]> git.proxmox.com Git - qemu.git/blob - target-ppc/fpu_helper.c
ppc: Avoid AREG0 for FPU and SPE helpers
[qemu.git] / target-ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "cpu.h"
20 #include "helper.h"
21
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
25 {
26 CPU_FloatU f;
27 CPU_DoubleU d;
28
29 f.l = arg;
30 d.d = float32_to_float64(f.f, &env->fp_status);
31 return d.ll;
32 }
33
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
35 {
36 CPU_FloatU f;
37 CPU_DoubleU d;
38
39 d.ll = arg;
40 f.f = float64_to_float32(d.d, &env->fp_status);
41 return f.l;
42 }
43
44 static inline int isden(float64 d)
45 {
46 CPU_DoubleU u;
47
48 u.d = d;
49
50 return ((u.ll >> 52) & 0x7FF) == 0;
51 }
52
53 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
54 {
55 CPU_DoubleU farg;
56 int isneg;
57 int ret;
58
59 farg.ll = arg;
60 isneg = float64_is_neg(farg.d);
61 if (unlikely(float64_is_any_nan(farg.d))) {
62 if (float64_is_signaling_nan(farg.d)) {
63 /* Signaling NaN: flags are undefined */
64 ret = 0x00;
65 } else {
66 /* Quiet NaN */
67 ret = 0x11;
68 }
69 } else if (unlikely(float64_is_infinity(farg.d))) {
70 /* +/- infinity */
71 if (isneg) {
72 ret = 0x09;
73 } else {
74 ret = 0x05;
75 }
76 } else {
77 if (float64_is_zero(farg.d)) {
78 /* +/- zero */
79 if (isneg) {
80 ret = 0x12;
81 } else {
82 ret = 0x02;
83 }
84 } else {
85 if (isden(farg.d)) {
86 /* Denormalized numbers */
87 ret = 0x10;
88 } else {
89 /* Normalized numbers */
90 ret = 0x00;
91 }
92 if (isneg) {
93 ret |= 0x08;
94 } else {
95 ret |= 0x04;
96 }
97 }
98 }
99 if (set_fprf) {
100 /* We update FPSCR_FPRF */
101 env->fpscr &= ~(0x1F << FPSCR_FPRF);
102 env->fpscr |= ret << FPSCR_FPRF;
103 }
104 /* We just need fpcc to update Rc1 */
105 return ret & 0xF;
106 }
107
108 /* Floating-point invalid operations exception */
109 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op)
110 {
111 uint64_t ret = 0;
112 int ve;
113
114 ve = fpscr_ve;
115 switch (op) {
116 case POWERPC_EXCP_FP_VXSNAN:
117 env->fpscr |= 1 << FPSCR_VXSNAN;
118 break;
119 case POWERPC_EXCP_FP_VXSOFT:
120 env->fpscr |= 1 << FPSCR_VXSOFT;
121 break;
122 case POWERPC_EXCP_FP_VXISI:
123 /* Magnitude subtraction of infinities */
124 env->fpscr |= 1 << FPSCR_VXISI;
125 goto update_arith;
126 case POWERPC_EXCP_FP_VXIDI:
127 /* Division of infinity by infinity */
128 env->fpscr |= 1 << FPSCR_VXIDI;
129 goto update_arith;
130 case POWERPC_EXCP_FP_VXZDZ:
131 /* Division of zero by zero */
132 env->fpscr |= 1 << FPSCR_VXZDZ;
133 goto update_arith;
134 case POWERPC_EXCP_FP_VXIMZ:
135 /* Multiplication of zero by infinity */
136 env->fpscr |= 1 << FPSCR_VXIMZ;
137 goto update_arith;
138 case POWERPC_EXCP_FP_VXVC:
139 /* Ordered comparison of NaN */
140 env->fpscr |= 1 << FPSCR_VXVC;
141 env->fpscr &= ~(0xF << FPSCR_FPCC);
142 env->fpscr |= 0x11 << FPSCR_FPCC;
143 /* We must update the target FPR before raising the exception */
144 if (ve != 0) {
145 env->exception_index = POWERPC_EXCP_PROGRAM;
146 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
147 /* Update the floating-point enabled exception summary */
148 env->fpscr |= 1 << FPSCR_FEX;
149 /* Exception is differed */
150 ve = 0;
151 }
152 break;
153 case POWERPC_EXCP_FP_VXSQRT:
154 /* Square root of a negative number */
155 env->fpscr |= 1 << FPSCR_VXSQRT;
156 update_arith:
157 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
158 if (ve == 0) {
159 /* Set the result to quiet NaN */
160 ret = 0x7FF8000000000000ULL;
161 env->fpscr &= ~(0xF << FPSCR_FPCC);
162 env->fpscr |= 0x11 << FPSCR_FPCC;
163 }
164 break;
165 case POWERPC_EXCP_FP_VXCVI:
166 /* Invalid conversion */
167 env->fpscr |= 1 << FPSCR_VXCVI;
168 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
169 if (ve == 0) {
170 /* Set the result to quiet NaN */
171 ret = 0x7FF8000000000000ULL;
172 env->fpscr &= ~(0xF << FPSCR_FPCC);
173 env->fpscr |= 0x11 << FPSCR_FPCC;
174 }
175 break;
176 }
177 /* Update the floating-point invalid operation summary */
178 env->fpscr |= 1 << FPSCR_VX;
179 /* Update the floating-point exception summary */
180 env->fpscr |= 1 << FPSCR_FX;
181 if (ve != 0) {
182 /* Update the floating-point enabled exception summary */
183 env->fpscr |= 1 << FPSCR_FEX;
184 if (msr_fe0 != 0 || msr_fe1 != 0) {
185 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
186 POWERPC_EXCP_FP | op);
187 }
188 }
189 return ret;
190 }
191
192 static inline void float_zero_divide_excp(CPUPPCState *env)
193 {
194 env->fpscr |= 1 << FPSCR_ZX;
195 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
196 /* Update the floating-point exception summary */
197 env->fpscr |= 1 << FPSCR_FX;
198 if (fpscr_ze != 0) {
199 /* Update the floating-point enabled exception summary */
200 env->fpscr |= 1 << FPSCR_FEX;
201 if (msr_fe0 != 0 || msr_fe1 != 0) {
202 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
203 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
204 }
205 }
206 }
207
208 static inline void float_overflow_excp(CPUPPCState *env)
209 {
210 env->fpscr |= 1 << FPSCR_OX;
211 /* Update the floating-point exception summary */
212 env->fpscr |= 1 << FPSCR_FX;
213 if (fpscr_oe != 0) {
214 /* XXX: should adjust the result */
215 /* Update the floating-point enabled exception summary */
216 env->fpscr |= 1 << FPSCR_FEX;
217 /* We must update the target FPR before raising the exception */
218 env->exception_index = POWERPC_EXCP_PROGRAM;
