]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Move the active FPU registers into env again, and use more TCG registers
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
27
28 void do_raise_exception_err (uint32_t exception, int error_code)
29 {
30 #if 1
31 if (logfile && exception < 0x100)
32 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
33 #endif
34 env->exception_index = exception;
35 env->error_code = error_code;
36 cpu_loop_exit();
37 }
38
39 void do_raise_exception (uint32_t exception)
40 {
41 do_raise_exception_err(exception, 0);
42 }
43
44 void do_interrupt_restart (void)
45 {
46 if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
47 !(env->CP0_Status & (1 << CP0St_ERL)) &&
48 !(env->hflags & MIPS_HFLAG_DM) &&
49 (env->CP0_Status & (1 << CP0St_IE)) &&
50 (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
51 env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
52 do_raise_exception(EXCP_EXT_INTERRUPT);
53 }
54 }
55
56 void do_restore_state (void *pc_ptr)
57 {
58 TranslationBlock *tb;
59 unsigned long pc = (unsigned long) pc_ptr;
60
61 tb = tb_find_pc (pc);
62 if (tb) {
63 cpu_restore_state (tb, env, pc, NULL);
64 }
65 }
66
67 target_ulong do_clo (target_ulong t0)
68 {
69 return clo32(t0);
70 }
71
72 target_ulong do_clz (target_ulong t0)
73 {
74 return clz32(t0);
75 }
76
77 #if defined(TARGET_MIPS64)
78 target_ulong do_dclo (target_ulong t0)
79 {
80 return clo64(t0);
81 }
82
83 target_ulong do_dclz (target_ulong t0)
84 {
85 return clz64(t0);
86 }
87 #endif /* TARGET_MIPS64 */
88
89 /* 64 bits arithmetic for 32 bits hosts */
90 static inline uint64_t get_HILO (void)
91 {
92 return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
93 }
94
95 static inline void set_HILO (uint64_t HILO)
96 {
97 env->active_tc.LO[0] = (int32_t)HILO;
98 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
99 }
100
101 static inline void set_HIT0_LO (target_ulong t0, uint64_t HILO)
102 {
103 env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
104 t0 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
105 }
106
107 static inline void set_HI_LOT0 (target_ulong t0, uint64_t HILO)
108 {
109 t0 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
110 env->active_tc.HI[0] = (int32_t)(HILO >> 32);
111 }
112
113 #if TARGET_LONG_BITS > HOST_LONG_BITS
114 void do_madd (target_ulong t0, target_ulong t1)
115 {
116 int64_t tmp;
117
118 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
119 set_HILO((int64_t)get_HILO() + tmp);
120 }
121
122 void do_maddu (target_ulong t0, target_ulong t1)
123 {
124 uint64_t tmp;
125
126 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
127 set_HILO(get_HILO() + tmp);
128 }
129
130 void do_msub (target_ulong t0, target_ulong t1)
131 {
132 int64_t tmp;
133
134 tmp = ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
135 set_HILO((int64_t)get_HILO() - tmp);
136 }
137
138 void do_msubu (target_ulong t0, target_ulong t1)
139 {
140 uint64_t tmp;
141
142 tmp = ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
143 set_HILO(get_HILO() - tmp);
144 }
145 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
146
147 /* Multiplication variants of the vr54xx. */
148 target_ulong do_muls (target_ulong t0, target_ulong t1)
149 {
150 set_HI_LOT0(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
151
152 return t0;
153 }
154
155 target_ulong do_mulsu (target_ulong t0, target_ulong t1)
156 {
157 set_HI_LOT0(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
158
159 return t0;
160 }
161
162 target_ulong do_macc (target_ulong t0, target_ulong t1)
163 {
164 set_HI_LOT0(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
165
166 return t0;
167 }
168
169 target_ulong do_macchi (target_ulong t0, target_ulong t1)
170 {
171 set_HIT0_LO(t0, ((int64_t)get_HILO()) + ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
172
173 return t0;
174 }
175
176 target_ulong do_maccu (target_ulong t0, target_ulong t1)
177 {
178 set_HI_LOT0(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
179
180 return t0;
181 }
182
183 target_ulong do_macchiu (target_ulong t0, target_ulong t1)
184 {
185 set_HIT0_LO(t0, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
186
187 return t0;
188 }
189
190 target_ulong do_msac (target_ulong t0, target_ulong t1)
191 {
192 set_HI_LOT0(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
193
194 return t0;
195 }
196
197 target_ulong do_msachi (target_ulong t0, target_ulong t1)
198 {
199 set_HIT0_LO(t0, ((int64_t)get_HILO()) - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
200
201 return t0;
202 }
203
204 target_ulong do_msacu (target_ulong t0, target_ulong t1)
205 {
206 set_HI_LOT0(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
207
208 return t0;
209 }
210
211 target_ulong do_msachiu (target_ulong t0, target_ulong t1)
212 {
213 set_HIT0_LO(t0, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
214
215 return t0;
216 }
217
218 target_ulong do_mulhi (target_ulong t0, target_ulong t1)
219 {
220 set_HIT0_LO(t0, (int64_t)(int32_t)t0 * (int64_t)(int32_t)t1);
221
222 return t0;
223 }
224
225 target_ulong do_mulhiu (target_ulong t0, target_ulong t1)
226 {
227 set_HIT0_LO(t0, (uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1);
228
229 return t0;
230 }
231
232 target_ulong do_mulshi (target_ulong t0, target_ulong t1)
233 {
234 set_HIT0_LO(t0, 0 - ((int64_t)(int32_t)t0 * (int64_t)(int32_t)t1));
235
236 return t0;
237 }
238
239 target_ulong do_mulshiu (target_ulong t0, target_ulong t1)
240 {
241 set_HIT0_LO(t0, 0 - ((uint64_t)(uint32_t)t0 * (uint64_t)(uint32_t)t1));
242
243 return t0;
244 }
245
246 #ifdef TARGET_MIPS64
247 void do_dmult (target_ulong t0, target_ulong t1)
248 {
249 muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
250 }
251
252 void do_dmultu (target_ulong t0, target_ulong t1)
253 {
254 mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), t0, t1);
255 }
256 #endif
257
258 #ifdef TARGET_WORDS_BIGENDIAN
259 #define GET_LMASK(v) ((v) & 3)
260 #define GET_OFFSET(addr, offset) (addr + (offset))
261 #else
262 #define GET_LMASK(v) (((v) & 3) ^ 3)
263 #define GET_OFFSET(addr, offset) (addr - (offset))
264 #endif
265
266 target_ulong do_lwl(target_ulong t0, target_ulong t1, int mem_idx)
267 {
268 target_ulong tmp;
269
270 #ifdef CONFIG_USER_ONLY
271 #define ldfun ldub_raw
272 #else
273 int (*ldfun)(target_ulong);
274
275 switch (mem_idx)
276 {
277 case 0: ldfun = ldub_kernel; break;
278 case 1: ldfun = ldub_super; break;
279 default:
280 case 2: ldfun = ldub_user; break;
281 }
282 #endif
283 tmp = ldfun(t0);
284 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
285
286 if (GET_LMASK(t0) <= 2) {
287 tmp = ldfun(GET_OFFSET(t0, 1));
288 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
289 }
290
291 if (GET_LMASK(t0) <= 1) {
292 tmp = ldfun(GET_OFFSET(t0, 2));
293 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
294 }
295
296 if (GET_LMASK(t0) == 0) {
297 tmp = ldfun(GET_OFFSET(t0, 3));
298 t1 = (t1 & 0xFFFFFF00) | tmp;
299 }
300 return (int32_t)t1;
301 }
302
303 target_ulong do_lwr(target_ulong t0, target_ulong t1, int mem_idx)
304 {
305 target_ulong tmp;
306
307 #ifdef CONFIG_USER_ONLY
308 #define ldfun ldub_raw
309 #else
310 int (*ldfun)(target_ulong);
311
312 switch (mem_idx)
313 {
314 case 0: ldfun = ldub_kernel; break;
315 case 1: ldfun = ldub_super; break;
316 default:
317 case 2: ldfun = ldub_user; break;
318 }
319 #endif
320 tmp = ldfun(t0);
321 t1 = (t1 & 0xFFFFFF00) | tmp;
322
323 if (GET_LMASK(t0) >= 1) {
324 tmp = ldfun(GET_OFFSET(t0, -1));
325 t1 = (t1 & 0xFFFF00FF) | (tmp << 8);
326 }
327
328 if (GET_LMASK(t0) >= 2) {
329 tmp = ldfun(GET_OFFSET(t0, -2));
330 t1 = (t1 & 0xFF00FFFF) | (tmp << 16);
331 }
332
333 if (GET_LMASK(t0) == 3) {
334 tmp = ldfun(GET_OFFSET(t0, -3));
335 t1 = (t1 & 0x00FFFFFF) | (tmp << 24);
336 }
337 return (int32_t)t1;
338 }
339
340 void do_swl(target_ulong t0, target_ulong t1, int mem_idx)
341 {
342 #ifdef CONFIG_USER_ONLY
343 #define stfun stb_raw
344 #else
345 void (*stfun)(target_ulong, int);
346
347 switch (mem_idx)
348 {
349 case 0: stfun = stb_kernel; break;
350 case 1: stfun = stb_super; break;
351 default:
352 case 2: stfun = stb_user; break;
353 }
354 #endif
355 stfun(t0, (uint8_t)(t1 >> 24));
356
357 if (GET_LMASK(t0) <= 2)
358 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 16));
359
360 if (GET_LMASK(t0) <= 1)
361 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 8));
362
363 if (GET_LMASK(t0) == 0)
364 stfun(GET_OFFSET(t0, 3), (uint8_t)t1);
365 }
366
367 void do_swr(target_ulong t0, target_ulong t1, int mem_idx)
368 {
369 #ifdef CONFIG_USER_ONLY
370 #define stfun stb_raw
371 #else
372 void (*stfun)(target_ulong, int);
373
374 switch (mem_idx)
375 {
376 case 0: stfun = stb_kernel; break;
377 case 1: stfun = stb_super; break;
378 default:
379 case 2: stfun = stb_user; break;
380 }
381 #endif
382 stfun(t0, (uint8_t)t1);
383
384 if (GET_LMASK(t0) >= 1)
385 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
386
387 if (GET_LMASK(t0) >= 2)
388 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
389
390 if (GET_LMASK(t0) == 3)
391 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
392 }
393
394 #if defined(TARGET_MIPS64)
395 /* "half" load and stores. We must do the memory access inline,
396 or fault handling won't work. */
397
398 #ifdef TARGET_WORDS_BIGENDIAN
399 #define GET_LMASK64(v) ((v) & 7)
400 #else
401 #define GET_LMASK64(v) (((v) & 7) ^ 7)
402 #endif
403
404 target_ulong do_ldl(target_ulong t0, target_ulong t1, int mem_idx)
405 {
406 uint64_t tmp;
407
408 #ifdef CONFIG_USER_ONLY
409 #define ldfun ldub_raw
410 #else
411 int (*ldfun)(target_ulong);
412
413 switch (mem_idx)
414 {
415 case 0: ldfun = ldub_kernel; break;
416 case 1: ldfun = ldub_super; break;
417 default:
418 case 2: ldfun = ldub_user; break;
419 }
420 #endif
421 tmp = ldfun(t0);
422 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
423
424 if (GET_LMASK64(t0) <= 6) {
425 tmp = ldfun(GET_OFFSET(t0, 1));
426 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
427 }
428
429 if (GET_LMASK64(t0) <= 5) {
430 tmp = ldfun(GET_OFFSET(t0, 2));
431 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
432 }
433
434 if (GET_LMASK64(t0) <= 4) {
435 tmp = ldfun(GET_OFFSET(t0, 3));
436 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
437 }
438
