]> git.proxmox.com Git - qemu.git/blob - target-ppc/fpu_helper.c
Merge branch 'for-upstream' of git://github.com/mwalle/qemu
[qemu.git] / target-ppc / fpu_helper.c
1 /*
2 * PowerPC floating point and SPE emulation helpers for QEMU.
3 *
4 * Copyright (c) 2003-2007 Jocelyn Mayer
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include "cpu.h"
20 #include "helper.h"
21
22 /*****************************************************************************/
23 /* Floating point operations helpers */
24 uint64_t helper_float32_to_float64(CPUPPCState *env, uint32_t arg)
25 {
26 CPU_FloatU f;
27 CPU_DoubleU d;
28
29 f.l = arg;
30 d.d = float32_to_float64(f.f, &env->fp_status);
31 return d.ll;
32 }
33
34 uint32_t helper_float64_to_float32(CPUPPCState *env, uint64_t arg)
35 {
36 CPU_FloatU f;
37 CPU_DoubleU d;
38
39 d.ll = arg;
40 f.f = float64_to_float32(d.d, &env->fp_status);
41 return f.l;
42 }
43
44 static inline int isden(float64 d)
45 {
46 CPU_DoubleU u;
47
48 u.d = d;
49
50 return ((u.ll >> 52) & 0x7FF) == 0;
51 }
52
53 uint32_t helper_compute_fprf(CPUPPCState *env, uint64_t arg, uint32_t set_fprf)
54 {
55 CPU_DoubleU farg;
56 int isneg;
57 int ret;
58
59 farg.ll = arg;
60 isneg = float64_is_neg(farg.d);
61 if (unlikely(float64_is_any_nan(farg.d))) {
62 if (float64_is_signaling_nan(farg.d)) {
63 /* Signaling NaN: flags are undefined */
64 ret = 0x00;
65 } else {
66 /* Quiet NaN */
67 ret = 0x11;
68 }
69 } else if (unlikely(float64_is_infinity(farg.d))) {
70 /* +/- infinity */
71 if (isneg) {
72 ret = 0x09;
73 } else {
74 ret = 0x05;
75 }
76 } else {
77 if (float64_is_zero(farg.d)) {
78 /* +/- zero */
79 if (isneg) {
80 ret = 0x12;
81 } else {
82 ret = 0x02;
83 }
84 } else {
85 if (isden(farg.d)) {
86 /* Denormalized numbers */
87 ret = 0x10;
88 } else {
89 /* Normalized numbers */
90 ret = 0x00;
91 }
92 if (isneg) {
93 ret |= 0x08;
94 } else {
95 ret |= 0x04;
96 }
97 }
98 }
99 if (set_fprf) {
100 /* We update FPSCR_FPRF */
101 env->fpscr &= ~(0x1F << FPSCR_FPRF);
102 env->fpscr |= ret << FPSCR_FPRF;
103 }
104 /* We just need fpcc to update Rc1 */
105 return ret & 0xF;
106 }
107
108 /* Floating-point invalid operations exception */
109 static inline uint64_t fload_invalid_op_excp(CPUPPCState *env, int op)
110 {
111 uint64_t ret = 0;
112 int ve;
113
114 ve = fpscr_ve;
115 switch (op) {
116 case POWERPC_EXCP_FP_VXSNAN:
117 env->fpscr |= 1 << FPSCR_VXSNAN;
118 break;
119 case POWERPC_EXCP_FP_VXSOFT:
120 env->fpscr |= 1 << FPSCR_VXSOFT;
121 break;
122 case POWERPC_EXCP_FP_VXISI:
123 /* Magnitude subtraction of infinities */
124 env->fpscr |= 1 << FPSCR_VXISI;
125 goto update_arith;
126 case POWERPC_EXCP_FP_VXIDI:
127 /* Division of infinity by infinity */
128 env->fpscr |= 1 << FPSCR_VXIDI;
129 goto update_arith;
130 case POWERPC_EXCP_FP_VXZDZ:
131 /* Division of zero by zero */
132 env->fpscr |= 1 << FPSCR_VXZDZ;
133 goto update_arith;
134 case POWERPC_EXCP_FP_VXIMZ:
135 /* Multiplication of zero by infinity */
136 env->fpscr |= 1 << FPSCR_VXIMZ;
137 goto update_arith;
138 case POWERPC_EXCP_FP_VXVC:
139 /* Ordered comparison of NaN */
140 env->fpscr |= 1 << FPSCR_VXVC;
141 env->fpscr &= ~(0xF << FPSCR_FPCC);
142 env->fpscr |= 0x11 << FPSCR_FPCC;
143 /* We must update the target FPR before raising the exception */
144 if (ve != 0) {
145 env->exception_index = POWERPC_EXCP_PROGRAM;
146 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_VXVC;
147 /* Update the floating-point enabled exception summary */
148 env->fpscr |= 1 << FPSCR_FEX;
149 /* Exception is differed */
150 ve = 0;
151 }
152 break;
153 case POWERPC_EXCP_FP_VXSQRT:
154 /* Square root of a negative number */
155 env->fpscr |= 1 << FPSCR_VXSQRT;
156 update_arith:
157 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
158 if (ve == 0) {
159 /* Set the result to quiet NaN */
160 ret = 0x7FF8000000000000ULL;
161 env->fpscr &= ~(0xF << FPSCR_FPCC);
162 env->fpscr |= 0x11 << FPSCR_FPCC;
163 }
164 break;
165 case POWERPC_EXCP_FP_VXCVI:
166 /* Invalid conversion */
167 env->fpscr |= 1 << FPSCR_VXCVI;
168 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
169 if (ve == 0) {
