 #define SHIFT 2
573 #include "softmmu_template.h"
574
575 #define SHIFT 3
576 #include "softmmu_template.h"
577
578 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
579 {
580 env->CP0_BadVAddr = addr;
581 do_restore_state (retaddr);
582 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
583 }
584
585 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
586 {
587 TranslationBlock *tb;
588 CPUState *saved_env;
589 unsigned long pc;
590 int ret;
591
592 /* XXX: hack to restore env in all cases, even if not called from
593 generated code */
594 saved_env = env;
595 env = cpu_single_env;
596 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
597 if (ret) {
598 if (retaddr) {
599 /* now we have a real cpu fault */
600 pc = (unsigned long)retaddr;
601 tb = tb_find_pc(pc);
602 if (tb) {
603 /* the PC is inside the translated code. It means that we have
604 a virtual CPU fault */
605 cpu_restore_state(tb, env, pc, NULL);
606 }
607 }
608 do_raise_exception_err(env->exception_index, env->error_code);
609 }
610 env = saved_env;
611 }
612
613 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
614 int unused)
615 {
616 if (is_exec)
617 do_raise_exception(EXCP_IBE);
618 else
619 do_raise_exception(EXCP_DBE);
620 }
621 #endif
622
623 /* Complex FPU operations which may need stack space. */
624
625 #define FLOAT_SIGN32 (1 << 31)
626 #define FLOAT_SIGN64 (1ULL << 63)
627 #define FLOAT_ONE32 (0x3f8 << 20)
628 #define FLOAT_ONE64 (0x3ffULL << 52)
629 #define FLOAT_TWO32 (1 << 30)
630 #define FLOAT_TWO64 (1ULL << 62)
631 #define FLOAT_QNAN32 0x7fbfffff
632 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
633 #define FLOAT_SNAN32 0x7fffffff
634 #define FLOAT_SNAN64 0x7fffffffffffffffULL
635
636 /* convert MIPS rounding mode in FCR31 to IEEE library */
637 unsigned int ieee_rm[] = {
638 float_round_nearest_even,
639 float_round_to_zero,
640 float_round_up,
641 float_round_down
642 };
643
644 #define RESTORE_ROUNDING_MODE \
645 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
646
647 void do_cfc1 (int reg)
648 {
649 switch (reg) {
650 case 0:
651 T0 = (int32_t)env->fpu->fcr0;
652 break;
653 case 25:
654 T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
655 break;
656 case 26:
657 T0 = env->fpu->fcr31 & 0x0003f07c;
658 break;
659 case 28:
660 T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
661 break;
662 default:
663 T0 = (int32_t)env->fpu->fcr31;
664 break;
665 }
666 }
667
668 void do_ctc1 (int reg)
669 {
670 switch(reg) {
671 case 25:
672 if (T0 & 0xffffff00)
673 return;
674 env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
675 ((T0 & 0x1) << 23);
676 break;
677 case 26:
678 if (T0 & 0x007c0000)
679 return;
680 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
681 break;
682 case 28:
683 if (T0 & 0x007c0000)
684 return;
685 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
686 ((T0 & 0x4) << 22);
687 break;
688 case 31:
689 if (T0 & 0x007c0000)
690 return;
691 env->fpu->fcr31 = T0;
692 break;
693 default:
694 return;
695 }
696 /* set rounding mode */
697 RESTORE_ROUNDING_MODE;
698 set_float_exception_flags(0, &env->fpu->fp_status);
699 if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
700 do_raise_exception(EXCP_FPE);
701 }
702
703 static always_inline char ieee_ex_to_mips(char xcpt)
704 {
705 return (xcpt & float_flag_inexact) >> 5 |
706 (xcpt & float_flag_underflow) >> 3 |
707 (xcpt & float_flag_overflow) >> 1 |
708 (xcpt & float_flag_divbyzero) << 1 |
709 (xcpt & float_flag_invalid) << 4;
710 }
711
712 static always_inline char mips_ex_to_ieee(char xcpt)
713 {
714 return (xcpt & FP_INEXACT) << 5 |
715 (xcpt & FP_UNDERFLOW) << 3 |
716 (xcpt & FP_OVERFLOW) << 1 |
717 (xcpt & FP_DIV0) >> 1 |
718 (xcpt & FP_INVALID) >> 4;
719 }
720
721 static always_inline void update_fcr31(void)
722 {
723 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
724
725 SET_FP_CAUSE(env->fpu->fcr31, tmp);
726 if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
727 do_raise_exception(EXCP_FPE);
728 else
729 UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
730 }
731
732 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
733
734 FLOAT_OP(cvtd, s)
735 {
736 set_float_exception_flags(0, &env->fpu->fp_status);
737 FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
738 update_fcr31();
739 }
740 FLOAT_OP(cvtd, w)
741 {
742 set_float_exception_flags(0, &env->fpu->fp_status);
743 FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
744 update_fcr31();
745 }
746 FLOAT_OP(cvtd, l)
747 {
748 set_float_exception_flags(0, &env->fpu->fp_status);
749 FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
750 update_fcr31();
751 }
752 FLOAT_OP(cvtl, d)
753 {
754 set_float_exception_flags(0, &env->fpu->fp_status);
755 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
756 update_fcr31();
