]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Merge branch 's390-reorg' of git://repo.or.cz/qemu/rth
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <stdlib.h>
20 #include "cpu.h"
21 #include "qemu/host-utils.h"
22
23 #include "helper.h"
24
25 #if !defined(CONFIG_USER_ONLY)
26 #include "exec/softmmu_exec.h"
27 #endif /* !defined(CONFIG_USER_ONLY) */
28
29 #ifndef CONFIG_USER_ONLY
30 static inline void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global);
31 #endif
32
33 /*****************************************************************************/
34 /* Exceptions processing helpers */
35
36 static inline void QEMU_NORETURN do_raise_exception_err(CPUMIPSState *env,
37 uint32_t exception,
38 int error_code,
39 uintptr_t pc)
40 {
41 if (exception < EXCP_SC) {
42 qemu_log("%s: %d %d\n", __func__, exception, error_code);
43 }
44 env->exception_index = exception;
45 env->error_code = error_code;
46
47 if (pc) {
48 /* now we have a real cpu fault */
49 cpu_restore_state(env, pc);
50 }
51
52 cpu_loop_exit(env);
53 }
54
55 static inline void QEMU_NORETURN do_raise_exception(CPUMIPSState *env,
56 uint32_t exception,
57 uintptr_t pc)
58 {
59 do_raise_exception_err(env, exception, 0, pc);
60 }
61
62 void helper_raise_exception_err(CPUMIPSState *env, uint32_t exception,
63 int error_code)
64 {
65 do_raise_exception_err(env, exception, error_code, 0);
66 }
67
68 void helper_raise_exception(CPUMIPSState *env, uint32_t exception)
69 {
70 do_raise_exception(env, exception, 0);
71 }
72
73 #if defined(CONFIG_USER_ONLY)
74 #define HELPER_LD(name, insn, type) \
75 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
76 int mem_idx) \
77 { \
78 return (type) insn##_raw(addr); \
79 }
80 #else
81 #define HELPER_LD(name, insn, type) \
82 static inline type do_##name(CPUMIPSState *env, target_ulong addr, \
83 int mem_idx) \
84 { \
85 switch (mem_idx) \
86 { \
87 case 0: return (type) cpu_##insn##_kernel(env, addr); break; \
88 case 1: return (type) cpu_##insn##_super(env, addr); break; \
89 default: \
90 case 2: return (type) cpu_##insn##_user(env, addr); break; \
91 } \
92 }
93 #endif
94 HELPER_LD(lbu, ldub, uint8_t)
95 HELPER_LD(lw, ldl, int32_t)
96 #ifdef TARGET_MIPS64
97 HELPER_LD(ld, ldq, int64_t)
98 #endif
99 #undef HELPER_LD
100
101 #if defined(CONFIG_USER_ONLY)
102 #define HELPER_ST(name, insn, type) \
103 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
104 type val, int mem_idx) \
105 { \
106 insn##_raw(addr, val); \
107 }
108 #else
109 #define HELPER_ST(name, insn, type) \
110 static inline void do_##name(CPUMIPSState *env, target_ulong addr, \
111 type val, int mem_idx) \
112 { \
113 switch (mem_idx) \
114 { \
115 case 0: cpu_##insn##_kernel(env, addr, val); break; \
116 case 1: cpu_##insn##_super(env, addr, val); break; \
117 default: \
118 case 2: cpu_##insn##_user(env, addr, val); break; \
119 } \
120 }
121 #endif
122 HELPER_ST(sb, stb, uint8_t)
123 HELPER_ST(sw, stl, uint32_t)
124 #ifdef TARGET_MIPS64
125 HELPER_ST(sd, stq, uint64_t)
126 #endif
127 #undef HELPER_ST
128
129 target_ulong helper_clo (target_ulong arg1)
130 {
131 return clo32(arg1);
132 }
133
134 target_ulong helper_clz (target_ulong arg1)
135 {
136 return clz32(arg1);
137 }
138
139 #if defined(TARGET_MIPS64)
140 target_ulong helper_dclo (target_ulong arg1)
141 {
142 return clo64(arg1);
143 }
144
145 target_ulong helper_dclz (target_ulong arg1)
146 {
147 return clz64(arg1);
148 }
149 #endif /* TARGET_MIPS64 */
150
151 /* 64 bits arithmetic for 32 bits hosts */
152 static inline uint64_t get_HILO(CPUMIPSState *env)
153 {
154 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
155 }
156
157 static inline target_ulong set_HIT0_LO(CPUMIPSState *env, uint64_t HILO)
158 {
159 target_ulong tmp;
160 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
161 tmp = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
162 return tmp;
163 }
164
165 static inline target_ulong set_HI_LOT0(CPUMIPSState *env, uint64_t HILO)
166 {
167 target_ulong tmp = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
168 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
169 return tmp;
170 }
171
172 /* Multiplication variants of the vr54xx. */
173 target_ulong helper_muls(CPUMIPSState *env, target_ulong arg1,
174 target_ulong arg2)
175 {
176 return set_HI_LOT0(env, 0 - ((int64_t)(int32_t)arg1 *
177 (int64_t)(int32_t)arg2));
178 }
179
180 target_ulong helper_mulsu(CPUMIPSState *env, target_ulong arg1,
181 target_ulong arg2)
182 {
183 return set_HI_LOT0(env, 0 - (uint64_t)(uint32_t)arg1 *
184 (uint64_t)(uint32_t)arg2);
185 }
186
187 target_ulong helper_macc(CPUMIPSState *env, target_ulong arg1,
188 target_ulong arg2)
189 {
190 return set_HI_LOT0(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
191 (int64_t)(int32_t)arg2);
192 }
193
194 target_ulong helper_macchi(CPUMIPSState *env, target_ulong arg1,
195 target_ulong arg2)
196 {
197 return set_HIT0_LO(env, (int64_t)get_HILO(env) + (int64_t)(int32_t)arg1 *
198 (int64_t)(int32_t)arg2);
199 }
200
201 target_ulong helper_maccu(CPUMIPSState *env, target_ulong arg1,
202 target_ulong arg2)
203 {
204 return set_HI_LOT0(env, (uint64_t)get_HILO(env) +
205 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
206 }
207
208 target_ulong helper_macchiu(CPUMIPSState *env, target_ulong arg1,
209 target_ulong arg2)
210 {
211 return set_HIT0_LO(env, (uint64_t)get_HILO(env) +
212 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
213 }
214
215 target_ulong helper_msac(CPUMIPSState *env, target_ulong arg1,
216 target_ulong arg2)
217 {
218 return set_HI_LOT0(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
219 (int64_t)(int32_t)arg2);
220 }
221
222 target_ulong helper_msachi(CPUMIPSState *env, target_ulong arg1,
223 target_ulong arg2)
224 {
225 return set_HIT0_LO(env, (int64_t)get_HILO(env) - (int64_t)(int32_t)arg1 *
226 (int64_t)(int32_t)arg2);
227 }
228
229 target_ulong helper_msacu(CPUMIPSState *env, target_ulong arg1,
230 target_ulong arg2)
231 {
232 return set_HI_LOT0(env, (uint64_t)get_HILO(env) -
233 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
234 }
235
236 target_ulong helper_msachiu(CPUMIPSState *env, target_ulong arg1,
237 target_ulong arg2)
238 {
239 return set_HIT0_LO(env, (uint64_t)get_HILO(env) -
240 (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
241 }
242
243 target_ulong helper_mulhi(CPUMIPSState *env, target_ulong arg1,
244 target_ulong arg2)
245 {
246 return set_HIT0_LO(env, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
247 }
248
249 target_ulong helper_mulhiu(CPUMIPSState *env, target_ulong arg1,
250 target_ulong arg2)
251 {
252 return set_HIT0_LO(env, (uint64_t)(uint32_t)arg1 *
253 (uint64_t)(uint32_t)arg2);
254 }
255
256 target_ulong helper_mulshi(CPUMIPSState *env, target_ulong arg1,
257 target_ulong arg2)
258 {
259 return set_HIT0_LO(env, 0 - (int64_t)(int32_t)arg1 *
260 (int64_t)(int32_t)arg2);
261 }
262
263 target_ulong helper_mulshiu(CPUMIPSState *env, target_ulong arg1,
264 target_ulong arg2)
265 {
266 return set_HIT0_LO(env, 0 - (uint64_t)(uint32_t)arg1 *
267 (uint64_t)(uint32_t)arg2);
268 }
269
270 #ifdef TARGET_MIPS64
271 void helper_dmult(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
272 {
273 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
274 }
275
276 void helper_dmultu(CPUMIPSState *env, target_ulong arg1, target_ulong arg2)
277 {
278 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
279 }
280 #endif
281
282 #ifndef CONFIG_USER_ONLY
283
284 static inline hwaddr do_translate_address(CPUMIPSState *env,
285 target_ulong address,
286 int rw)
287 {
288 hwaddr lladdr;
289
290 lladdr = cpu_mips_translate_address(env, address, rw);
291
292 if (lladdr == -1LL) {
293 cpu_loop_exit(env);
294 } else {
295 return lladdr;
296 }
297 }
298
299 #define HELPER_LD_ATOMIC(name, insn) \
300 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg, int mem_idx) \
301 { \
302 env->lladdr = do_translate_address(env, arg, 0); \
303 env->llval = do_##insn(env, arg, mem_idx); \
304 return env->llval; \
305 }
306 HELPER_LD_ATOMIC(ll, lw)
307 #ifdef TARGET_MIPS64
308 HELPER_LD_ATOMIC(lld, ld)
309 #endif
310 #undef HELPER_LD_ATOMIC
311
312 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask) \
313 target_ulong helper_##name(CPUMIPSState *env, target_ulong arg1, \
314 target_ulong arg2, int mem_idx) \
315 { \
316 target_long tmp; \
317 \
318 if (arg2 & almask) { \
319 env->CP0_BadVAddr = arg2; \
320 helper_raise_exception(env, EXCP_AdES); \
321 } \
322 if (do_translate_address(env, arg2, 1) == env->lladdr) { \
323 tmp = do_##ld_insn(env, arg2, mem_idx); \
324 if (tmp == env->llval) { \
325 do_##st_insn(env, arg2, arg1, mem_idx); \
326 return 1; \
327 } \
328 } \
329 return 0; \
330 }
331 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
332 #ifdef TARGET_MIPS64
333 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
334 #endif
335 #undef HELPER_ST_ATOMIC
336 #endif
337
338 #ifdef TARGET_WORDS_BIGENDIAN
339 #define GET_LMASK(v) ((v) & 3)
340 #define GET_OFFSET(addr, offset) (addr + (offset))
341 #else
342 #define GET_LMASK(v) (((v) & 3) ^ 3)
343 #define GET_OFFSET(addr, offset) (addr - (offset))
344 #endif
345
346 void helper_swl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
347 int mem_idx)
348 {
349 do_sb(env, arg2, (uint8_t)(arg1 >> 24), mem_idx);
350
351 if (GET_LMASK(arg2) <= 2)
352 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
353
354 if (GET_LMASK(arg2) <= 1)
355 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
356
357 if (GET_LMASK(arg2) == 0)
358 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
359 }
360
361 void helper_swr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
362 int mem_idx)
363 {
364 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
365
366 if (GET_LMASK(arg2) >= 1)
367 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
368
369 if (GET_LMASK(arg2) >= 2)
370 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
371
372 if (GET_LMASK(arg2) == 3)
373 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
374 }
375
376 #if defined(TARGET_MIPS64)
377 /* "half" load and stores. We must do the memory access inline,
378 or fault handling won't work. */
379
380 #ifdef TARGET_WORDS_BIGENDIAN
381 #define GET_LMASK64(v) ((v) & 7)
382 #else
383 #define GET_LMASK64(v) (((v) & 7) ^ 7)
384 #endif
385
386 void helper_sdl(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
387 int mem_idx)
388 {
389 do_sb(env, arg2, (uint8_t)(arg1 >> 56), mem_idx);
390
391 if (GET_LMASK64(arg2) <= 6)
392 do_sb(env, GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
393
394 if (GET_LMASK64(arg2) <= 5)
395 do_sb(env, GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
396
397 if (GET_LMASK64(arg2) <= 4)
398 do_sb(env, GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
399
400 if (GET_LMASK64(arg2) <= 3)
401 do_sb(env, GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
402
403 if (GET_LMASK64(arg2) <= 2)
404 do_sb(env, GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
405
406 if (GET_LMASK64(arg2) <= 1)
