]> git.proxmox.com Git - qemu.git/blob - target-mips/op_helper.c
Add strict checking mode for softfp code.
[qemu.git] / target-mips / op_helper.c
1 /*
2 * MIPS emulation helpers for qemu.
3 *
4 * Copyright (c) 2004-2005 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20 #include <stdlib.h>
21 #include "exec.h"
22
23 #include "host-utils.h"
24
25 #ifdef __s390__
26 # define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
27 #else
28 # define GETPC() (__builtin_return_address(0))
29 #endif
30
31 /*****************************************************************************/
32 /* Exceptions processing helpers */
33
34 void do_raise_exception_err (uint32_t exception, int error_code)
35 {
36 #if 1
37 if (logfile && exception < 0x100)
38 fprintf(logfile, "%s: %d %d\n", __func__, exception, error_code);
39 #endif
40 env->exception_index = exception;
41 env->error_code = error_code;
42 T0 = 0;
43 cpu_loop_exit();
44 }
45
46 void do_raise_exception (uint32_t exception)
47 {
48 do_raise_exception_err(exception, 0);
49 }
50
51 void do_restore_state (void *pc_ptr)
52 {
53 TranslationBlock *tb;
54 unsigned long pc = (unsigned long) pc_ptr;
55
56 tb = tb_find_pc (pc);
57 cpu_restore_state (tb, env, pc, NULL);
58 }
59
60 void do_raise_exception_direct_err (uint32_t exception, int error_code)
61 {
62 do_restore_state (GETPC ());
63 do_raise_exception_err (exception, error_code);
64 }
65
66 void do_raise_exception_direct (uint32_t exception)
67 {
68 do_raise_exception_direct_err (exception, 0);
69 }
70
71 #if defined(TARGET_MIPS64)
72 #if TARGET_LONG_BITS > HOST_LONG_BITS
73 /* Those might call libgcc functions. */
74 void do_dsll (void)
75 {
76 T0 = T0 << T1;
77 }
78
79 void do_dsll32 (void)
80 {
81 T0 = T0 << (T1 + 32);
82 }
83
84 void do_dsra (void)
85 {
86 T0 = (int64_t)T0 >> T1;
87 }
88
89 void do_dsra32 (void)
90 {
91 T0 = (int64_t)T0 >> (T1 + 32);
92 }
93
94 void do_dsrl (void)
95 {
96 T0 = T0 >> T1;
97 }
98
99 void do_dsrl32 (void)
100 {
101 T0 = T0 >> (T1 + 32);
102 }
103
104 void do_drotr (void)
105 {
106 target_ulong tmp;
107
108 if (T1) {
109 tmp = T0 << (0x40 - T1);
110 T0 = (T0 >> T1) | tmp;
111 }
112 }
113
114 void do_drotr32 (void)
115 {
116 target_ulong tmp;
117
118 tmp = T0 << (0x40 - (32 + T1));
119 T0 = (T0 >> (32 + T1)) | tmp;
120 }
121
122 void do_dsllv (void)
123 {
124 T0 = T1 << (T0 & 0x3F);
125 }
126
127 void do_dsrav (void)
128 {
129 T0 = (int64_t)T1 >> (T0 & 0x3F);
130 }
131
132 void do_dsrlv (void)
133 {
134 T0 = T1 >> (T0 & 0x3F);
135 }
136
137 void do_drotrv (void)
138 {
139 target_ulong tmp;
140
141 T0 &= 0x3F;
142 if (T0) {
143 tmp = T1 << (0x40 - T0);
144 T0 = (T1 >> T0) | tmp;
145 } else
146 T0 = T1;
147 }
148
149 void do_dclo (void)
150 {
151 T0 = clo64(T0);
152 }
153
154 void do_dclz (void)
155 {
156 T0 = clz64(T0);
157 }
158
159 #endif /* TARGET_LONG_BITS > HOST_LONG_BITS */
160 #endif /* TARGET_MIPS64 */
161
162 /* 64 bits arithmetic for 32 bits hosts */
163 #if TARGET_LONG_BITS > HOST_LONG_BITS
164 static always_inline uint64_t get_HILO (void)
165 {
166 return (env->HI[0][env->current_tc] << 32) | (uint32_t)env->LO[0][env->current_tc];
167 }
168
169 static always_inline void set_HILO (uint64_t HILO)
170 {
171 env->LO[0][env->current_tc] = (int32_t)HILO;
172 env->HI[0][env->current_tc] = (int32_t)(HILO >> 32);
173 }
174
175 void do_mult (void)
176 {
177 set_HILO((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
178 }
179
180 void do_multu (void)
181 {
182 set_HILO((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
183 }
184
185 void do_madd (void)
186 {
187 int64_t tmp;
188
189 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
190 set_HILO((int64_t)get_HILO() + tmp);
191 }
192
193 void do_maddu (void)
194 {
195 uint64_t tmp;
196
197 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
198 set_HILO(get_HILO() + tmp);
199 }
200
201 void do_msub (void)
202 {
203 int64_t tmp;
204
205 tmp = ((int64_t)(int32_t)T0 * (int64_t)(int32_t)T1);
206 set_HILO((int64_t)get_HILO() - tmp);
207 }
208
209 void do_msubu (void)
210 {
211 uint64_t tmp;
212
213 tmp = ((uint64_t)(uint32_t)T0 * (uint64_t)(uint32_t)T1);
214 set_HILO(get_HILO() - tmp);
215 }
216 #endif
217
218 #if HOST_LONG_BITS < 64
219 void do_div (void)
220 {
221 /* 64bit datatypes because we may see overflow/underflow. */
222 if (T1 != 0) {
223 env->LO[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 / (int32_t)T1);
224 env->HI[0][env->current_tc] = (int32_t)((int64_t)(int32_t)T0 % (int32_t)T1);
225 }
226 }
227 #endif
228
229 #if defined(TARGET_MIPS64)
230 void do_ddiv (void)
231 {
232 if (T1 != 0) {
233 lldiv_t res = lldiv((int64_t)T0, (int64_t)T1);
234 env->LO[0][env->current_tc] = res.quot;
235 env->HI[0][env->current_tc] = res.rem;
236 }
237 }
238
239 #if TARGET_LONG_BITS > HOST_LONG_BITS
240 void do_ddivu (void)
241 {
242 if (T1 != 0) {
243 env->LO[0][env->current_tc] = T0 / T1;
244 env->HI[0][env->current_tc] = T0 % T1;
245 }
246 }
247 #endif
248 #endif /* TARGET_MIPS64 */
249
250 #if defined(CONFIG_USER_ONLY)
251 void do_mfc0_random (void)