170 /* Set the result to quiet NaN */
171 ret = 0x7FF8000000000000ULL;
172 env->fpscr &= ~(0xF << FPSCR_FPCC);
173 env->fpscr |= 0x11 << FPSCR_FPCC;
174 }
175 break;
176 }
177 /* Update the floating-point invalid operation summary */
178 env->fpscr |= 1 << FPSCR_VX;
179 /* Update the floating-point exception summary */
180 env->fpscr |= 1 << FPSCR_FX;
181 if (ve != 0) {
182 /* Update the floating-point enabled exception summary */
183 env->fpscr |= 1 << FPSCR_FEX;
184 if (msr_fe0 != 0 || msr_fe1 != 0) {
185 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
186 POWERPC_EXCP_FP | op);
187 }
188 }
189 return ret;
190 }
191
192 static inline void float_zero_divide_excp(CPUPPCState *env)
193 {
194 env->fpscr |= 1 << FPSCR_ZX;
195 env->fpscr &= ~((1 << FPSCR_FR) | (1 << FPSCR_FI));
196 /* Update the floating-point exception summary */
197 env->fpscr |= 1 << FPSCR_FX;
198 if (fpscr_ze != 0) {
199 /* Update the floating-point enabled exception summary */
200 env->fpscr |= 1 << FPSCR_FEX;
201 if (msr_fe0 != 0 || msr_fe1 != 0) {
202 helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
203 POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX);
204 }
205 }
206 }
207
208 static inline void float_overflow_excp(CPUPPCState *env)
209 {
210 env->fpscr |= 1 << FPSCR_OX;
211 /* Update the floating-point exception summary */
212 env->fpscr |= 1 << FPSCR_FX;
213 if (fpscr_oe != 0) {
214 /* XXX: should adjust the result */
215 /* Update the floating-point enabled exception summary */
216 env->fpscr |= 1 << FPSCR_FEX;
217 /* We must update the target FPR before raising the exception */
218 env->exception_index = POWERPC_EXCP_PROGRAM;
219 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
220 } else {
221 env->fpscr |= 1 << FPSCR_XX;
222 env->fpscr |= 1 << FPSCR_FI;
223 }
224 }
225
226 static inline void float_underflow_excp(CPUPPCState *env)
227 {
228 env->fpscr |= 1 << FPSCR_UX;
229 /* Update the floating-point exception summary */
230 env->fpscr |= 1 << FPSCR_FX;
231 if (fpscr_ue != 0) {
232 /* XXX: should adjust the result */
233 /* Update the floating-point enabled exception summary */
234 env->fpscr |= 1 << FPSCR_FEX;
235 /* We must update the target FPR before raising the exception */
236 env->exception_index = POWERPC_EXCP_PROGRAM;
237 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
238 }
239 }
240
241 static inline void float_inexact_excp(CPUPPCState *env)
242 {
243 env->fpscr |= 1 << FPSCR_XX;
244 /* Update the floating-point exception summary */
245 env->fpscr |= 1 << FPSCR_FX;
246 if (fpscr_xe != 0) {
247 /* Update the floating-point enabled exception summary */
248 env->fpscr |= 1 << FPSCR_FEX;
249 /* We must update the target FPR before raising the exception */
250 env->exception_index = POWERPC_EXCP_PROGRAM;
251 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
252 }
253 }
254
255 static inline void fpscr_set_rounding_mode(CPUPPCState *env)
256 {
257 int rnd_type;
258
259 /* Set rounding mode */
260 switch (fpscr_rn) {
261 case 0:
262 /* Best approximation (round to nearest) */
263 rnd_type = float_round_nearest_even;
264 break;
265 case 1:
266 /* Smaller magnitude (round toward zero) */
267 rnd_type = float_round_to_zero;
268 break;
269 case 2:
270 /* Round toward +infinite */
271 rnd_type = float_round_up;
272 break;
273 default:
274 case 3:
275 /* Round toward -infinite */
276 rnd_type = float_round_down;
277 break;
278 }
279 set_float_rounding_mode(rnd_type, &env->fp_status);
280 }
281
282 void helper_fpscr_clrbit(CPUPPCState *env, uint32_t bit)
283 {
284 int prev;
285
286 prev = (env->fpscr >> bit) & 1;
287 env->fpscr &= ~(1 << bit);
288 if (prev == 1) {
289 switch (bit) {
290 case FPSCR_RN1:
291 case FPSCR_RN:
292 fpscr_set_rounding_mode(env);
293 break;
294 default:
295 break;
296 }
297 }
298 }
299
300 void helper_fpscr_setbit(CPUPPCState *env, uint32_t bit)
301 {
302 int prev;
303
304 prev = (env->fpscr >> bit) & 1;
305 env->fpscr |= 1 << bit;
306 if (prev == 0) {
307 switch (bit) {
308 case FPSCR_VX:
309 env->fpscr |= 1 << FPSCR_FX;
310 if (fpscr_ve) {
311 goto raise_ve;
312 }
313 break;
314 case FPSCR_OX:
315 env->fpscr |= 1 << FPSCR_FX;