407 do_sb(env, GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
408
409 if (GET_LMASK64(arg2) <= 0)
410 do_sb(env, GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
411 }
412
413 void helper_sdr(CPUMIPSState *env, target_ulong arg1, target_ulong arg2,
414 int mem_idx)
415 {
416 do_sb(env, arg2, (uint8_t)arg1, mem_idx);
417
418 if (GET_LMASK64(arg2) >= 1)
419 do_sb(env, GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
420
421 if (GET_LMASK64(arg2) >= 2)
422 do_sb(env, GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
423
424 if (GET_LMASK64(arg2) >= 3)
425 do_sb(env, GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
426
427 if (GET_LMASK64(arg2) >= 4)
428 do_sb(env, GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
429
430 if (GET_LMASK64(arg2) >= 5)
431 do_sb(env, GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
432
433 if (GET_LMASK64(arg2) >= 6)
434 do_sb(env, GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
435
436 if (GET_LMASK64(arg2) == 7)
437 do_sb(env, GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
438 }
439 #endif /* TARGET_MIPS64 */
440
441 static const int multiple_regs[] = { 16, 17, 18, 19, 20, 21, 22, 23, 30 };
442
443 void helper_lwm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
444 uint32_t mem_idx)
445 {
446 target_ulong base_reglist = reglist & 0xf;
447 target_ulong do_r31 = reglist & 0x10;
448
449 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
450 target_ulong i;
451
452 for (i = 0; i < base_reglist; i++) {
453 env->active_tc.gpr[multiple_regs[i]] =
454 (target_long)do_lw(env, addr, mem_idx);
455 addr += 4;
456 }
457 }
458
459 if (do_r31) {
460 env->active_tc.gpr[31] = (target_long)do_lw(env, addr, mem_idx);
461 }
462 }
463
464 void helper_swm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
465 uint32_t mem_idx)
466 {
467 target_ulong base_reglist = reglist & 0xf;
468 target_ulong do_r31 = reglist & 0x10;
469
470 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
471 target_ulong i;
472
473 for (i = 0; i < base_reglist; i++) {
474 do_sw(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
475 addr += 4;
476 }
477 }
478
479 if (do_r31) {
480 do_sw(env, addr, env->active_tc.gpr[31], mem_idx);
481 }
482 }
483
484 #if defined(TARGET_MIPS64)
485 void helper_ldm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
486 uint32_t mem_idx)
487 {
488 target_ulong base_reglist = reglist & 0xf;
489 target_ulong do_r31 = reglist & 0x10;
490
491 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
492 target_ulong i;
493
494 for (i = 0; i < base_reglist; i++) {
495 env->active_tc.gpr[multiple_regs[i]] = do_ld(env, addr, mem_idx);
496 addr += 8;
497 }
498 }
499
500 if (do_r31) {
501 env->active_tc.gpr[31] = do_ld(env, addr, mem_idx);
502 }
503 }
504
505 void helper_sdm(CPUMIPSState *env, target_ulong addr, target_ulong reglist,
506 uint32_t mem_idx)
507 {
508 target_ulong base_reglist = reglist & 0xf;
509 target_ulong do_r31 = reglist & 0x10;
510
511 if (base_reglist > 0 && base_reglist <= ARRAY_SIZE (multiple_regs)) {
512 target_ulong i;
513
514 for (i = 0; i < base_reglist; i++) {
515 do_sd(env, addr, env->active_tc.gpr[multiple_regs[i]], mem_idx);
516 addr += 8;
517 }
518 }
519
520 if (do_r31) {
521 do_sd(env, addr, env->active_tc.gpr[31], mem_idx);
522 }
523 }
524 #endif
525
526 #ifndef CONFIG_USER_ONLY
527 /* SMP helpers. */
528 static bool mips_vpe_is_wfi(MIPSCPU *c)
529 {
530 CPUMIPSState *env = &c->env;
531
532 /* If the VPE is halted but otherwise active, it means it's waiting for
533 an interrupt. */
534 return env->halted && mips_vpe_active(env);
535 }
536
537 static inline void mips_vpe_wake(CPUMIPSState *c)
538 {
539 /* Dont set ->halted = 0 directly, let it be done via cpu_has_work
540 because there might be other conditions that state that c should
541 be sleeping. */
542 cpu_interrupt(c, CPU_INTERRUPT_WAKE);
543 }
544
545 static inline void mips_vpe_sleep(MIPSCPU *cpu)
546 {
547 CPUMIPSState *c = &cpu->env;
548
549 /* The VPE was shut off, really go to bed.
550 Reset any old _WAKE requests. */
551 c->halted = 1;
552 cpu_reset_interrupt(c, CPU_INTERRUPT_WAKE);
553 }
554
555 static inline void mips_tc_wake(MIPSCPU *cpu, int tc)
556 {
557 CPUMIPSState *c = &cpu->env;
558
559 /* FIXME: TC reschedule. */
560 if (mips_vpe_active(c) && !mips_vpe_is_wfi(cpu)) {
561 mips_vpe_wake(c);
562 }
563 }
564
565 static inline void mips_tc_sleep(MIPSCPU *cpu, int tc)
566 {
567 CPUMIPSState *c = &cpu->env;
568
569 /* FIXME: TC reschedule. */
570 if (!mips_vpe_active(c)) {
571 mips_vpe_sleep(cpu);
572 }
573 }
574
575 /* tc should point to an int with the value of the global TC index.
576 This function will transform it into a local index within the
577 returned CPUMIPSState.
578
579 FIXME: This code assumes that all VPEs have the same number of TCs,
580 which depends on runtime setup. Can probably be fixed by
581 walking the list of CPUMIPSStates. */
582 static CPUMIPSState *mips_cpu_map_tc(CPUMIPSState *env, int *tc)
583 {
584 CPUMIPSState *other;
585 int vpe_idx, nr_threads = env->nr_threads;
586 int tc_idx = *tc;
587
588 if (!(env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))) {
589 /* Not allowed to address other CPUs. */
590 *tc = env->current_tc;
591 return env;
592 }
593
594 vpe_idx = tc_idx / nr_threads;
595 *tc = tc_idx % nr_threads;
596 other = qemu_get_cpu(vpe_idx);
597 return other ? other : env;
598 }
599
600 /* The per VPE CP0_Status register shares some fields with the per TC
601 CP0_TCStatus registers. These fields are wired to the same registers,
602 so changes to either of them should be reflected on both registers.
603
604 Also, EntryHi shares the bottom 8 bit ASID with TCStauts.
605
606 These helper call synchronizes the regs for a given cpu. */
607
608 /* Called for updates to CP0_Status. */
609 static void sync_c0_status(CPUMIPSState *env, CPUMIPSState *cpu, int tc)
610 {
611 int32_t tcstatus, *tcst;
612 uint32_t v = cpu->CP0_Status;
613 uint32_t cu, mx, asid, ksu;
614 uint32_t mask = ((1 << CP0TCSt_TCU3)
615 | (1 << CP0TCSt_TCU2)
616 | (1 << CP0TCSt_TCU1)
617 | (1 << CP0TCSt_TCU0)
618 | (1 << CP0TCSt_TMX)
619 | (3 << CP0TCSt_TKSU)
620 | (0xff << CP0TCSt_TASID));
621
622 cu = (v >> CP0St_CU0) & 0xf;
623 mx = (v >> CP0St_MX) & 0x1;
624 ksu = (v >> CP0St_KSU) & 0x3;
625 asid = env->CP0_EntryHi & 0xff;
626
627 tcstatus = cu << CP0TCSt_TCU0;
628 tcstatus |= mx << CP0TCSt_TMX;
629 tcstatus |= ksu << CP0TCSt_TKSU;
630 tcstatus |= asid;
631
632 if (tc == cpu->current_tc) {
633 tcst = &cpu->active_tc.CP0_TCStatus;
634 } else {
635 tcst = &cpu->tcs[tc].CP0_TCStatus;
636 }
637
638 *tcst &= ~mask;
639 *tcst |= tcstatus;
640 compute_hflags(cpu);
641 }
642
643 /* Called for updates to CP0_TCStatus. */
644 static void sync_c0_tcstatus(CPUMIPSState *cpu, int tc,
645 target_ulong v)
646 {
647 uint32_t status;
648 uint32_t tcu, tmx, tasid, tksu;
649 uint32_t mask = ((1 << CP0St_CU3)
650 | (1 << CP0St_CU2)
651 | (1 << CP0St_CU1)
652 | (1 << CP0St_CU0)
653 | (1 << CP0St_MX)
654 | (3 << CP0St_KSU));
655
656 tcu = (v >> CP0TCSt_TCU0) & 0xf;
657 tmx = (v >> CP0TCSt_TMX) & 0x1;
658 tasid = v & 0xff;
659 tksu = (v >> CP0TCSt_TKSU) & 0x3;
660
661 status = tcu << CP0St_CU0;
662 status |= tmx << CP0St_MX;
663 status |= tksu << CP0St_KSU;
664
665 cpu->CP0_Status &= ~mask;
666 cpu->CP0_Status |= status;
667
668 /* Sync the TASID with EntryHi. */
669 cpu->CP0_EntryHi &= ~0xff;
670 cpu->CP0_EntryHi = tasid;
671
672 compute_hflags(cpu);
673 }
674
675 /* Called for updates to CP0_EntryHi. */
676 static void sync_c0_entryhi(CPUMIPSState *cpu, int tc)
677 {
678 int32_t *tcst;
679 uint32_t asid, v = cpu->CP0_EntryHi;
680
681 asid = v & 0xff;
682
683 if (tc == cpu->current_tc) {
684 tcst = &cpu->active_tc.CP0_TCStatus;
685 } else {
686 tcst = &cpu->tcs[tc].CP0_TCStatus;
687 }
688
689 *tcst &= ~0xff;
690 *tcst |= asid;
691 }
692
693 /* CP0 helpers */
694 target_ulong helper_mfc0_mvpcontrol(CPUMIPSState *env)
695 {
696 return env->mvp->CP0_MVPControl;
697 }
698
699 target_ulong helper_mfc0_mvpconf0(CPUMIPSState *env)
700 {
701 return env->mvp->CP0_MVPConf0;
702 }
703
704 target_ulong helper_mfc0_mvpconf1(CPUMIPSState *env)
705 {
706 return env->mvp->CP0_MVPConf1;
707 }
708
709 target_ulong helper_mfc0_random(CPUMIPSState *env)
710 {
711 return (int32_t)cpu_mips_get_random(env);
712 }
713
714 target_ulong helper_mfc0_tcstatus(CPUMIPSState *env)
715 {
716 return env->active_tc.CP0_TCStatus;
717 }
718
719 target_ulong helper_mftc0_tcstatus(CPUMIPSState *env)
720 {
721 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
722 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
723
724 if (other_tc == other->current_tc)
725 return other->active_tc.CP0_TCStatus;
726 else
727 return other->tcs[other_tc].CP0_TCStatus;
728 }
729
730 target_ulong helper_mfc0_tcbind(CPUMIPSState *env)
731 {
732 return env->active_tc.CP0_TCBind;
733 }
734
735 target_ulong helper_mftc0_tcbind(CPUMIPSState *env)
736 {
737 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
738 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
739
740 if (other_tc == other->current_tc)
741 return other->active_tc.CP0_TCBind;
742 else
743 return other->tcs[other_tc].CP0_TCBind;
744 }
745
746 target_ulong helper_mfc0_tcrestart(CPUMIPSState *env)
747 {
748 return env->active_tc.PC;
749 }
750
751 target_ulong helper_mftc0_tcrestart(CPUMIPSState *env)
752 {
753 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
754 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
755
756 if (other_tc == other->current_tc)
757 return other->active_tc.PC;
758 else
759 return other->tcs[other_tc].PC;
760 }
761
762 target_ulong helper_mfc0_tchalt(CPUMIPSState *env)
763 {
764 return env->active_tc.CP0_TCHalt;
765 }
766
767 target_ulong helper_mftc0_tchalt(CPUMIPSState *env)
768 {
769 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
770 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
771
772 if (other_tc == other->current_tc)
773 return other->active_tc.CP0_TCHalt;
774 else
775 return other->tcs[other_tc].CP0_TCHalt;
776 }
777
778 target_ulong helper_mfc0_tccontext(CPUMIPSState *env)
779 {
780 return env->active_tc.CP0_TCContext;
781 }
782
783 target_ulong helper_mftc0_tccontext(CPUMIPSState *env)
784 {
785 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
786 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
787
788 if (other_tc == other->current_tc)
789 return other->active_tc.CP0_TCContext;
790 else
791 return other->tcs[other_tc].CP0_TCContext;
792 }
793
794 target_ulong helper_mfc0_tcschedule(CPUMIPSState *env)
795 {
796 return env->active_tc.CP0_TCSchedule;
797 }
798
799 target_ulong helper_mftc0_tcschedule(CPUMIPSState *env)
800 {
801 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
802 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
803
804 if (other_tc == other->current_tc)
805 return other->active_tc.CP0_TCSchedule;
806 else
807 return other->tcs[other_tc].CP0_TCSchedule;
808 }
809
810 target_ulong helper_mfc0_tcschefback(CPUMIPSState *env)