252 {
253 cpu_abort(env, "mfc0 random\n");
254 }
255
256 void do_mfc0_count (void)
257 {
258 cpu_abort(env, "mfc0 count\n");
259 }
260
261 void cpu_mips_store_count(CPUState *env, uint32_t value)
262 {
263 cpu_abort(env, "mtc0 count\n");
264 }
265
266 void cpu_mips_store_compare(CPUState *env, uint32_t value)
267 {
268 cpu_abort(env, "mtc0 compare\n");
269 }
270
271 void cpu_mips_start_count(CPUState *env)
272 {
273 cpu_abort(env, "start count\n");
274 }
275
276 void cpu_mips_stop_count(CPUState *env)
277 {
278 cpu_abort(env, "stop count\n");
279 }
280
281 void cpu_mips_update_irq(CPUState *env)
282 {
283 cpu_abort(env, "mtc0 status / mtc0 cause\n");
284 }
285
286 void do_mtc0_status_debug(uint32_t old, uint32_t val)
287 {
288 cpu_abort(env, "mtc0 status debug\n");
289 }
290
291 void do_mtc0_status_irqraise_debug (void)
292 {
293 cpu_abort(env, "mtc0 status irqraise debug\n");
294 }
295
296 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
297 {
298 cpu_abort(env, "mips_tlb_flush\n");
299 }
300
301 #else
302
303 /* CP0 helpers */
304 void do_mfc0_random (void)
305 {
306 T0 = (int32_t)cpu_mips_get_random(env);
307 }
308
309 void do_mfc0_count (void)
310 {
311 T0 = (int32_t)cpu_mips_get_count(env);
312 }
313
314 void do_mtc0_status_debug(uint32_t old, uint32_t val)
315 {
316 fprintf(logfile, "Status %08x (%08x) => %08x (%08x) Cause %08x",
317 old, old & env->CP0_Cause & CP0Ca_IP_mask,
318 val, val & env->CP0_Cause & CP0Ca_IP_mask,
319 env->CP0_Cause);
320 switch (env->hflags & MIPS_HFLAG_KSU) {
321 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
322 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
323 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
324 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
325 }
326 }
327
328 void do_mtc0_status_irqraise_debug(void)
329 {
330 fprintf(logfile, "Raise pending IRQs\n");
331 }
332
333 void fpu_handle_exception(void)
334 {
335 #ifdef CONFIG_SOFTFLOAT
336 int flags = get_float_exception_flags(&env->fpu->fp_status);
337 unsigned int cpuflags = 0, enable, cause = 0;
338
339 enable = GET_FP_ENABLE(env->fpu->fcr31);
340
341 /* determine current flags */
342 if (flags & float_flag_invalid) {
343 cpuflags |= FP_INVALID;
344 cause |= FP_INVALID & enable;
345 }
346 if (flags & float_flag_divbyzero) {
347 cpuflags |= FP_DIV0;
348 cause |= FP_DIV0 & enable;
349 }
350 if (flags & float_flag_overflow) {
351 cpuflags |= FP_OVERFLOW;
352 cause |= FP_OVERFLOW & enable;
353 }
354 if (flags & float_flag_underflow) {
355 cpuflags |= FP_UNDERFLOW;
356 cause |= FP_UNDERFLOW & enable;
357 }
358 if (flags & float_flag_inexact) {
359 cpuflags |= FP_INEXACT;
360 cause |= FP_INEXACT & enable;
361 }
362 SET_FP_FLAGS(env->fpu->fcr31, cpuflags);
363 SET_FP_CAUSE(env->fpu->fcr31, cause);
364 #else
365 SET_FP_FLAGS(env->fpu->fcr31, 0);
366 SET_FP_CAUSE(env->fpu->fcr31, 0);
367 #endif
368 }
369
370 /* TLB management */
371 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
372 {
373 /* Flush qemu's TLB and discard all shadowed entries. */
374 tlb_flush (env, flush_global);
375 env->tlb->tlb_in_use = env->tlb->nb_tlb;
376 }
377
378 static void r4k_mips_tlb_flush_extra (CPUState *env, int first)
379 {
380 /* Discard entries from env->tlb[first] onwards. */
381 while (env->tlb->tlb_in_use > first) {
382 r4k_invalidate_tlb(env, --env->tlb->tlb_in_use, 0);
383 }
384 }
385
386 static void r4k_fill_tlb (int idx)
387 {
388 r4k_tlb_t *tlb;
389
390 /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
391 tlb = &env->tlb->mmu.r4k.tlb[idx];
392 tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
393 #if defined(TARGET_MIPS64)
394 tlb->VPN &= env->SEGMask;
395 #endif
396 tlb->ASID = env->CP0_EntryHi & 0xFF;
397 tlb->PageMask = env->CP0_PageMask;
398 tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
399 tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
400 tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
401 tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
402 tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
403 tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
404 tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
405 tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
406 tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
407 }
408
409 void r4k_do_tlbwi (void)
410 {
411 /* Discard cached TLB entries. We could avoid doing this if the
412 tlbwi is just upgrading access permissions on the current entry;
413 that might be a further win. */
414 r4k_mips_tlb_flush_extra (env, env->tlb->nb_tlb);
415
416 r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb, 0);
417 r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
418 }
419
420 void r4k_do_tlbwr (void)
421 {
422 int r = cpu_mips_get_random(env);
423
424 r4k_invalidate_tlb(env, r, 1);
425 r4k_fill_tlb(r);
426 }
427
428 void r4k_do_tlbp (void)
429 {
430 r4k_tlb_t *tlb;
431 target_ulong mask;
432 target_ulong tag;
433 target_ulong VPN;
434 uint8_t ASID;
435 int i;
436
437 ASID = env->CP0_EntryHi & 0xFF;