219 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
220 } else {
221 env->fpscr |= 1 << FPSCR_XX;
222 env->fpscr |= 1 << FPSCR_FI;
223 }
224 }
225
226 static inline void float_underflow_excp(CPUPPCState *env)
227 {
228 env->fpscr |= 1 << FPSCR_UX;
229 /* Update the floating-point exception summary */
230 env->fpscr |= 1 << FPSCR_FX;
231 if (fpscr_ue != 0) {
232 /* XXX: should adjust the result */
233 /* Update the floating-point enabled exception summary */
234 env->fpscr |= 1 << FPSCR_FEX;
235 /* We must update the target FPR before raising the exception */
236 env->exception_index = POWERPC_EXCP_PROGRAM;
237 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
238 }
239 }
240
241 static inline void float_inexact_excp(CPUPPCState *env)
242 {
243 env->fpscr |= 1 << FPSCR_XX;
244 /* Update the floating-point exception summary */
245 env->fpscr |= 1 << FPSCR_FX;
246 if (fpscr_xe != 0) {
247 /* Update the floating-point enabled exception summary */
248 env->fpscr |= 1 << FPSCR_FEX;
249 /* We must update the target FPR before raising the exception */
250 env->exception_index = POWERPC_EXCP_PROGRAM;
251 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
252 }
253 }
254
255 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
256 {
257 int rnd_type;
258
259 /* Set rounding mode */
260 switch (fpscr_rn) {
261 case 0:
262 /* Best approximation (round to nearest) */
263 rnd_type = float_round_nearest_even;
264 break;
265 case 1:
266 /* Smaller magnitude (round toward zero) */
267 rnd_type = float_round_to_zero;
268 break;
269 case 2:
270 /* Round toward +infinite */
271 rnd_type = float_round_up;
272 break;
273 default:
274 case 3:
275 /* Round toward -infinite */
276 rnd_type = float_round_down;
277 break;
278 }
279 set_float_rounding_mode(rnd_type, &env->fp_status);
280 }
281
282 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
283 {
284 int prev;
285
286 prev = (env->fpscr >> bit) & 1;
287 env->fpscr &= ~(1 << bit);
288 if (prev == 1) {
289 switch (bit) {
290 case FPSCR_RN1:
291 case FPSCR_RN:
292 fpscr_set_rounding_mode(env);
293 break;
294 default:
295 break;
296 }
297 }
298 }
299
300 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
301 {
302 int prev;
303
304 prev = (env->fpscr >> bit) & 1;
305 env->fpscr |= 1 << bit;
306 if (prev == 0) {
307 switch (bit) {
308 case FPSCR_VX:
309 env->fpscr |= 1 << FPSCR_FX;
310 if (fpscr_ve) {
311 goto raise_ve;
312 }
313 case FPSCR_OX:
314 env->fpscr |= 1 << FPSCR_FX;
315 if (fpscr_oe) {
316 goto raise_oe;
317 }
318 break;
319 case FPSCR_UX:
320 env->fpscr |= 1 << FPSCR_FX;
321 if (fpscr_ue) {
322 goto raise_ue;
323 }
324 break;
325 case FPSCR_ZX:
326 env->fpscr |= 1 << FPSCR_FX;
327 if (fpscr_ze) {
328 goto raise_ze;
329 }
330 break;
331 case FPSCR_XX:
332 env->fpscr |= 1 << FPSCR_FX;
333 if (fpscr_xe) {
334 goto raise_xe;
335 }
336 break;
337 case FPSCR_VXSNAN:
338 case FPSCR_VXISI:
339 case FPSCR_VXIDI:
340 case FPSCR_VXZDZ:
341 case FPSCR_VXIMZ:
342 case FPSCR_VXVC:
343 case FPSCR_VXSOFT:
344 case FPSCR_VXSQRT:
345 case FPSCR_VXCVI:
346 env->fpscr |= 1 << FPSCR_VX;
347 env->fpscr |= 1 << FPSCR_FX;
348 if (fpscr_ve != 0) {
349 goto raise_ve;
350 }
351 break;
352 case FPSCR_VE:
353 if (fpscr_vx != 0) {
354 raise_ve:
355 env->error_code = POWERPC_EXCP_FP;
356 if (fpscr_vxsnan) {
357 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
358 }
359 if (fpscr_vxisi) {
360 env->error_code |= POWERPC_EXCP_FP_VXISI;
361 }
362 if (fpscr_vxidi) {
363 env->error_code |= POWERPC_EXCP_FP_VXIDI;
364 }
365 if (fpscr_vxzdz) {
366 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
367 }
368 if (fpscr_vximz) {
369 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
370 }
371 if (fpscr_vxvc) {
372 env->error_code |= POWERPC_EXCP_FP_VXVC;
373 }
374 if (fpscr_vxsoft) {
375 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
376 }
377 if (fpscr_vxsqrt) {
378 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
379 }
380 if (fpscr_vxcvi) {
381 env->error_code |= POWERPC_EXCP_FP_VXCVI;
382 }
383 goto raise_excp;
384 }
385 break;
386 case FPSCR_OE:
387 if (fpscr_ox != 0) {
388 raise_oe:
389 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
390 goto raise_excp;
391 }
392 break;
393 case FPSCR_UE:
394 if (fpscr_ux != 0) {
395 raise_ue:
396 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
397 goto raise_excp;
398 }
399 break;
400 case FPSCR_ZE:
401 if (fpscr_zx != 0) {
402 raise_ze:
403 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
404 goto raise_excp;
405 }
406 break;
407 case FPSCR_XE:
408 if (fpscr_xx != 0) {
409 raise_xe:
410 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
411 goto raise_excp;
412 }
413 break;
414 case FPSCR_RN1:
415 case FPSCR_RN:
416 fpscr_set_rounding_mode(env);
417 break;
418 default:
419 break;
420 raise_excp:
421 /* Update the floating-point enabled exception summary */
422 env->fpscr |= 1 << FPSCR_FEX;
423 /* We have to update Rc1 before raising the exception */
424 env->exception_index = POWERPC_EXCP_PROGRAM;
425 break;
426 }
427 }
428 }
429
430 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
431 {
432 /*
433 * We use only the 32 LSB of the incoming fpr
434 */
435 uint32_t prev, new;
436 int i;
437
438 prev = env->fpscr;
439 new = (uint32_t)arg;
440 new &= ~0x60000000;
441 new |= prev & 0x60000000;
442 for (i = 0; i < 8; i++) {
443 if (mask & (1 << i)) {
444 env->fpscr &= ~(0xF << (4 * i));
445 env->fpscr |= new & (0xF << (4 * i));
446 }