811 {
812 return env->active_tc.CP0_TCScheFBack;
813 }
814
815 target_ulong helper_mftc0_tcschefback(CPUMIPSState *env)
816 {
817 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
818 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
819
820 if (other_tc == other->current_tc)
821 return other->active_tc.CP0_TCScheFBack;
822 else
823 return other->tcs[other_tc].CP0_TCScheFBack;
824 }
825
826 target_ulong helper_mfc0_count(CPUMIPSState *env)
827 {
828 return (int32_t)cpu_mips_get_count(env);
829 }
830
831 target_ulong helper_mftc0_entryhi(CPUMIPSState *env)
832 {
833 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
834 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
835
836 return other->CP0_EntryHi;
837 }
838
839 target_ulong helper_mftc0_cause(CPUMIPSState *env)
840 {
841 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
842 int32_t tccause;
843 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
844
845 if (other_tc == other->current_tc) {
846 tccause = other->CP0_Cause;
847 } else {
848 tccause = other->CP0_Cause;
849 }
850
851 return tccause;
852 }
853
854 target_ulong helper_mftc0_status(CPUMIPSState *env)
855 {
856 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
857 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
858
859 return other->CP0_Status;
860 }
861
862 target_ulong helper_mfc0_lladdr(CPUMIPSState *env)
863 {
864 return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
865 }
866
867 target_ulong helper_mfc0_watchlo(CPUMIPSState *env, uint32_t sel)
868 {
869 return (int32_t)env->CP0_WatchLo[sel];
870 }
871
872 target_ulong helper_mfc0_watchhi(CPUMIPSState *env, uint32_t sel)
873 {
874 return env->CP0_WatchHi[sel];
875 }
876
877 target_ulong helper_mfc0_debug(CPUMIPSState *env)
878 {
879 target_ulong t0 = env->CP0_Debug;
880 if (env->hflags & MIPS_HFLAG_DM)
881 t0 |= 1 << CP0DB_DM;
882
883 return t0;
884 }
885
886 target_ulong helper_mftc0_debug(CPUMIPSState *env)
887 {
888 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
889 int32_t tcstatus;
890 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
891
892 if (other_tc == other->current_tc)
893 tcstatus = other->active_tc.CP0_Debug_tcstatus;
894 else
895 tcstatus = other->tcs[other_tc].CP0_Debug_tcstatus;
896
897 /* XXX: Might be wrong, check with EJTAG spec. */
898 return (other->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
899 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
900 }
901
902 #if defined(TARGET_MIPS64)
903 target_ulong helper_dmfc0_tcrestart(CPUMIPSState *env)
904 {
905 return env->active_tc.PC;
906 }
907
908 target_ulong helper_dmfc0_tchalt(CPUMIPSState *env)
909 {
910 return env->active_tc.CP0_TCHalt;
911 }
912
913 target_ulong helper_dmfc0_tccontext(CPUMIPSState *env)
914 {
915 return env->active_tc.CP0_TCContext;
916 }
917
918 target_ulong helper_dmfc0_tcschedule(CPUMIPSState *env)
919 {
920 return env->active_tc.CP0_TCSchedule;
921 }
922
923 target_ulong helper_dmfc0_tcschefback(CPUMIPSState *env)
924 {
925 return env->active_tc.CP0_TCScheFBack;
926 }
927
928 target_ulong helper_dmfc0_lladdr(CPUMIPSState *env)
929 {
930 return env->lladdr >> env->CP0_LLAddr_shift;
931 }
932
933 target_ulong helper_dmfc0_watchlo(CPUMIPSState *env, uint32_t sel)
934 {
935 return env->CP0_WatchLo[sel];
936 }
937 #endif /* TARGET_MIPS64 */
938
939 void helper_mtc0_index(CPUMIPSState *env, target_ulong arg1)
940 {
941 int num = 1;
942 unsigned int tmp = env->tlb->nb_tlb;
943
944 do {
945 tmp >>= 1;
946 num <<= 1;
947 } while (tmp);
948 env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
949 }
950
951 void helper_mtc0_mvpcontrol(CPUMIPSState *env, target_ulong arg1)
952 {
953 uint32_t mask = 0;
954 uint32_t newval;
955
956 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
957 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
958 (1 << CP0MVPCo_EVP);
959 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
960 mask |= (1 << CP0MVPCo_STLB);
961 newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
962
963 // TODO: Enable/disable shared TLB, enable/disable VPEs.
964
965 env->mvp->CP0_MVPControl = newval;
966 }
967
968 void helper_mtc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
969 {
970 uint32_t mask;
971 uint32_t newval;
972
973 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
974 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
975 newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
976
977 /* Yield scheduler intercept not implemented. */
978 /* Gating storage scheduler intercept not implemented. */
979
980 // TODO: Enable/disable TCs.
981
982 env->CP0_VPEControl = newval;
983 }
984
985 void helper_mttc0_vpecontrol(CPUMIPSState *env, target_ulong arg1)
986 {
987 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
988 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
989 uint32_t mask;
990 uint32_t newval;
991
992 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
993 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
994 newval = (other->CP0_VPEControl & ~mask) | (arg1 & mask);
995
996 /* TODO: Enable/disable TCs. */
997
998 other->CP0_VPEControl = newval;
999 }
1000
1001 target_ulong helper_mftc0_vpecontrol(CPUMIPSState *env)
1002 {
1003 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1004 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1005 /* FIXME: Mask away return zero on read bits. */
1006 return other->CP0_VPEControl;
1007 }
1008
1009 target_ulong helper_mftc0_vpeconf0(CPUMIPSState *env)
1010 {
1011 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1012 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1013
1014 return other->CP0_VPEConf0;
1015 }
1016
1017 void helper_mtc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1018 {
1019 uint32_t mask = 0;
1020 uint32_t newval;
1021
1022 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
1023 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
1024 mask |= (0xff << CP0VPEC0_XTC);
1025 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1026 }
1027 newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1028
1029 // TODO: TC exclusive handling due to ERL/EXL.
1030
1031 env->CP0_VPEConf0 = newval;
1032 }
1033
1034 void helper_mttc0_vpeconf0(CPUMIPSState *env, target_ulong arg1)
1035 {
1036 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1037 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1038 uint32_t mask = 0;
1039 uint32_t newval;
1040
1041 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
1042 newval = (other->CP0_VPEConf0 & ~mask) | (arg1 & mask);
1043
1044 /* TODO: TC exclusive handling due to ERL/EXL. */
1045 other->CP0_VPEConf0 = newval;
1046 }
1047
1048 void helper_mtc0_vpeconf1(CPUMIPSState *env, target_ulong arg1)
1049 {
1050 uint32_t mask = 0;
1051 uint32_t newval;
1052
1053 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1054 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
1055 (0xff << CP0VPEC1_NCP1);
1056 newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
1057
1058 /* UDI not implemented. */
1059 /* CP2 not implemented. */
1060
1061 // TODO: Handle FPU (CP1) binding.
1062
1063 env->CP0_VPEConf1 = newval;
1064 }
1065
1066 void helper_mtc0_yqmask(CPUMIPSState *env, target_ulong arg1)
1067 {
1068 /* Yield qualifier inputs not implemented. */
1069 env->CP0_YQMask = 0x00000000;
1070 }
1071
1072 void helper_mtc0_vpeopt(CPUMIPSState *env, target_ulong arg1)
1073 {
1074 env->CP0_VPEOpt = arg1 & 0x0000ffff;
1075 }
1076
1077 void helper_mtc0_entrylo0(CPUMIPSState *env, target_ulong arg1)
1078 {
1079 /* Large physaddr (PABITS) not implemented */
1080 /* 1k pages not implemented */
1081 env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
1082 }
1083
1084 void helper_mtc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1085 {
1086 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
1087 uint32_t newval;
1088
1089 newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
1090
1091 env->active_tc.CP0_TCStatus = newval;
1092 sync_c0_tcstatus(env, env->current_tc, newval);
1093 }
1094
1095 void helper_mttc0_tcstatus(CPUMIPSState *env, target_ulong arg1)
1096 {
1097 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1098 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1099
1100 if (other_tc == other->current_tc)
1101 other->active_tc.CP0_TCStatus = arg1;
1102 else
1103 other->tcs[other_tc].CP0_TCStatus = arg1;
1104 sync_c0_tcstatus(other, other_tc, arg1);
1105 }
1106
1107 void helper_mtc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1108 {
1109 uint32_t mask = (1 << CP0TCBd_TBE);
1110 uint32_t newval;
1111
1112 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1113 mask |= (1 << CP0TCBd_CurVPE);
1114 newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1115 env->active_tc.CP0_TCBind = newval;
1116 }
1117
1118 void helper_mttc0_tcbind(CPUMIPSState *env, target_ulong arg1)
1119 {
1120 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1121 uint32_t mask = (1 << CP0TCBd_TBE);
1122 uint32_t newval;
1123 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1124
1125 if (other->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
1126 mask |= (1 << CP0TCBd_CurVPE);
1127 if (other_tc == other->current_tc) {
1128 newval = (other->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
1129 other->active_tc.CP0_TCBind = newval;
1130 } else {
1131 newval = (other->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
1132 other->tcs[other_tc].CP0_TCBind = newval;
1133 }
1134 }
1135
1136 void helper_mtc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1137 {
1138 env->active_tc.PC = arg1;
1139 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1140 env->lladdr = 0ULL;
1141 /* MIPS16 not implemented. */
1142 }
1143
1144 void helper_mttc0_tcrestart(CPUMIPSState *env, target_ulong arg1)
1145 {
1146 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1147 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1148
1149 if (other_tc == other->current_tc) {
1150 other->active_tc.PC = arg1;
1151 other->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1152 other->lladdr = 0ULL;
1153 /* MIPS16 not implemented. */
1154 } else {
1155 other->tcs[other_tc].PC = arg1;
1156 other->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1157 other->lladdr = 0ULL;
1158 /* MIPS16 not implemented. */
1159 }
1160 }
1161
1162 void helper_mtc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1163 {
1164 MIPSCPU *cpu = mips_env_get_cpu(env);
1165
1166 env->active_tc.CP0_TCHalt = arg1 & 0x1;
1167
1168 // TODO: Halt TC / Restart (if allocated+active) TC.
1169 if (env->active_tc.CP0_TCHalt & 1) {
1170 mips_tc_sleep(cpu, env->current_tc);
1171 } else {
1172 mips_tc_wake(cpu, env->current_tc);
1173 }
1174 }
1175
1176 void helper_mttc0_tchalt(CPUMIPSState *env, target_ulong arg1)
1177 {
1178 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1179 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1180 MIPSCPU *other_cpu = mips_env_get_cpu(other);
1181
1182 // TODO: Halt TC / Restart (if allocated+active) TC.