438 for (i = 0; i < env->tlb->nb_tlb; i++) {
439 tlb = &env->tlb->mmu.r4k.tlb[i];
440 /* 1k pages are not supported. */
441 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
442 tag = env->CP0_EntryHi & ~mask;
443 VPN = tlb->VPN & ~mask;
444 /* Check ASID, virtual page number & size */
445 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
446 /* TLB match */
447 env->CP0_Index = i;
448 break;
449 }
450 }
451 if (i == env->tlb->nb_tlb) {
452 /* No match. Discard any shadow entries, if any of them match. */
453 for (i = env->tlb->nb_tlb; i < env->tlb->tlb_in_use; i++) {
454 tlb = &env->tlb->mmu.r4k.tlb[i];
455 /* 1k pages are not supported. */
456 mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
457 tag = env->CP0_EntryHi & ~mask;
458 VPN = tlb->VPN & ~mask;
459 /* Check ASID, virtual page number & size */
460 if ((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag) {
461 r4k_mips_tlb_flush_extra (env, i);
462 break;
463 }
464 }
465
466 env->CP0_Index |= 0x80000000;
467 }
468 }
469
470 void r4k_do_tlbr (void)
471 {
472 r4k_tlb_t *tlb;
473 uint8_t ASID;
474
475 ASID = env->CP0_EntryHi & 0xFF;
476 tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
477
478 /* If this will change the current ASID, flush qemu's TLB. */
479 if (ASID != tlb->ASID)
480 cpu_mips_tlb_flush (env, 1);
481
482 r4k_mips_tlb_flush_extra(env, env->tlb->nb_tlb);
483
484 env->CP0_EntryHi = tlb->VPN | tlb->ASID;
485 env->CP0_PageMask = tlb->PageMask;
486 env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
487 (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
488 env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
489 (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
490 }
491
492 #endif /* !CONFIG_USER_ONLY */
493
494 void dump_ldst (const unsigned char *func)
495 {
496 if (loglevel)
497 fprintf(logfile, "%s => " TARGET_FMT_lx " " TARGET_FMT_lx "\n", __func__, T0, T1);
498 }
499
500 void dump_sc (void)
501 {
502 if (loglevel) {
503 fprintf(logfile, "%s " TARGET_FMT_lx " at " TARGET_FMT_lx " (" TARGET_FMT_lx ")\n", __func__,
504 T1, T0, env->CP0_LLAddr);
505 }
506 }
507
508 void debug_pre_eret (void)
509 {
510 fprintf(logfile, "ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
511 env->PC[env->current_tc], env->CP0_EPC);
512 if (env->CP0_Status & (1 << CP0St_ERL))
513 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
514 if (env->hflags & MIPS_HFLAG_DM)
515 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
516 fputs("\n", logfile);
517 }
518
519 void debug_post_eret (void)
520 {
521 fprintf(logfile, " => PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
522 env->PC[env->current_tc], env->CP0_EPC);
523 if (env->CP0_Status & (1 << CP0St_ERL))
524 fprintf(logfile, " ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
525 if (env->hflags & MIPS_HFLAG_DM)
526 fprintf(logfile, " DEPC " TARGET_FMT_lx, env->CP0_DEPC);
527 switch (env->hflags & MIPS_HFLAG_KSU) {
528 case MIPS_HFLAG_UM: fputs(", UM\n", logfile); break;
529 case MIPS_HFLAG_SM: fputs(", SM\n", logfile); break;
530 case MIPS_HFLAG_KM: fputs("\n", logfile); break;
531 default: cpu_abort(env, "Invalid MMU mode!\n"); break;
532 }
533 }
534
535 void do_pmon (int function)
536 {
537 function /= 2;
538 switch (function) {
539 case 2: /* TODO: char inbyte(int waitflag); */
540 if (env->gpr[4][env->current_tc] == 0)
541 env->gpr[2][env->current_tc] = -1;
542 /* Fall through */
543 case 11: /* TODO: char inbyte (void); */
544 env->gpr[2][env->current_tc] = -1;
545 break;
546 case 3:
547 case 12:
548 printf("%c", (char)(env->gpr[4][env->current_tc] & 0xFF));
549 break;
550 case 17:
551 break;
552 case 158:
553 {
554 unsigned char *fmt = (void *)(unsigned long)env->gpr[4][env->current_tc];
555 printf("%s", fmt);
556 }
557 break;
558 }
559 }
560
561 #if !defined(CONFIG_USER_ONLY)
562
563 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
564
565 #define MMUSUFFIX _mmu
566 #define ALIGNED_ONLY
567
568 #define SHIFT 0
569 #include "softmmu_template.h"
570
571 #define SHIFT 1
572 #include "softmmu_template.h"
573
574 #define SHIFT 2
575 #include "softmmu_template.h"
576
577 #define SHIFT 3
578 #include "softmmu_template.h"
579
580 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
581 {
582 env->CP0_BadVAddr = addr;
583 do_restore_state (retaddr);
584 do_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
585 }
586
587 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
588 {
589 TranslationBlock *tb;
590 CPUState *saved_env;
591 unsigned long pc;
592 int ret;
593
594 /* XXX: hack to restore env in all cases, even if not called from
595 generated code */
596 saved_env = env;
597 env = cpu_single_env;
598 ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
599 if (ret) {
600 if (retaddr) {
601 /* now we have a real cpu fault */
602 pc = (unsigned long)retaddr;
603 tb = tb_find_pc(pc);
604 if (tb) {
605 /* the PC is inside the translated code. It means that we have
606 a virtual CPU fault */
607 cpu_restore_state(tb, env, pc, NULL);
608 }
609 }