316 if (fpscr_oe) {
317 goto raise_oe;
318 }
319 break;
320 case FPSCR_UX:
321 env->fpscr |= 1 << FPSCR_FX;
322 if (fpscr_ue) {
323 goto raise_ue;
324 }
325 break;
326 case FPSCR_ZX:
327 env->fpscr |= 1 << FPSCR_FX;
328 if (fpscr_ze) {
329 goto raise_ze;
330 }
331 break;
332 case FPSCR_XX:
333 env->fpscr |= 1 << FPSCR_FX;
334 if (fpscr_xe) {
335 goto raise_xe;
336 }
337 break;
338 case FPSCR_VXSNAN:
339 case FPSCR_VXISI:
340 case FPSCR_VXIDI:
341 case FPSCR_VXZDZ:
342 case FPSCR_VXIMZ:
343 case FPSCR_VXVC:
344 case FPSCR_VXSOFT:
345 case FPSCR_VXSQRT:
346 case FPSCR_VXCVI:
347 env->fpscr |= 1 << FPSCR_VX;
348 env->fpscr |= 1 << FPSCR_FX;
349 if (fpscr_ve != 0) {
350 goto raise_ve;
351 }
352 break;
353 case FPSCR_VE:
354 if (fpscr_vx != 0) {
355 raise_ve:
356 env->error_code = POWERPC_EXCP_FP;
357 if (fpscr_vxsnan) {
358 env->error_code |= POWERPC_EXCP_FP_VXSNAN;
359 }
360 if (fpscr_vxisi) {
361 env->error_code |= POWERPC_EXCP_FP_VXISI;
362 }
363 if (fpscr_vxidi) {
364 env->error_code |= POWERPC_EXCP_FP_VXIDI;
365 }
366 if (fpscr_vxzdz) {
367 env->error_code |= POWERPC_EXCP_FP_VXZDZ;
368 }
369 if (fpscr_vximz) {
370 env->error_code |= POWERPC_EXCP_FP_VXIMZ;
371 }
372 if (fpscr_vxvc) {
373 env->error_code |= POWERPC_EXCP_FP_VXVC;
374 }
375 if (fpscr_vxsoft) {
376 env->error_code |= POWERPC_EXCP_FP_VXSOFT;
377 }
378 if (fpscr_vxsqrt) {
379 env->error_code |= POWERPC_EXCP_FP_VXSQRT;
380 }
381 if (fpscr_vxcvi) {
382 env->error_code |= POWERPC_EXCP_FP_VXCVI;
383 }
384 goto raise_excp;
385 }
386 break;
387 case FPSCR_OE:
388 if (fpscr_ox != 0) {
389 raise_oe:
390 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_OX;
391 goto raise_excp;
392 }
393 break;
394 case FPSCR_UE:
395 if (fpscr_ux != 0) {
396 raise_ue:
397 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_UX;
398 goto raise_excp;
399 }
400 break;
401 case FPSCR_ZE:
402 if (fpscr_zx != 0) {
403 raise_ze:
404 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_ZX;
405 goto raise_excp;
406 }
407 break;
408 case FPSCR_XE:
409 if (fpscr_xx != 0) {
410 raise_xe:
411 env->error_code = POWERPC_EXCP_FP | POWERPC_EXCP_FP_XX;
412 goto raise_excp;
413 }
414 break;
415 case FPSCR_RN1:
416 case FPSCR_RN:
417 fpscr_set_rounding_mode(env);
418 break;
419 default:
420 break;
421 raise_excp:
422 /* Update the floating-point enabled exception summary */
423 env->fpscr |= 1 << FPSCR_FEX;
424 /* We have to update Rc1 before raising the exception */
425 env->exception_index = POWERPC_EXCP_PROGRAM;
426 break;
427 }
428 }
429 }
430
431 void helper_store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
432 {
433 /*
434 * We use only the 32 LSB of the incoming fpr
435 */
436 uint32_t prev, new;
437 int i;
438
439 prev = env->fpscr;
440 new = (uint32_t)arg;
441 new &= ~0x60000000;
442 new |= prev & 0x60000000;
443 for (i = 0; i < 8; i++) {
444 if (mask & (1 << i)) {
445 env->fpscr &= ~(0xF << (4 * i));
446 env->fpscr |= new & (0xF << (4 * i));
447 }
448 }
449 /* Update VX and FEX */
450 if (fpscr_ix != 0) {
451 env->fpscr |= 1 << FPSCR_VX;
452 } else {
453 env->fpscr &= ~(1 << FPSCR_VX);
454 }
455 if ((fpscr_ex & fpscr_eex) != 0) {
456 env->fpscr |= 1 << FPSCR_FEX;
457 env->exception_index = POWERPC_EXCP_PROGRAM;
458 /* XXX: we should compute it properly */
459 env->error_code = POWERPC_EXCP_FP;
460 } else {
461 env->fpscr &= ~(1 << FPSCR_FEX);
462 }
463 fpscr_set_rounding_mode(env);
464 }
465
466 void store_fpscr(CPUPPCState *env, uint64_t arg, uint32_t mask)
467 {
468 helper_store_fpscr(env, arg, mask);
469 }
470
471 void helper_float_check_status(CPUPPCState *env)
472 {
473 if (env->exception_index == POWERPC_EXCP_PROGRAM &&
474 (env->error_code & POWERPC_EXCP_FP)) {
475 /* Differred floating-point exception after target FPR update */
476 if (msr_fe0 != 0 || msr_fe1 != 0) {
477 helper_raise_exception_err(env, env->exception_index,
478 env->error_code);
479 }
480 } else {
481 int status = get_float_exception_flags(&env->fp_status);
482 if (status & float_flag_divbyzero) {
483 float_zero_divide_excp(env);
484 } else if (status & float_flag_overflow) {
485 float_overflow_excp(env);