757 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
758 DT2 = FLOAT_SNAN64;
759 }
760 FLOAT_OP(cvtl, s)
761 {
762 set_float_exception_flags(0, &env->fpu->fp_status);
763 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
764 update_fcr31();
765 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
766 DT2 = FLOAT_SNAN64;
767 }
768
769 FLOAT_OP(cvtps, pw)
770 {
771 set_float_exception_flags(0, &env->fpu->fp_status);
772 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
773 FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
774 update_fcr31();
775 }
776 FLOAT_OP(cvtpw, ps)
777 {
778 set_float_exception_flags(0, &env->fpu->fp_status);
779 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
780 WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
781 update_fcr31();
782 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
783 WT2 = FLOAT_SNAN32;
784 }
785 FLOAT_OP(cvts, d)
786 {
787 set_float_exception_flags(0, &env->fpu->fp_status);
788 FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
789 update_fcr31();
790 }
791 FLOAT_OP(cvts, w)
792 {
793 set_float_exception_flags(0, &env->fpu->fp_status);
794 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
795 update_fcr31();
796 }
797 FLOAT_OP(cvts, l)
798 {
799 set_float_exception_flags(0, &env->fpu->fp_status);
800 FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
801 update_fcr31();
802 }
803 FLOAT_OP(cvts, pl)
804 {
805 set_float_exception_flags(0, &env->fpu->fp_status);
806 WT2 = WT0;
807 update_fcr31();
808 }
809 FLOAT_OP(cvts, pu)
810 {
811 set_float_exception_flags(0, &env->fpu->fp_status);
812 WT2 = WTH0;
813 update_fcr31();
814 }
815 FLOAT_OP(cvtw, s)
816 {
817 set_float_exception_flags(0, &env->fpu->fp_status);
818 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
819 update_fcr31();
820 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
821 WT2 = FLOAT_SNAN32;
822 }
823 FLOAT_OP(cvtw, d)
824 {
825 set_float_exception_flags(0, &env->fpu->fp_status);
826 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
827 update_fcr31();
828 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
829 WT2 = FLOAT_SNAN32;
830 }
831
832 FLOAT_OP(roundl, d)
833 {
834 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
835 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
836 RESTORE_ROUNDING_MODE;
837 update_fcr31();
838 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
839 DT2 = FLOAT_SNAN64;
840 }
841 FLOAT_OP(roundl, s)
842 {
843 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
844 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
845 RESTORE_ROUNDING_MODE;
846 update_fcr31();
847 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
848 DT2 = FLOAT_SNAN64;
849 }
850 FLOAT_OP(roundw, d)
851 {
852 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
853 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
854 RESTORE_ROUNDING_MODE;
855 update_fcr31();
856 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
857 WT2 = FLOAT_SNAN32;
858 }
859 FLOAT_OP(roundw, s)
860 {
861 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
862 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
863 RESTORE_ROUNDING_MODE;
864 update_fcr31();
865 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
866 WT2 = FLOAT_SNAN32;
867 }
868
869 FLOAT_OP(truncl, d)
870 {
871 DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
872 update_fcr31();
873 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
874 DT2 = FLOAT_SNAN64;
875 }
876 FLOAT_OP(truncl, s)
877 {
878 DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
879 update_fcr31();
880 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
881 DT2 = FLOAT_SNAN64;
882 }
883 FLOAT_OP(truncw, d)
884 {
885 WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
886 update_fcr31();
887 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
888 WT2 = FLOAT_SNAN32;
889 }
890 FLOAT_OP(truncw, s)
891 {
892 WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
893 update_fcr31();
894 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
895 WT2 = FLOAT_SNAN32;
896 }
897
898 FLOAT_OP(ceill, d)
899 {
900 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
901 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
902 RESTORE_ROUNDING_MODE;
903 update_fcr31();
904 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
905 DT2 = FLOAT_SNAN64;
906 }
907 FLOAT_OP(ceill, s)
908 {
909 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
910 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
911 RESTORE_ROUNDING_MODE;
912 update_fcr31();
913 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
914 DT2 = FLOAT_SNAN64;
915 }
916 FLOAT_OP(ceilw, d)
917 {
918 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
919 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
920 RESTORE_ROUNDING_MODE;
921 update_fcr31();