439 if (GET_LMASK64(t0) <= 3) {
440 tmp = ldfun(GET_OFFSET(t0, 4));
441 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
442 }
443
444 if (GET_LMASK64(t0) <= 2) {
445 tmp = ldfun(GET_OFFSET(t0, 5));
446 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
447 }
448
449 if (GET_LMASK64(t0) <= 1) {
450 tmp = ldfun(GET_OFFSET(t0, 6));
451 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
452 }
453
454 if (GET_LMASK64(t0) == 0) {
455 tmp = ldfun(GET_OFFSET(t0, 7));
456 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
457 }
458
459 return t1;
460 }
461
462 target_ulong do_ldr(target_ulong t0, target_ulong t1, int mem_idx)
463 {
464 uint64_t tmp;
465
466 #ifdef CONFIG_USER_ONLY
467 #define ldfun ldub_raw
468 #else
469 int (*ldfun)(target_ulong);
470
471 switch (mem_idx)
472 {
473 case 0: ldfun = ldub_kernel; break;
474 case 1: ldfun = ldub_super; break;
475 default:
476 case 2: ldfun = ldub_user; break;
477 }
478 #endif
479 tmp = ldfun(t0);
480 t1 = (t1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
481
482 if (GET_LMASK64(t0) >= 1) {
483 tmp = ldfun(GET_OFFSET(t0, -1));
484 t1 = (t1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
485 }
486
487 if (GET_LMASK64(t0) >= 2) {
488 tmp = ldfun(GET_OFFSET(t0, -2));
489 t1 = (t1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
490 }
491
492 if (GET_LMASK64(t0) >= 3) {
493 tmp = ldfun(GET_OFFSET(t0, -3));
494 t1 = (t1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
495 }
496
497 if (GET_LMASK64(t0) >= 4) {
498 tmp = ldfun(GET_OFFSET(t0, -4));
499 t1 = (t1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
500 }
501
502 if (GET_LMASK64(t0) >= 5) {
503 tmp = ldfun(GET_OFFSET(t0, -5));
504 t1 = (t1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
505 }
506
507 if (GET_LMASK64(t0) >= 6) {
508 tmp = ldfun(GET_OFFSET(t0, -6));
509 t1 = (t1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
510 }
511
512 if (GET_LMASK64(t0) == 7) {
513 tmp = ldfun(GET_OFFSET(t0, -7));
514 t1 = (t1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
515 }
516
517 return t1;
518 }
519
520 void do_sdl(target_ulong t0, target_ulong t1, int mem_idx)
521 {
522 #ifdef CONFIG_USER_ONLY
523 #define stfun stb_raw
524 #else
525 void (*stfun)(target_ulong, int);
526
527 switch (mem_idx)
528 {
529 case 0: stfun = stb_kernel; break;
530 case 1: stfun = stb_super; break;
531 default:
532 case 2: stfun = stb_user; break;
533 }
534 #endif
535 stfun(t0, (uint8_t)(t1 >> 56));
536
537 if (GET_LMASK64(t0) <= 6)
538 stfun(GET_OFFSET(t0, 1), (uint8_t)(t1 >> 48));
539
540 if (GET_LMASK64(t0) <= 5)
541 stfun(GET_OFFSET(t0, 2), (uint8_t)(t1 >> 40));
542
543 if (GET_LMASK64(t0) <= 4)
544 stfun(GET_OFFSET(t0, 3), (uint8_t)(t1 >> 32));
545
546 if (GET_LMASK64(t0) <= 3)
547 stfun(GET_OFFSET(t0, 4), (uint8_t)(t1 >> 24));
548
549 if (GET_LMASK64(t0) <= 2)
550 stfun(GET_OFFSET(t0, 5), (uint8_t)(t1 >> 16));
551
552 if (GET_LMASK64(t0) <= 1)
553 stfun(GET_OFFSET(t0, 6), (uint8_t)(t1 >> 8));
554
555 if (GET_LMASK64(t0) <= 0)
556 stfun(GET_OFFSET(t0, 7), (uint8_t)t1);
557 }
558
559 void do_sdr(target_ulong t0, target_ulong t1, int mem_idx)
560 {
561 #ifdef CONFIG_USER_ONLY
562 #define stfun stb_raw
563 #else
564 void (*stfun)(target_ulong, int);
565
566 switch (mem_idx)
567 {
568 case 0: stfun = stb_kernel; break;
569 case 1: stfun = stb_super; break;
570 default:
571 case 2: stfun = stb_user; break;
572 }
573 #endif
574 stfun(t0, (uint8_t)t1);
575
576 if (GET_LMASK64(t0) >= 1)
577 stfun(GET_OFFSET(t0, -1), (uint8_t)(t1 >> 8));
578
579 if (GET_LMASK64(t0) >= 2)
580 stfun(GET_OFFSET(t0, -2), (uint8_t)(t1 >> 16));
581
582 if (GET_LMASK64(t0) >= 3)
583 stfun(GET_OFFSET(t0, -3), (uint8_t)(t1 >> 24));
584
585 if (GET_LMASK64(t0) >= 4)
586 stfun(GET_OFFSET(t0, -4), (uint8_t)(t1 >> 32));
587
588 if (GET_LMASK64(t0) >= 5)
589 stfun(GET_OFFSET(t0, -5), (uint8_t)(t1 >> 40));
590
591 if (GET_LMASK64(t0) >= 6)
592 stfun(GET_OFFSET(t0, -6), (uint8_t)(t1 >> 48));
593
594 if (GET_LMASK64(t0) == 7)
595 stfun(GET_OFFSET(t0, -7), (uint8_t)(t1 >> 56));
596 }
597 #endif /* TARGET_MIPS64 */
598
599 #ifndef CONFIG_USER_ONLY
600 /* CP0 helpers */
601 target_ulong do_mfc0_mvpcontrol (void)
602 {
603 return env->mvp->CP0_MVPControl;
604 }
605
606 target_ulong do_mfc0_mvpconf0 (void)
607 {
608 return env->mvp->CP0_MVPConf0;
609 }
610
611 target_ulong do_mfc0_mvpconf1 (void)
612 {
613 return env->mvp->CP0_MVPConf1;
614 }
615
616 target_ulong do_mfc0_random (void)
617 {
618 return (int32_t)cpu_mips_get_random(env);
619 }
620
621 target_ulong do_mfc0_tcstatus (void)
622 {
623 return env->active_tc.CP0_TCStatus;
624 }
625
626 target_ulong do_mftc0_tcstatus(void)
627 {
628 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
629
630 if (other_tc == env->current_tc)
631 return env->active_tc.CP0_TCStatus;
632 else
633 return env->tcs[other_tc].CP0_TCStatus;
634 }
635
636 target_ulong do_mfc0_tcbind (void)
637 {
638 return env->active_tc.CP0_TCBind;
639 }
640
641 target_ulong do_mftc0_tcbind(void)
642 {
643 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
644
645 if (other_tc == env->current_tc)
646 return env->active_tc.CP0_TCBind;
647 else
648 return env->tcs[other_tc].CP0_TCBind;
649 }
650
651 target_ulong do_mfc0_tcrestart (void)
652 {
653 return env->active_tc.PC;
654 }
655
656 target_ulong do_mftc0_tcrestart(void)
657 {
658 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
659
660 if (other_tc == env->current_tc)
661 return env->active_tc.PC;
662 else
663 return env->tcs[other_tc].PC;
664 }
665
666 target_ulong do_mfc0_tchalt (void)
667 {
668 return env->active_tc.CP0_TCHalt;
669 }
670
671 target_ulong do_mftc0_tchalt(void)
672 {
673 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
674
675 if (other_tc == env->current_tc)
676 return env->active_tc.CP0_TCHalt;
677 else
678 return env->tcs[other_tc].CP0_TCHalt;
679 }
680
681 target_ulong do_mfc0_tccontext (void)
682 {
683 return env->active_tc.CP0_TCContext;
684 }
685
686 target_ulong do_mftc0_tccontext(void)
687 {
688 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
689
690 if (other_tc == env->current_tc)
691 return env->active_tc.CP0_TCContext;
692 else
693 return env->tcs[other_tc].CP0_TCContext;
694 }
695
696 target_ulong do_mfc0_tcschedule (void)
697 {
698 return env->active_tc.CP0_TCSchedule;
699 }
700
701 target_ulong do_mftc0_tcschedule(void)
702 {
703 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
704
705 if (other_tc == env->current_tc)
706 return env->active_tc.CP0_TCSchedule;
707 else
708 return env->tcs[other_tc].CP0_TCSchedule;
709 }
710
711 target_ulong do_mfc0_tcschefback (void)
712 {
713 return env->active_tc.CP0_TCScheFBack;
714 }
715
716 target_ulong do_mftc0_tcschefback(void)
717 {
718 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
719
720 if (other_tc == env->current_tc)
721 return env->active_tc.CP0_TCScheFBack;
722 else
723 return env->tcs[other_tc].CP0_TCScheFBack;
724 }
725
726 target_ulong do_mfc0_count (void)
727 {
728 return (int32_t)cpu_mips_get_count(env);
729 }
730
731 target_ulong do_mftc0_entryhi(void)
732 {
733 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
734 int32_t tcstatus;
735
736 if (other_tc == env->current_tc)
737 tcstatus = env->active_tc.CP0_TCStatus;
738 else
739 tcstatus = env->tcs[other_tc].CP0_TCStatus;
740
741 return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
742 }
743
744 target_ulong do_mftc0_status(void)
745 {
746 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
747 target_ulong t0;
748 int32_t tcstatus;
749
750 if (other_tc == env->current_tc)
751 tcstatus = env->active_tc.CP0_TCStatus;
752 else
753 tcstatus = env->tcs[other_tc].CP0_TCStatus;
754
755 t0 = env->CP0_Status & ~0xf1000018;
756 t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
757 t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
758 t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
759
760 return t0;
761 }
762
763 target_ulong do_mfc0_lladdr (void)
764 {
765 return (int32_t)env->CP0_LLAddr >> 4;
766 }
767
768 target_ulong do_mfc0_watchlo (uint32_t sel)
769 {
770 return (int32_t)env->CP0_WatchLo[sel];
771 }
772
773 target_ulong do_mfc0_watchhi (uint32_t sel)
774 {
775 return env->CP0_WatchHi[sel];
776 }
777
778 target_ulong do_mfc0_debug (void)
779 {
780 target_ulong t0 = env->CP0_Debug;
781 if (env->hflags & MIPS_HFLAG_DM)
782 t0 |= 1 << CP0DB_DM;
783
784 return t0;
785 }
786
787 target_ulong do_mftc0_debug(void)
788 {
789 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
790 int32_t tcstatus;
791
792 if (other_tc == env->current_tc)
793 tcstatus = env->active_tc.CP0_Debug_tcstatus;
794 else
795 tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
796
797 /* XXX: Might be wrong, check with EJTAG spec. */
798 return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
799 (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
800 }
801
802 #if defined(TARGET_MIPS64)
803 target_ulong do_dmfc0_tcrestart (void)
804 {
805 return env->active_tc.PC;
806 }
807
808 target_ulong do_dmfc0_tchalt (void)
809 {
810 return env->active_tc.CP0_TCHalt;
811 }
812
813 target_ulong do_dmfc0_tccontext (void)
814 {
815 return env->active_tc.CP0_TCContext;
816 }
817
818 target_ulong do_dmfc0_tcschedule (void)
819 {
820 return env->active_tc.CP0_TCSchedule;
821 }
822
823 target_ulong do_dmfc0_tcschefback (void)
824 {
825 return env->active_tc.CP0_TCScheFBack;
826 }
827
828 target_ulong do_dmfc0_lladdr (void)
829 {
830 return env->CP0_LLAddr >> 4;
831 }
832
833 target_ulong do_dmfc0_watchlo (uint32_t sel)
834 {
835 return env->CP0_WatchLo[sel];
836 }
837 #endif /* TARGET_MIPS64 */
838
839 void do_mtc0_index (target_ulong t0)
840 {
841 int num = 1;
842 unsigned int tmp = env->tlb->nb_tlb;
843
844 do {
845 tmp >>= 1;
846 num <<= 1;
847 } while (tmp);
848 env->CP0_Index = (env->CP0_Index & 0x80000000) | (t0 & (num - 1));
849 }
850
851 void do_mtc0_mvpcontrol (target_ulong t0)
852 {
853 uint32_t mask = 0;
854 uint32_t newval;
855
856 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
857 mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
858 (1 << CP0MVPCo_EVP);
859 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
860 mask |= (1 << CP0MVPCo_STLB);
861 newval = (env->mvp->CP0_MVPControl & ~mask) | (t0 & mask);
862
863 // TODO: Enable/disable shared TLB, enable/disable VPEs.