486 } else if (status & float_flag_underflow) {
487 float_underflow_excp(env);
488 } else if (status & float_flag_inexact) {
489 float_inexact_excp(env);
490 }
491 }
492 }
493
494 void helper_reset_fpstatus(CPUPPCState *env)
495 {
496 set_float_exception_flags(0, &env->fp_status);
497 }
498
499 /* fadd - fadd. */
500 uint64_t helper_fadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
501 {
502 CPU_DoubleU farg1, farg2;
503
504 farg1.ll = arg1;
505 farg2.ll = arg2;
506
507 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
508 float64_is_neg(farg1.d) != float64_is_neg(farg2.d))) {
509 /* Magnitude subtraction of infinities */
510 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
511 } else {
512 if (unlikely(float64_is_signaling_nan(farg1.d) ||
513 float64_is_signaling_nan(farg2.d))) {
514 /* sNaN addition */
515 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
516 }
517 farg1.d = float64_add(farg1.d, farg2.d, &env->fp_status);
518 }
519
520 return farg1.ll;
521 }
522
523 /* fsub - fsub. */
524 uint64_t helper_fsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
525 {
526 CPU_DoubleU farg1, farg2;
527
528 farg1.ll = arg1;
529 farg2.ll = arg2;
530
531 if (unlikely(float64_is_infinity(farg1.d) && float64_is_infinity(farg2.d) &&
532 float64_is_neg(farg1.d) == float64_is_neg(farg2.d))) {
533 /* Magnitude subtraction of infinities */
534 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
535 } else {
536 if (unlikely(float64_is_signaling_nan(farg1.d) ||
537 float64_is_signaling_nan(farg2.d))) {
538 /* sNaN subtraction */
539 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
540 }
541 farg1.d = float64_sub(farg1.d, farg2.d, &env->fp_status);
542 }
543
544 return farg1.ll;
545 }
546
547 /* fmul - fmul. */
548 uint64_t helper_fmul(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
549 {
550 CPU_DoubleU farg1, farg2;
551
552 farg1.ll = arg1;
553 farg2.ll = arg2;
554
555 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
556 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
557 /* Multiplication of zero by infinity */
558 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
559 } else {
560 if (unlikely(float64_is_signaling_nan(farg1.d) ||
561 float64_is_signaling_nan(farg2.d))) {
562 /* sNaN multiplication */
563 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
564 }
565 farg1.d = float64_mul(farg1.d, farg2.d, &env->fp_status);
566 }
567
568 return farg1.ll;
569 }
570
571 /* fdiv - fdiv. */
572 uint64_t helper_fdiv(CPUPPCState *env, uint64_t arg1, uint64_t arg2)
573 {
574 CPU_DoubleU farg1, farg2;
575
576 farg1.ll = arg1;
577 farg2.ll = arg2;
578
579 if (unlikely(float64_is_infinity(farg1.d) &&
580 float64_is_infinity(farg2.d))) {
581 /* Division of infinity by infinity */
582 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIDI);
583 } else if (unlikely(float64_is_zero(farg1.d) && float64_is_zero(farg2.d))) {
584 /* Division of zero by zero */
585 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXZDZ);
586 } else {
587 if (unlikely(float64_is_signaling_nan(farg1.d) ||
588 float64_is_signaling_nan(farg2.d))) {
589 /* sNaN division */
590 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
591 }
592 farg1.d = float64_div(farg1.d, farg2.d, &env->fp_status);
593 }
594
595 return farg1.ll;
596 }
597
598 /* fabs */
599 uint64_t helper_fabs(CPUPPCState *env, uint64_t arg)
600 {
601 CPU_DoubleU farg;
602
603 farg.ll = arg;
604 farg.d = float64_abs(farg.d);
605 return farg.ll;
606 }
607
608 /* fnabs */
609 uint64_t helper_fnabs(CPUPPCState *env, uint64_t arg)
610 {
611 CPU_DoubleU farg;
612
613 farg.ll = arg;
614 farg.d = float64_abs(farg.d);
615 farg.d = float64_chs(farg.d);
616 return farg.ll;
617 }
618
619 /* fneg */
620 uint64_t helper_fneg(CPUPPCState *env, uint64_t arg)
621 {
622 CPU_DoubleU farg;
623
624 farg.ll = arg;
625 farg.d = float64_chs(farg.d);
626 return farg.ll;
627 }
628
629 /* fctiw - fctiw. */
630 uint64_t helper_fctiw(CPUPPCState *env, uint64_t arg)
631 {
632 CPU_DoubleU farg;
633
634 farg.ll = arg;
635
636 if (unlikely(float64_is_signaling_nan(farg.d))) {
637 /* sNaN conversion */
638 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