1183
1184 if (other_tc == other->current_tc)
1185 other->active_tc.CP0_TCHalt = arg1;
1186 else
1187 other->tcs[other_tc].CP0_TCHalt = arg1;
1188
1189 if (arg1 & 1) {
1190 mips_tc_sleep(other_cpu, other_tc);
1191 } else {
1192 mips_tc_wake(other_cpu, other_tc);
1193 }
1194 }
1195
1196 void helper_mtc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1197 {
1198 env->active_tc.CP0_TCContext = arg1;
1199 }
1200
1201 void helper_mttc0_tccontext(CPUMIPSState *env, target_ulong arg1)
1202 {
1203 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1204 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1205
1206 if (other_tc == other->current_tc)
1207 other->active_tc.CP0_TCContext = arg1;
1208 else
1209 other->tcs[other_tc].CP0_TCContext = arg1;
1210 }
1211
1212 void helper_mtc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1213 {
1214 env->active_tc.CP0_TCSchedule = arg1;
1215 }
1216
1217 void helper_mttc0_tcschedule(CPUMIPSState *env, target_ulong arg1)
1218 {
1219 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1220 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1221
1222 if (other_tc == other->current_tc)
1223 other->active_tc.CP0_TCSchedule = arg1;
1224 else
1225 other->tcs[other_tc].CP0_TCSchedule = arg1;
1226 }
1227
1228 void helper_mtc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1229 {
1230 env->active_tc.CP0_TCScheFBack = arg1;
1231 }
1232
1233 void helper_mttc0_tcschefback(CPUMIPSState *env, target_ulong arg1)
1234 {
1235 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1236 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1237
1238 if (other_tc == other->current_tc)
1239 other->active_tc.CP0_TCScheFBack = arg1;
1240 else
1241 other->tcs[other_tc].CP0_TCScheFBack = arg1;
1242 }
1243
1244 void helper_mtc0_entrylo1(CPUMIPSState *env, target_ulong arg1)
1245 {
1246 /* Large physaddr (PABITS) not implemented */
1247 /* 1k pages not implemented */
1248 env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1249 }
1250
1251 void helper_mtc0_context(CPUMIPSState *env, target_ulong arg1)
1252 {
1253 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1254 }
1255
1256 void helper_mtc0_pagemask(CPUMIPSState *env, target_ulong arg1)
1257 {
1258 /* 1k pages not implemented */
1259 env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1260 }
1261
1262 void helper_mtc0_pagegrain(CPUMIPSState *env, target_ulong arg1)
1263 {
1264 /* SmartMIPS not implemented */
1265 /* Large physaddr (PABITS) not implemented */
1266 /* 1k pages not implemented */
1267 env->CP0_PageGrain = 0;
1268 }
1269
1270 void helper_mtc0_wired(CPUMIPSState *env, target_ulong arg1)
1271 {
1272 env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1273 }
1274
1275 void helper_mtc0_srsconf0(CPUMIPSState *env, target_ulong arg1)
1276 {
1277 env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1278 }
1279
1280 void helper_mtc0_srsconf1(CPUMIPSState *env, target_ulong arg1)
1281 {
1282 env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1283 }
1284
1285 void helper_mtc0_srsconf2(CPUMIPSState *env, target_ulong arg1)
1286 {
1287 env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1288 }
1289
1290 void helper_mtc0_srsconf3(CPUMIPSState *env, target_ulong arg1)
1291 {
1292 env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1293 }
1294
1295 void helper_mtc0_srsconf4(CPUMIPSState *env, target_ulong arg1)
1296 {
1297 env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1298 }
1299
1300 void helper_mtc0_hwrena(CPUMIPSState *env, target_ulong arg1)
1301 {
1302 env->CP0_HWREna = arg1 & 0x0000000F;
1303 }
1304
1305 void helper_mtc0_count(CPUMIPSState *env, target_ulong arg1)
1306 {
1307 cpu_mips_store_count(env, arg1);
1308 }
1309
1310 void helper_mtc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1311 {
1312 target_ulong old, val;
1313
1314 /* 1k pages not implemented */
1315 val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1316 #if defined(TARGET_MIPS64)
1317 val &= env->SEGMask;
1318 #endif
1319 old = env->CP0_EntryHi;
1320 env->CP0_EntryHi = val;
1321 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1322 sync_c0_entryhi(env, env->current_tc);
1323 }
1324 /* If the ASID changes, flush qemu's TLB. */
1325 if ((old & 0xFF) != (val & 0xFF))
1326 cpu_mips_tlb_flush(env, 1);
1327 }
1328
1329 void helper_mttc0_entryhi(CPUMIPSState *env, target_ulong arg1)
1330 {
1331 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1332 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1333
1334 other->CP0_EntryHi = arg1;
1335 sync_c0_entryhi(other, other_tc);
1336 }
1337
1338 void helper_mtc0_compare(CPUMIPSState *env, target_ulong arg1)
1339 {
1340 cpu_mips_store_compare(env, arg1);
1341 }
1342
1343 void helper_mtc0_status(CPUMIPSState *env, target_ulong arg1)
1344 {
1345 uint32_t val, old;
1346 uint32_t mask = env->CP0_Status_rw_bitmask;
1347
1348 val = arg1 & mask;
1349 old = env->CP0_Status;
1350 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1351 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1352 sync_c0_status(env, env, env->current_tc);
1353 } else {
1354 compute_hflags(env);
1355 }
1356
1357 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1358 qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1359 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1360 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1361 env->CP0_Cause);
1362 switch (env->hflags & MIPS_HFLAG_KSU) {
1363 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1364 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1365 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1366 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1367 }
1368 }
1369 }
1370
1371 void helper_mttc0_status(CPUMIPSState *env, target_ulong arg1)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1375
1376 other->CP0_Status = arg1 & ~0xf1000018;
1377 sync_c0_status(env, other, other_tc);
1378 }
1379
1380 void helper_mtc0_intctl(CPUMIPSState *env, target_ulong arg1)
1381 {
1382 /* vectored interrupts not implemented, no performance counters. */
1383 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000003e0) | (arg1 & 0x000003e0);
1384 }
1385
1386 void helper_mtc0_srsctl(CPUMIPSState *env, target_ulong arg1)
1387 {
1388 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1389 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1390 }
1391
1392 static void mtc0_cause(CPUMIPSState *cpu, target_ulong arg1)
1393 {
1394 uint32_t mask = 0x00C00300;
1395 uint32_t old = cpu->CP0_Cause;
1396 int i;
1397
1398 if (cpu->insn_flags & ISA_MIPS32R2) {
1399 mask |= 1 << CP0Ca_DC;
1400 }
1401
1402 cpu->CP0_Cause = (cpu->CP0_Cause & ~mask) | (arg1 & mask);
1403
1404 if ((old ^ cpu->CP0_Cause) & (1 << CP0Ca_DC)) {
1405 if (cpu->CP0_Cause & (1 << CP0Ca_DC)) {
1406 cpu_mips_stop_count(cpu);
1407 } else {
1408 cpu_mips_start_count(cpu);
1409 }
1410 }
1411
1412 /* Set/reset software interrupts */
1413 for (i = 0 ; i < 2 ; i++) {
1414 if ((old ^ cpu->CP0_Cause) & (1 << (CP0Ca_IP + i))) {
1415 cpu_mips_soft_irq(cpu, i, cpu->CP0_Cause & (1 << (CP0Ca_IP + i)));
1416 }
1417 }
1418 }
1419
1420 void helper_mtc0_cause(CPUMIPSState *env, target_ulong arg1)
1421 {
1422 mtc0_cause(env, arg1);
1423 }
1424
1425 void helper_mttc0_cause(CPUMIPSState *env, target_ulong arg1)
1426 {
1427 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1428 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1429
1430 mtc0_cause(other, arg1);
1431 }
1432
1433 target_ulong helper_mftc0_epc(CPUMIPSState *env)
1434 {
1435 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1436 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1437
1438 return other->CP0_EPC;
1439 }
1440
1441 target_ulong helper_mftc0_ebase(CPUMIPSState *env)
1442 {
1443 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1444 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1445
1446 return other->CP0_EBase;
1447 }
1448
1449 void helper_mtc0_ebase(CPUMIPSState *env, target_ulong arg1)
1450 {
1451 /* vectored interrupts not implemented */
1452 env->CP0_EBase = (env->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1453 }
1454
1455 void helper_mttc0_ebase(CPUMIPSState *env, target_ulong arg1)
1456 {
1457 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1458 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1459 other->CP0_EBase = (other->CP0_EBase & ~0x3FFFF000) | (arg1 & 0x3FFFF000);
1460 }
1461
1462 target_ulong helper_mftc0_configx(CPUMIPSState *env, target_ulong idx)
1463 {
1464 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1465 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1466
1467 switch (idx) {
1468 case 0: return other->CP0_Config0;
1469 case 1: return other->CP0_Config1;
1470 case 2: return other->CP0_Config2;
1471 case 3: return other->CP0_Config3;
1472 /* 4 and 5 are reserved. */
1473 case 6: return other->CP0_Config6;
1474 case 7: return other->CP0_Config7;
1475 default:
1476 break;
1477 }
1478 return 0;
1479 }
1480
1481 void helper_mtc0_config0(CPUMIPSState *env, target_ulong arg1)
1482 {
1483 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1484 }
1485
1486 void helper_mtc0_config2(CPUMIPSState *env, target_ulong arg1)
1487 {
1488 /* tertiary/secondary caches not implemented */
1489 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1490 }
1491
1492 void helper_mtc0_lladdr(CPUMIPSState *env, target_ulong arg1)
1493 {
1494 target_long mask = env->CP0_LLAddr_rw_bitmask;
1495 arg1 = arg1 << env->CP0_LLAddr_shift;
1496 env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1497 }
1498
1499 void helper_mtc0_watchlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1500 {
1501 /* Watch exceptions for instructions, data loads, data stores
1502 not implemented. */
1503 env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1504 }
1505
1506 void helper_mtc0_watchhi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1507 {
1508 env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1509 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1510 }
1511
1512 void helper_mtc0_xcontext(CPUMIPSState *env, target_ulong arg1)
1513 {
1514 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1515 env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1516 }
1517
1518 void helper_mtc0_framemask(CPUMIPSState *env, target_ulong arg1)
1519 {
1520 env->CP0_Framemask = arg1; /* XXX */
1521 }
1522
1523 void helper_mtc0_debug(CPUMIPSState *env, target_ulong arg1)
1524 {
1525 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1526 if (arg1 & (1 << CP0DB_DM))
1527 env->hflags |= MIPS_HFLAG_DM;
1528 else
1529 env->hflags &= ~MIPS_HFLAG_DM;
1530 }
1531
1532 void helper_mttc0_debug(CPUMIPSState *env, target_ulong arg1)
1533 {
1534 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1535 uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1536 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1537
1538 /* XXX: Might be wrong, check with EJTAG spec. */
1539 if (other_tc == other->current_tc)
1540 other->active_tc.CP0_Debug_tcstatus = val;
1541 else
1542 other->tcs[other_tc].CP0_Debug_tcstatus = val;
1543 other->CP0_Debug = (other->CP0_Debug &
1544 ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1545 (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1546 }
1547
1548 void helper_mtc0_performance0(CPUMIPSState *env, target_ulong arg1)
1549 {
1550 env->CP0_Performance0 = arg1 & 0x000007ff;
1551 }
1552
1553 void helper_mtc0_taglo(CPUMIPSState *env, target_ulong arg1)
1554 {
1555 env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1556 }
1557
1558 void helper_mtc0_datalo(CPUMIPSState *env, target_ulong arg1)
1559 {
1560 env->CP0_DataLo = arg1; /* XXX */
1561 }
1562
1563 void helper_mtc0_taghi(CPUMIPSState *env, target_ulong arg1)
1564 {
1565 env->CP0_TagHi = arg1; /* XXX */
1566 }
1567
1568 void helper_mtc0_datahi(CPUMIPSState *env, target_ulong arg1)
1569 {
1570 env->CP0_DataHi = arg1; /* XXX */
1571 }
1572
1573 /* MIPS MT functions */
1574 target_ulong helper_mftgpr(CPUMIPSState *env, uint32_t sel)
1575 {
1576 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1577 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1578
1579 if (other_tc == other->current_tc)
1580 return other->active_tc.gpr[sel];
1581 else
1582 return other->tcs[other_tc].gpr[sel];
1583 }
1584
1585 target_ulong helper_mftlo(CPUMIPSState *env, uint32_t sel)
1586 {
1587 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1588 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1589
1590 if (other_tc == other->current_tc)
1591 return other->active_tc.LO[sel];
1592 else
1593 return other->tcs[other_tc].LO[sel];
1594 }
1595
1596 target_ulong helper_mfthi(CPUMIPSState *env, uint32_t sel)