864
865 env->mvp->CP0_MVPControl = newval;
866 }
867
868 void do_mtc0_vpecontrol (target_ulong t0)
869 {
870 uint32_t mask;
871 uint32_t newval;
872
873 mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
874 (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
875 newval = (env->CP0_VPEControl & ~mask) | (t0 & mask);
876
877 /* Yield scheduler intercept not implemented. */
878 /* Gating storage scheduler intercept not implemented. */
879
880 // TODO: Enable/disable TCs.
881
882 env->CP0_VPEControl = newval;
883 }
884
885 void do_mtc0_vpeconf0 (target_ulong t0)
886 {
887 uint32_t mask = 0;
888 uint32_t newval;
889
890 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
891 if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
892 mask |= (0xff << CP0VPEC0_XTC);
893 mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
894 }
895 newval = (env->CP0_VPEConf0 & ~mask) | (t0 & mask);
896
897 // TODO: TC exclusive handling due to ERL/EXL.
898
899 env->CP0_VPEConf0 = newval;
900 }
901
902 void do_mtc0_vpeconf1 (target_ulong t0)
903 {
904 uint32_t mask = 0;
905 uint32_t newval;
906
907 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
908 mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
909 (0xff << CP0VPEC1_NCP1);
910 newval = (env->CP0_VPEConf1 & ~mask) | (t0 & mask);
911
912 /* UDI not implemented. */
913 /* CP2 not implemented. */
914
915 // TODO: Handle FPU (CP1) binding.
916
917 env->CP0_VPEConf1 = newval;
918 }
919
920 void do_mtc0_yqmask (target_ulong t0)
921 {
922 /* Yield qualifier inputs not implemented. */
923 env->CP0_YQMask = 0x00000000;
924 }
925
926 void do_mtc0_vpeopt (target_ulong t0)
927 {
928 env->CP0_VPEOpt = t0 & 0x0000ffff;
929 }
930
931 void do_mtc0_entrylo0 (target_ulong t0)
932 {
933 /* Large physaddr (PABITS) not implemented */
934 /* 1k pages not implemented */
935 env->CP0_EntryLo0 = t0 & 0x3FFFFFFF;
936 }
937
938 void do_mtc0_tcstatus (target_ulong t0)
939 {
940 uint32_t mask = env->CP0_TCStatus_rw_bitmask;
941 uint32_t newval;
942
943 newval = (env->active_tc.CP0_TCStatus & ~mask) | (t0 & mask);
944
945 // TODO: Sync with CP0_Status.
946
947 env->active_tc.CP0_TCStatus = newval;
948 }
949
950 void do_mttc0_tcstatus (target_ulong t0)
951 {
952 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
953
954 // TODO: Sync with CP0_Status.
955
956 if (other_tc == env->current_tc)
957 env->active_tc.CP0_TCStatus = t0;
958 else
959 env->tcs[other_tc].CP0_TCStatus = t0;
960 }
961
962 void do_mtc0_tcbind (target_ulong t0)
963 {
964 uint32_t mask = (1 << CP0TCBd_TBE);
965 uint32_t newval;
966
967 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
968 mask |= (1 << CP0TCBd_CurVPE);
969 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
970 env->active_tc.CP0_TCBind = newval;
971 }
972
973 void do_mttc0_tcbind (target_ulong t0)
974 {
975 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
976 uint32_t mask = (1 << CP0TCBd_TBE);
977 uint32_t newval;
978
979 if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
980 mask |= (1 << CP0TCBd_CurVPE);
981 if (other_tc == env->current_tc) {
982 newval = (env->active_tc.CP0_TCBind & ~mask) | (t0 & mask);
983 env->active_tc.CP0_TCBind = newval;
984 } else {
985 newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (t0 & mask);
986 env->tcs[other_tc].CP0_TCBind = newval;
987 }
988 }
989
990 void do_mtc0_tcrestart (target_ulong t0)
991 {
992 env->active_tc.PC = t0;
993 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
994 env->CP0_LLAddr = 0ULL;
995 /* MIPS16 not implemented. */
996 }
997
998 void do_mttc0_tcrestart (target_ulong t0)
999 {
1000 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1001
1002 if (other_tc == env->current_tc) {
1003 env->active_tc.PC = t0;
1004 env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1005 env->CP0_LLAddr = 0ULL;
1006 /* MIPS16 not implemented. */
1007 } else {
1008 env->tcs[other_tc].PC = t0;
1009 env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
1010 env->CP0_LLAddr = 0ULL;
1011 /* MIPS16 not implemented. */
1012 }
1013 }
1014
1015 void do_mtc0_tchalt (target_ulong t0)
1016 {
1017 env->active_tc.CP0_TCHalt = t0 & 0x1;
1018
1019 // TODO: Halt TC / Restart (if allocated+active) TC.
1020 }
1021
1022 void do_mttc0_tchalt (target_ulong t0)
1023 {
1024 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1025
1026 // TODO: Halt TC / Restart (if allocated+active) TC.