639 POWERPC_EXCP_FP_VXCVI);
640 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
641 float64_is_infinity(farg.d))) {
642 /* qNan / infinity conversion */
643 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
644 } else {
645 farg.ll = float64_to_int32(farg.d, &env->fp_status);
646 /* XXX: higher bits are not supposed to be significant.
647 * to make tests easier, return the same as a real PowerPC 750
648 */
649 farg.ll |= 0xFFF80000ULL << 32;
650 }
651 return farg.ll;
652 }
653
654 /* fctiwz - fctiwz. */
655 uint64_t helper_fctiwz(CPUPPCState *env, uint64_t arg)
656 {
657 CPU_DoubleU farg;
658
659 farg.ll = arg;
660
661 if (unlikely(float64_is_signaling_nan(farg.d))) {
662 /* sNaN conversion */
663 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
664 POWERPC_EXCP_FP_VXCVI);
665 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
666 float64_is_infinity(farg.d))) {
667 /* qNan / infinity conversion */
668 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
669 } else {
670 farg.ll = float64_to_int32_round_to_zero(farg.d, &env->fp_status);
671 /* XXX: higher bits are not supposed to be significant.
672 * to make tests easier, return the same as a real PowerPC 750
673 */
674 farg.ll |= 0xFFF80000ULL << 32;
675 }
676 return farg.ll;
677 }
678
679 #if defined(TARGET_PPC64)
680 /* fcfid - fcfid. */
681 uint64_t helper_fcfid(CPUPPCState *env, uint64_t arg)
682 {
683 CPU_DoubleU farg;
684
685 farg.d = int64_to_float64(arg, &env->fp_status);
686 return farg.ll;
687 }
688
689 /* fctid - fctid. */
690 uint64_t helper_fctid(CPUPPCState *env, uint64_t arg)
691 {
692 CPU_DoubleU farg;
693
694 farg.ll = arg;
695
696 if (unlikely(float64_is_signaling_nan(farg.d))) {
697 /* sNaN conversion */
698 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
699 POWERPC_EXCP_FP_VXCVI);
700 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
701 float64_is_infinity(farg.d))) {
702 /* qNan / infinity conversion */
703 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
704 } else {
705 farg.ll = float64_to_int64(farg.d, &env->fp_status);
706 }
707 return farg.ll;
708 }
709
710 /* fctidz - fctidz. */
711 uint64_t helper_fctidz(CPUPPCState *env, uint64_t arg)
712 {
713 CPU_DoubleU farg;
714
715 farg.ll = arg;
716
717 if (unlikely(float64_is_signaling_nan(farg.d))) {
718 /* sNaN conversion */
719 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
720 POWERPC_EXCP_FP_VXCVI);
721 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
722 float64_is_infinity(farg.d))) {
723 /* qNan / infinity conversion */
724 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
725 } else {
726 farg.ll = float64_to_int64_round_to_zero(farg.d, &env->fp_status);
727 }
728 return farg.ll;
729 }
730
731 #endif
732
733 static inline uint64_t do_fri(CPUPPCState *env, uint64_t arg,
734 int rounding_mode)
735 {
736 CPU_DoubleU farg;
737
738 farg.ll = arg;
739
740 if (unlikely(float64_is_signaling_nan(farg.d))) {
741 /* sNaN round */
742 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
743 POWERPC_EXCP_FP_VXCVI);
744 } else if (unlikely(float64_is_quiet_nan(farg.d) ||
745 float64_is_infinity(farg.d))) {
746 /* qNan / infinity round */
747 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXCVI);
748 } else {
749 set_float_rounding_mode(rounding_mode, &env->fp_status);
750 farg.ll = float64_round_to_int(farg.d, &env->fp_status);
751 /* Restore rounding mode from FPSCR */
752 fpscr_set_rounding_mode(env);
753 }
754 return farg.ll;
755 }
756
757 uint64_t helper_frin(CPUPPCState *env, uint64_t arg)
758 {
759 return do_fri(env, arg, float_round_nearest_even);
760 }
761
762 uint64_t helper_friz(CPUPPCState *env, uint64_t arg)
763 {
764 return do_fri(env, arg, float_round_to_zero);
765 }
766
767 uint64_t helper_frip(CPUPPCState *env, uint64_t arg)
768 {
769 return do_fri(env, arg, float_round_up);
770 }
771
772 uint64_t helper_frim(CPUPPCState *env, uint64_t arg)
773 {
774 return do_fri(env, arg, float_round_down);
775 }
776
777 /* fmadd - fmadd. */
778 uint64_t helper_fmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
779 uint64_t arg3)
780 {