1597 {
1598 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1599 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1600
1601 if (other_tc == other->current_tc)
1602 return other->active_tc.HI[sel];
1603 else
1604 return other->tcs[other_tc].HI[sel];
1605 }
1606
1607 target_ulong helper_mftacx(CPUMIPSState *env, uint32_t sel)
1608 {
1609 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1610 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1611
1612 if (other_tc == other->current_tc)
1613 return other->active_tc.ACX[sel];
1614 else
1615 return other->tcs[other_tc].ACX[sel];
1616 }
1617
1618 target_ulong helper_mftdsp(CPUMIPSState *env)
1619 {
1620 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1621 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1622
1623 if (other_tc == other->current_tc)
1624 return other->active_tc.DSPControl;
1625 else
1626 return other->tcs[other_tc].DSPControl;
1627 }
1628
1629 void helper_mttgpr(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1630 {
1631 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1632 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1633
1634 if (other_tc == other->current_tc)
1635 other->active_tc.gpr[sel] = arg1;
1636 else
1637 other->tcs[other_tc].gpr[sel] = arg1;
1638 }
1639
1640 void helper_mttlo(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1641 {
1642 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1643 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1644
1645 if (other_tc == other->current_tc)
1646 other->active_tc.LO[sel] = arg1;
1647 else
1648 other->tcs[other_tc].LO[sel] = arg1;
1649 }
1650
1651 void helper_mtthi(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1652 {
1653 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1654 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1655
1656 if (other_tc == other->current_tc)
1657 other->active_tc.HI[sel] = arg1;
1658 else
1659 other->tcs[other_tc].HI[sel] = arg1;
1660 }
1661
1662 void helper_mttacx(CPUMIPSState *env, target_ulong arg1, uint32_t sel)
1663 {
1664 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1665 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1666
1667 if (other_tc == other->current_tc)
1668 other->active_tc.ACX[sel] = arg1;
1669 else
1670 other->tcs[other_tc].ACX[sel] = arg1;
1671 }
1672
1673 void helper_mttdsp(CPUMIPSState *env, target_ulong arg1)
1674 {
1675 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1676 CPUMIPSState *other = mips_cpu_map_tc(env, &other_tc);
1677
1678 if (other_tc == other->current_tc)
1679 other->active_tc.DSPControl = arg1;
1680 else
1681 other->tcs[other_tc].DSPControl = arg1;
1682 }
1683
1684 /* MIPS MT functions */
1685 target_ulong helper_dmt(void)
1686 {
1687 // TODO
1688 return 0;
1689 }
1690
1691 target_ulong helper_emt(void)
1692 {
1693 // TODO
1694 return 0;
1695 }
1696
1697 target_ulong helper_dvpe(CPUMIPSState *env)
1698 {
1699 CPUMIPSState *other_cpu_env = first_cpu;
1700 target_ulong prev = env->mvp->CP0_MVPControl;
1701
1702 do {
1703 /* Turn off all VPEs except the one executing the dvpe. */
1704 if (other_cpu_env != env) {
1705 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1706
1707 other_cpu_env->mvp->CP0_MVPControl &= ~(1 << CP0MVPCo_EVP);
1708 mips_vpe_sleep(other_cpu);
1709 }
1710 other_cpu_env = other_cpu_env->next_cpu;
1711 } while (other_cpu_env);
1712 return prev;
1713 }
1714
1715 target_ulong helper_evpe(CPUMIPSState *env)
1716 {
1717 CPUMIPSState *other_cpu_env = first_cpu;
1718 target_ulong prev = env->mvp->CP0_MVPControl;
1719
1720 do {
1721 MIPSCPU *other_cpu = mips_env_get_cpu(other_cpu_env);
1722
1723 if (other_cpu_env != env
1724 /* If the VPE is WFI, don't disturb its sleep. */
1725 && !mips_vpe_is_wfi(other_cpu)) {
1726 /* Enable the VPE. */
1727 other_cpu_env->mvp->CP0_MVPControl |= (1 << CP0MVPCo_EVP);
1728 mips_vpe_wake(other_cpu_env); /* And wake it up. */
1729 }
1730 other_cpu_env = other_cpu_env->next_cpu;
1731 } while (other_cpu_env);
1732 return prev;
1733 }
1734 #endif /* !CONFIG_USER_ONLY */
1735
1736 void helper_fork(target_ulong arg1, target_ulong arg2)
1737 {
1738 // arg1 = rt, arg2 = rs
1739 arg1 = 0;
1740 // TODO: store to TC register
1741 }
1742
1743 target_ulong helper_yield(CPUMIPSState *env, target_ulong arg)
1744 {
1745 target_long arg1 = arg;
1746
1747 if (arg1 < 0) {
1748 /* No scheduling policy implemented. */
1749 if (arg1 != -2) {
1750 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1751 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1752 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1753 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1754 helper_raise_exception(env, EXCP_THREAD);
1755 }
1756 }
1757 } else if (arg1 == 0) {
1758 if (0 /* TODO: TC underflow */) {
1759 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1760 helper_raise_exception(env, EXCP_THREAD);
1761 } else {
1762 // TODO: Deallocate TC
1763 }
1764 } else if (arg1 > 0) {
1765 /* Yield qualifier inputs not implemented. */
1766 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1767 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1768 helper_raise_exception(env, EXCP_THREAD);
1769 }
1770 return env->CP0_YQMask;
1771 }
1772
1773 #ifndef CONFIG_USER_ONLY
1774 /* TLB management */
1775 static void cpu_mips_tlb_flush (CPUMIPSState *env, int flush_global)
1776 {
1777 /* Flush qemu's TLB and discard all shadowed entries. */
1778 tlb_flush (env, flush_global);
1779 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1780 }
1781
1782 static void r4k_mips_tlb_flush_extra (CPUMIPSState *env, int first)
1783 {
1784 /* Discard entries from env->tlb[first] onwards. */
1785 while (env->tlb->tlb_in_use > first) {
1786 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1787 }
1788 }
1789
1790 static void r4k_fill_tlb(CPUMIPSState *env, int idx)
1791 {
1792 r4k_tlb_t *tlb;
1793
1794 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1795 tlb = &env->tlb->mmu.r4k.tlb[idx];
1796 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1797 #if defined(TARGET_MIPS64)
1798 tlb->VPN &= env->SEGMask;
1799 #endif
1800 tlb->ASID = env->CP0_EntryHi & 0xFF;
1801 tlb->PageMask = env->CP0_PageMask;
1802 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1803 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1804 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1805 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1806 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1807 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1808 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1809 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1810 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1811 }
1812
1813 void r4k_helper_tlbwi(CPUMIPSState *env)
1814 {
1815 r4k_tlb_t *tlb;
1816 int idx;
1817 target_ulong VPN;
1818 uint8_t ASID;
1819 bool G, V0, D0, V1, D1;
1820
1821 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1822 tlb = &env->tlb->mmu.r4k.tlb[idx];
1823 VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1824 #if defined(TARGET_MIPS64)
1825 VPN &= env->SEGMask;
1826 #endif
1827 ASID = env->CP0_EntryHi & 0xff;
1828 G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1829 V0 = (env->CP0_EntryLo0 & 2) != 0;
1830 D0 = (env->CP0_EntryLo0 & 4) != 0;
1831 V1 = (env->CP0_EntryLo1 & 2) != 0;
1832 D1 = (env->CP0_EntryLo1 & 4) != 0;
1833
1834 /* Discard cached TLB entries, unless tlbwi is just upgrading access
1835 permissions on the current entry. */
1836 if (tlb->VPN != VPN || tlb->ASID != ASID || tlb->G != G ||
1837 (tlb->V0 && !V0) || (tlb->D0 && !D0) ||
1838 (tlb->V1 && !V1) || (tlb->D1 && !D1)) {
1839 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1840 }
1841
1842 r4k_invalidate_tlb(env, idx, 0);
1843 r4k_fill_tlb(env, idx);
1844 }
1845
1846 void r4k_helper_tlbwr(CPUMIPSState *env)
1847 {
1848 int r = cpu_mips_get_random(env);
1849
1850 r4k_invalidate_tlb(env, r, 1);
1851 r4k_fill_tlb(env, r);
1852 }
1853
1854 void r4k_helper_tlbp(CPUMIPSState *env)
1855 {
1856 r4k_tlb_t *tlb;
1857 target_ulong mask;
1858 target_ulong tag;
1859 target_ulong VPN;
1860 uint8_t ASID;
1861 int i;
1862
1863 ASID = env->CP0_EntryHi & 0xFF;
1864 for (i = 0; i < env->tlb->nb_tlb; i++) {
1865 tlb = &env->tlb->mmu.r4k.tlb[i];
1866 /* 1k pages are not supported. */
1867 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1868 tag = env->CP0_EntryHi & ~mask;
1869 VPN = tlb->VPN & ~mask;
1870 #if defined(TARGET_MIPS64)
1871 tag &= env->SEGMask;
1872 #endif
1873 /* Check ASID, virtual page number & size */
1874 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1875 /* TLB match */
1876 env->CP0_Index = i;
1877 break;
1878 }
1879 }
1880 if (i == env->tlb->nb_tlb) {
1881 /* No match. Discard any shadow entries, if any of them match. */
1882 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1883 tlb = &env->tlb->mmu.r4k.tlb[i];
1884 /* 1k pages are not supported. */
1885 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1886 tag = env->CP0_EntryHi & ~mask;
1887 VPN = tlb->VPN & ~mask;
1888 #if defined(TARGET_MIPS64)
1889 tag &= env->SEGMask;
1890 #endif
1891 /* Check ASID, virtual page number & size */
1892 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1893 r4k_mips_tlb_flush_extra (env, i);
1894 break;
1895 }
1896 }
1897
1898 env->CP0_Index |= 0x80000000;
1899 }
1900 }
1901
1902 void r4k_helper_tlbr(CPUMIPSState *env)
1903 {
1904 r4k_tlb_t *tlb;
1905 uint8_t ASID;
1906 int idx;
1907
1908 ASID = env->CP0_EntryHi & 0xFF;
1909 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1910 tlb = &env->tlb->mmu.r4k.tlb[idx];
1911
1912 /* If this will change the current ASID, flush qemu's TLB. */
1913 if (ASID != tlb->ASID)
1914 cpu_mips_tlb_flush (env, 1);
1915
1916 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1917
1918 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1919 env->CP0_PageMask = tlb->PageMask;
1920 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1921 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1922 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1923 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1924 }
1925
1926 void helper_tlbwi(CPUMIPSState *env)
1927 {
1928 env->tlb->helper_tlbwi(env);
1929 }
1930
1931 void helper_tlbwr(CPUMIPSState *env)
1932 {
1933 env->tlb->helper_tlbwr(env);
1934 }
1935
1936 void helper_tlbp(CPUMIPSState *env)
1937 {
1938 env->tlb->helper_tlbp(env);
1939 }
1940
1941 void helper_tlbr(CPUMIPSState *env)
1942 {
1943 env->tlb->helper_tlbr(env);
1944 }
1945
1946 /* Specials */
1947 target_ulong helper_di(CPUMIPSState *env)
1948 {
1949 target_ulong t0 = env->CP0_Status;
1950
1951 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1952 return t0;
1953 }
1954
1955 target_ulong helper_ei(CPUMIPSState *env)
1956 {
1957 target_ulong t0 = env->CP0_Status;
1958
1959 env->CP0_Status = t0 | (1 << CP0St_IE);
1960 return t0;
1961 }
1962
1963 static void debug_pre_eret(CPUMIPSState *env)
1964 {
1965 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1966 qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1967 env->active_tc.PC, env->CP0_EPC);
1968 if (env->CP0_Status & (1 << CP0St_ERL))
1969 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1970 if (env->hflags & MIPS_HFLAG_DM)
1971 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1972 qemu_log("\n");
1973 }
1974 }
1975
1976 static void debug_post_eret(CPUMIPSState *env)
1977 {
1978 if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1979 qemu_log(" => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1980 env->active_tc.PC, env->CP0_EPC);
1981 if (env->CP0_Status & (1 << CP0St_ERL))
1982 qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1983 if (env->hflags & MIPS_HFLAG_DM)
1984 qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1985 switch (env->hflags & MIPS_HFLAG_KSU) {
1986 case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1987 case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1988 case MIPS_HFLAG_KM: qemu_log("\n"); break;
1989 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1990 }
1991 }
1992 }
1993
1994 static void set_pc(CPUMIPSState *env, target_ulong error_pc)
1995 {
1996 env->active_tc.PC = error_pc & ~(target_ulong)1;
1997 if (error_pc & 1) {
1998 env->hflags |= MIPS_HFLAG_M16;
1999 } else {
2000 env->hflags &= ~(MIPS_HFLAG_M16);
2001 }
2002 }
2003
2004 void helper_eret(CPUMIPSState *env)
2005 {
2006 debug_pre_eret(env);
2007 if (env->CP0_Status & (1 << CP0St_ERL)) {
2008 set_pc(env, env->CP0_ErrorEPC);
2009 env->CP0_Status &= ~(1 << CP0St_ERL);
2010 } else {
2011 set_pc(env, env->CP0_EPC);
2012 env->CP0_Status &= ~(1 << CP0St_EXL);
2013 }