1027
1028 if (other_tc == env->current_tc)
1029 env->active_tc.CP0_TCHalt = t0;
1030 else
1031 env->tcs[other_tc].CP0_TCHalt = t0;
1032 }
1033
1034 void do_mtc0_tccontext (target_ulong t0)
1035 {
1036 env->active_tc.CP0_TCContext = t0;
1037 }
1038
1039 void do_mttc0_tccontext (target_ulong t0)
1040 {
1041 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1042
1043 if (other_tc == env->current_tc)
1044 env->active_tc.CP0_TCContext = t0;
1045 else
1046 env->tcs[other_tc].CP0_TCContext = t0;
1047 }
1048
1049 void do_mtc0_tcschedule (target_ulong t0)
1050 {
1051 env->active_tc.CP0_TCSchedule = t0;
1052 }
1053
1054 void do_mttc0_tcschedule (target_ulong t0)
1055 {
1056 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1057
1058 if (other_tc == env->current_tc)
1059 env->active_tc.CP0_TCSchedule = t0;
1060 else
1061 env->tcs[other_tc].CP0_TCSchedule = t0;
1062 }
1063
1064 void do_mtc0_tcschefback (target_ulong t0)
1065 {
1066 env->active_tc.CP0_TCScheFBack = t0;
1067 }
1068
1069 void do_mttc0_tcschefback (target_ulong t0)
1070 {
1071 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1072
1073 if (other_tc == env->current_tc)
1074 env->active_tc.CP0_TCScheFBack = t0;
1075 else
1076 env->tcs[other_tc].CP0_TCScheFBack = t0;
1077 }
1078
1079 void do_mtc0_entrylo1 (target_ulong t0)
1080 {
1081 /* Large physaddr (PABITS) not implemented */
1082 /* 1k pages not implemented */
1083 env->CP0_EntryLo1 = t0 & 0x3FFFFFFF;
1084 }
1085
1086 void do_mtc0_context (target_ulong t0)
1087 {
1088 env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (t0 & ~0x007FFFFF);
1089 }
1090
1091 void do_mtc0_pagemask (target_ulong t0)
1092 {
1093 /* 1k pages not implemented */
1094 env->CP0_PageMask = t0 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1095 }
1096
1097 void do_mtc0_pagegrain (target_ulong t0)
1098 {
1099 /* SmartMIPS not implemented */
1100 /* Large physaddr (PABITS) not implemented */
1101 /* 1k pages not implemented */
1102 env->CP0_PageGrain = 0;
1103 }
1104
1105 void do_mtc0_wired (target_ulong t0)
1106 {
1107 env->CP0_Wired = t0 % env->tlb->nb_tlb;
1108 }
1109
1110 void do_mtc0_srsconf0 (target_ulong t0)
1111 {
1112 env->CP0_SRSConf0 |= t0 & env->CP0_SRSConf0_rw_bitmask;
1113 }
1114
1115 void do_mtc0_srsconf1 (target_ulong t0)
1116 {
1117 env->CP0_SRSConf1 |= t0 & env->CP0_SRSConf1_rw_bitmask;
1118 }
1119
1120 void do_mtc0_srsconf2 (target_ulong t0)
1121 {
1122 env->CP0_SRSConf2 |= t0 & env->CP0_SRSConf2_rw_bitmask;
1123 }
1124
1125 void do_mtc0_srsconf3 (target_ulong t0)
1126 {
1127 env->CP0_SRSConf3 |= t0 & env->CP0_SRSConf3_rw_bitmask;
1128 }
1129
1130 void do_mtc0_srsconf4 (target_ulong t0)
1131 {
1132 env->CP0_SRSConf4 |= t0 & env->CP0_SRSConf4_rw_bitmask;
1133 }
1134
1135 void do_mtc0_hwrena (target_ulong t0)
1136 {
1137 env->CP0_HWREna = t0 & 0x0000000F;
1138 }
1139
1140 void do_mtc0_count (target_ulong t0)
1141 {
1142 cpu_mips_store_count(env, t0);
1143 }
1144
1145 void do_mtc0_entryhi (target_ulong t0)
1146 {
1147 target_ulong old, val;
1148
1149 /* 1k pages not implemented */
1150 val = t0 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1151 #if defined(TARGET_MIPS64)
1152 val &= env->SEGMask;
1153 #endif
1154 old = env->CP0_EntryHi;
1155 env->CP0_EntryHi = val;
1156 if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1157 uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1158 env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1159 }
1160 /* If the ASID changes, flush qemu's TLB. */
1161 if ((old & 0xFF) != (val & 0xFF))
1162 cpu_mips_tlb_flush(env, 1);
1163 }
1164
1165 void do_mttc0_entryhi(target_ulong t0)
1166 {
1167 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1168 int32_t tcstatus;
1169
1170 env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (t0 & ~0xff);
1171 if (other_tc == env->current_tc) {
1172 tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (t0 & 0xff);
1173 env->active_tc.CP0_TCStatus = tcstatus;
1174 } else {
1175 tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (t0 & 0xff);
1176 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1177 }
1178 }
1179
1180 void do_mtc0_compare (target_ulong t0)
1181 {
1182 cpu_mips_store_compare(env, t0);
1183 }
1184
1185 void do_mtc0_status (target_ulong t0)
1186 {
1187 uint32_t val, old;
1188 uint32_t mask = env->CP0_Status_rw_bitmask;
1189
1190 val = t0 & mask;
1191 old = env->CP0_Status;
1192 env->CP0_Status = (env->CP0_Status & ~mask) | val;
1193 compute_hflags(env);
1194 if (loglevel & CPU_LOG_EXEC)
1195 do_mtc0_status_debug(old, val);
1196 cpu_mips_update_irq(env);
1197 }
1198
1199 void do_mttc0_status(target_ulong t0)
1200 {
1201 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1202 int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1203
1204 env->CP0_Status = t0 & ~0xf1000018;
1205 tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (t0 & (0xf << CP0St_CU0));
1206 tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((t0 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1207 tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((t0 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1208 if (other_tc == env->current_tc)
1209 env->active_tc.CP0_TCStatus = tcstatus;
1210 else
1211 env->tcs[other_tc].CP0_TCStatus = tcstatus;
1212 }
1213
1214 void do_mtc0_intctl (target_ulong t0)
1215 {
1216 /* vectored interrupts not implemented, no performance counters. */
1217 env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (t0 & 0x000002e0);
1218 }
1219
1220 void do_mtc0_srsctl (target_ulong t0)
1221 {
1222 uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1223 env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (t0 & mask);
1224 }
1225
1226 void do_mtc0_cause (target_ulong t0)
1227 {
1228 uint32_t mask = 0x00C00300;
1229 uint32_t old = env->CP0_Cause;
1230
1231 if (env->insn_flags & ISA_MIPS32R2)
1232 mask |= 1 << CP0Ca_DC;
1233
1234 env->CP0_Cause = (env->CP0_Cause & ~mask) | (t0 & mask);
1235
1236 if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1237 if (env->CP0_Cause & (1 << CP0Ca_DC))
1238 cpu_mips_stop_count(env);
1239 else
1240 cpu_mips_start_count(env);
1241 }
1242
1243 /* Handle the software interrupt as an hardware one, as they
1244 are very similar */
1245 if (t0 & CP0Ca_IP_mask) {
1246 cpu_mips_update_irq(env);
1247 }
1248 }
1249
1250 void do_mtc0_ebase (target_ulong t0)
1251 {
1252 /* vectored interrupts not implemented */
1253 /* Multi-CPU not implemented */
1254 env->CP0_EBase = 0x80000000 | (t0 & 0x3FFFF000);
1255 }
1256
1257 void do_mtc0_config0 (target_ulong t0)
1258 {
1259 env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (t0 & 0x00000007);
1260 }
1261
1262 void do_mtc0_config2 (target_ulong t0)
1263 {
1264 /* tertiary/secondary caches not implemented */
1265 env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1266 }
1267
1268 void do_mtc0_watchlo (target_ulong t0, uint32_t sel)
1269 {
1270 /* Watch exceptions for instructions, data loads, data stores
1271 not implemented. */
1272 env->CP0_WatchLo[sel] = (t0 & ~0x7);
1273 }
1274
1275 void do_mtc0_watchhi (target_ulong t0, uint32_t sel)
1276 {
1277 env->CP0_WatchHi[sel] = (t0 & 0x40FF0FF8);
1278 env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & t0 & 0x7);
1279 }
1280
1281 void do_mtc0_xcontext (target_ulong t0)
1282 {
1283 target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1284 env->CP0_XContext = (env->CP0_XContext & mask) | (t0 & ~mask);
1285 }
1286
1287 void do_mtc0_framemask (target_ulong t0)
1288 {
1289 env->CP0_Framemask = t0; /* XXX */
1290 }
1291
1292 void do_mtc0_debug (target_ulong t0)
1293 {
1294 env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (t0 & 0x13300120);
1295 if (t0 & (1 << CP0DB_DM))
1296 env->hflags |= MIPS_HFLAG_DM;
1297 else
1298 env->hflags &= ~MIPS_HFLAG_DM;
1299 }
1300
1301 void do_mttc0_debug(target_ulong t0)
1302 {
1303 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1304 uint32_t val = t0 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1305
1306 /* XXX: Might be wrong, check with EJTAG spec. */
1307 if (other_tc == env->current_tc)
1308 env->active_tc.CP0_Debug_tcstatus = val;
1309 else
1310 env->tcs[other_tc].CP0_Debug_tcstatus = val;
1311 env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1312 (t0 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1313 }
1314
1315 void do_mtc0_performance0 (target_ulong t0)
1316 {
1317 env->CP0_Performance0 = t0 & 0x000007ff;
1318 }
1319
1320 void do_mtc0_taglo (target_ulong t0)
1321 {
1322 env->CP0_TagLo = t0 & 0xFFFFFCF6;
1323 }
1324
1325 void do_mtc0_datalo (target_ulong t0)
1326 {
1327 env->CP0_DataLo = t0; /* XXX */
1328 }
1329
1330 void do_mtc0_taghi (target_ulong t0)
1331 {
1332 env->CP0_TagHi = t0; /* XXX */
1333 }
1334
1335 void do_mtc0_datahi (target_ulong t0)
1336 {
1337 env->CP0_DataHi = t0; /* XXX */
1338 }
1339
1340 void do_mtc0_status_debug(uint32_t old, uint32_t val)
1341 {
1342 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
1343 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1344 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1345 env->CP0_Cause);
1346 switch (env->hflags & MIPS_HFLAG_KSU) {
1347 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1348 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1349 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1350 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1351 }
1352 }
1353
1354 void do_mtc0_status_irqraise_debug(void)
1355 {
1356 fprintf(logfile, "Raise pending IRQs\n");
1357 }
1358 #endif /* !CONFIG_USER_ONLY */
1359
1360 /* MIPS MT functions */
1361 target_ulong do_mftgpr(target_ulong t0, uint32_t sel)
1362 {
1363 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1364
1365 if (other_tc == env->current_tc)
1366 return env->active_tc.gpr[sel];
1367 else
1368 return env->tcs[other_tc].gpr[sel];
1369 }
1370
1371 target_ulong do_mftlo(target_ulong t0, uint32_t sel)
1372 {
1373 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1374
1375 if (other_tc == env->current_tc)
1376 return env->active_tc.LO[sel];
1377 else
1378 return env->tcs[other_tc].LO[sel];
1379 }
1380
1381 target_ulong do_mfthi(target_ulong t0, uint32_t sel)
1382 {
1383 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1384
1385 if (other_tc == env->current_tc)
1386 return env->active_tc.HI[sel];
1387 else
1388 return env->tcs[other_tc].HI[sel];
1389 }
1390
1391 target_ulong do_mftacx(target_ulong t0, uint32_t sel)
1392 {
1393 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1394
1395 if (other_tc == env->current_tc)
1396 return env->active_tc.ACX[sel];
1397 else
1398 return env->tcs[other_tc].ACX[sel];
1399 }
1400
1401 target_ulong do_mftdsp(target_ulong t0)
1402 {
1403 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1404
1405 if (other_tc == env->current_tc)
1406 return env->active_tc.DSPControl;
1407 else
1408 return env->tcs[other_tc].DSPControl;
1409 }
1410
1411 void do_mttgpr(target_ulong t0, uint32_t sel)
1412 {
1413 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1414
1415 if (other_tc == env->current_tc)
1416 env->active_tc.gpr[sel] = t0;
1417 else
1418 env->tcs[other_tc].gpr[sel] = t0;
1419 }
1420
1421 void do_mttlo(target_ulong t0, uint32_t sel)
1422 {
1423 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1424
1425 if (other_tc == env->current_tc)
1426 env->active_tc.LO[sel] = t0;
1427 else
1428 env->tcs[other_tc].LO[sel] = t0;
1429 }
1430
1431 void do_mtthi(target_ulong t0, uint32_t sel)
1432 {
1433 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1434
1435 if (other_tc == env->current_tc)
1436 env->active_tc.HI[sel] = t0;