781 CPU_DoubleU farg1, farg2, farg3;
782
783 farg1.ll = arg1;
784 farg2.ll = arg2;
785 farg3.ll = arg3;
786
787 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
788 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
789 /* Multiplication of zero by infinity */
790 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
791 } else {
792 if (unlikely(float64_is_signaling_nan(farg1.d) ||
793 float64_is_signaling_nan(farg2.d) ||
794 float64_is_signaling_nan(farg3.d))) {
795 /* sNaN operation */
796 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
797 }
798 /* This is the way the PowerPC specification defines it */
799 float128 ft0_128, ft1_128;
800
801 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
802 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
803 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
804 if (unlikely(float128_is_infinity(ft0_128) &&
805 float64_is_infinity(farg3.d) &&
806 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
807 /* Magnitude subtraction of infinities */
808 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
809 } else {
810 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
811 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
812 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
813 }
814 }
815
816 return farg1.ll;
817 }
818
819 /* fmsub - fmsub. */
820 uint64_t helper_fmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
821 uint64_t arg3)
822 {
823 CPU_DoubleU farg1, farg2, farg3;
824
825 farg1.ll = arg1;
826 farg2.ll = arg2;
827 farg3.ll = arg3;
828
829 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
830 (float64_is_zero(farg1.d) &&
831 float64_is_infinity(farg2.d)))) {
832 /* Multiplication of zero by infinity */
833 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
834 } else {
835 if (unlikely(float64_is_signaling_nan(farg1.d) ||
836 float64_is_signaling_nan(farg2.d) ||
837 float64_is_signaling_nan(farg3.d))) {
838 /* sNaN operation */
839 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
840 }
841 /* This is the way the PowerPC specification defines it */
842 float128 ft0_128, ft1_128;
843
844 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
845 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
846 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
847 if (unlikely(float128_is_infinity(ft0_128) &&
848 float64_is_infinity(farg3.d) &&
849 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
850 /* Magnitude subtraction of infinities */
851 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
852 } else {
853 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
854 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
855 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
856 }
857 }
858 return farg1.ll;
859 }
860
861 /* fnmadd - fnmadd. */
862 uint64_t helper_fnmadd(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
863 uint64_t arg3)
864 {
865 CPU_DoubleU farg1, farg2, farg3;
866
867 farg1.ll = arg1;
868 farg2.ll = arg2;
869 farg3.ll = arg3;
870
871 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
872 (float64_is_zero(farg1.d) && float64_is_infinity(farg2.d)))) {
873 /* Multiplication of zero by infinity */
874 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
875 } else {
876 if (unlikely(float64_is_signaling_nan(farg1.d) ||
877 float64_is_signaling_nan(farg2.d) ||
878 float64_is_signaling_nan(farg3.d))) {
879 /* sNaN operation */
880 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
881 }
882 /* This is the way the PowerPC specification defines it */
883 float128 ft0_128, ft1_128;
884
885 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
886 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
887 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
888 if (unlikely(float128_is_infinity(ft0_128) &&
889 float64_is_infinity(farg3.d) &&
890 float128_is_neg(ft0_128) != float64_is_neg(farg3.d))) {
891 /* Magnitude subtraction of infinities */
892 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
893 } else {
894 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
895 ft0_128 = float128_add(ft0_128, ft1_128, &env->fp_status);