610 do_raise_exception_err(env->exception_index, env->error_code);
611 }
612 env = saved_env;
613 }
614
615 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
616 int unused)
617 {
618 if (is_exec)
619 do_raise_exception(EXCP_IBE);
620 else
621 do_raise_exception(EXCP_DBE);
622 }
623 #endif
624
625 /* Complex FPU operations which may need stack space. */
626
627 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
628 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
629 #define FLOAT_TWO32 make_float32(1 << 30)
630 #define FLOAT_TWO64 make_float64(1ULL << 62)
631 #define FLOAT_QNAN32 0x7fbfffff
632 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
633 #define FLOAT_SNAN32 0x7fffffff
634 #define FLOAT_SNAN64 0x7fffffffffffffffULL
635
636 /* convert MIPS rounding mode in FCR31 to IEEE library */
637 unsigned int ieee_rm[] = {
638 float_round_nearest_even,
639 float_round_to_zero,
640 float_round_up,
641 float_round_down
642 };
643
644 #define RESTORE_ROUNDING_MODE \
645 set_float_rounding_mode(ieee_rm[env->fpu->fcr31 & 3], &env->fpu->fp_status)
646
647 void do_cfc1 (int reg)
648 {
649 switch (reg) {
650 case 0:
651 T0 = (int32_t)env->fpu->fcr0;
652 break;
653 case 25:
654 T0 = ((env->fpu->fcr31 >> 24) & 0xfe) | ((env->fpu->fcr31 >> 23) & 0x1);
655 break;
656 case 26:
657 T0 = env->fpu->fcr31 & 0x0003f07c;
658 break;
659 case 28:
660 T0 = (env->fpu->fcr31 & 0x00000f83) | ((env->fpu->fcr31 >> 22) & 0x4);
661 break;
662 default:
663 T0 = (int32_t)env->fpu->fcr31;
664 break;
665 }
666 }
667
668 void do_ctc1 (int reg)
669 {
670 switch(reg) {
671 case 25:
672 if (T0 & 0xffffff00)
673 return;
674 env->fpu->fcr31 = (env->fpu->fcr31 & 0x017fffff) | ((T0 & 0xfe) << 24) |
675 ((T0 & 0x1) << 23);
676 break;
677 case 26:
678 if (T0 & 0x007c0000)
679 return;
680 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfffc0f83) | (T0 & 0x0003f07c);
681 break;
682 case 28:
683 if (T0 & 0x007c0000)
684 return;
685 env->fpu->fcr31 = (env->fpu->fcr31 & 0xfefff07c) | (T0 & 0x00000f83) |
686 ((T0 & 0x4) << 22);
687 break;
688 case 31:
689 if (T0 & 0x007c0000)
690 return;
691 env->fpu->fcr31 = T0;
692 break;
693 default:
694 return;
695 }
696 /* set rounding mode */
697 RESTORE_ROUNDING_MODE;
698 set_float_exception_flags(0, &env->fpu->fp_status);
699 if ((GET_FP_ENABLE(env->fpu->fcr31) | 0x20) & GET_FP_CAUSE(env->fpu->fcr31))
700 do_raise_exception(EXCP_FPE);
701 }
702
703 static always_inline char ieee_ex_to_mips(char xcpt)
704 {
705 return (xcpt & float_flag_inexact) >> 5 |
706 (xcpt & float_flag_underflow) >> 3 |
707 (xcpt & float_flag_overflow) >> 1 |
708 (xcpt & float_flag_divbyzero) << 1 |
709 (xcpt & float_flag_invalid) << 4;
710 }
711
712 static always_inline char mips_ex_to_ieee(char xcpt)
713 {
714 return (xcpt & FP_INEXACT) << 5 |
715 (xcpt & FP_UNDERFLOW) << 3 |
716 (xcpt & FP_OVERFLOW) << 1 |
717 (xcpt & FP_DIV0) >> 1 |
718 (xcpt & FP_INVALID) >> 4;
719 }
720
721 static always_inline void update_fcr31(void)
722 {
723 int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->fpu->fp_status));
724
725 SET_FP_CAUSE(env->fpu->fcr31, tmp);
726 if (GET_FP_ENABLE(env->fpu->fcr31) & tmp)
727 do_raise_exception(EXCP_FPE);
728 else
729 UPDATE_FP_FLAGS(env->fpu->fcr31, tmp);
730 }
731
732 #define FLOAT_OP(name, p) void do_float_##name##_##p(void)
733
734 FLOAT_OP(cvtd, s)
735 {
736 set_float_exception_flags(0, &env->fpu->fp_status);
737 FDT2 = float32_to_float64(FST0, &env->fpu->fp_status);
738 update_fcr31();
739 }
740 FLOAT_OP(cvtd, w)
741 {
742 set_float_exception_flags(0, &env->fpu->fp_status);
743 FDT2 = int32_to_float64(WT0, &env->fpu->fp_status);
744 update_fcr31();
745 }
746 FLOAT_OP(cvtd, l)
747 {
748 set_float_exception_flags(0, &env->fpu->fp_status);
749 FDT2 = int64_to_float64(DT0, &env->fpu->fp_status);
750 update_fcr31();
751 }
752 FLOAT_OP(cvtl, d)
753 {
754 set_float_exception_flags(0, &env->fpu->fp_status);
755 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
756 update_fcr31();
757 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
758 DT2 = FLOAT_SNAN64;
759 }
760 FLOAT_OP(cvtl, s)
761 {
762 set_float_exception_flags(0, &env->fpu->fp_status);
763 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
764 update_fcr31();
765 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
766 DT2 = FLOAT_SNAN64;
767 }
768
769 FLOAT_OP(cvtps, pw)
770 {
771 set_float_exception_flags(0, &env->fpu->fp_status);
772 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
773 FSTH2 = int32_to_float32(WTH0, &env->fpu->fp_status);
774 update_fcr31();
775 }
776 FLOAT_OP(cvtpw, ps)
777 {
778 set_float_exception_flags(0, &env->fpu->fp_status);
779 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
780 WTH2 = float32_to_int32(FSTH0, &env->fpu->fp_status);
781 update_fcr31();
782 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
783 WT2 = FLOAT_SNAN32;
784 }
785 FLOAT_OP(cvts, d)
786 {
787 set_float_exception_flags(0, &env->fpu->fp_status);
788 FST2 = float64_to_float32(FDT0, &env->fpu->fp_status);
789 update_fcr31();
790 }
791 FLOAT_OP(cvts, w)
792 {