1437 else
1438 env->tcs[other_tc].HI[sel] = t0;
1439 }
1440
1441 void do_mttacx(target_ulong t0, uint32_t sel)
1442 {
1443 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1444
1445 if (other_tc == env->current_tc)
1446 env->active_tc.ACX[sel] = t0;
1447 else
1448 env->tcs[other_tc].ACX[sel] = t0;
1449 }
1450
1451 void do_mttdsp(target_ulong t0)
1452 {
1453 int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1454
1455 if (other_tc == env->current_tc)
1456 env->active_tc.DSPControl = t0;
1457 else
1458 env->tcs[other_tc].DSPControl = t0;
1459 }
1460
1461 /* MIPS MT functions */
1462 target_ulong do_dmt(target_ulong t0)
1463 {
1464 // TODO
1465 t0 = 0;
1466 // rt = t0
1467
1468 return t0;
1469 }
1470
1471 target_ulong do_emt(target_ulong t0)
1472 {
1473 // TODO
1474 t0 = 0;
1475 // rt = t0
1476
1477 return t0;
1478 }
1479
1480 target_ulong do_dvpe(target_ulong t0)
1481 {
1482 // TODO
1483 t0 = 0;
1484 // rt = t0
1485
1486 return t0;
1487 }
1488
1489 target_ulong do_evpe(target_ulong t0)
1490 {
1491 // TODO
1492 t0 = 0;
1493 // rt = t0
1494
1495 return t0;
1496 }
1497
1498 void do_fork(target_ulong t0, target_ulong t1)
1499 {
1500 // t0 = rt, t1 = rs
1501 t0 = 0;
1502 // TODO: store to TC register
1503 }
1504
1505 target_ulong do_yield(target_ulong t0)
1506 {
1507 if (t0 < 0) {
1508 /* No scheduling policy implemented. */
1509 if (t0 != -2) {
1510 if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1511 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1512 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1513 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1514 do_raise_exception(EXCP_THREAD);
1515 }
1516 }
1517 } else if (t0 == 0) {
1518 if (0 /* TODO: TC underflow */) {
1519 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1520 do_raise_exception(EXCP_THREAD);
1521 } else {
1522 // TODO: Deallocate TC
1523 }
1524 } else if (t0 > 0) {
1525 /* Yield qualifier inputs not implemented. */
1526 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1527 env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1528 do_raise_exception(EXCP_THREAD);
1529 }
1530 return env->CP0_YQMask;
1531 }
1532
1533 #ifndef CONFIG_USER_ONLY
1534 /* TLB management */
1535 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1536 {
1537 /* Flush qemu's TLB and discard all shadowed entries. */
1538 tlb_flush (env, flush_global);
1539 env->tlb->tlb_in_use = env->tlb->nb_tlb;
1540 }
1541
1542 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
1543 {
1544 /* Discard entries from env->tlb[first] onwards. */
1545 while (env->tlb->tlb_in_use > first) {
1546 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
1547 }
1548 }
1549
1550 static void r4k_fill_tlb (int idx)
1551 {
1552 r4k_tlb_t *tlb;
1553
1554 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1555 tlb = &env->tlb->mmu.r4k.tlb[idx];
1556 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1557 #if defined(TARGET_MIPS64)
1558 tlb->VPN &= env->SEGMask;
1559 #endif
1560 tlb->ASID = env->CP0_EntryHi & 0xFF;
1561 tlb->PageMask = env->CP0_PageMask;
1562 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1563 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1564 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1565 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1566 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1567 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1568 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1569 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1570 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1571 }
1572
1573 void r4k_do_tlbwi (void)
1574 {
1575 int idx;
1576
1577 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1578
1579 /* Discard cached TLB entries. We could avoid doing this if the
1580 tlbwi is just upgrading access permissions on the current entry;
1581 that might be a further win. */
1582 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
1583
1584 r4k_invalidate_tlb(env, idx, 0);
1585 r4k_fill_tlb(idx);
1586 }
1587
1588 void r4k_do_tlbwr (void)
1589 {
1590 int r = cpu_mips_get_random(env);
1591
1592 r4k_invalidate_tlb(env, r, 1);
1593 r4k_fill_tlb(r);
1594 }
1595
1596 void r4k_do_tlbp (void)
1597 {
1598 r4k_tlb_t *tlb;
1599 target_ulong mask;
1600 target_ulong tag;
1601 target_ulong VPN;
1602 uint8_t ASID;
1603 int i;
1604
1605 ASID = env->CP0_EntryHi & 0xFF;
1606 for (i = 0; i < env->tlb->nb_tlb; i++) {
1607 tlb = &env->tlb->mmu.r4k.tlb[i];
1608 /* 1k pages are not supported. */
1609 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1610 tag = env->CP0_EntryHi & ~mask;
1611 VPN = tlb->VPN & ~mask;
1612 /* Check ASID, virtual page number & size */
1613 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1614 /* TLB match */
1615 env->CP0_Index = i;
1616 break;
1617 }
1618 }
1619 if (i == env->tlb->nb_tlb) {
1620 /* No match. Discard any shadow entries, if any of them match. */
1621 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
1622 tlb = &env->tlb->mmu.r4k.tlb[i];
1623 /* 1k pages are not supported. */
1624 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1625 tag = env->CP0_EntryHi & ~mask;
1626 VPN = tlb->VPN & ~mask;
1627 /* Check ASID, virtual page number & size */
1628 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
1629 r4k_mips_tlb_flush_extra (env, i);
1630 break;
1631 }
1632 }
1633
1634 env->CP0_Index |= 0x80000000;
1635 }
1636 }
1637
1638 void r4k_do_tlbr (void)
1639 {
1640 r4k_tlb_t *tlb;
1641 uint8_t ASID;
1642 int idx;
1643
1644 ASID = env->CP0_EntryHi & 0xFF;
1645 idx = (env->CP0_Index & ~0x80000000) % env->tlb->nb_tlb;
1646 tlb = &env->tlb->mmu.r4k.tlb[idx];
1647
1648 /* If this will change the current ASID, flush qemu's TLB. */
1649 if (ASID != tlb->ASID)
1650 cpu_mips_tlb_flush (env, 1);
1651
1652 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
1653
1654 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1655 env->CP0_PageMask = tlb->PageMask;
1656 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1657 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1658 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1659 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1660 }
1661
1662 /* Specials */
1663 target_ulong do_di (void)
1664 {
1665 target_ulong t0 = env->CP0_Status;
1666
1667 env->CP0_Status = t0 & ~(1 << CP0St_IE);
1668 cpu_mips_update_irq(env);
1669
1670 return t0;
1671 }
1672
1673 target_ulong do_ei (void)
1674 {
1675 target_ulong t0 = env->CP0_Status;
1676
1677 env->CP0_Status = t0 | (1 << CP0St_IE);
1678 cpu_mips_update_irq(env);
1679
1680 return t0;
1681 }
1682
1683 void debug_pre_eret (void)
1684 {
1685 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1686 env->active_tc.PC, env->CP0_EPC);
1687 if (env->CP0_Status & (1 << CP0St_ERL))
1688 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1689 if (env->hflags & MIPS_HFLAG_DM)
1690 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1691 fputs("\n", logfile);
1692 }
1693
1694 void debug_post_eret (void)
1695 {
1696 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1697 env->active_tc.PC, env->CP0_EPC);
1698 if (env->CP0_Status & (1 << CP0St_ERL))
1699 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1700 if (env->hflags & MIPS_HFLAG_DM)
1701 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1702 switch (env->hflags & MIPS_HFLAG_KSU) {
1703 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
1704 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
1705 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
1706 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1707 }
1708 }
1709
1710 void do_eret (void)
1711 {
1712 if (loglevel & CPU_LOG_EXEC)
1713 debug_pre_eret();
1714 if (env->CP0_Status & (1 << CP0St_ERL)) {
1715 env->active_tc.PC = env->CP0_ErrorEPC;
1716 env->CP0_Status &= ~(1 << CP0St_ERL);
1717 } else {
1718 env->active_tc.PC = env->CP0_EPC;
1719 env->CP0_Status &= ~(1 << CP0St_EXL);
1720 }
1721 compute_hflags(env);
1722 if (loglevel & CPU_LOG_EXEC)
1723 debug_post_eret();
1724 env->CP0_LLAddr = 1;
1725 }
1726
1727 void do_deret (void)
1728 {
1729 if (loglevel & CPU_LOG_EXEC)
1730 debug_pre_eret();
1731 env->active_tc.PC = env->CP0_DEPC;
1732 env->hflags &= MIPS_HFLAG_DM;
1733 compute_hflags(env);
1734 if (loglevel & CPU_LOG_EXEC)
1735 debug_post_eret();
1736 env->CP0_LLAddr = 1;
1737 }
1738 #endif /* !CONFIG_USER_ONLY */
1739
1740 target_ulong do_rdhwr_cpunum(void)
1741 {
1742 if ((env->hflags & MIPS_HFLAG_CP0) ||
1743 (env->CP0_HWREna & (1 << 0)))
1744 return env->CP0_EBase & 0x3ff;
1745 else
1746 do_raise_exception(EXCP_RI);
1747
1748 return 0;
1749 }
1750
1751 target_ulong do_rdhwr_synci_step(void)
1752 {
1753 if ((env->hflags & MIPS_HFLAG_CP0) ||
1754 (env->CP0_HWREna & (1 << 1)))
1755 return env->SYNCI_Step;
1756 else
1757 do_raise_exception(EXCP_RI);
1758
1759 return 0;
1760 }
1761
1762 target_ulong do_rdhwr_cc(void)
1763 {
1764 if ((env->hflags & MIPS_HFLAG_CP0) ||
1765 (env->CP0_HWREna & (1 << 2)))
1766 return env->CP0_Count;
1767 else
1768 do_raise_exception(EXCP_RI);
1769
1770 return 0;
1771 }
1772
1773 target_ulong do_rdhwr_ccres(void)
1774 {
1775 if ((env->hflags & MIPS_HFLAG_CP0) ||
1776 (env->CP0_HWREna & (1 << 3)))
1777 return env->CCRes;
1778 else
1779 do_raise_exception(EXCP_RI);
1780
1781 return 0;
1782 }
1783
1784 /* Bitfield operations. */
1785 target_ulong do_ext(target_ulong t1, uint32_t pos, uint32_t size)
1786 {
1787 return (int32_t)((t1 >> pos) & ((size < 32) ? ((1 << size) - 1) : ~0));
1788 }
1789
1790 target_ulong do_ins(target_ulong t0, target_ulong t1, uint32_t pos, uint32_t size)
1791 {
1792 target_ulong mask = ((size < 32) ? ((1 << size) - 1) : ~0) << pos;
1793
1794 return (int32_t)((t0 & ~mask) | ((t1 << pos) & mask));
1795 }
1796
1797 target_ulong do_wsbh(target_ulong t1)
1798 {
1799 return (int32_t)(((t1 << 8) & ~0x00FF00FF) | ((t1 >> 8) & 0x00FF00FF));
1800 }
1801
1802 #if defined(TARGET_MIPS64)
1803 target_ulong do_dext(target_ulong t1, uint32_t pos, uint32_t size)
1804 {
1805 return (t1 >> pos) & ((size < 64) ? ((1ULL << size) - 1) : ~0ULL);
1806 }
1807
1808 target_ulong do_dins(target_ulong t0, target_ulong t1, uint32_t pos, uint32_t size)
1809 {
1810 target_ulong mask = ((size < 64) ? ((1ULL << size) - 1) : ~0ULL) << pos;
1811
1812 return (t0 & ~mask) | ((t1 << pos) & mask);
1813 }
1814
1815 target_ulong do_dsbh(target_ulong t1)
1816 {
1817 return ((t1 << 8) & ~0x00FF00FF00FF00FFULL) | ((t1 >> 8) & 0x00FF00FF00FF00FFULL);
1818 }
1819
1820 target_ulong do_dshd(target_ulong t1)
1821 {
1822 t1 = ((t1 << 16) & ~0x0000FFFF0000FFFFULL) | ((t1 >> 16) & 0x0000FFFF0000FFFFULL);
1823 return (t1 << 32) | (t1 >> 32);
1824 }
1825 #endif
1826
1827 void do_pmon (int function)
1828 {
1829 function /= 2;
1830 switch (function) {
1831 case 2: /* TODO: char inbyte(int waitflag); */
1832 if (env->active_tc.gpr[4] == 0)
1833 env->active_tc.gpr[2] = -1;
1834 /* Fall through */
1835 case 11: /* TODO: char inbyte (void); */
1836 env->active_tc.gpr[2] = -1;
1837 break;
1838 case 3:
1839 case 12:
1840 printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1841 break;
1842 case 17:
1843 break;
1844 case 158:
1845 {
1846 unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1847 printf("%s", fmt);
1848 }
1849 break;
1850 }
1851 }
1852
1853 void do_wait (void)
1854 {
1855 env->halted = 1;
1856 do_raise_exception(EXCP_HLT);
1857 }
1858
1859 #if !defined(CONFIG_USER_ONLY)
1860
1861 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1862
1863 #define MMUSUFFIX _mmu
1864 #define ALIGNED_ONLY
1865
1866 #define SHIFT 0
1867 #include "softmmu_template.h"