922 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
923 WT2 = FLOAT_SNAN32;
924 }
925 FLOAT_OP(ceilw, s)
926 {
927 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
928 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
929 RESTORE_ROUNDING_MODE;
930 update_fcr31();
931 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
932 WT2 = FLOAT_SNAN32;
933 }
934
935 FLOAT_OP(floorl, d)
936 {
937 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
938 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
939 RESTORE_ROUNDING_MODE;
940 update_fcr31();
941 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
942 DT2 = FLOAT_SNAN64;
943 }
944 FLOAT_OP(floorl, s)
945 {
946 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
947 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
948 RESTORE_ROUNDING_MODE;
949 update_fcr31();
950 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
951 DT2 = FLOAT_SNAN64;
952 }
953 FLOAT_OP(floorw, d)
954 {
955 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
956 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
957 RESTORE_ROUNDING_MODE;
958 update_fcr31();
959 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
960 WT2 = FLOAT_SNAN32;
961 }
962 FLOAT_OP(floorw, s)
963 {
964 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
965 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
966 RESTORE_ROUNDING_MODE;
967 update_fcr31();
968 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
969 WT2 = FLOAT_SNAN32;
970 }
971
972 /* MIPS specific unary operations */
973 FLOAT_OP(recip, d)
974 {
975 set_float_exception_flags(0, &env->fpu->fp_status);
976 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
977 update_fcr31();
978 }
979 FLOAT_OP(recip, s)
980 {
981 set_float_exception_flags(0, &env->fpu->fp_status);
982 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
983 update_fcr31();
984 }
985
986 FLOAT_OP(rsqrt, d)
987 {
988 set_float_exception_flags(0, &env->fpu->fp_status);
989 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
990 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
991 update_fcr31();
992 }
993 FLOAT_OP(rsqrt, s)
994 {
995 set_float_exception_flags(0, &env->fpu->fp_status);
996 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
997 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
998 update_fcr31();
999 }
1000
1001 FLOAT_OP(recip1, d)
1002 {
1003 set_float_exception_flags(0, &env->fpu->fp_status);
1004 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1005 update_fcr31();
1006 }
1007 FLOAT_OP(recip1, s)
1008 {
1009 set_float_exception_flags(0, &env->fpu->fp_status);
1010 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1011 update_fcr31();
1012 }
1013 FLOAT_OP(recip1, ps)
1014 {
1015 set_float_exception_flags(0, &env->fpu->fp_status);
1016 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1017 FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1018 update_fcr31();
1019 }
1020
1021 FLOAT_OP(rsqrt1, d)
1022 {
1023 set_float_exception_flags(0, &env->fpu->fp_status);
1024 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1025 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1026 update_fcr31();
1027 }
1028 FLOAT_OP(rsqrt1, s)
1029 {
1030 set_float_exception_flags(0, &env->fpu->fp_status);
1031 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1032 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1033 update_fcr31();
1034 }
1035 FLOAT_OP(rsqrt1, ps)
1036 {
1037 set_float_exception_flags(0, &env->fpu->fp_status);
1038 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1039 FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1040 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1041 FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1042 update_fcr31();
1043 }
1044
1045 /* binary operations */
1046 #define FLOAT_BINOP(name) \
1047 FLOAT_OP(name, d) \
1048 { \
1049 set_float_exception_flags(0, &env->fpu->fp_status); \
1050 FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \
1051 update_fcr31(); \
1052 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1053 FDT2 = FLOAT_QNAN64; \
1054 } \
1055 FLOAT_OP(name, s) \
1056 { \
1057 set_float_exception_flags(0, &env->fpu->fp_status); \
1058 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1059 update_fcr31(); \
1060 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1061 FST2 = FLOAT_QNAN32; \
1062 } \
1063 FLOAT_OP(name, ps) \
1064 { \
1065 set_float_exception_flags(0, &env->fpu->fp_status); \
1066 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1067 FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1068 update_fcr31(); \
1069 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
1070 FST2 = FLOAT_QNAN32; \
1071 FSTH2 = FLOAT_QNAN32; \
1072 } \
1073 }
1074 FLOAT_BINOP(add)
1075 FLOAT_BINOP(sub)
1076 FLOAT_BINOP(mul)
1077 FLOAT_BINOP(div)
1078 #undef FLOAT_BINOP