2014 compute_hflags(env);
2015 debug_post_eret(env);
2016 env->lladdr = 1;
2017 }
2018
2019 void helper_deret(CPUMIPSState *env)
2020 {
2021 debug_pre_eret(env);
2022 set_pc(env, env->CP0_DEPC);
2023
2024 env->hflags &= MIPS_HFLAG_DM;
2025 compute_hflags(env);
2026 debug_post_eret(env);
2027 env->lladdr = 1;
2028 }
2029 #endif /* !CONFIG_USER_ONLY */
2030
2031 target_ulong helper_rdhwr_cpunum(CPUMIPSState *env)
2032 {
2033 if ((env->hflags & MIPS_HFLAG_CP0) ||
2034 (env->CP0_HWREna & (1 << 0)))
2035 return env->CP0_EBase & 0x3ff;
2036 else
2037 helper_raise_exception(env, EXCP_RI);
2038
2039 return 0;
2040 }
2041
2042 target_ulong helper_rdhwr_synci_step(CPUMIPSState *env)
2043 {
2044 if ((env->hflags & MIPS_HFLAG_CP0) ||
2045 (env->CP0_HWREna & (1 << 1)))
2046 return env->SYNCI_Step;
2047 else
2048 helper_raise_exception(env, EXCP_RI);
2049
2050 return 0;
2051 }
2052
2053 target_ulong helper_rdhwr_cc(CPUMIPSState *env)
2054 {
2055 if ((env->hflags & MIPS_HFLAG_CP0) ||
2056 (env->CP0_HWREna & (1 << 2)))
2057 return env->CP0_Count;
2058 else
2059 helper_raise_exception(env, EXCP_RI);
2060
2061 return 0;
2062 }
2063
2064 target_ulong helper_rdhwr_ccres(CPUMIPSState *env)
2065 {
2066 if ((env->hflags & MIPS_HFLAG_CP0) ||
2067 (env->CP0_HWREna & (1 << 3)))
2068 return env->CCRes;
2069 else
2070 helper_raise_exception(env, EXCP_RI);
2071
2072 return 0;
2073 }
2074
2075 void helper_pmon(CPUMIPSState *env, int function)
2076 {
2077 function /= 2;
2078 switch (function) {
2079 case 2: /* TODO: char inbyte(int waitflag); */
2080 if (env->active_tc.gpr[4] == 0)
2081 env->active_tc.gpr[2] = -1;
2082 /* Fall through */
2083 case 11: /* TODO: char inbyte (void); */
2084 env->active_tc.gpr[2] = -1;
2085 break;
2086 case 3:
2087 case 12:
2088 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
2089 break;
2090 case 17:
2091 break;
2092 case 158:
2093 {
2094 unsigned char *fmt = (void *)(uintptr_t)env->active_tc.gpr[4];
2095 printf("%s", fmt);
2096 }
2097 break;
2098 }
2099 }
2100
2101 void helper_wait(CPUMIPSState *env)
2102 {
2103 env->halted = 1;
2104 cpu_reset_interrupt(env, CPU_INTERRUPT_WAKE);
2105 helper_raise_exception(env, EXCP_HLT);
2106 }
2107
2108 #if !defined(CONFIG_USER_ONLY)
2109
2110 static void QEMU_NORETURN do_unaligned_access(CPUMIPSState *env,
2111 target_ulong addr, int is_write,
2112 int is_user, uintptr_t retaddr);
2113
2114 #define MMUSUFFIX _mmu
2115 #define ALIGNED_ONLY
2116
2117 #define SHIFT 0
2118 #include "exec/softmmu_template.h"
2119
2120 #define SHIFT 1
2121 #include "exec/softmmu_template.h"
2122
2123 #define SHIFT 2
2124 #include "exec/softmmu_template.h"
2125
2126 #define SHIFT 3
2127 #include "exec/softmmu_template.h"
2128
2129 static void do_unaligned_access(CPUMIPSState *env, target_ulong addr,
2130 int is_write, int is_user, uintptr_t retaddr)
2131 {
2132 env->CP0_BadVAddr = addr;
2133 do_raise_exception(env, (is_write == 1) ? EXCP_AdES : EXCP_AdEL, retaddr);
2134 }
2135
2136 void tlb_fill(CPUMIPSState *env, target_ulong addr, int is_write, int mmu_idx,
2137 uintptr_t retaddr)
2138 {
2139 int ret;
2140
2141 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx);
2142 if (ret) {
2143 do_raise_exception_err(env, env->exception_index,
2144 env->error_code, retaddr);
2145 }
2146 }
2147
2148 void cpu_unassigned_access(CPUMIPSState *env, hwaddr addr,
2149 int is_write, int is_exec, int unused, int size)
2150 {
2151 if (is_exec)
2152 helper_raise_exception(env, EXCP_IBE);
2153 else
2154 helper_raise_exception(env, EXCP_DBE);
2155 }
2156 #endif /* !CONFIG_USER_ONLY */
2157
2158 /* Complex FPU operations which may need stack space. */
2159
2160 #define FLOAT_TWO32 make_float32(1 << 30)
2161 #define FLOAT_TWO64 make_float64(1ULL << 62)
2162 #define FP_TO_INT32_OVERFLOW 0x7fffffff
2163 #define FP_TO_INT64_OVERFLOW 0x7fffffffffffffffULL
2164
2165 /* convert MIPS rounding mode in FCR31 to IEEE library */
2166 static unsigned int ieee_rm[] = {
2167 float_round_nearest_even,
2168 float_round_to_zero,
2169 float_round_up,
2170 float_round_down
2171 };
2172
2173 static inline void restore_rounding_mode(CPUMIPSState *env)
2174 {
2175 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3],
2176 &env->active_fpu.fp_status);
2177 }
2178
2179 static inline void restore_flush_mode(CPUMIPSState *env)
2180 {
2181 set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0,
2182 &env->active_fpu.fp_status);
2183 }
2184
2185 target_ulong helper_cfc1(CPUMIPSState *env, uint32_t reg)
2186 {
2187 target_ulong arg1;
2188
2189 switch (reg) {
2190 case 0:
2191 arg1 = (int32_t)env->active_fpu.fcr0;
2192 break;
2193 case 25:
2194 arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2195 break;
2196 case 26:
2197 arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2198 break;
2199 case 28:
2200 arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2201 break;
2202 default:
2203 arg1 = (int32_t)env->active_fpu.fcr31;
2204 break;
2205 }
2206
2207 return arg1;
2208 }
2209
2210 void helper_ctc1(CPUMIPSState *env, target_ulong arg1, uint32_t reg)
2211 {
2212 switch(reg) {
2213 case 25:
2214 if (arg1 & 0xffffff00)
2215 return;
2216 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2217 ((arg1 & 0x1) << 23);
2218 break;
2219 case 26:
2220 if (arg1 & 0x007c0000)
2221 return;
2222 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2223 break;
2224 case 28:
2225 if (arg1 & 0x007c0000)
2226 return;
2227 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2228 ((arg1 & 0x4) << 22);
2229 break;
2230 case 31:
2231 if (arg1 & 0x007c0000)
2232 return;
2233 env->active_fpu.fcr31 = arg1;
2234 break;
2235 default:
2236 return;
2237 }
2238 /* set rounding mode */
2239 restore_rounding_mode(env);
2240 /* set flush-to-zero mode */
2241 restore_flush_mode(env);
2242 set_float_exception_flags(0, &env->active_fpu.fp_status);
2243 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2244 do_raise_exception(env, EXCP_FPE, GETPC());
2245 }
2246
2247 static inline int ieee_ex_to_mips(int xcpt)
2248 {
2249 int ret = 0;
2250 if (xcpt) {
2251 if (xcpt & float_flag_invalid) {
2252 ret |= FP_INVALID;
2253 }
2254 if (xcpt & float_flag_overflow) {
2255 ret |= FP_OVERFLOW;
2256 }
2257 if (xcpt & float_flag_underflow) {
2258 ret |= FP_UNDERFLOW;
2259 }
2260 if (xcpt & float_flag_divbyzero) {
2261 ret |= FP_DIV0;
2262 }
2263 if (xcpt & float_flag_inexact) {
2264 ret |= FP_INEXACT;
2265 }
2266 }
2267 return ret;
2268 }
2269
2270 static inline void update_fcr31(CPUMIPSState *env, uintptr_t pc)
2271 {
2272 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2273
2274 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2275
2276 if (tmp) {
2277 set_float_exception_flags(0, &env->active_fpu.fp_status);
2278
2279 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp) {
2280 do_raise_exception(env, EXCP_FPE, pc);
2281 } else {
2282 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2283 }
2284 }
2285 }
2286
2287 /* Float support.
2288 Single precition routines have a "s" suffix, double precision a
2289 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2290 paired single lower "pl", paired single upper "pu". */
2291
2292 /* unary operations, modifying fp status */
2293 uint64_t helper_float_sqrt_d(CPUMIPSState *env, uint64_t fdt0)
2294 {
2295 fdt0 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2296 update_fcr31(env, GETPC());
2297 return fdt0;
2298 }
2299
2300 uint32_t helper_float_sqrt_s(CPUMIPSState *env, uint32_t fst0)
2301 {
2302 fst0 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2303 update_fcr31(env, GETPC());
2304 return fst0;
2305 }
2306
2307 uint64_t helper_float_cvtd_s(CPUMIPSState *env, uint32_t fst0)
2308 {
2309 uint64_t fdt2;
2310
2311 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2312 update_fcr31(env, GETPC());
2313 return fdt2;
2314 }
2315
2316 uint64_t helper_float_cvtd_w(CPUMIPSState *env, uint32_t wt0)
2317 {
2318 uint64_t fdt2;
2319
2320 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2321 update_fcr31(env, GETPC());
2322 return fdt2;
2323 }
2324
2325 uint64_t helper_float_cvtd_l(CPUMIPSState *env, uint64_t dt0)
2326 {
2327 uint64_t fdt2;
2328
2329 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2330 update_fcr31(env, GETPC());
2331 return fdt2;
2332 }
2333
2334 uint64_t helper_float_cvtl_d(CPUMIPSState *env, uint64_t fdt0)
2335 {
2336 uint64_t dt2;
2337
2338 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2339 if (get_float_exception_flags(&env->active_fpu.fp_status)
2340 & (float_flag_invalid | float_flag_overflow)) {
2341 dt2 = FP_TO_INT64_OVERFLOW;
2342 }
2343 update_fcr31(env, GETPC());
2344 return dt2;
2345 }
2346
2347 uint64_t helper_float_cvtl_s(CPUMIPSState *env, uint32_t fst0)
2348 {
2349 uint64_t dt2;
2350
2351 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2352 if (get_float_exception_flags(&env->active_fpu.fp_status)
2353 & (float_flag_invalid | float_flag_overflow)) {
2354 dt2 = FP_TO_INT64_OVERFLOW;
2355 }
2356 update_fcr31(env, GETPC());
2357 return dt2;
2358 }
2359
2360 uint64_t helper_float_cvtps_pw(CPUMIPSState *env, uint64_t dt0)
2361 {
2362 uint32_t fst2;
2363 uint32_t fsth2;
2364
2365 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2366 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2367 update_fcr31(env, GETPC());
2368 return ((uint64_t)fsth2 << 32) | fst2;
2369 }
2370
2371 uint64_t helper_float_cvtpw_ps(CPUMIPSState *env, uint64_t fdt0)
2372 {
2373 uint32_t wt2;
2374 uint32_t wth2;
2375 int excp, excph;
2376
2377 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2378 excp = get_float_exception_flags(&env->active_fpu.fp_status);
2379 if (excp & (float_flag_overflow | float_flag_invalid)) {
2380 wt2 = FP_TO_INT32_OVERFLOW;
2381 }
2382
2383 set_float_exception_flags(0, &env->active_fpu.fp_status);
2384 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2385 excph = get_float_exception_flags(&env->active_fpu.fp_status);
2386 if (excph & (float_flag_overflow | float_flag_invalid)) {
2387 wth2 = FP_TO_INT32_OVERFLOW;
2388 }
2389
2390 set_float_exception_flags(excp | excph, &env->active_fpu.fp_status);
2391 update_fcr31(env, GETPC());
2392
2393 return ((uint64_t)wth2 << 32) | wt2;
2394 }
2395
2396 uint32_t helper_float_cvts_d(CPUMIPSState *env, uint64_t fdt0)
2397 {
2398 uint32_t fst2;
2399
2400 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2401 update_fcr31(env, GETPC());
2402 return fst2;
2403 }
2404
2405 uint32_t helper_float_cvts_w(CPUMIPSState *env, uint32_t wt0)
2406 {
2407 uint32_t fst2;
2408
2409 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2410 update_fcr31(env, GETPC());
2411 return fst2;
2412 }
2413
2414 uint32_t helper_float_cvts_l(CPUMIPSState *env, uint64_t dt0)
2415 {
2416 uint32_t fst2;
2417
2418 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2419 update_fcr31(env, GETPC());
2420 return fst2;
2421 }
2422
2423 uint32_t helper_float_cvts_pl(CPUMIPSState *env, uint32_t wt0)
2424 {
2425 uint32_t wt2;
2426
2427 wt2 = wt0;
2428 update_fcr31(env, GETPC());
2429 return wt2;
2430 }
2431
2432 uint32_t helper_float_cvts_pu(CPUMIPSState *env, uint32_t wth0)
2433 {
2434 uint32_t wt2;
2435
2436 wt2 = wth0;
2437 update_fcr31(env, GETPC());
2438 return wt2;
2439 }
2440
2441 uint32_t helper_float_cvtw_s(CPUMIPSState *env, uint32_t fst0)
2442 {
2443 uint32_t wt2;
2444
2445 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2446 update_fcr31(env, GETPC());
2447 if (get_float_exception_flags(&env->active_fpu.fp_status)
2448 & (float_flag_invalid | float_flag_overflow)) {
2449 wt2 = FP_TO_INT32_OVERFLOW;
2450 }
2451 return wt2;
2452 }
2453
2454 uint32_t helper_float_cvtw_d(CPUMIPSState *env, uint64_t fdt0)
2455 {
2456 uint32_t wt2;
2457
2458 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2459 if (get_float_exception_flags(&env->active_fpu.fp_status)
2460 & (float_flag_invalid | float_flag_overflow)) {
2461 wt2 = FP_TO_INT32_OVERFLOW;
2462 }
2463 update_fcr31(env, GETPC());
2464 return wt2;
2465 }
2466
2467 uint64_t helper_float_roundl_d(CPUMIPSState *env, uint64_t fdt0)
2468 {
2469 uint64_t dt2;
2470
2471 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2472 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2473 restore_rounding_mode(env);
2474 if (get_float_exception_flags(&env->active_fpu.fp_status)
2475 & (float_flag_invalid | float_flag_overflow)) {
2476 dt2 = FP_TO_INT64_OVERFLOW;
2477 }
2478 update_fcr31(env, GETPC());
2479 return dt2;
2480 }
2481
2482 uint64_t helper_float_roundl_s(CPUMIPSState *env, uint32_t fst0)
2483 {
2484 uint64_t dt2;
2485
2486 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2487 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2488 restore_rounding_mode(env);