1868
1869 #define SHIFT 1
1870 #include "softmmu_template.h"
1871
1872 #define SHIFT 2
1873 #include "softmmu_template.h"
1874
1875 #define SHIFT 3
1876 #include "softmmu_template.h"
1877
1878 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1879 {
1880 env->CP0_BadVAddr = addr;
1881 do_restore_state (retaddr);
1882 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1883 }
1884
1885 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1886 {
1887 TranslationBlock *tb;
1888 CPUState *saved_env;
1889 unsigned long pc;
1890 int ret;
1891
1892 /* XXX: hack to restore env in all cases, even if not called from
1893 generated code */
1894 saved_env = env;
1895 env = cpu_single_env;
1896 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1897 if (ret) {
1898 if (retaddr) {
1899 /* now we have a real cpu fault */
1900 pc = (unsigned long)retaddr;
1901 tb = tb_find_pc(pc);
1902 if (tb) {
1903 /* the PC is inside the translated code. It means that we have
1904 a virtual CPU fault */
1905 cpu_restore_state(tb, env, pc, NULL);
1906 }
1907 }
1908 do_raise_exception_err(env->exception_index, env->error_code);
1909 }
1910 env = saved_env;
1911 }
1912
1913 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1914 int unused)
1915 {
1916 if (is_exec)
1917 do_raise_exception(EXCP_IBE);
1918 else
1919 do_raise_exception(EXCP_DBE);
1920 }
1921 #endif /* !CONFIG_USER_ONLY */
1922
1923 /* Complex FPU operations which may need stack space. */
1924
1925 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
1926 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
1927 #define FLOAT_TWO32 make_float32(1 << 30)
1928 #define FLOAT_TWO64 make_float64(1ULL << 62)
1929 #define FLOAT_QNAN32 0x7fbfffff
1930 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
1931 #define FLOAT_SNAN32 0x7fffffff
1932 #define FLOAT_SNAN64 0x7fffffffffffffffULL
1933
1934 /* convert MIPS rounding mode in FCR31 to IEEE library */
1935 unsigned int ieee_rm[] = {
1936 float_round_nearest_even,
1937 float_round_to_zero,
1938 float_round_up,
1939 float_round_down
1940 };
1941
1942 #define RESTORE_ROUNDING_MODE \
1943 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1944
1945 target_ulong do_cfc1 (uint32_t reg)
1946 {
1947 target_ulong t0;
1948
1949 switch (reg) {
1950 case 0:
1951 t0 = (int32_t)env->active_fpu.fcr0;
1952 break;
1953 case 25:
1954 t0 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
1955 break;
1956 case 26:
1957 t0 = env->active_fpu.fcr31 & 0x0003f07c;
1958 break;
1959 case 28:
1960 t0 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
1961 break;
1962 default:
1963 t0 = (int32_t)env->active_fpu.fcr31;
1964 break;
1965 }
1966
1967 return t0;
1968 }
1969
1970 void do_ctc1 (target_ulong t0, uint32_t reg)
1971 {
1972 switch(reg) {
1973 case 25:
1974 if (t0 & 0xffffff00)
1975 return;
1976 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((t0 & 0xfe) << 24) |
1977 ((t0 & 0x1) << 23);
1978 break;
1979 case 26:
1980 if (t0 & 0x007c0000)
1981 return;
1982 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (t0 & 0x0003f07c);
1983 break;
1984 case 28:
1985 if (t0 & 0x007c0000)
1986 return;
1987 env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (t0 & 0x00000f83) |
1988 ((t0 & 0x4) << 22);
1989 break;
1990 case 31:
1991 if (t0 & 0x007c0000)
1992 return;
1993 env->active_fpu.fcr31 = t0;
1994 break;
1995 default:
1996 return;
1997 }
1998 /* set rounding mode */
1999 RESTORE_ROUNDING_MODE;
2000 set_float_exception_flags(0, &env->active_fpu.fp_status);
2001 if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2002 do_raise_exception(EXCP_FPE);
2003 }
2004
2005 static inline char ieee_ex_to_mips(char xcpt)
2006 {
2007 return (xcpt & float_flag_inexact) >> 5 |
2008 (xcpt & float_flag_underflow) >> 3 |
2009 (xcpt & float_flag_overflow) >> 1 |
2010 (xcpt & float_flag_divbyzero) << 1 |
2011 (xcpt & float_flag_invalid) << 4;
2012 }
2013
2014 static inline char mips_ex_to_ieee(char xcpt)
2015 {
2016 return (xcpt & FP_INEXACT) << 5 |
2017 (xcpt & FP_UNDERFLOW) << 3 |
2018 (xcpt & FP_OVERFLOW) << 1 |
2019 (xcpt & FP_DIV0) >> 1 |
2020 (xcpt & FP_INVALID) >> 4;
2021 }
2022
2023 static inline void update_fcr31(void)
2024 {
2025 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2026
2027 SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2028 if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2029 do_raise_exception(EXCP_FPE);
2030 else
2031 UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2032 }
2033
2034 /* Float support.
2035 Single precition routines have a "s" suffix, double precision a
2036 "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2037 paired single lower "pl", paired single upper "pu". */
2038
2039 /* unary operations, modifying fp status */
2040 uint64_t do_float_sqrt_d(uint64_t fdt0)
2041 {
2042 return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2043 }
2044
2045 uint32_t do_float_sqrt_s(uint32_t fst0)
2046 {
2047 return float32_sqrt(fst0, &env->active_fpu.fp_status);
2048 }
2049
2050 uint64_t do_float_cvtd_s(uint32_t fst0)
2051 {
2052 uint64_t fdt2;
2053
2054 set_float_exception_flags(0, &env->active_fpu.fp_status);
2055 fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2056 update_fcr31();
2057 return fdt2;
2058 }
2059
2060 uint64_t do_float_cvtd_w(uint32_t wt0)
2061 {
2062 uint64_t fdt2;
2063
2064 set_float_exception_flags(0, &env->active_fpu.fp_status);
2065 fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2066 update_fcr31();
2067 return fdt2;
2068 }
2069
2070 uint64_t do_float_cvtd_l(uint64_t dt0)
2071 {
2072 uint64_t fdt2;
2073
2074 set_float_exception_flags(0, &env->active_fpu.fp_status);
2075 fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2076 update_fcr31();
2077 return fdt2;
2078 }
2079
2080 uint64_t do_float_cvtl_d(uint64_t fdt0)
2081 {
2082 uint64_t dt2;
2083
2084 set_float_exception_flags(0, &env->active_fpu.fp_status);
2085 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2086 update_fcr31();
2087 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2088 dt2 = FLOAT_SNAN64;
2089 return dt2;
2090 }
2091
2092 uint64_t do_float_cvtl_s(uint32_t fst0)
2093 {
2094 uint64_t dt2;
2095
2096 set_float_exception_flags(0, &env->active_fpu.fp_status);
2097 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2098 update_fcr31();
2099 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2100 dt2 = FLOAT_SNAN64;
2101 return dt2;
2102 }
2103
2104 uint64_t do_float_cvtps_pw(uint64_t dt0)
2105 {
2106 uint32_t fst2;
2107 uint32_t fsth2;
2108
2109 set_float_exception_flags(0, &env->active_fpu.fp_status);
2110 fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2111 fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2112 update_fcr31();
2113 return ((uint64_t)fsth2 << 32) | fst2;
2114 }
2115
2116 uint64_t do_float_cvtpw_ps(uint64_t fdt0)
2117 {
2118 uint32_t wt2;
2119 uint32_t wth2;
2120
2121 set_float_exception_flags(0, &env->active_fpu.fp_status);
2122 wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2123 wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2124 update_fcr31();
2125 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2126 wt2 = FLOAT_SNAN32;
2127 wth2 = FLOAT_SNAN32;
2128 }
2129 return ((uint64_t)wth2 << 32) | wt2;
2130 }
2131
2132 uint32_t do_float_cvts_d(uint64_t fdt0)
2133 {
2134 uint32_t fst2;
2135
2136 set_float_exception_flags(0, &env->active_fpu.fp_status);
2137 fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2138 update_fcr31();
2139 return fst2;
2140 }
2141
2142 uint32_t do_float_cvts_w(uint32_t wt0)
2143 {
2144 uint32_t fst2;
2145
2146 set_float_exception_flags(0, &env->active_fpu.fp_status);
2147 fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2148 update_fcr31();
2149 return fst2;
2150 }
2151
2152 uint32_t do_float_cvts_l(uint64_t dt0)
2153 {
2154 uint32_t fst2;
2155
2156 set_float_exception_flags(0, &env->active_fpu.fp_status);
2157 fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2158 update_fcr31();
2159 return fst2;
2160 }
2161
2162 uint32_t do_float_cvts_pl(uint32_t wt0)
2163 {
2164 uint32_t wt2;
2165
2166 set_float_exception_flags(0, &env->active_fpu.fp_status);
2167 wt2 = wt0;
2168 update_fcr31();
2169 return wt2;
2170 }
2171
2172 uint32_t do_float_cvts_pu(uint32_t wth0)
2173 {
2174 uint32_t wt2;
2175
2176 set_float_exception_flags(0, &env->active_fpu.fp_status);
2177 wt2 = wth0;
2178 update_fcr31();
2179 return wt2;
2180 }
2181
2182 uint32_t do_float_cvtw_s(uint32_t fst0)
2183 {
2184 uint32_t wt2;
2185
2186 set_float_exception_flags(0, &env->active_fpu.fp_status);
2187 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2188 update_fcr31();
2189 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2190 wt2 = FLOAT_SNAN32;
2191 return wt2;
2192 }
2193
2194 uint32_t do_float_cvtw_d(uint64_t fdt0)
2195 {
2196 uint32_t wt2;
2197
2198 set_float_exception_flags(0, &env->active_fpu.fp_status);
2199 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2200 update_fcr31();
2201 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2202 wt2 = FLOAT_SNAN32;
2203 return wt2;
2204 }
2205
2206 uint64_t do_float_roundl_d(uint64_t fdt0)
2207 {
2208 uint64_t dt2;
2209
2210 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2211 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2212 RESTORE_ROUNDING_MODE;
2213 update_fcr31();
2214 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2215 dt2 = FLOAT_SNAN64;
2216 return dt2;
2217 }
2218
2219 uint64_t do_float_roundl_s(uint32_t fst0)
2220 {
2221 uint64_t dt2;
2222
2223 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2224 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2225 RESTORE_ROUNDING_MODE;
2226 update_fcr31();
2227 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2228 dt2 = FLOAT_SNAN64;
2229 return dt2;
2230 }
2231
2232 uint32_t do_float_roundw_d(uint64_t fdt0)
2233 {
2234 uint32_t wt2;
2235
2236 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2237 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2238 RESTORE_ROUNDING_MODE;
2239 update_fcr31();
2240 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2241 wt2 = FLOAT_SNAN32;
2242 return wt2;
2243 }
2244
2245 uint32_t do_float_roundw_s(uint32_t fst0)
2246 {
2247 uint32_t wt2;
2248
2249 set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2250 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2251 RESTORE_ROUNDING_MODE;
2252 update_fcr31();
2253 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2254 wt2 = FLOAT_SNAN32;
2255 return wt2;
2256 }
2257
2258 uint64_t do_float_truncl_d(uint64_t fdt0)
2259 {
2260 uint64_t dt2;
2261
2262 dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2263 update_fcr31();
2264 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2265 dt2 = FLOAT_SNAN64;
2266 return dt2;
2267 }
2268
2269 uint64_t do_float_truncl_s(uint32_t fst0)
2270 {
2271 uint64_t dt2;
2272
2273 dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2274 update_fcr31();
2275 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2276 dt2 = FLOAT_SNAN64;
2277 return dt2;
2278 }
2279
2280 uint32_t do_float_truncw_d(uint64_t fdt0)
2281 {
2282 uint32_t wt2;
2283
2284 wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2285 update_fcr31();
2286 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2287 wt2 = FLOAT_SNAN32;
2288 return wt2;
2289 }
2290
2291 uint32_t do_float_truncw_s(uint32_t fst0)
2292 {
2293 uint32_t wt2;
2294
2295 wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2296 update_fcr31();
2297 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2298 wt2 = FLOAT_SNAN32;
2299 return wt2;
2300 }
2301