447 }
448 /* Update VX and FEX */
449 if (fpscr_ix != 0) {
450 env->fpscr |= 1 << FPSCR_VX;
451 } else {
452 env->fpscr &= ~(1 << FPSCR_VX);
453 }
454 if ((fpscr_ex & fpscr_eex) != 0) {
455 env->fpscr |= 1 << FPSCR_FEX;
456 env->exception_index = POWERPC_EXCP_PROGRAM;
457 /* XXX: we should compute it properly */
458 env->error_code = POWERPC_EXCP_FP;
459 } else {
460 env->fpscr &= ~(1 << FPSCR_FEX);
461 }
462 fpscr_set_rounding_mode(env);
463 }
464
465 void helper_float_check_status(CPUPPCState *env)
466 {
467 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
468 (env->error_code & POWERPC_EXCP_FP)) {
469 /* Differred floating-point exception after target FPR update */
470 if (msr_fe0 != 0 || msr_fe1 != 0) {
471 helper_raise_exception_err(env, env->exception_index,
472 env->error_code);
473 }
474 } else {
475 int status = get_float_exception_flags(&env->fp_status);
476 if (status & float_flag_divbyzero) {
477 float_zero_divide_excp(env);
478 } else if (status & float_flag_overflow) {
479 float_overflow_excp(env);
480 } else if (status & float_flag_underflow) {
481 float_underflow_excp(env);
482 } else if (status & float_flag_inexact) {
483 float_inexact_excp(env);
484 }
485 }
486 }
487
488 void helper_reset_fpstatus(CPUPPCState *env)
489 {
490 set_float_exception_flags(0, &env->fp_status);
491 }
492
493 /* fadd - fadd. */
494 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
495 {
496 CPU_DoubleU farg1, farg2;
497
498 farg1.ll = arg1;
499 farg2.ll = arg2;
500
501 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
502 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
503 /* Magnitude subtraction of infinities */
504 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
505 } else {
506 if (unlikely(float64_is_signaling_nan(farg1.d) ||
507 float64_is_signaling_nan(farg2.d))) {
508 /* sNaN addition */
509 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
510 }
511 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
512 }
513
514 return farg1.ll;
515 }
516
517 /* fsub - fsub. */
518 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
519 {
520 CPU_DoubleU farg1, farg2;
521
522 farg1.ll = arg1;
523 farg2.ll = arg2;
524
525 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
526 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
527 /* Magnitude subtraction of infinities */
528 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
529 } else {
530 if (unlikely(float64_is_signaling_nan(farg1.d) ||
531 float64_is_signaling_nan(farg2.d))) {
532 /* sNaN subtraction */
533 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
534 }
535 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
536 }
537
538 return farg1.ll;
539 }
540
541 /* fmul - fmul. */
542 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
543 {
544 CPU_DoubleU farg1, farg2;
545
546 farg1.ll = arg1;
547 farg2.ll = arg2;
548
549 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
550 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
551 /* Multiplication of zero by infinity */
552 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
553 } else {
554 if (unlikely(float64_is_signaling_nan(farg1.d) ||
555 float64_is_signaling_nan(farg2.d))) {
556 /* sNaN multiplication */
557 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
558 }
559 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
560 }
561
562 return farg1.ll;
563 }
564
565 /* fdiv - fdiv. */
566 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
567 {
568 CPU_DoubleU farg1, farg2;
569
570 farg1.ll = arg1;
571 farg2.ll = arg2;
572
573 if (unlikely(float64_is_infinity(farg1.d) &&
574 float64_is_infinity(farg2.d))) {
575 /* Division of infinity by infinity */
576 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI);
577 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
578 /* Division of zero by zero */
579 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ);
580 } else {
581 if (unlikely(float64_is_signaling_nan(farg1.d) ||
582 float64_is_signaling_nan(farg2.d))) {
583 /* sNaN division */
584 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
585 }
586 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
587 }
588
589 return farg1.ll;
590 }
591
592 /* fabs */
593 uint64_t helper_fabs(CPUPPCState *env, uint64_t arg)
594 {
595 CPU_DoubleU farg;
596
597 farg.ll = arg;
598 farg.d = float64_abs(farg.d);
599 return farg.ll;
600 }
601
602 /* fnabs */
603 uint64_t helper_fnabs(CPUPPCState *env, uint64_t arg)
604 {
605 CPU_DoubleU farg;
606
607 farg.ll = arg;
608 farg.d = float64_abs(farg.d);
609 farg.d = float64_chs(farg.d);
610 return farg.ll;
611 }
612
613 /* fneg */
614 uint64_t helper_fneg(CPUPPCState *env, uint64_t arg)
615 {
616 CPU_DoubleU farg;
617
618 farg.ll = arg;
619 farg.d = float64_chs(farg.d);
620 return farg.ll;
621 }
622
623 /* fctiw - fctiw. */
624 uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg)
625 {
626 CPU_DoubleU farg;
627
628 farg.ll = arg;
629
630 if (unlikely(float64_is_signaling_nan(farg.d))) {
631 /* sNaN conversion */
632 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
633 POWERPC_EXCP_FP_VXCVI);
634 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
635 float64_is_infinity(farg.d))) {
636 /* qNan / infinity conversion */
637 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
638 } else {
639 farg.ll = float64_to_int32(farg.d, &env->fp_status);
640 /* XXX: higher bits are not supposed to be significant.