793 set_float_exception_flags(0, &env->fpu->fp_status);
794 FST2 = int32_to_float32(WT0, &env->fpu->fp_status);
795 update_fcr31();
796 }
797 FLOAT_OP(cvts, l)
798 {
799 set_float_exception_flags(0, &env->fpu->fp_status);
800 FST2 = int64_to_float32(DT0, &env->fpu->fp_status);
801 update_fcr31();
802 }
803 FLOAT_OP(cvts, pl)
804 {
805 set_float_exception_flags(0, &env->fpu->fp_status);
806 WT2 = WT0;
807 update_fcr31();
808 }
809 FLOAT_OP(cvts, pu)
810 {
811 set_float_exception_flags(0, &env->fpu->fp_status);
812 WT2 = WTH0;
813 update_fcr31();
814 }
815 FLOAT_OP(cvtw, s)
816 {
817 set_float_exception_flags(0, &env->fpu->fp_status);
818 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
819 update_fcr31();
820 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
821 WT2 = FLOAT_SNAN32;
822 }
823 FLOAT_OP(cvtw, d)
824 {
825 set_float_exception_flags(0, &env->fpu->fp_status);
826 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
827 update_fcr31();
828 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
829 WT2 = FLOAT_SNAN32;
830 }
831
832 FLOAT_OP(roundl, d)
833 {
834 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
835 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
836 RESTORE_ROUNDING_MODE;
837 update_fcr31();
838 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
839 DT2 = FLOAT_SNAN64;
840 }
841 FLOAT_OP(roundl, s)
842 {
843 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
844 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
845 RESTORE_ROUNDING_MODE;
846 update_fcr31();
847 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
848 DT2 = FLOAT_SNAN64;
849 }
850 FLOAT_OP(roundw, d)
851 {
852 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
853 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
854 RESTORE_ROUNDING_MODE;
855 update_fcr31();
856 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
857 WT2 = FLOAT_SNAN32;
858 }
859 FLOAT_OP(roundw, s)
860 {
861 set_float_rounding_mode(float_round_nearest_even, &env->fpu->fp_status);
862 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
863 RESTORE_ROUNDING_MODE;
864 update_fcr31();
865 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
866 WT2 = FLOAT_SNAN32;
867 }
868
869 FLOAT_OP(truncl, d)
870 {
871 DT2 = float64_to_int64_round_to_zero(FDT0, &env->fpu->fp_status);
872 update_fcr31();
873 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
874 DT2 = FLOAT_SNAN64;
875 }
876 FLOAT_OP(truncl, s)
877 {
878 DT2 = float32_to_int64_round_to_zero(FST0, &env->fpu->fp_status);
879 update_fcr31();
880 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
881 DT2 = FLOAT_SNAN64;
882 }
883 FLOAT_OP(truncw, d)
884 {
885 WT2 = float64_to_int32_round_to_zero(FDT0, &env->fpu->fp_status);
886 update_fcr31();
887 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
888 WT2 = FLOAT_SNAN32;
889 }
890 FLOAT_OP(truncw, s)
891 {
892 WT2 = float32_to_int32_round_to_zero(FST0, &env->fpu->fp_status);
893 update_fcr31();
894 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
895 WT2 = FLOAT_SNAN32;
896 }
897
898 FLOAT_OP(ceill, d)
899 {
900 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
901 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
902 RESTORE_ROUNDING_MODE;
903 update_fcr31();
904 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
905 DT2 = FLOAT_SNAN64;
906 }
907 FLOAT_OP(ceill, s)
908 {
909 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
910 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
911 RESTORE_ROUNDING_MODE;
912 update_fcr31();
913 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
914 DT2 = FLOAT_SNAN64;
915 }
916 FLOAT_OP(ceilw, d)
917 {
918 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
919 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
920 RESTORE_ROUNDING_MODE;
921 update_fcr31();
922 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
923 WT2 = FLOAT_SNAN32;
924 }
925 FLOAT_OP(ceilw, s)
926 {
927 set_float_rounding_mode(float_round_up, &env->fpu->fp_status);
928 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
929 RESTORE_ROUNDING_MODE;
930 update_fcr31();
931 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
932 WT2 = FLOAT_SNAN32;
933 }
934
935 FLOAT_OP(floorl, d)
936 {
937 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
938 DT2 = float64_to_int64(FDT0, &env->fpu->fp_status);
939 RESTORE_ROUNDING_MODE;
940 update_fcr31();
941 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
942 DT2 = FLOAT_SNAN64;
943 }
944 FLOAT_OP(floorl, s)
945 {
946 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
947 DT2 = float32_to_int64(FST0, &env->fpu->fp_status);
948 RESTORE_ROUNDING_MODE;
949 update_fcr31();
950 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
951 DT2 = FLOAT_SNAN64;
952 }
953 FLOAT_OP(floorw, d)
954 {
955 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
956 WT2 = float64_to_int32(FDT0, &env->fpu->fp_status);
957 RESTORE_ROUNDING_MODE;
958 update_fcr31();
959 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
960 WT2 = FLOAT_SNAN32;
961 }
962 FLOAT_OP(floorw, s)