2302 uint64_t do_float_ceill_d(uint64_t fdt0)
2303 {
2304 uint64_t dt2;
2305
2306 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2307 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2308 RESTORE_ROUNDING_MODE;
2309 update_fcr31();
2310 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2311 dt2 = FLOAT_SNAN64;
2312 return dt2;
2313 }
2314
2315 uint64_t do_float_ceill_s(uint32_t fst0)
2316 {
2317 uint64_t dt2;
2318
2319 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2320 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2321 RESTORE_ROUNDING_MODE;
2322 update_fcr31();
2323 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2324 dt2 = FLOAT_SNAN64;
2325 return dt2;
2326 }
2327
2328 uint32_t do_float_ceilw_d(uint64_t fdt0)
2329 {
2330 uint32_t wt2;
2331
2332 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2333 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2334 RESTORE_ROUNDING_MODE;
2335 update_fcr31();
2336 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2337 wt2 = FLOAT_SNAN32;
2338 return wt2;
2339 }
2340
2341 uint32_t do_float_ceilw_s(uint32_t fst0)
2342 {
2343 uint32_t wt2;
2344
2345 set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2346 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2347 RESTORE_ROUNDING_MODE;
2348 update_fcr31();
2349 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2350 wt2 = FLOAT_SNAN32;
2351 return wt2;
2352 }
2353
2354 uint64_t do_float_floorl_d(uint64_t fdt0)
2355 {
2356 uint64_t dt2;
2357
2358 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2359 dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2360 RESTORE_ROUNDING_MODE;
2361 update_fcr31();
2362 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2363 dt2 = FLOAT_SNAN64;
2364 return dt2;
2365 }
2366
2367 uint64_t do_float_floorl_s(uint32_t fst0)
2368 {
2369 uint64_t dt2;
2370
2371 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2372 dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2373 RESTORE_ROUNDING_MODE;
2374 update_fcr31();
2375 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2376 dt2 = FLOAT_SNAN64;
2377 return dt2;
2378 }
2379
2380 uint32_t do_float_floorw_d(uint64_t fdt0)
2381 {
2382 uint32_t wt2;
2383
2384 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2385 wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2386 RESTORE_ROUNDING_MODE;
2387 update_fcr31();
2388 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2389 wt2 = FLOAT_SNAN32;
2390 return wt2;
2391 }
2392
2393 uint32_t do_float_floorw_s(uint32_t fst0)
2394 {
2395 uint32_t wt2;
2396
2397 set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2398 wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2399 RESTORE_ROUNDING_MODE;
2400 update_fcr31();
2401 if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2402 wt2 = FLOAT_SNAN32;
2403 return wt2;
2404 }
2405
2406 /* unary operations, not modifying fp status */
2407 #define FLOAT_UNOP(name) \
2408 uint64_t do_float_ ## name ## _d(uint64_t fdt0) \
2409 { \
2410 return float64_ ## name(fdt0); \
2411 } \
2412 uint32_t do_float_ ## name ## _s(uint32_t fst0) \
2413 { \
2414 return float32_ ## name(fst0); \
2415 } \
2416 uint64_t do_float_ ## name ## _ps(uint64_t fdt0) \
2417 { \
2418 uint32_t wt0; \
2419 uint32_t wth0; \
2420 \
2421 wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF); \
2422 wth0 = float32_ ## name(fdt0 >> 32); \
2423 return ((uint64_t)wth0 << 32) | wt0; \
2424 }
2425 FLOAT_UNOP(abs)
2426 FLOAT_UNOP(chs)
2427 #undef FLOAT_UNOP
2428
2429 /* MIPS specific unary operations */
2430 uint64_t do_float_recip_d(uint64_t fdt0)
2431 {
2432 uint64_t fdt2;
2433
2434 set_float_exception_flags(0, &env->active_fpu.fp_status);
2435 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2436 update_fcr31();
2437 return fdt2;
2438 }
2439
2440 uint32_t do_float_recip_s(uint32_t fst0)
2441 {
2442 uint32_t fst2;
2443
2444 set_float_exception_flags(0, &env->active_fpu.fp_status);
2445 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2446 update_fcr31();
2447 return fst2;
2448 }
2449
2450 uint64_t do_float_rsqrt_d(uint64_t fdt0)
2451 {
2452 uint64_t fdt2;
2453
2454 set_float_exception_flags(0, &env->active_fpu.fp_status);
2455 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2456 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2457 update_fcr31();
2458 return fdt2;
2459 }
2460
2461 uint32_t do_float_rsqrt_s(uint32_t fst0)
2462 {
2463 uint32_t fst2;
2464
2465 set_float_exception_flags(0, &env->active_fpu.fp_status);
2466 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2467 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2468 update_fcr31();
2469 return fst2;
2470 }
2471
2472 uint64_t do_float_recip1_d(uint64_t fdt0)
2473 {
2474 uint64_t fdt2;
2475
2476 set_float_exception_flags(0, &env->active_fpu.fp_status);
2477 fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2478 update_fcr31();
2479 return fdt2;
2480 }
2481
2482 uint32_t do_float_recip1_s(uint32_t fst0)
2483 {
2484 uint32_t fst2;
2485
2486 set_float_exception_flags(0, &env->active_fpu.fp_status);
2487 fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2488 update_fcr31();
2489 return fst2;
2490 }
2491
2492 uint64_t do_float_recip1_ps(uint64_t fdt0)
2493 {
2494 uint32_t fst2;
2495 uint32_t fsth2;
2496
2497 set_float_exception_flags(0, &env->active_fpu.fp_status);
2498 fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2499 fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2500 update_fcr31();
2501 return ((uint64_t)fsth2 << 32) | fst2;
2502 }
2503
2504 uint64_t do_float_rsqrt1_d(uint64_t fdt0)
2505 {
2506 uint64_t fdt2;
2507
2508 set_float_exception_flags(0, &env->active_fpu.fp_status);
2509 fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2510 fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2511 update_fcr31();
2512 return fdt2;
2513 }
2514
2515 uint32_t do_float_rsqrt1_s(uint32_t fst0)
2516 {
2517 uint32_t fst2;
2518
2519 set_float_exception_flags(0, &env->active_fpu.fp_status);
2520 fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2521 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2522 update_fcr31();
2523 return fst2;
2524 }
2525
2526 uint64_t do_float_rsqrt1_ps(uint64_t fdt0)
2527 {
2528 uint32_t fst2;
2529 uint32_t fsth2;
2530
2531 set_float_exception_flags(0, &env->active_fpu.fp_status);
2532 fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2533 fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2534 fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2535 fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2536 update_fcr31();
2537 return ((uint64_t)fsth2 << 32) | fst2;
2538 }
2539
2540 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
2541
2542 /* binary operations */
2543 #define FLOAT_BINOP(name) \
2544 uint64_t do_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1) \
2545 { \
2546 uint64_t dt2; \
2547 \
2548 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2549 dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status); \
2550 update_fcr31(); \
2551 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2552 dt2 = FLOAT_QNAN64; \
2553 return dt2; \
2554 } \
2555 \
2556 uint32_t do_float_ ## name ## _s(uint32_t fst0, uint32_t fst1) \
2557 { \
2558 uint32_t wt2; \
2559 \
2560 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2561 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2562 update_fcr31(); \
2563 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) \
2564 wt2 = FLOAT_QNAN32; \
2565 return wt2; \
2566 } \
2567 \
2568 uint64_t do_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1) \
2569 { \
2570 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2571 uint32_t fsth0 = fdt0 >> 32; \
2572 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2573 uint32_t fsth1 = fdt1 >> 32; \
2574 uint32_t wt2; \
2575 uint32_t wth2; \
2576 \
2577 set_float_exception_flags(0, &env->active_fpu.fp_status); \
2578 wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status); \
2579 wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status); \
2580 update_fcr31(); \
2581 if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) { \
2582 wt2 = FLOAT_QNAN32; \
2583 wth2 = FLOAT_QNAN32; \
2584 } \
2585 return ((uint64_t)wth2 << 32) | wt2; \
2586 }
2587
2588 FLOAT_BINOP(add)
2589 FLOAT_BINOP(sub)
2590 FLOAT_BINOP(mul)
2591 FLOAT_BINOP(div)
2592 #undef FLOAT_BINOP
2593
2594 /* ternary operations */
2595 #define FLOAT_TERNOP(name1, name2) \
2596 uint64_t do_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2597 uint64_t fdt2) \
2598 { \
2599 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2600 return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2601 } \
2602 \
2603 uint32_t do_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2604 uint32_t fst2) \
2605 { \
2606 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2607 return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2608 } \
2609 \
2610 uint64_t do_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2611 uint64_t fdt2) \
2612 { \
2613 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2614 uint32_t fsth0 = fdt0 >> 32; \
2615 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2616 uint32_t fsth1 = fdt1 >> 32; \
2617 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2618 uint32_t fsth2 = fdt2 >> 32; \
2619 \
2620 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2621 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2622 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2623 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2624 return ((uint64_t)fsth2 << 32) | fst2; \
2625 }
2626
2627 FLOAT_TERNOP(mul, add)
2628 FLOAT_TERNOP(mul, sub)
2629 #undef FLOAT_TERNOP
2630
2631 /* negated ternary operations */
2632 #define FLOAT_NTERNOP(name1, name2) \
2633 uint64_t do_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2634 uint64_t fdt2) \
2635 { \
2636 fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status); \
2637 fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status); \
2638 return float64_chs(fdt2); \
2639 } \
2640 \
2641 uint32_t do_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2642 uint32_t fst2) \
2643 { \
2644 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2645 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2646 return float32_chs(fst2); \
2647 } \
2648 \
2649 uint64_t do_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2650 uint64_t fdt2) \
2651 { \
2652 uint32_t fst0 = fdt0 & 0XFFFFFFFF; \
2653 uint32_t fsth0 = fdt0 >> 32; \
2654 uint32_t fst1 = fdt1 & 0XFFFFFFFF; \
2655 uint32_t fsth1 = fdt1 >> 32; \
2656 uint32_t fst2 = fdt2 & 0XFFFFFFFF; \
2657 uint32_t fsth2 = fdt2 >> 32; \
2658 \
2659 fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status); \
2660 fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status); \
2661 fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status); \
2662 fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status); \
2663 fst2 = float32_chs(fst2); \
2664 fsth2 = float32_chs(fsth2); \
2665 return ((uint64_t)fsth2 << 32) | fst2; \
2666 }
2667
2668 FLOAT_NTERNOP(mul, add)
2669 FLOAT_NTERNOP(mul, sub)
2670 #undef FLOAT_NTERNOP
2671
2672 /* MIPS specific binary operations */
2673 uint64_t do_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2674 {
2675 set_float_exception_flags(0, &env->active_fpu.fp_status);
2676 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2677 fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2678 update_fcr31();
2679 return fdt2;
2680 }
2681
2682 uint32_t do_float_recip2_s(uint32_t fst0, uint32_t fst2)
2683 {