641 * to make tests easier, return the same as a real PowerPC 750
642 */
643 farg.ll |= 0xFFF80000ULL << 32;
644 }
645 return farg.ll;
646 }
647
648 /* fctiwz - fctiwz. */
649 uint64_t helper_fctiwz(CPUPPCState *env, uint64_t arg)
650 {
651 CPU_DoubleU farg;
652
653 farg.ll = arg;
654
655 if (unlikely(float64_is_signaling_nan(farg.d))) {
656 /* sNaN conversion */
657 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
658 POWERPC_EXCP_FP_VXCVI);
659 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
660 float64_is_infinity(farg.d))) {
661 /* qNan / infinity conversion */
662 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
663 } else {
664 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
665 /* XXX: higher bits are not supposed to be significant.
666 * to make tests easier, return the same as a real PowerPC 750
667 */
668 farg.ll |= 0xFFF80000ULL << 32;
669 }
670 return farg.ll;
671 }
672
673 #if defined(TARGET_PPC64)
674 /* fcfid - fcfid. */
675 uint64_t helper_fcfid(CPUPPCState *env, uint64_t arg)
676 {
677 CPU_DoubleU farg;
678
679 farg.d = int64_to_float64(arg, &env->fp_status);
680 return farg.ll;
681 }
682
683 /* fctid - fctid. */
684 uint64_t helper_fctid(CPUPPCState *env, uint64_t arg)
685 {
686 CPU_DoubleU farg;
687
688 farg.ll = arg;
689
690 if (unlikely(float64_is_signaling_nan(farg.d))) {
691 /* sNaN conversion */
692 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
693 POWERPC_EXCP_FP_VXCVI);
694 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
695 float64_is_infinity(farg.d))) {
696 /* qNan / infinity conversion */
697 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
698 } else {
699 farg.ll = float64_to_int64(farg.d, &env->fp_status);
700 }
701 return farg.ll;
702 }
703
704 /* fctidz - fctidz. */
705 uint64_t helper_fctidz(CPUPPCState *env, uint64_t arg)
706 {
707 CPU_DoubleU farg;
708
709 farg.ll = arg;
710
711 if (unlikely(float64_is_signaling_nan(farg.d))) {
712 /* sNaN conversion */
713 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
714 POWERPC_EXCP_FP_VXCVI);
715 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
716 float64_is_infinity(farg.d))) {
717 /* qNan / infinity conversion */
718 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
719 } else {
720 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
721 }
722 return farg.ll;
723 }
724
725 #endif
726
727 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
728 int rounding_mode)
729 {
730 CPU_DoubleU farg;
731
732 farg.ll = arg;
733
734 if (unlikely(float64_is_signaling_nan(farg.d))) {
735 /* sNaN round */
736 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
737 POWERPC_EXCP_FP_VXCVI);
738 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
739 float64_is_infinity(farg.d))) {
740 /* qNan / infinity round */
741 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
742 } else {
743 set_float_rounding_mode(rounding_mode, &env->fp_status);
744 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
745 /* Restore rounding mode from FPSCR */
746 fpscr_set_rounding_mode(env);
747 }
748 return farg.ll;
749 }
750
751 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
752 {
753 return do_fri(env, arg, float_round_nearest_even);
754 }
755
756 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
757 {
758 return do_fri(env, arg, float_round_to_zero);
759 }
760
761 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
762 {
763 return do_fri(env, arg, float_round_up);
764 }
765
766 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
767 {
768 return do_fri(env, arg, float_round_down);
769 }
770
771 /* fmadd - fmadd. */
772 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
773 uint64_t arg3)
774 {
775 CPU_DoubleU farg1, farg2, farg3;
776
777 farg1.ll = arg1;
778 farg2.ll = arg2;
779 farg3.ll = arg3;
780
781 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
782 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
783 /* Multiplication of zero by infinity */
784 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
785 } else {
786 if (unlikely(float64_is_signaling_nan(farg1.d) ||
787 float64_is_signaling_nan(farg2.d) ||
788 float64_is_signaling_nan(farg3.d))) {
789 /* sNaN operation */
790 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
791 }
792 /* This is the way the PowerPC specification defines it */
793 float128 ft0_128, ft1_128;
794
795 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
796 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
797 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
798 if (unlikely(float128_is_infinity(ft0_128) &&
799 float64_is_infinity(farg3.d) &&
800 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
801 /* Magnitude subtraction of infinities */
802 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
803 } else {
804 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
805 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
806 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
807 }
808 }
809
810 return farg1.ll;
811 }
812
813 /* fmsub - fmsub. */
814 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
815 uint64_t arg3)
816 {
817 CPU_DoubleU farg1, farg2, farg3;
818
819 farg1.ll = arg1;
820 farg2.ll = arg2;
821 farg3.ll = arg3;
822
823 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
824 (float64_is_zero(farg1.d) &&
825 float64_is_infinity(farg2.d)))) {
826 /* Multiplication of zero by infinity */
827 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
828 } else {
829 if (unlikely(float64_is_signaling_nan(farg1.d) ||
830 float64_is_signaling_nan(farg2.d) ||
831 float64_is_signaling_nan(farg3.d))) {
832 /* sNaN operation */
833 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
834 }
835 /* This is the way the PowerPC specification defines it */
836 float128 ft0_128, ft1_128;
837
838 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
839 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