963 {
964 set_float_rounding_mode(float_round_down, &env->fpu->fp_status);
965 WT2 = float32_to_int32(FST0, &env->fpu->fp_status);
966 RESTORE_ROUNDING_MODE;
967 update_fcr31();
968 if (GET_FP_CAUSE(env->fpu->fcr31) & (FP_OVERFLOW | FP_INVALID))
969 WT2 = FLOAT_SNAN32;
970 }
971
972 /* MIPS specific unary operations */
973 FLOAT_OP(recip, d)
974 {
975 set_float_exception_flags(0, &env->fpu->fp_status);
976 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
977 update_fcr31();
978 }
979 FLOAT_OP(recip, s)
980 {
981 set_float_exception_flags(0, &env->fpu->fp_status);
982 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
983 update_fcr31();
984 }
985
986 FLOAT_OP(rsqrt, d)
987 {
988 set_float_exception_flags(0, &env->fpu->fp_status);
989 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
990 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
991 update_fcr31();
992 }
993 FLOAT_OP(rsqrt, s)
994 {
995 set_float_exception_flags(0, &env->fpu->fp_status);
996 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
997 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
998 update_fcr31();
999 }
1000
1001 FLOAT_OP(recip1, d)
1002 {
1003 set_float_exception_flags(0, &env->fpu->fp_status);
1004 FDT2 = float64_div(FLOAT_ONE64, FDT0, &env->fpu->fp_status);
1005 update_fcr31();
1006 }
1007 FLOAT_OP(recip1, s)
1008 {
1009 set_float_exception_flags(0, &env->fpu->fp_status);
1010 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1011 update_fcr31();
1012 }
1013 FLOAT_OP(recip1, ps)
1014 {
1015 set_float_exception_flags(0, &env->fpu->fp_status);
1016 FST2 = float32_div(FLOAT_ONE32, FST0, &env->fpu->fp_status);
1017 FSTH2 = float32_div(FLOAT_ONE32, FSTH0, &env->fpu->fp_status);
1018 update_fcr31();
1019 }
1020
1021 FLOAT_OP(rsqrt1, d)
1022 {
1023 set_float_exception_flags(0, &env->fpu->fp_status);
1024 FDT2 = float64_sqrt(FDT0, &env->fpu->fp_status);
1025 FDT2 = float64_div(FLOAT_ONE64, FDT2, &env->fpu->fp_status);
1026 update_fcr31();
1027 }
1028 FLOAT_OP(rsqrt1, s)
1029 {
1030 set_float_exception_flags(0, &env->fpu->fp_status);
1031 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1032 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1033 update_fcr31();
1034 }
1035 FLOAT_OP(rsqrt1, ps)
1036 {
1037 set_float_exception_flags(0, &env->fpu->fp_status);
1038 FST2 = float32_sqrt(FST0, &env->fpu->fp_status);
1039 FSTH2 = float32_sqrt(FSTH0, &env->fpu->fp_status);
1040 FST2 = float32_div(FLOAT_ONE32, FST2, &env->fpu->fp_status);
1041 FSTH2 = float32_div(FLOAT_ONE32, FSTH2, &env->fpu->fp_status);
1042 update_fcr31();
1043 }
1044
1045 /* binary operations */
1046 #define FLOAT_BINOP(name) \
1047 FLOAT_OP(name, d) \
1048 { \
1049 set_float_exception_flags(0, &env->fpu->fp_status); \
1050 FDT2 = float64_ ## name (FDT0, FDT1, &env->fpu->fp_status); \
1051 update_fcr31(); \
1052 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1053 DT2 = FLOAT_QNAN64; \
1054 } \
1055 FLOAT_OP(name, s) \
1056 { \
1057 set_float_exception_flags(0, &env->fpu->fp_status); \
1058 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1059 update_fcr31(); \
1060 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) \
1061 WT2 = FLOAT_QNAN32; \
1062 } \
1063 FLOAT_OP(name, ps) \
1064 { \
1065 set_float_exception_flags(0, &env->fpu->fp_status); \
1066 FST2 = float32_ ## name (FST0, FST1, &env->fpu->fp_status); \
1067 FSTH2 = float32_ ## name (FSTH0, FSTH1, &env->fpu->fp_status); \
1068 update_fcr31(); \
1069 if (GET_FP_CAUSE(env->fpu->fcr31) & FP_INVALID) { \
1070 WT2 = FLOAT_QNAN32; \
1071 WTH2 = FLOAT_QNAN32; \
1072 } \
1073 }
1074 FLOAT_BINOP(add)
1075 FLOAT_BINOP(sub)
1076 FLOAT_BINOP(mul)
1077 FLOAT_BINOP(div)
1078 #undef FLOAT_BINOP
1079
1080 /* MIPS specific binary operations */
1081 FLOAT_OP(recip2, d)
1082 {
1083 set_float_exception_flags(0, &env->fpu->fp_status);
1084 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1085 FDT2 = float64_chs(float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status));
1086 update_fcr31();
1087 }
1088 FLOAT_OP(recip2, s)
1089 {
1090 set_float_exception_flags(0, &env->fpu->fp_status);
1091 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1092 FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1093 update_fcr31();
1094 }
1095 FLOAT_OP(recip2, ps)
1096 {
1097 set_float_exception_flags(0, &env->fpu->fp_status);
1098 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1099 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1100 FST2 = float32_chs(float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status));
1101 FSTH2 = float32_chs(float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status));
1102 update_fcr31();
1103 }
1104
1105 FLOAT_OP(rsqrt2, d)
1106 {
1107 set_float_exception_flags(0, &env->fpu->fp_status);
1108 FDT2 = float64_mul(FDT0, FDT2, &env->fpu->fp_status);
1109 FDT2 = float64_sub(FDT2, FLOAT_ONE64, &env->fpu->fp_status);
1110 FDT2 = float64_chs(float64_div(FDT2, FLOAT_TWO64, &env->fpu->fp_status));
1111 update_fcr31();
1112 }
1113 FLOAT_OP(rsqrt2, s)
1114 {