2684 set_float_exception_flags(0, &env->active_fpu.fp_status);
2685 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2686 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2687 update_fcr31();
2688 return fst2;
2689 }
2690
2691 uint64_t do_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2692 {
2693 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2694 uint32_t fsth0 = fdt0 >> 32;
2695 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2696 uint32_t fsth2 = fdt2 >> 32;
2697
2698 set_float_exception_flags(0, &env->active_fpu.fp_status);
2699 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2700 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2701 fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2702 fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2703 update_fcr31();
2704 return ((uint64_t)fsth2 << 32) | fst2;
2705 }
2706
2707 uint64_t do_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2708 {
2709 set_float_exception_flags(0, &env->active_fpu.fp_status);
2710 fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2711 fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2712 fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2713 update_fcr31();
2714 return fdt2;
2715 }
2716
2717 uint32_t do_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2718 {
2719 set_float_exception_flags(0, &env->active_fpu.fp_status);
2720 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2721 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2722 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2723 update_fcr31();
2724 return fst2;
2725 }
2726
2727 uint64_t do_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2728 {
2729 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2730 uint32_t fsth0 = fdt0 >> 32;
2731 uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2732 uint32_t fsth2 = fdt2 >> 32;
2733
2734 set_float_exception_flags(0, &env->active_fpu.fp_status);
2735 fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2736 fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2737 fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2738 fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2739 fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2740 fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2741 update_fcr31();
2742 return ((uint64_t)fsth2 << 32) | fst2;
2743 }
2744
2745 uint64_t do_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2746 {
2747 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2748 uint32_t fsth0 = fdt0 >> 32;
2749 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2750 uint32_t fsth1 = fdt1 >> 32;
2751 uint32_t fst2;
2752 uint32_t fsth2;
2753
2754 set_float_exception_flags(0, &env->active_fpu.fp_status);
2755 fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2756 fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2757 update_fcr31();
2758 return ((uint64_t)fsth2 << 32) | fst2;
2759 }
2760
2761 uint64_t do_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2762 {
2763 uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2764 uint32_t fsth0 = fdt0 >> 32;
2765 uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2766 uint32_t fsth1 = fdt1 >> 32;
2767 uint32_t fst2;
2768 uint32_t fsth2;
2769
2770 set_float_exception_flags(0, &env->active_fpu.fp_status);
2771 fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2772 fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2773 update_fcr31();
2774 return ((uint64_t)fsth2 << 32) | fst2;
2775 }
2776
2777 /* compare operations */
2778 #define FOP_COND_D(op, cond) \
2779 void do_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2780 { \
2781 int c = cond; \
2782 update_fcr31(); \
2783 if (c) \
2784 SET_FP_COND(cc, env->active_fpu); \
2785 else \
2786 CLEAR_FP_COND(cc, env->active_fpu); \
2787 } \
2788 void do_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2789 { \
2790 int c; \
2791 fdt0 = float64_abs(fdt0); \
2792 fdt1 = float64_abs(fdt1); \
2793 c = cond; \
2794 update_fcr31(); \
2795 if (c) \
2796 SET_FP_COND(cc, env->active_fpu); \
2797 else \
2798 CLEAR_FP_COND(cc, env->active_fpu); \
2799 }
2800
2801 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2802 {
2803 if (float64_is_signaling_nan(a) ||
2804 float64_is_signaling_nan(b) ||
2805 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
2806 float_raise(float_flag_invalid, status);
2807 return 1;
2808 } else if (float64_is_nan(a) || float64_is_nan(b)) {
2809 return 1;
2810 } else {
2811 return 0;
2812 }
2813 }
2814
2815 /* NOTE: the comma operator will make "cond" to eval to false,
2816 * but float*_is_unordered() is still called. */
2817 FOP_COND_D(f, (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2818 FOP_COND_D(un, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2819 FOP_COND_D(eq, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2820 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2821 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2822 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2823 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2824 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2825 /* NOTE: the comma operator will make "cond" to eval to false,
2826 * but float*_is_unordered() is still called. */
2827 FOP_COND_D(sf, (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2828 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2829 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2830 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2831 FOP_COND_D(lt, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2832 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2833 FOP_COND_D(le, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2834 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2835
2836 #define FOP_COND_S(op, cond) \
2837 void do_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2838 { \
2839 int c = cond; \
2840 update_fcr31(); \
2841 if (c) \
2842 SET_FP_COND(cc, env->active_fpu); \
2843 else \
2844 CLEAR_FP_COND(cc, env->active_fpu); \
2845 } \
2846 void do_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2847 { \
2848 int c; \
2849 fst0 = float32_abs(fst0); \
2850 fst1 = float32_abs(fst1); \
2851 c = cond; \
2852 update_fcr31(); \
2853 if (c) \
2854 SET_FP_COND(cc, env->active_fpu); \
2855 else \
2856 CLEAR_FP_COND(cc, env->active_fpu); \
2857 }
2858
2859 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2860 {
2861 if (float32_is_signaling_nan(a) ||
2862 float32_is_signaling_nan(b) ||
2863 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
2864 float_raise(float_flag_invalid, status);
2865 return 1;
2866 } else if (float32_is_nan(a) || float32_is_nan(b)) {
2867 return 1;
2868 } else {
2869 return 0;
2870 }
2871 }
2872
2873 /* NOTE: the comma operator will make "cond" to eval to false,
2874 * but float*_is_unordered() is still called. */
2875 FOP_COND_S(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2876 FOP_COND_S(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2877 FOP_COND_S(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2878 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2879 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2880 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2881 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2882 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2883 /* NOTE: the comma operator will make "cond" to eval to false,
2884 * but float*_is_unordered() is still called. */
2885 FOP_COND_S(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
2886 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
2887 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2888 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2889 FOP_COND_S(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2890 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2891 FOP_COND_S(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2892 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status))
2893
2894 #define FOP_COND_PS(op, condl, condh) \
2895 void do_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2896 { \
2897 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2898 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2899 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2900 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2901 int cl = condl; \
2902 int ch = condh; \
2903 \
2904 update_fcr31(); \
2905 if (cl) \
2906 SET_FP_COND(cc, env->active_fpu); \
2907 else \
2908 CLEAR_FP_COND(cc, env->active_fpu); \
2909 if (ch) \
2910 SET_FP_COND(cc + 1, env->active_fpu); \
2911 else \
2912 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2913 } \
2914 void do_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2915 { \
2916 uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF); \
2917 uint32_t fsth0 = float32_abs(fdt0 >> 32); \
2918 uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF); \
2919 uint32_t fsth1 = float32_abs(fdt1 >> 32); \
2920 int cl = condl; \
2921 int ch = condh; \
2922 \
2923 update_fcr31(); \
2924 if (cl) \
2925 SET_FP_COND(cc, env->active_fpu); \
2926 else \
2927 CLEAR_FP_COND(cc, env->active_fpu); \
2928 if (ch) \
2929 SET_FP_COND(cc + 1, env->active_fpu); \
2930 else \
2931 CLEAR_FP_COND(cc + 1, env->active_fpu); \
2932 }
2933
2934 /* NOTE: the comma operator will make "cond" to eval to false,
2935 * but float*_is_unordered() is still called. */
2936 FOP_COND_PS(f, (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
2937 (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2938 FOP_COND_PS(un, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
2939 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
2940 FOP_COND_PS(eq, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2941 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2942 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2943 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2944 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2945 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2946 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2947 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2948 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2949 !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2950 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2951 float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2952 /* NOTE: the comma operator will make "cond" to eval to false,
2953 * but float*_is_unordered() is still called. */
2954 FOP_COND_PS(sf, (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
2955 (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
2956 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
2957 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
2958 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2959 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2960 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
2961 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
2962 FOP_COND_PS(lt, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2963 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2964 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
2965 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
2966 FOP_COND_PS(le, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status),
2967 !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
2968 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) || float32_le(fst0, fst1, &env->active_fpu.fp_status),
2969 float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))