2489 if (get_float_exception_flags(&env->active_fpu.fp_status)
2490 & (float_flag_invalid | float_flag_overflow)) {
2491 dt2 = FP_TO_INT64_OVERFLOW;
2492 }
2493 update_fcr31(env, GETPC());
2494 return dt2;
2495 }
2496
2497 uint32_t helper_float_roundw_d(CPUMIPSState *env, uint64_t fdt0)
2498 {
2499 uint32_t wt2;
2500
2501 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2502 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2503 restore_rounding_mode(env);
2504 if (get_float_exception_flags(&env->active_fpu.fp_status)
2505 & (float_flag_invalid | float_flag_overflow)) {
2506 wt2 = FP_TO_INT32_OVERFLOW;
2507 }
2508 update_fcr31(env, GETPC());
2509 return wt2;
2510 }
2511
2512 uint32_t helper_float_roundw_s(CPUMIPSState *env, uint32_t fst0)
2513 {
2514 uint32_t wt2;
2515
2516 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2517 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2518 restore_rounding_mode(env);
2519 if (get_float_exception_flags(&env->active_fpu.fp_status)
2520 & (float_flag_invalid | float_flag_overflow)) {
2521 wt2 = FP_TO_INT32_OVERFLOW;
2522 }
2523 update_fcr31(env, GETPC());
2524 return wt2;
2525 }
2526
2527 uint64_t helper_float_truncl_d(CPUMIPSState *env, uint64_t fdt0)
2528 {
2529 uint64_t dt2;
2530
2531 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2532 if (get_float_exception_flags(&env->active_fpu.fp_status)
2533 & (float_flag_invalid | float_flag_overflow)) {
2534 dt2 = FP_TO_INT64_OVERFLOW;
2535 }
2536 update_fcr31(env, GETPC());
2537 return dt2;
2538 }
2539
2540 uint64_t helper_float_truncl_s(CPUMIPSState *env, uint32_t fst0)
2541 {
2542 uint64_t dt2;
2543
2544 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2545 if (get_float_exception_flags(&env->active_fpu.fp_status)
2546 & (float_flag_invalid | float_flag_overflow)) {
2547 dt2 = FP_TO_INT64_OVERFLOW;
2548 }
2549 update_fcr31(env, GETPC());
2550 return dt2;
2551 }
2552
2553 uint32_t helper_float_truncw_d(CPUMIPSState *env, uint64_t fdt0)
2554 {
2555 uint32_t wt2;
2556
2557 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2558 if (get_float_exception_flags(&env->active_fpu.fp_status)
2559 & (float_flag_invalid | float_flag_overflow)) {
2560 wt2 = FP_TO_INT32_OVERFLOW;
2561 }
2562 update_fcr31(env, GETPC());
2563 return wt2;
2564 }
2565
2566 uint32_t helper_float_truncw_s(CPUMIPSState *env, uint32_t fst0)
2567 {
2568 uint32_t wt2;
2569
2570 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2571 if (get_float_exception_flags(&env->active_fpu.fp_status)
2572 & (float_flag_invalid | float_flag_overflow)) {
2573 wt2 = FP_TO_INT32_OVERFLOW;
2574 }
2575 update_fcr31(env, GETPC());
2576 return wt2;
2577 }
2578
2579 uint64_t helper_float_ceill_d(CPUMIPSState *env, uint64_t fdt0)
2580 {
2581 uint64_t dt2;
2582
2583 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2584 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2585 restore_rounding_mode(env);
2586 if (get_float_exception_flags(&env->active_fpu.fp_status)
2587 & (float_flag_invalid | float_flag_overflow)) {
2588 dt2 = FP_TO_INT64_OVERFLOW;
2589 }
2590 update_fcr31(env, GETPC());
2591 return dt2;
2592 }
2593
2594 uint64_t helper_float_ceill_s(CPUMIPSState *env, uint32_t fst0)
2595 {
2596 uint64_t dt2;
2597
2598 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2599 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2600 restore_rounding_mode(env);
2601 if (get_float_exception_flags(&env->active_fpu.fp_status)
2602 & (float_flag_invalid | float_flag_overflow)) {
2603 dt2 = FP_TO_INT64_OVERFLOW;
2604 }
2605 update_fcr31(env, GETPC());
2606 return dt2;
2607 }
2608
2609 uint32_t helper_float_ceilw_d(CPUMIPSState *env, uint64_t fdt0)
2610 {
2611 uint32_t wt2;
2612
2613 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2614 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2615 restore_rounding_mode(env);
2616 if (get_float_exception_flags(&env->active_fpu.fp_status)
2617 & (float_flag_invalid | float_flag_overflow)) {
2618 wt2 = FP_TO_INT32_OVERFLOW;
2619 }
2620 update_fcr31(env, GETPC());
2621 return wt2;
2622 }
2623
2624 uint32_t helper_float_ceilw_s(CPUMIPSState *env, uint32_t fst0)
2625 {
2626 uint32_t wt2;
2627
2628 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2629 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2630 restore_rounding_mode(env);
2631 if (get_float_exception_flags(&env->active_fpu.fp_status)
2632 & (float_flag_invalid | float_flag_overflow)) {
2633 wt2 = FP_TO_INT32_OVERFLOW;
2634 }
2635 update_fcr31(env, GETPC());
2636 return wt2;
2637 }
2638
2639 uint64_t helper_float_floorl_d(CPUMIPSState *env, uint64_t fdt0)
2640 {
2641 uint64_t dt2;
2642
2643 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2644 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2645 restore_rounding_mode(env);
2646 if (get_float_exception_flags(&env->active_fpu.fp_status)
2647 & (float_flag_invalid | float_flag_overflow)) {
2648 dt2 = FP_TO_INT64_OVERFLOW;
2649 }
2650 update_fcr31(env, GETPC());
2651 return dt2;
2652 }
2653
2654 uint64_t helper_float_floorl_s(CPUMIPSState *env, uint32_t fst0)
2655 {
2656 uint64_t dt2;
2657
2658 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2659 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2660 restore_rounding_mode(env);
2661 if (get_float_exception_flags(&env->active_fpu.fp_status)
2662 & (float_flag_invalid | float_flag_overflow)) {
2663 dt2 = FP_TO_INT64_OVERFLOW;
2664 }
2665 update_fcr31(env, GETPC());
2666 return dt2;
2667 }
2668
2669 uint32_t helper_float_floorw_d(CPUMIPSState *env, uint64_t fdt0)
2670 {
2671 uint32_t wt2;
2672
2673 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2674 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2675 restore_rounding_mode(env);
2676 if (get_float_exception_flags(&env->active_fpu.fp_status)
2677 & (float_flag_invalid | float_flag_overflow)) {
2678 wt2 = FP_TO_INT32_OVERFLOW;
2679 }
2680 update_fcr31(env, GETPC());
2681 return wt2;
2682 }
2683
2684 uint32_t helper_float_floorw_s(CPUMIPSState *env, uint32_t fst0)
2685 {
2686 uint32_t wt2;
2687
2688 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2689 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2690 restore_rounding_mode(env);
2691 if (get_float_exception_flags(&env->active_fpu.fp_status)
2692 & (float_flag_invalid | float_flag_overflow)) {
2693 wt2 = FP_TO_INT32_OVERFLOW;
2694 }
2695 update_fcr31(env, GETPC());
2696 return wt2;
2697 }
2698
2699 /* unary operations, not modifying fp status */
2700 #define FLOAT_UNOP(name) \
2701 uint64_t helper_float_ ## name ## _d(uint64_t fdt0) \
2702 { \
2703 return float64_ ## name(fdt0); \
2704 } \
2705 uint32_t helper_float_ ## name ## _s(uint32_t fst0) \
2706 { \
2707 return float32_ ## name(fst0); \
2708 } \
2709 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0) \
2710 { \
2711 uint32_t wt0; \
2712 uint32_t wth0; \
2713 \
2714 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2715 wth0 = float32_ ## name(fdt0 >> 32); \
2716 return ((uint64_t)wth0 << 32) | wt0; \
2717 }
2718 FLOAT_UNOP(abs)
2719 FLOAT_UNOP(chs)
2720 #undef FLOAT_UNOP
2721
2722 /* MIPS specific unary operations */
2723 uint64_t helper_float_recip_d(CPUMIPSState *env, uint64_t fdt0)
2724 {
2725 uint64_t fdt2;
2726
2727 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2728 update_fcr31(env, GETPC());
2729 return fdt2;
2730 }
2731
2732 uint32_t helper_float_recip_s(CPUMIPSState *env, uint32_t fst0)
2733 {
2734 uint32_t fst2;
2735
2736 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2737 update_fcr31(env, GETPC());
2738 return fst2;
2739 }
2740
2741 uint64_t helper_float_rsqrt_d(CPUMIPSState *env, uint64_t fdt0)
2742 {
2743 uint64_t fdt2;
2744
2745 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2746 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2747 update_fcr31(env, GETPC());
2748 return fdt2;
2749 }
2750
2751 uint32_t helper_float_rsqrt_s(CPUMIPSState *env, uint32_t fst0)
2752 {
2753 uint32_t fst2;
2754
2755 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2756 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2757 update_fcr31(env, GETPC());
2758 return fst2;
2759 }
2760
2761 uint64_t helper_float_recip1_d(CPUMIPSState *env, uint64_t fdt0)
2762 {
2763 uint64_t fdt2;
2764
2765 fdt2 = float64_div(float64_one, fdt0, &env->active_fpu.fp_status);
2766 update_fcr31(env, GETPC());
2767 return fdt2;
2768 }
2769
2770 uint32_t helper_float_recip1_s(CPUMIPSState *env, uint32_t fst0)
2771 {
2772 uint32_t fst2;
2773
2774 fst2 = float32_div(float32_one, fst0, &env->active_fpu.fp_status);
2775 update_fcr31(env, GETPC());
2776 return fst2;
2777 }
2778
2779 uint64_t helper_float_recip1_ps(CPUMIPSState *env, uint64_t fdt0)
2780 {
2781 uint32_t fst2;
2782 uint32_t fsth2;
2783
2784 fst2 = float32_div(float32_one, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2785 fsth2 = float32_div(float32_one, fdt0 >> 32, &env->active_fpu.fp_status);
2786 update_fcr31(env, GETPC());
2787 return ((uint64_t)fsth2 << 32) | fst2;
2788 }
2789
2790 uint64_t helper_float_rsqrt1_d(CPUMIPSState *env, uint64_t fdt0)
2791 {
2792 uint64_t fdt2;
2793
2794 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2795 fdt2 = float64_div(float64_one, fdt2, &env->active_fpu.fp_status);
2796 update_fcr31(env, GETPC());
2797 return fdt2;
2798 }
2799
2800 uint32_t helper_float_rsqrt1_s(CPUMIPSState *env, uint32_t fst0)
2801 {
2802 uint32_t fst2;
2803
2804 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2805 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2806 update_fcr31(env, GETPC());
2807 return fst2;
2808 }
2809
2810 uint64_t helper_float_rsqrt1_ps(CPUMIPSState *env, uint64_t fdt0)
2811 {
2812 uint32_t fst2;
2813 uint32_t fsth2;
2814
2815 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2816 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2817 fst2 = float32_div(float32_one, fst2, &env->active_fpu.fp_status);
2818 fsth2 = float32_div(float32_one, fsth2, &env->active_fpu.fp_status);
2819 update_fcr31(env, GETPC());
2820 return ((uint64_t)fsth2 << 32) | fst2;
2821 }
2822
2823 #define FLOAT_OP(name, p) void helper_float_##name##_##p(CPUMIPSState *env)
2824
2825 /* binary operations */
2826 #define FLOAT_BINOP(name) \
2827 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2828 uint64_t fdt0, uint64_t fdt1) \
2829 { \
2830 uint64_t dt2; \
2831 \
2832 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2833 update_fcr31(env, GETPC()); \
2834 return dt2; \
2835 } \
2836 \
2837 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2838 uint32_t fst0, uint32_t fst1) \
2839 { \
2840 uint32_t wt2; \
2841 \
2842 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2843 update_fcr31(env, GETPC()); \
2844 return wt2; \
2845 } \
2846 \
2847 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2848 uint64_t fdt0, \
2849 uint64_t fdt1) \
2850 { \
2851 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2852 uint32_t fsth0 = fdt0 >> 32; \
2853 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2854 uint32_t fsth1 = fdt1 >> 32; \
2855 uint32_t wt2; \
2856 uint32_t wth2; \
2857 \
2858 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2859 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2860 update_fcr31(env, GETPC()); \
2861 return ((uint64_t)wth2 << 32) | wt2; \
2862 }
2863
2864 FLOAT_BINOP(add)
2865 FLOAT_BINOP(sub)
2866 FLOAT_BINOP(mul)
2867 FLOAT_BINOP(div)
2868 #undef FLOAT_BINOP
2869
2870 /* FMA based operations */
2871 #define FLOAT_FMA(name, type) \
2872 uint64_t helper_float_ ## name ## _d(CPUMIPSState *env, \
2873 uint64_t fdt0, uint64_t fdt1, \
2874 uint64_t fdt2) \
2875 { \
2876 fdt0 = float64_muladd(fdt0, fdt1, fdt2, type, \
2877 &env->active_fpu.fp_status); \
2878 update_fcr31(env, GETPC()); \
2879 return fdt0; \
2880 } \
2881 \
2882 uint32_t helper_float_ ## name ## _s(CPUMIPSState *env, \
2883 uint32_t fst0, uint32_t fst1, \
2884 uint32_t fst2) \
2885 { \
2886 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2887 &env->active_fpu.fp_status); \
2888 update_fcr31(env, GETPC()); \
2889 return fst0; \
2890 } \
2891 \
2892 uint64_t helper_float_ ## name ## _ps(CPUMIPSState *env, \
2893 uint64_t fdt0, uint64_t fdt1, \
2894 uint64_t fdt2) \
2895 { \
2896 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2897 uint32_t fsth0 = fdt0 >> 32; \
2898 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2899 uint32_t fsth1 = fdt1 >> 32; \
2900 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2901 uint32_t fsth2 = fdt2 >> 32; \
2902 \
2903 fst0 = float32_muladd(fst0, fst1, fst2, type, \
2904 &env->active_fpu.fp_status); \
2905 fsth0 = float32_muladd(fsth0, fsth1, fsth2, type, \
2906 &env->active_fpu.fp_status); \