1115 set_float_exception_flags(0, &env->fpu->fp_status);
1116 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1117 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1118 FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1119 update_fcr31();
1120 }
1121 FLOAT_OP(rsqrt2, ps)
1122 {
1123 set_float_exception_flags(0, &env->fpu->fp_status);
1124 FST2 = float32_mul(FST0, FST2, &env->fpu->fp_status);
1125 FSTH2 = float32_mul(FSTH0, FSTH2, &env->fpu->fp_status);
1126 FST2 = float32_sub(FST2, FLOAT_ONE32, &env->fpu->fp_status);
1127 FSTH2 = float32_sub(FSTH2, FLOAT_ONE32, &env->fpu->fp_status);
1128 FST2 = float32_chs(float32_div(FST2, FLOAT_TWO32, &env->fpu->fp_status));
1129 FSTH2 = float32_chs(float32_div(FSTH2, FLOAT_TWO32, &env->fpu->fp_status));
1130 update_fcr31();
1131 }
1132
1133 FLOAT_OP(addr, ps)
1134 {
1135 set_float_exception_flags(0, &env->fpu->fp_status);
1136 FST2 = float32_add (FST0, FSTH0, &env->fpu->fp_status);
1137 FSTH2 = float32_add (FST1, FSTH1, &env->fpu->fp_status);
1138 update_fcr31();
1139 }
1140
1141 FLOAT_OP(mulr, ps)
1142 {
1143 set_float_exception_flags(0, &env->fpu->fp_status);
1144 FST2 = float32_mul (FST0, FSTH0, &env->fpu->fp_status);
1145 FSTH2 = float32_mul (FST1, FSTH1, &env->fpu->fp_status);
1146 update_fcr31();
1147 }
1148
1149 /* compare operations */
1150 #define FOP_COND_D(op, cond) \
1151 void do_cmp_d_ ## op (long cc) \
1152 { \
1153 int c = cond; \
1154 update_fcr31(); \
1155 if (c) \
1156 SET_FP_COND(cc, env->fpu); \
1157 else \
1158 CLEAR_FP_COND(cc, env->fpu); \
1159 } \
1160 void do_cmpabs_d_ ## op (long cc) \
1161 { \
1162 int c; \
1163 FDT0 = float64_chs(FDT0); \
1164 FDT1 = float64_chs(FDT1); \
1165 c = cond; \
1166 update_fcr31(); \
1167 if (c) \
1168 SET_FP_COND(cc, env->fpu); \
1169 else \
1170 CLEAR_FP_COND(cc, env->fpu); \
1171 }
1172
1173 int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
1174 {
1175 if (float64_is_signaling_nan(a) ||
1176 float64_is_signaling_nan(b) ||
1177 (sig && (float64_is_nan(a) || float64_is_nan(b)))) {
1178 float_raise(float_flag_invalid, status);
1179 return 1;
1180 } else if (float64_is_nan(a) || float64_is_nan(b)) {
1181 return 1;
1182 } else {
1183 return 0;
1184 }
1185 }
1186
1187 /* NOTE: the comma operator will make "cond" to eval to false,
1188 * but float*_is_unordered() is still called. */
1189 FOP_COND_D(f, (float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status), 0))
1190 FOP_COND_D(un, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status))
1191 FOP_COND_D(eq, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1192 FOP_COND_D(ueq, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1193 FOP_COND_D(olt, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1194 FOP_COND_D(ult, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1195 FOP_COND_D(ole, !float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1196 FOP_COND_D(ule, float64_is_unordered(0, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1197 /* NOTE: the comma operator will make "cond" to eval to false,
1198 * but float*_is_unordered() is still called. */
1199 FOP_COND_D(sf, (float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status), 0))
1200 FOP_COND_D(ngle,float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status))
1201 FOP_COND_D(seq, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1202 FOP_COND_D(ngl, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_eq(FDT0, FDT1, &env->fpu->fp_status))
1203 FOP_COND_D(lt, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1204 FOP_COND_D(nge, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_lt(FDT0, FDT1, &env->fpu->fp_status))
1205 FOP_COND_D(le, !float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) && float64_le(FDT0, FDT1, &env->fpu->fp_status))
1206 FOP_COND_D(ngt, float64_is_unordered(1, FDT1, FDT0, &env->fpu->fp_status) || float64_le(FDT0, FDT1, &env->fpu->fp_status))
1207
1208 #define FOP_COND_S(op, cond) \
1209 void do_cmp_s_ ## op (long cc) \
1210 { \
1211 int c = cond; \
1212 update_fcr31(); \
1213 if (c) \
1214 SET_FP_COND(cc, env->fpu); \
1215 else \
1216 CLEAR_FP_COND(cc, env->fpu); \
1217 } \
1218 void do_cmpabs_s_ ## op (long cc) \
1219 { \
1220 int c; \
1221 FST0 = float32_abs(FST0); \
1222 FST1 = float32_abs(FST1); \
1223 c = cond; \
1224 update_fcr31(); \
1225 if (c) \
1226 SET_FP_COND(cc, env->fpu); \
1227 else \
1228 CLEAR_FP_COND(cc, env->fpu); \
1229 }
1230
1231 flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
1232 {
1233 if (float32_is_signaling_nan(a) ||
1234 float32_is_signaling_nan(b) ||
1235 (sig && (float32_is_nan(a) || float32_is_nan(b)))) {
1236 float_raise(float_flag_invalid, status);
1237 return 1;
1238 } else if (float32_is_nan(a) || float32_is_nan(b)) {
1239 return 1;
1240 } else {
1241 return 0;
1242 }
1243 }
1244
1245 /* NOTE: the comma operator will make "cond" to eval to false,
1246 * but float*_is_unordered() is still called. */
1247 FOP_COND_S(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0))
1248 FOP_COND_S(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status))