840 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
841 if (unlikely(float128_is_infinity(ft0_128) &&
842 float64_is_infinity(farg3.d) &&
843 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
844 /* Magnitude subtraction of infinities */
845 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
846 } else {
847 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
848 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
849 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
850 }
851 }
852 return farg1.ll;
853 }
854
855 /* fnmadd - fnmadd. */
856 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
857 uint64_t arg3)
858 {
859 CPU_DoubleU farg1, farg2, farg3;
860
861 farg1.ll = arg1;
862 farg2.ll = arg2;
863 farg3.ll = arg3;
864
865 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
866 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
867 /* Multiplication of zero by infinity */
868 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
869 } else {
870 if (unlikely(float64_is_signaling_nan(farg1.d) ||
871 float64_is_signaling_nan(farg2.d) ||
872 float64_is_signaling_nan(farg3.d))) {
873 /* sNaN operation */
874 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
875 }
876 /* This is the way the PowerPC specification defines it */
877 float128 ft0_128, ft1_128;
878
879 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
880 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
881 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
882 if (unlikely(float128_is_infinity(ft0_128) &&
883 float64_is_infinity(farg3.d) &&
884 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
885 /* Magnitude subtraction of infinities */
886 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
887 } else {
888 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
889 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
890 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
891 }
892 if (likely(!float64_is_any_nan(farg1.d))) {
893 farg1.d = float64_chs(farg1.d);
894 }
895 }
896 return farg1.ll;
897 }
898
899 /* fnmsub - fnmsub. */
900 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
901 uint64_t arg3)
902 {
903 CPU_DoubleU farg1, farg2, farg3;
904
905 farg1.ll = arg1;
906 farg2.ll = arg2;
907 farg3.ll = arg3;
908
909 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
910 (float64_is_zero(farg1.d) &&
911 float64_is_infinity(farg2.d)))) {
912 /* Multiplication of zero by infinity */
913 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
914 } else {
915 if (unlikely(float64_is_signaling_nan(farg1.d) ||
916 float64_is_signaling_nan(farg2.d) ||
917 float64_is_signaling_nan(farg3.d))) {
918 /* sNaN operation */
919 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
920 }
921 /* This is the way the PowerPC specification defines it */
922 float128 ft0_128, ft1_128;
923
924 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
925 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
926 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
927 if (unlikely(float128_is_infinity(ft0_128) &&
928 float64_is_infinity(farg3.d) &&
929 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
930 /* Magnitude subtraction of infinities */
931 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
932 } else {
933 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
934 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
935 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
936 }
937 if (likely(!float64_is_any_nan(farg1.d))) {
938 farg1.d = float64_chs(farg1.d);
939 }
940 }
941 return farg1.ll;
942 }
943
944 /* frsp - frsp. */
945 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
946 {
947 CPU_DoubleU farg;
948 float32 f32;
949
950 farg.ll = arg;
951
952 if (unlikely(float64_is_signaling_nan(farg.d))) {
953 /* sNaN square root */
954 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
955 }
956 f32 = float64_to_float32(farg.d, &env->fp_status);
957 farg.d = float32_to_float64(f32, &env->fp_status);
958
959 return farg.ll;
960 }
961
962 /* fsqrt - fsqrt. */
963 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
964 {
965 CPU_DoubleU farg;
966
967 farg.ll = arg;
968
969 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
970 /* Square root of a negative nonzero number */
971 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
972 } else {
973 if (unlikely(float64_is_signaling_nan(farg.d))) {
974 /* sNaN square root */
975 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
976 }
977 farg.d = float64_sqrt(farg.d, &env->fp_status);
978 }
979 return farg.ll;
980 }
981
982 /* fre - fre. */
983 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
984 {
985 CPU_DoubleU farg;
986
987 farg.ll = arg;
988
989 if (unlikely(float64_is_signaling_nan(farg.d))) {
990 /* sNaN reciprocal */
991 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
992 }
993 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
994 return farg.d;
995 }
996
997 /* fres - fres. */
998 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
999 {
1000 CPU_DoubleU farg;
1001 float32 f32;
1002
1003 farg.ll = arg;
1004
1005 if (unlikely(float64_is_signaling_nan(farg.d))) {
1006 /* sNaN reciprocal */
1007 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1008 }
1009 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1010 f32 = float64_to_float32(farg.d, &env->fp_status);
1011 farg.d = float32_to_float64(f32, &env->fp_status);
1012
1013 return farg.ll;
1014 }
1015
1016 /* frsqrte - frsqrte. */
1017 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
1018 {
1019 CPU_DoubleU farg;
1020 float32 f32;
1021
1022 farg.ll = arg;
1023
1024 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1025 /* Reciprocal square root of a negative nonzero number */
1026 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
1027 } else {
1028 if (unlikely(float64_is_signaling_nan(farg.d))) {
1029 /* sNaN reciprocal square root */
1030 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1031 }