1079
1080 /* MIPS specific binary operations */
1081 FLOAT_OP(recip2, d)
1082 {
1083 set_float_exception_flags(0, &env->fpu->fp_status);
1084 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1085 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1086 update_fcr31();
1087 }
1088 FLOAT_OP(recip2, s)
1089 {
1090 set_float_exception_flags(0, &env->fpu->fp_status);
1091 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1092 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1093 update_fcr31();
1094 }
1095 FLOAT_OP(recip2, ps)
1096 {
1097 set_float_exception_flags(0, &env->fpu->fp_status);
1098 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1099 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1100 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1101 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1102 update_fcr31();
1103 }
1104
1105 FLOAT_OP(rsqrt2, d)
1106 {
1107 set_float_exception_flags(0, &env->fpu->fp_status);
1108 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1109 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1110 FDT2 = float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status) ^ FLOAT_SIGN64;
1111 update_fcr31();
1112 }
1113 FLOAT_OP(rsqrt2, s)
1114 {
1115 set_float_exception_flags(0, &env->fpu->fp_status);
1116 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1117 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1118 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1119 update_fcr31();
1120 }
1121 FLOAT_OP(rsqrt2, ps)
1122 {
1123 set_float_exception_flags(0, &env->fpu->fp_status);
1124 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1125 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1126 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1127 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1128 FST2 = float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1129 FSTH2 = float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status) ^ FLOAT_SIGN32;
1130 update_fcr31();
1131 }
1132
1133 FLOAT_OP(addr, ps)
1134 {
1135 set_float_exception_flags(0, &env->fpu->fp_status);
1136 FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1137 FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1138 update_fcr31();
1139 }
1140
1141 FLOAT_OP(mulr, ps)
1142 {
1143 set_float_exception_flags(0, &env->fpu->fp_status);
1144 FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1145 FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1146 update_fcr31();
1147 }
1148
1149 /* compare operations */
1150 #define FOP_COND_D(op, cond) \
1151 void do_cmp_d_ ## op (long cc) \
1152 { \
1153 int c = cond; \
1154 update_fcr31(); \
1155 if (c) \
1156 SET_FP_COND(cc, env->fpu); \
1157 else \
1158 CLEAR_FP_COND(cc, env->fpu); \
1159 } \
1160 void do_cmpabs_d_ ## op (long cc) \
1161 { \
1162 int c; \
1163 FDT0 &= ~FLOAT_SIGN64; \
1164 FDT1 &= ~FLOAT_SIGN64; \
1165 c = cond; \
1166 update_fcr31(); \
1167 if (c) \
1168 SET_FP_COND(cc, env->fpu); \
1169 else \
1170 CLEAR_FP_COND(cc, env->fpu); \
1171 }
1172
1173 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1174 {
1175 if (float64_is_signaling_nan(a) ||
1176 float64_is_signaling_nan(b) ||
1177 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1178 float_raise(float_flag_invalid, status);
1179 return 1;
1180 } else if (float64_is_nan(a) || float64_is_nan(b)) {
1181 return 1;
1182 } else {
1183 return 0;
1184 }
1185 }
1186
1187 /* NOTE: the comma operator will make "cond" to eval to false,
1188 * but float*_is_unordered() is still called. */
1189 FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1190 FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1191 FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1192 FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1193 FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1194 FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1195 FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1196 FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1197 /* NOTE: the comma operator will make "cond" to eval to false,
1198 * but float*_is_unordered() is still called. */
1199 FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1200 FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1201 FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1202 FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1203 FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1204 FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1205 FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1206 FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1207
1208 #define FOP_COND_S(op, cond) \
1209 void do_cmp_s_ ## op (long cc) \
1210 { \
1211 int c = cond; \
1212 update_fcr31(); \
1213 if (c) \
1214 SET_FP_COND(cc, env->fpu); \
1215 else \
1216 CLEAR_FP_COND(cc, env->fpu); \