2907 update_fcr31(env, GETPC()); \
2908 return ((uint64_t)fsth0 << 32) | fst0; \
2909 }
2910 FLOAT_FMA(madd, 0)
2911 FLOAT_FMA(msub, float_muladd_negate_c)
2912 FLOAT_FMA(nmadd, float_muladd_negate_result)
2913 FLOAT_FMA(nmsub, float_muladd_negate_result | float_muladd_negate_c)
2914 #undef FLOAT_FMA
2915
2916 /* MIPS specific binary operations */
2917 uint64_t helper_float_recip2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2918 {
2919 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2920 fdt2 = float64_chs(float64_sub(fdt2, float64_one, &env->active_fpu.fp_status));
2921 update_fcr31(env, GETPC());
2922 return fdt2;
2923 }
2924
2925 uint32_t helper_float_recip2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2926 {
2927 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2928 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2929 update_fcr31(env, GETPC());
2930 return fst2;
2931 }
2932
2933 uint64_t helper_float_recip2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2934 {
2935 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2936 uint32_t fsth0 = fdt0 >> 32;
2937 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2938 uint32_t fsth2 = fdt2 >> 32;
2939
2940 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2941 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2942 fst2 = float32_chs(float32_sub(fst2, float32_one, &env->active_fpu.fp_status));
2943 fsth2 = float32_chs(float32_sub(fsth2, float32_one, &env->active_fpu.fp_status));
2944 update_fcr31(env, GETPC());
2945 return ((uint64_t)fsth2 << 32) | fst2;
2946 }
2947
2948 uint64_t helper_float_rsqrt2_d(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2949 {
2950 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2951 fdt2 = float64_sub(fdt2, float64_one, &env->active_fpu.fp_status);
2952 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2953 update_fcr31(env, GETPC());
2954 return fdt2;
2955 }
2956
2957 uint32_t helper_float_rsqrt2_s(CPUMIPSState *env, uint32_t fst0, uint32_t fst2)
2958 {
2959 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2960 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2961 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2962 update_fcr31(env, GETPC());
2963 return fst2;
2964 }
2965
2966 uint64_t helper_float_rsqrt2_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt2)
2967 {
2968 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2969 uint32_t fsth0 = fdt0 >> 32;
2970 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2971 uint32_t fsth2 = fdt2 >> 32;
2972
2973 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2974 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2975 fst2 = float32_sub(fst2, float32_one, &env->active_fpu.fp_status);
2976 fsth2 = float32_sub(fsth2, float32_one, &env->active_fpu.fp_status);
2977 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2978 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2979 update_fcr31(env, GETPC());
2980 return ((uint64_t)fsth2 << 32) | fst2;
2981 }
2982
2983 uint64_t helper_float_addr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2984 {
2985 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2986 uint32_t fsth0 = fdt0 >> 32;
2987 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2988 uint32_t fsth1 = fdt1 >> 32;
2989 uint32_t fst2;
2990 uint32_t fsth2;
2991
2992 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2993 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2994 update_fcr31(env, GETPC());
2995 return ((uint64_t)fsth2 << 32) | fst2;
2996 }
2997
2998 uint64_t helper_float_mulr_ps(CPUMIPSState *env, uint64_t fdt0, uint64_t fdt1)
2999 {
3000 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
3001 uint32_t fsth0 = fdt0 >> 32;
3002 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
3003 uint32_t fsth1 = fdt1 >> 32;
3004 uint32_t fst2;
3005 uint32_t fsth2;
3006
3007 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
3008 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
3009 update_fcr31(env, GETPC());
3010 return ((uint64_t)fsth2 << 32) | fst2;
3011 }
3012
3013 /* compare operations */
3014 #define FOP_COND_D(op, cond) \
3015 void helper_cmp_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3016 uint64_t fdt1, int cc) \
3017 { \
3018 int c; \
3019 c = cond; \
3020 update_fcr31(env, GETPC()); \
3021 if (c) \
3022 SET_FP_COND(cc, env->active_fpu); \
3023 else \
3024 CLEAR_FP_COND(cc, env->active_fpu); \
3025 } \
3026 void helper_cmpabs_d_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3027 uint64_t fdt1, int cc) \
3028 { \
3029 int c; \
3030 fdt0 = float64_abs(fdt0); \
3031 fdt1 = float64_abs(fdt1); \
3032 c = cond; \
3033 update_fcr31(env, GETPC()); \
3034 if (c) \
3035 SET_FP_COND(cc, env->active_fpu); \
3036 else \
3037 CLEAR_FP_COND(cc, env->active_fpu); \
3038 }
3039
3040 /* NOTE: the comma operator will make "cond" to eval to false,
3041 * but float64_unordered_quiet() is still called. */
3042 FOP_COND_D(f, (float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3043 FOP_COND_D(un, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status))
3044 FOP_COND_D(eq, float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3045 FOP_COND_D(ueq, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3046 FOP_COND_D(olt, float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3047 FOP_COND_D(ult, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3048 FOP_COND_D(ole, float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3049 FOP_COND_D(ule, float64_unordered_quiet(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le_quiet(fdt0, fdt1, &env->active_fpu.fp_status))
3050 /* NOTE: the comma operator will make "cond" to eval to false,
3051 * but float64_unordered() is still called. */
3052 FOP_COND_D(sf, (float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status), 0))
3053 FOP_COND_D(ngle,float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status))
3054 FOP_COND_D(seq, float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3055 FOP_COND_D(ngl, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
3056 FOP_COND_D(lt, float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3057 FOP_COND_D(nge, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
3058 FOP_COND_D(le, float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3059 FOP_COND_D(ngt, float64_unordered(fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
3060
3061 #define FOP_COND_S(op, cond) \
3062 void helper_cmp_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3063 uint32_t fst1, int cc) \
3064 { \
3065 int c; \
3066 c = cond; \
3067 update_fcr31(env, GETPC()); \
3068 if (c) \
3069 SET_FP_COND(cc, env->active_fpu); \
3070 else \
3071 CLEAR_FP_COND(cc, env->active_fpu); \
3072 } \
3073 void helper_cmpabs_s_ ## op(CPUMIPSState *env, uint32_t fst0, \
3074 uint32_t fst1, int cc) \
3075 { \
3076 int c; \
3077 fst0 = float32_abs(fst0); \
3078 fst1 = float32_abs(fst1); \
3079 c = cond; \
3080 update_fcr31(env, GETPC()); \
3081 if (c) \
3082 SET_FP_COND(cc, env->active_fpu); \
3083 else \
3084 CLEAR_FP_COND(cc, env->active_fpu); \
3085 }
3086
3087 /* NOTE: the comma operator will make "cond" to eval to false,
3088 * but float32_unordered_quiet() is still called. */
3089 FOP_COND_S(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0))
3090 FOP_COND_S(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status))
3091 FOP_COND_S(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3092 FOP_COND_S(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status))
3093 FOP_COND_S(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3094 FOP_COND_S(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status))
3095 FOP_COND_S(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3096 FOP_COND_S(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status))
3097 /* NOTE: the comma operator will make "cond" to eval to false,
3098 * but float32_unordered() is still called. */
3099 FOP_COND_S(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0))
3100 FOP_COND_S(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status))
3101 FOP_COND_S(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3102 FOP_COND_S(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3103 FOP_COND_S(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3104 FOP_COND_S(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3105 FOP_COND_S(le, float32_le(fst0, fst1, &env->active_fpu.fp_status))
3106 FOP_COND_S(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3107
3108 #define FOP_COND_PS(op, condl, condh) \
3109 void helper_cmp_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3110 uint64_t fdt1, int cc) \
3111 { \
3112 uint32_t fst0, fsth0, fst1, fsth1; \
3113 int ch, cl; \
3114 fst0 = fdt0 & 0XFFFFFFFF; \
3115 fsth0 = fdt0 >> 32; \
3116 fst1 = fdt1 & 0XFFFFFFFF; \
3117 fsth1 = fdt1 >> 32; \
3118 cl = condl; \
3119 ch = condh; \
3120 update_fcr31(env, GETPC()); \
3121 if (cl) \
3122 SET_FP_COND(cc, env->active_fpu); \
3123 else \
3124 CLEAR_FP_COND(cc, env->active_fpu); \
3125 if (ch) \
3126 SET_FP_COND(cc + 1, env->active_fpu); \
3127 else \
3128 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3129 } \
3130 void helper_cmpabs_ps_ ## op(CPUMIPSState *env, uint64_t fdt0, \
3131 uint64_t fdt1, int cc) \
3132 { \
3133 uint32_t fst0, fsth0, fst1, fsth1; \
3134 int ch, cl; \
3135 fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
3136 fsth0 = float32_abs(fdt0 >> 32); \
3137 fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
3138 fsth1 = float32_abs(fdt1 >> 32); \
3139 cl = condl; \
3140 ch = condh; \
3141 update_fcr31(env, GETPC()); \
3142 if (cl) \
3143 SET_FP_COND(cc, env->active_fpu); \
3144 else \
3145 CLEAR_FP_COND(cc, env->active_fpu); \
3146 if (ch) \
3147 SET_FP_COND(cc + 1, env->active_fpu); \
3148 else \
3149 CLEAR_FP_COND(cc + 1, env->active_fpu); \
3150 }
3151
3152 /* NOTE: the comma operator will make "cond" to eval to false,
3153 * but float32_unordered_quiet() is still called. */
3154 FOP_COND_PS(f, (float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status), 0),
3155 (float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3156 FOP_COND_PS(un, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status),
3157 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status))
3158 FOP_COND_PS(eq, float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3159 float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3160 FOP_COND_PS(ueq, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_eq_quiet(fst0, fst1, &env->active_fpu.fp_status),
3161 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3162 FOP_COND_PS(olt, float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3163 float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3164 FOP_COND_PS(ult, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_lt_quiet(fst0, fst1, &env->active_fpu.fp_status),
3165 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3166 FOP_COND_PS(ole, float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3167 float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3168 FOP_COND_PS(ule, float32_unordered_quiet(fst1, fst0, &env->active_fpu.fp_status) || float32_le_quiet(fst0, fst1, &env->active_fpu.fp_status),
3169 float32_unordered_quiet(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le_quiet(fsth0, fsth1, &env->active_fpu.fp_status))
3170 /* NOTE: the comma operator will make "cond" to eval to false,
3171 * but float32_unordered() is still called. */
3172 FOP_COND_PS(sf, (float32_unordered(fst1, fst0, &env->active_fpu.fp_status), 0),
3173 (float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status), 0))
3174 FOP_COND_PS(ngle,float32_unordered(fst1, fst0, &env->active_fpu.fp_status),
3175 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status))
3176 FOP_COND_PS(seq, float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3177 float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3178 FOP_COND_PS(ngl, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3179 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3180 FOP_COND_PS(lt, float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3181 float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3182 FOP_COND_PS(nge, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3183 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3184 FOP_COND_PS(le, float32_le(fst0, fst1, &env->active_fpu.fp_status),
3185 float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3186 FOP_COND_PS(ngt, float32_unordered(fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3187 float32_unordered(fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))