1032 farg.d = float64_sqrt(farg.d, &env->fp_status);
1033 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1034 f32 = float64_to_float32(farg.d, &env->fp_status);
1035 farg.d = float32_to_float64(f32, &env->fp_status);
1036 }
1037 return farg.ll;
1038 }
1039
1040 /* fsel - fsel. */
1041 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1042 uint64_t arg3)
1043 {
1044 CPU_DoubleU farg1;
1045
1046 farg1.ll = arg1;
1047
1048 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1049 !float64_is_any_nan(farg1.d)) {
1050 return arg2;
1051 } else {
1052 return arg3;
1053 }
1054 }
1055
1056 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1057 uint32_t crfD)
1058 {
1059 CPU_DoubleU farg1, farg2;
1060 uint32_t ret = 0;
1061
1062 farg1.ll = arg1;
1063 farg2.ll = arg2;
1064
1065 if (unlikely(float64_is_any_nan(farg1.d) ||
1066 float64_is_any_nan(farg2.d))) {
1067 ret = 0x01UL;
1068 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1069 ret = 0x08UL;
1070 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1071 ret = 0x04UL;
1072 } else {
1073 ret = 0x02UL;
1074 }
1075
1076 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1077 env->fpscr |= ret << FPSCR_FPRF;
1078 env->crf[crfD] = ret;
1079 if (unlikely(ret == 0x01UL
1080 && (float64_is_signaling_nan(farg1.d) ||
1081 float64_is_signaling_nan(farg2.d)))) {
1082 /* sNaN comparison */
1083 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1084 }
1085 }
1086
1087 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1088 uint32_t crfD)
1089 {
1090 CPU_DoubleU farg1, farg2;
1091 uint32_t ret = 0;
1092
1093 farg1.ll = arg1;
1094 farg2.ll = arg2;
1095
1096 if (unlikely(float64_is_any_nan(farg1.d) ||
1097 float64_is_any_nan(farg2.d))) {
1098 ret = 0x01UL;
1099 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1100 ret = 0x08UL;
1101 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1102 ret = 0x04UL;
1103 } else {
1104 ret = 0x02UL;
1105 }
1106
1107 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1108 env->fpscr |= ret << FPSCR_FPRF;
1109 env->crf[crfD] = ret;
1110 if (unlikely(ret == 0x01UL)) {
1111 if (float64_is_signaling_nan(farg1.d) ||
1112 float64_is_signaling_nan(farg2.d)) {
1113 /* sNaN comparison */
1114 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1115 POWERPC_EXCP_FP_VXVC);
1116 } else {
1117 /* qNaN comparison */
1118 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC);
1119 }
1120 }
1121 }
1122
1123 /* Single-precision floating-point conversions */
1124 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1125 {
1126 CPU_FloatU u;
1127
1128 u.f = int32_to_float32(val, &env->vec_status);
1129
1130 return u.l;
1131 }
1132
1133 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1134 {
1135 CPU_FloatU u;
1136
1137 u.f = uint32_to_float32(val, &env->vec_status);
1138
1139 return u.l;
1140 }
1141
1142 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1143 {
1144 CPU_FloatU u;
1145
1146 u.l = val;
1147 /* NaN are not treated the same way IEEE 754 does */
1148 if (unlikely(float32_is_quiet_nan(u.f))) {
1149 return 0;
1150 }
1151
1152 return float32_to_int32(u.f, &env->vec_status);
1153 }
1154
1155 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1156 {
1157 CPU_FloatU u;
1158
1159 u.l = val;
1160 /* NaN are not treated the same way IEEE 754 does */
1161 if (unlikely(float32_is_quiet_nan(u.f))) {
1162 return 0;
1163 }
1164
1165 return float32_to_uint32(u.f, &env->vec_status);
1166 }
1167
1168 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1169 {
1170 CPU_FloatU u;
1171
1172 u.l = val;
1173 /* NaN are not treated the same way IEEE 754 does */
1174 if (unlikely(float32_is_quiet_nan(u.f))) {
1175 return 0;
1176 }
1177
1178 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1179 }
1180
1181 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1182 {
1183 CPU_FloatU u;
1184
1185 u.l = val;
1186 /* NaN are not treated the same way IEEE 754 does */
1187 if (unlikely(float32_is_quiet_nan(u.f))) {
1188 return 0;
1189 }
1190
1191 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1192 }
1193
1194 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1195 {
1196 CPU_FloatU u;
1197 float32 tmp;
1198
1199 u.f = int32_to_float32(val, &env->vec_status);
1200 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1201 u.f = float32_div(u.f, tmp, &env->vec_status);
1202
1203 return u.l;
1204 }
1205
1206 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1207 {
1208 CPU_FloatU u;
1209 float32 tmp;
1210
1211 u.f = uint32_to_float32(val, &env->vec_status);
1212 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1213 u.f = float32_div(u.f, tmp, &env->vec_status);
1214
1215 return u.l;
1216 }
1217
1218 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1219 {
1220 CPU_FloatU u;
1221 float32 tmp;
1222
1223 u.l = val;
1224 /* NaN are not treated the same way IEEE 754 does */
1225 if (unlikely(float32_is_quiet_nan(u.f))) {
1226 return 0;
1227 }
1228 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1229 u.f = float32_mul(u.f, tmp, &env->vec_status);
1230
1231 return float32_to_int32(u.f, &env->vec_status);
1232 }
1233
1234 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1235 {
1236 CPU_FloatU u;
1237 float32 tmp;
1238
1239 u.l = val;
1240 /* NaN are not treated the same way IEEE 754 does */
1241 if (unlikely(float32_is_quiet_nan(u.f))) {
1242 return 0;
1243 }
1244 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1245 u.f = float32_mul(u.f, tmp, &env->vec_status);
1246
1247 return float32_to_uint32(u.f, &env->vec_status);
1248 }
1249
1250 #define HELPER_SPE_SINGLE_CONV(name) \
1251 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1252 { \
1253 return e##name(env, val); \
1254 }
1255 /* efscfsi */
1256 HELPER_SPE_SINGLE_CONV(fscfsi);
1257 /* efscfui */
1258 HELPER_SPE_SINGLE_CONV(fscfui);
1259 /* efscfuf */
1260 HELPER_SPE_SINGLE_CONV(fscfuf);
1261 /* efscfsf */
1262 HELPER_SPE_SINGLE_CONV(fscfsf);
1263 /* efsctsi */