896 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
897 }
898 if (likely(!float64_is_any_nan(farg1.d))) {
899 farg1.d = float64_chs(farg1.d);
900 }
901 }
902 return farg1.ll;
903 }
904
905 /* fnmsub - fnmsub. */
906 uint64_t helper_fnmsub(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
907 uint64_t arg3)
908 {
909 CPU_DoubleU farg1, farg2, farg3;
910
911 farg1.ll = arg1;
912 farg2.ll = arg2;
913 farg3.ll = arg3;
914
915 if (unlikely((float64_is_infinity(farg1.d) && float64_is_zero(farg2.d)) ||
916 (float64_is_zero(farg1.d) &&
917 float64_is_infinity(farg2.d)))) {
918 /* Multiplication of zero by infinity */
919 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXIMZ);
920 } else {
921 if (unlikely(float64_is_signaling_nan(farg1.d) ||
922 float64_is_signaling_nan(farg2.d) ||
923 float64_is_signaling_nan(farg3.d))) {
924 /* sNaN operation */
925 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
926 }
927 /* This is the way the PowerPC specification defines it */
928 float128 ft0_128, ft1_128;
929
930 ft0_128 = float64_to_float128(farg1.d, &env->fp_status);
931 ft1_128 = float64_to_float128(farg2.d, &env->fp_status);
932 ft0_128 = float128_mul(ft0_128, ft1_128, &env->fp_status);
933 if (unlikely(float128_is_infinity(ft0_128) &&
934 float64_is_infinity(farg3.d) &&
935 float128_is_neg(ft0_128) == float64_is_neg(farg3.d))) {
936 /* Magnitude subtraction of infinities */
937 farg1.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXISI);
938 } else {
939 ft1_128 = float64_to_float128(farg3.d, &env->fp_status);
940 ft0_128 = float128_sub(ft0_128, ft1_128, &env->fp_status);
941 farg1.d = float128_to_float64(ft0_128, &env->fp_status);
942 }
943 if (likely(!float64_is_any_nan(farg1.d))) {
944 farg1.d = float64_chs(farg1.d);
945 }
946 }
947 return farg1.ll;
948 }
949
950 /* frsp - frsp. */
951 uint64_t helper_frsp(CPUPPCState *env, uint64_t arg)
952 {
953 CPU_DoubleU farg;
954 float32 f32;
955
956 farg.ll = arg;
957
958 if (unlikely(float64_is_signaling_nan(farg.d))) {
959 /* sNaN square root */
960 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
961 }
962 f32 = float64_to_float32(farg.d, &env->fp_status);
963 farg.d = float32_to_float64(f32, &env->fp_status);
964
965 return farg.ll;
966 }
967
968 /* fsqrt - fsqrt. */
969 uint64_t helper_fsqrt(CPUPPCState *env, uint64_t arg)
970 {
971 CPU_DoubleU farg;
972
973 farg.ll = arg;
974
975 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
976 /* Square root of a negative nonzero number */
977 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
978 } else {
979 if (unlikely(float64_is_signaling_nan(farg.d))) {
980 /* sNaN square root */
981 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
982 }
983 farg.d = float64_sqrt(farg.d, &env->fp_status);
984 }
985 return farg.ll;
986 }
987
988 /* fre - fre. */
989 uint64_t helper_fre(CPUPPCState *env, uint64_t arg)
990 {
991 CPU_DoubleU farg;
992
993 farg.ll = arg;
994
995 if (unlikely(float64_is_signaling_nan(farg.d))) {
996 /* sNaN reciprocal */
997 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
998 }
999 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1000 return farg.d;
1001 }
1002
1003 /* fres - fres. */
1004 uint64_t helper_fres(CPUPPCState *env, uint64_t arg)
1005 {
1006 CPU_DoubleU farg;
1007 float32 f32;
1008
1009 farg.ll = arg;
1010
1011 if (unlikely(float64_is_signaling_nan(farg.d))) {
1012 /* sNaN reciprocal */
1013 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1014 }
1015 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1016 f32 = float64_to_float32(farg.d, &env->fp_status);
1017 farg.d = float32_to_float64(f32, &env->fp_status);
1018
1019 return farg.ll;
1020 }
1021
1022 /* frsqrte - frsqrte. */
1023 uint64_t helper_frsqrte(CPUPPCState *env, uint64_t arg)
1024 {
1025 CPU_DoubleU farg;
1026 float32 f32;
1027
1028 farg.ll = arg;
1029
1030 if (unlikely(float64_is_neg(farg.d) && !float64_is_zero(farg.d))) {
1031 /* Reciprocal square root of a negative nonzero number */
1032 farg.ll = fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSQRT);
1033 } else {
1034 if (unlikely(float64_is_signaling_nan(farg.d))) {