1217 } \
1218 void do_cmpabs_s_ ## op (long cc) \
1219 { \
1220 int c; \
1221 FST0 &= ~FLOAT_SIGN32; \
1222 FST1 &= ~FLOAT_SIGN32; \
1223 c = cond; \
1224 update_fcr31(); \
1225 if (c) \
1226 SET_FP_COND(cc, env->fpu); \
1227 else \
1228 CLEAR_FP_COND(cc, env->fpu); \
1229 }
1230
1231 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1232 {
1233 if (float32_is_signaling_nan(a) ||
1234 float32_is_signaling_nan(b) ||
1235 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1236 float_raise(float_flag_invalid, status);
1237 return 1;
1238 } else if (float32_is_nan(a) || float32_is_nan(b)) {
1239 return 1;
1240 } else {
1241 return 0;
1242 }
1243 }
1244
1245 /* NOTE: the comma operator will make "cond" to eval to false,
1246 * but float*_is_unordered() is still called. */
1247 FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1248 FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1249 FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1250 FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1251 FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1252 FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1253 FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1254 FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1255 /* NOTE: the comma operator will make "cond" to eval to false,
1256 * but float*_is_unordered() is still called. */
1257 FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1258 FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1259 FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1260 FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1261 FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1262 FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1263 FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1264 FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1265
1266 #define FOP_COND_PS(op, condl, condh) \
1267 void do_cmp_ps_ ## op (long cc) \
1268 { \
1269 int cl = condl; \
1270 int ch = condh; \
1271 update_fcr31(); \
1272 if (cl) \
1273 SET_FP_COND(cc, env->fpu); \
1274 else \
1275 CLEAR_FP_COND(cc, env->fpu); \
1276 if (ch) \
1277 SET_FP_COND(cc + 1, env->fpu); \
1278 else \
1279 CLEAR_FP_COND(cc + 1, env->fpu); \
1280 } \
1281 void do_cmpabs_ps_ ## op (long cc) \
1282 { \
1283 int cl, ch; \
1284 FST0 &= ~FLOAT_SIGN32; \
1285 FSTH0 &= ~FLOAT_SIGN32; \
1286 FST1 &= ~FLOAT_SIGN32; \
1287 FSTH1 &= ~FLOAT_SIGN32; \
1288 cl = condl; \
1289 ch = condh; \
1290 update_fcr31(); \
1291 if (cl) \
1292 SET_FP_COND(cc, env->fpu); \
1293 else \
1294 CLEAR_FP_COND(cc, env->fpu); \
1295 if (ch) \
1296 SET_FP_COND(cc + 1, env->fpu); \
1297 else \
1298 CLEAR_FP_COND(cc + 1, env->fpu); \
1299 }
1300
1301 /* NOTE: the comma operator will make "cond" to eval to false,
1302 * but float*_is_unordered() is still called. */
1303 FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1304 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1305 FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1306 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1307 FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1308 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1309 FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1310 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1311 FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1312 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1313 FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1314 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1315 FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1316 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1317 FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1318 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1319 /* NOTE: the comma operator will make "cond" to eval to false,
1320 * but float*_is_unordered() is still called. */
1321 FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1322 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1323 FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1324 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1325 FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1326 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1327 FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1328 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1329 FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1330 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1331 FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1332 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1333 FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1334 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1335 FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1336 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))