1264 HELPER_SPE_SINGLE_CONV(fsctsi);
1265 /* efsctui */
1266 HELPER_SPE_SINGLE_CONV(fsctui);
1267 /* efsctsiz */
1268 HELPER_SPE_SINGLE_CONV(fsctsiz);
1269 /* efsctuiz */
1270 HELPER_SPE_SINGLE_CONV(fsctuiz);
1271 /* efsctsf */
1272 HELPER_SPE_SINGLE_CONV(fsctsf);
1273 /* efsctuf */
1274 HELPER_SPE_SINGLE_CONV(fsctuf);
1275
1276 #define HELPER_SPE_VECTOR_CONV(name) \
1277 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1278 { \
1279 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1280 (uint64_t)e##name(env, val); \
1281 }
1282 /* evfscfsi */
1283 HELPER_SPE_VECTOR_CONV(fscfsi);
1284 /* evfscfui */
1285 HELPER_SPE_VECTOR_CONV(fscfui);
1286 /* evfscfuf */
1287 HELPER_SPE_VECTOR_CONV(fscfuf);
1288 /* evfscfsf */
1289 HELPER_SPE_VECTOR_CONV(fscfsf);
1290 /* evfsctsi */
1291 HELPER_SPE_VECTOR_CONV(fsctsi);
1292 /* evfsctui */
1293 HELPER_SPE_VECTOR_CONV(fsctui);
1294 /* evfsctsiz */
1295 HELPER_SPE_VECTOR_CONV(fsctsiz);
1296 /* evfsctuiz */
1297 HELPER_SPE_VECTOR_CONV(fsctuiz);
1298 /* evfsctsf */
1299 HELPER_SPE_VECTOR_CONV(fsctsf);
1300 /* evfsctuf */
1301 HELPER_SPE_VECTOR_CONV(fsctuf);
1302
1303 /* Single-precision floating-point arithmetic */
1304 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1305 {
1306 CPU_FloatU u1, u2;
1307
1308 u1.l = op1;
1309 u2.l = op2;
1310 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1311 return u1.l;
1312 }
1313
1314 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1315 {
1316 CPU_FloatU u1, u2;
1317
1318 u1.l = op1;
1319 u2.l = op2;
1320 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1321 return u1.l;
1322 }
1323
1324 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1325 {
1326 CPU_FloatU u1, u2;
1327
1328 u1.l = op1;
1329 u2.l = op2;
1330 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1331 return u1.l;
1332 }
1333
1334 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1335 {
1336 CPU_FloatU u1, u2;
1337
1338 u1.l = op1;
1339 u2.l = op2;
1340 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1341 return u1.l;
1342 }
1343
1344 #define HELPER_SPE_SINGLE_ARITH(name) \
1345 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1346 { \
1347 return e##name(env, op1, op2); \
1348 }
1349 /* efsadd */
1350 HELPER_SPE_SINGLE_ARITH(fsadd);
1351 /* efssub */
1352 HELPER_SPE_SINGLE_ARITH(fssub);
1353 /* efsmul */
1354 HELPER_SPE_SINGLE_ARITH(fsmul);
1355 /* efsdiv */
1356 HELPER_SPE_SINGLE_ARITH(fsdiv);
1357
1358 #define HELPER_SPE_VECTOR_ARITH(name) \
1359 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1360 { \
1361 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1362 (uint64_t)e##name(env, op1, op2); \
1363 }
1364 /* evfsadd */
1365 HELPER_SPE_VECTOR_ARITH(fsadd);
1366 /* evfssub */
1367 HELPER_SPE_VECTOR_ARITH(fssub);
1368 /* evfsmul */
1369 HELPER_SPE_VECTOR_ARITH(fsmul);
1370 /* evfsdiv */
1371 HELPER_SPE_VECTOR_ARITH(fsdiv);
1372
1373 /* Single-precision floating-point comparisons */
1374 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1375 {
1376 CPU_FloatU u1, u2;
1377
1378 u1.l = op1;
1379 u2.l = op2;
1380 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1381 }
1382
1383 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1384 {
1385 CPU_FloatU u1, u2;
1386
1387 u1.l = op1;
1388 u2.l = op2;
1389 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1390 }
1391
1392 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1393 {
1394 CPU_FloatU u1, u2;
1395
1396 u1.l = op1;
1397 u2.l = op2;
1398 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1399 }
1400
1401 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1402 {
1403 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1404 return efscmplt(env, op1, op2);
1405 }
1406
1407 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1408 {
1409 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1410 return efscmpgt(env, op1, op2);
1411 }
1412
1413 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1414 {
1415 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1416 return efscmpeq(env, op1, op2);
1417 }
1418
1419 #define HELPER_SINGLE_SPE_CMP(name) \
1420 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1421 { \
1422 return e##name(env, op1, op2) << 2; \
1423 }
1424 /* efststlt */
1425 HELPER_SINGLE_SPE_CMP(fststlt);
1426 /* efststgt */
1427 HELPER_SINGLE_SPE_CMP(fststgt);
1428 /* efststeq */
1429 HELPER_SINGLE_SPE_CMP(fststeq);
1430 /* efscmplt */
1431 HELPER_SINGLE_SPE_CMP(fscmplt);
1432 /* efscmpgt */
1433 HELPER_SINGLE_SPE_CMP(fscmpgt);
1434 /* efscmpeq */
1435 HELPER_SINGLE_SPE_CMP(fscmpeq);
1436
1437 static inline uint32_t evcmp_merge(int t0, int t1)
1438 {
1439 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1440 }
1441
1442 #define HELPER_VECTOR_SPE_CMP(name) \
1443 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1444 { \
1445 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1446 e##name(env, op1, op2)); \
1447 }
1448 /* evfststlt */
1449 HELPER_VECTOR_SPE_CMP(fststlt);
1450 /* evfststgt */
1451 HELPER_VECTOR_SPE_CMP(fststgt);
1452 /* evfststeq */
1453 HELPER_VECTOR_SPE_CMP(fststeq);
1454 /* evfscmplt */
1455 HELPER_VECTOR_SPE_CMP(fscmplt);
1456 /* evfscmpgt */
1457 HELPER_VECTOR_SPE_CMP(fscmpgt);
1458 /* evfscmpeq */
1459 HELPER_VECTOR_SPE_CMP(fscmpeq);
1460
1461 /* Double-precision floating-point conversion */
1462 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1463 {
1464 CPU_DoubleU u;
1465
1466 u.d = int32_to_float64(val, &env->vec_status);
1467
1468 return u.ll;
1469 }
1470
1471 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1472 {
1473 CPU_DoubleU u;
1474
1475 u.d = int64_to_float64(val, &env->vec_status);
1476
1477 return u.ll;
1478 }
1479
1480 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1481 {
1482 CPU_DoubleU u;
1483
1484 u.d = uint32_to_float64(val, &env->vec_status);
1485
1486 return u.ll;
1487 }
1488
1489 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1490 {
1491 CPU_DoubleU u;
1492
1493 u.d = uint64_to_float64(val, &env->vec_status);