1249 FOP_COND_S(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1250 FOP_COND_S(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1251 FOP_COND_S(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1252 FOP_COND_S(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1253 FOP_COND_S(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1254 FOP_COND_S(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1255 /* NOTE: the comma operator will make "cond" to eval to false,
1256 * but float*_is_unordered() is still called. */
1257 FOP_COND_S(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0))
1258 FOP_COND_S(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status))
1259 FOP_COND_S(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status))
1260 FOP_COND_S(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status))
1261 FOP_COND_S(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status))
1262 FOP_COND_S(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status))
1263 FOP_COND_S(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status))
1264 FOP_COND_S(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status))
1265
1266 #define FOP_COND_PS(op, condl, condh) \
1267 void do_cmp_ps_ ## op (long cc) \
1268 { \
1269 int cl = condl; \
1270 int ch = condh; \
1271 update_fcr31(); \
1272 if (cl) \
1273 SET_FP_COND(cc, env->fpu); \
1274 else \
1275 CLEAR_FP_COND(cc, env->fpu); \
1276 if (ch) \
1277 SET_FP_COND(cc + 1, env->fpu); \
1278 else \
1279 CLEAR_FP_COND(cc + 1, env->fpu); \
1280 } \
1281 void do_cmpabs_ps_ ## op (long cc) \
1282 { \
1283 int cl, ch; \
1284 FST0 = float32_abs(FST0); \
1285 FSTH0 = float32_abs(FSTH0); \
1286 FST1 = float32_abs(FST1); \
1287 FSTH1 = float32_abs(FSTH1); \
1288 cl = condl; \
1289 ch = condh; \
1290 update_fcr31(); \
1291 if (cl) \
1292 SET_FP_COND(cc, env->fpu); \
1293 else \
1294 CLEAR_FP_COND(cc, env->fpu); \
1295 if (ch) \
1296 SET_FP_COND(cc + 1, env->fpu); \
1297 else \
1298 CLEAR_FP_COND(cc + 1, env->fpu); \
1299 }
1300
1301 /* NOTE: the comma operator will make "cond" to eval to false,
1302 * but float*_is_unordered() is still called. */
1303 FOP_COND_PS(f, (float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status), 0),
1304 (float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1305 FOP_COND_PS(un, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status),
1306 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status))
1307 FOP_COND_PS(eq, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1308 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1309 FOP_COND_PS(ueq, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1310 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1311 FOP_COND_PS(olt, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1312 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1313 FOP_COND_PS(ult, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1314 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1315 FOP_COND_PS(ole, !float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1316 !float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1317 FOP_COND_PS(ule, float32_is_unordered(0, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1318 float32_is_unordered(0, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1319 /* NOTE: the comma operator will make "cond" to eval to false,
1320 * but float*_is_unordered() is still called. */
1321 FOP_COND_PS(sf, (float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status), 0),
1322 (float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status), 0))
1323 FOP_COND_PS(ngle,float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status),
1324 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status))
1325 FOP_COND_PS(seq, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_eq(FST0, FST1, &env->fpu->fp_status),
1326 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1327 FOP_COND_PS(ngl, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_eq(FST0, FST1, &env->fpu->fp_status),
1328 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_eq(FSTH0, FSTH1, &env->fpu->fp_status))
1329 FOP_COND_PS(lt, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_lt(FST0, FST1, &env->fpu->fp_status),
1330 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1331 FOP_COND_PS(nge, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_lt(FST0, FST1, &env->fpu->fp_status),
1332 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_lt(FSTH0, FSTH1, &env->fpu->fp_status))
1333 FOP_COND_PS(le, !float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) && float32_le(FST0, FST1, &env->fpu->fp_status),
1334 !float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) && float32_le(FSTH0, FSTH1, &env->fpu->fp_status))
1335 FOP_COND_PS(ngt, float32_is_unordered(1, FST1, FST0, &env->fpu->fp_status) || float32_le(FST0, FST1, &env->fpu->fp_status),
1336 float32_is_unordered(1, FSTH1, FSTH0, &env->fpu->fp_status) || float32_le(FSTH0, FSTH1, &env->fpu->fp_status))