1494
1495 return u.ll;
1496 }
1497
1498 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1499 {
1500 CPU_DoubleU u;
1501
1502 u.ll = val;
1503 /* NaN are not treated the same way IEEE 754 does */
1504 if (unlikely(float64_is_any_nan(u.d))) {
1505 return 0;
1506 }
1507
1508 return float64_to_int32(u.d, &env->vec_status);
1509 }
1510
1511 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1512 {
1513 CPU_DoubleU u;
1514
1515 u.ll = val;
1516 /* NaN are not treated the same way IEEE 754 does */
1517 if (unlikely(float64_is_any_nan(u.d))) {
1518 return 0;
1519 }
1520
1521 return float64_to_uint32(u.d, &env->vec_status);
1522 }
1523
1524 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1525 {
1526 CPU_DoubleU u;
1527
1528 u.ll = val;
1529 /* NaN are not treated the same way IEEE 754 does */
1530 if (unlikely(float64_is_any_nan(u.d))) {
1531 return 0;
1532 }
1533
1534 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1535 }
1536
1537 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1538 {
1539 CPU_DoubleU u;
1540
1541 u.ll = val;
1542 /* NaN are not treated the same way IEEE 754 does */
1543 if (unlikely(float64_is_any_nan(u.d))) {
1544 return 0;
1545 }
1546
1547 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1548 }
1549
1550 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1551 {
1552 CPU_DoubleU u;
1553
1554 u.ll = val;
1555 /* NaN are not treated the same way IEEE 754 does */
1556 if (unlikely(float64_is_any_nan(u.d))) {
1557 return 0;
1558 }
1559
1560 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1561 }
1562
1563 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1564 {
1565 CPU_DoubleU u;
1566
1567 u.ll = val;
1568 /* NaN are not treated the same way IEEE 754 does */
1569 if (unlikely(float64_is_any_nan(u.d))) {
1570 return 0;
1571 }
1572
1573 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1574 }
1575
1576 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1577 {
1578 CPU_DoubleU u;
1579 float64 tmp;
1580
1581 u.d = int32_to_float64(val, &env->vec_status);
1582 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1583 u.d = float64_div(u.d, tmp, &env->vec_status);
1584
1585 return u.ll;
1586 }
1587
1588 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1589 {
1590 CPU_DoubleU u;
1591 float64 tmp;
1592
1593 u.d = uint32_to_float64(val, &env->vec_status);
1594 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1595 u.d = float64_div(u.d, tmp, &env->vec_status);
1596
1597 return u.ll;
1598 }
1599
1600 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1601 {
1602 CPU_DoubleU u;
1603 float64 tmp;
1604
1605 u.ll = val;
1606 /* NaN are not treated the same way IEEE 754 does */
1607 if (unlikely(float64_is_any_nan(u.d))) {
1608 return 0;
1609 }
1610 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1611 u.d = float64_mul(u.d, tmp, &env->vec_status);
1612
1613 return float64_to_int32(u.d, &env->vec_status);
1614 }
1615
1616 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1617 {
1618 CPU_DoubleU u;
1619 float64 tmp;
1620
1621 u.ll = val;
1622 /* NaN are not treated the same way IEEE 754 does */
1623 if (unlikely(float64_is_any_nan(u.d))) {
1624 return 0;
1625 }
1626 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1627 u.d = float64_mul(u.d, tmp, &env->vec_status);
1628
1629 return float64_to_uint32(u.d, &env->vec_status);
1630 }
1631
1632 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1633 {
1634 CPU_DoubleU u1;
1635 CPU_FloatU u2;
1636
1637 u1.ll = val;
1638 u2.f = float64_to_float32(u1.d, &env->vec_status);
1639
1640 return u2.l;
1641 }
1642
1643 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1644 {
1645 CPU_DoubleU u2;
1646 CPU_FloatU u1;
1647
1648 u1.l = val;
1649 u2.d = float32_to_float64(u1.f, &env->vec_status);
1650
1651 return u2.ll;
1652 }
1653
1654 /* Double precision fixed-point arithmetic */
1655 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1656 {
1657 CPU_DoubleU u1, u2;
1658
1659 u1.ll = op1;
1660 u2.ll = op2;
1661 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1662 return u1.ll;
1663 }
1664
1665 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1666 {
1667 CPU_DoubleU u1, u2;
1668
1669 u1.ll = op1;
1670 u2.ll = op2;
1671 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1672 return u1.ll;
1673 }
1674
1675 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1676 {
1677 CPU_DoubleU u1, u2;
1678
1679 u1.ll = op1;
1680 u2.ll = op2;
1681 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1682 return u1.ll;
1683 }
1684
1685 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1686 {
1687 CPU_DoubleU u1, u2;
1688
1689 u1.ll = op1;
1690 u2.ll = op2;
1691 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1692 return u1.ll;
1693 }
1694
1695 /* Double precision floating point helpers */
1696 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1697 {
1698 CPU_DoubleU u1, u2;
1699
1700 u1.ll = op1;
1701 u2.ll = op2;
1702 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1703 }
1704
1705 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1706 {
1707 CPU_DoubleU u1, u2;
1708
1709 u1.ll = op1;
1710 u2.ll = op2;
1711 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1712 }
1713
1714 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1715 {
1716 CPU_DoubleU u1, u2;
1717
1718 u1.ll = op1;
1719 u2.ll = op2;
1720 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1721 }
1722
1723 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1724 {
1725 /* XXX: TODO: test special values (NaN, infinites, ...) */
1726 return helper_efdtstlt(env, op1, op2);
1727 }
1728
1729 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1730 {
1731 /* XXX: TODO: test special values (NaN, infinites, ...) */
1732 return helper_efdtstgt(env, op1, op2);
1733 }
1734
1735 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1736 {
1737 /* XXX: TODO: test special values (NaN, infinites, ...) */
1738 return helper_efdtsteq(env, op1, op2);
1739 }