1035 /* sNaN reciprocal square root */
1036 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1037 }
1038 farg.d = float64_sqrt(farg.d, &env->fp_status);
1039 farg.d = float64_div(float64_one, farg.d, &env->fp_status);
1040 f32 = float64_to_float32(farg.d, &env->fp_status);
1041 farg.d = float32_to_float64(f32, &env->fp_status);
1042 }
1043 return farg.ll;
1044 }
1045
1046 /* fsel - fsel. */
1047 uint64_t helper_fsel(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1048 uint64_t arg3)
1049 {
1050 CPU_DoubleU farg1;
1051
1052 farg1.ll = arg1;
1053
1054 if ((!float64_is_neg(farg1.d) || float64_is_zero(farg1.d)) &&
1055 !float64_is_any_nan(farg1.d)) {
1056 return arg2;
1057 } else {
1058 return arg3;
1059 }
1060 }
1061
1062 void helper_fcmpu(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1063 uint32_t crfD)
1064 {
1065 CPU_DoubleU farg1, farg2;
1066 uint32_t ret = 0;
1067
1068 farg1.ll = arg1;
1069 farg2.ll = arg2;
1070
1071 if (unlikely(float64_is_any_nan(farg1.d) ||
1072 float64_is_any_nan(farg2.d))) {
1073 ret = 0x01UL;
1074 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1075 ret = 0x08UL;
1076 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1077 ret = 0x04UL;
1078 } else {
1079 ret = 0x02UL;
1080 }
1081
1082 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1083 env->fpscr |= ret << FPSCR_FPRF;
1084 env->crf[crfD] = ret;
1085 if (unlikely(ret == 0x01UL
1086 && (float64_is_signaling_nan(farg1.d) ||
1087 float64_is_signaling_nan(farg2.d)))) {
1088 /* sNaN comparison */
1089 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN);
1090 }
1091 }
1092
1093 void helper_fcmpo(CPUPPCState *env, uint64_t arg1, uint64_t arg2,
1094 uint32_t crfD)
1095 {
1096 CPU_DoubleU farg1, farg2;
1097 uint32_t ret = 0;
1098
1099 farg1.ll = arg1;
1100 farg2.ll = arg2;
1101
1102 if (unlikely(float64_is_any_nan(farg1.d) ||
1103 float64_is_any_nan(farg2.d))) {
1104 ret = 0x01UL;
1105 } else if (float64_lt(farg1.d, farg2.d, &env->fp_status)) {
1106 ret = 0x08UL;
1107 } else if (!float64_le(farg1.d, farg2.d, &env->fp_status)) {
1108 ret = 0x04UL;
1109 } else {
1110 ret = 0x02UL;
1111 }
1112
1113 env->fpscr &= ~(0x0F << FPSCR_FPRF);
1114 env->fpscr |= ret << FPSCR_FPRF;
1115 env->crf[crfD] = ret;
1116 if (unlikely(ret == 0x01UL)) {
1117 if (float64_is_signaling_nan(farg1.d) ||
1118 float64_is_signaling_nan(farg2.d)) {
1119 /* sNaN comparison */
1120 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXSNAN |
1121 POWERPC_EXCP_FP_VXVC);
1122 } else {
1123 /* qNaN comparison */
1124 fload_invalid_op_excp(env, POWERPC_EXCP_FP_VXVC);
1125 }
1126 }
1127 }
1128
1129 /* Single-precision floating-point conversions */
1130 static inline uint32_t efscfsi(CPUPPCState *env, uint32_t val)
1131 {
1132 CPU_FloatU u;
1133
1134 u.f = int32_to_float32(val, &env->vec_status);
1135
1136 return u.l;
1137 }
1138
1139 static inline uint32_t efscfui(CPUPPCState *env, uint32_t val)
1140 {
1141 CPU_FloatU u;
1142
1143 u.f = uint32_to_float32(val, &env->vec_status);
1144
1145 return u.l;
1146 }
1147
1148 static inline int32_t efsctsi(CPUPPCState *env, uint32_t val)
1149 {
1150 CPU_FloatU u;
1151
1152 u.l = val;
1153 /* NaN are not treated the same way IEEE 754 does */
1154 if (unlikely(float32_is_quiet_nan(u.f))) {
1155 return 0;
1156 }
1157
1158 return float32_to_int32(u.f, &env->vec_status);
1159 }
1160
1161 static inline uint32_t efsctui(CPUPPCState *env, uint32_t val)
1162 {
1163 CPU_FloatU u;
1164
1165 u.l = val;
1166 /* NaN are not treated the same way IEEE 754 does */
1167 if (unlikely(float32_is_quiet_nan(u.f))) {
1168 return 0;
1169 }
1170
1171 return float32_to_uint32(u.f, &env->vec_status);
1172 }
1173
1174 static inline uint32_t efsctsiz(CPUPPCState *env, uint32_t val)
1175 {
1176 CPU_FloatU u;
1177
1178 u.l = val;
1179 /* NaN are not treated the same way IEEE 754 does */
1180 if (unlikely(float32_is_quiet_nan(u.f))) {
1181 return 0;
1182 }
1183
1184 return float32_to_int32_round_to_zero(u.f, &env->vec_status);
1185 }
1186
1187 static inline uint32_t efsctuiz(CPUPPCState *env, uint32_t val)
1188 {
1189 CPU_FloatU u;
1190
1191 u.l = val;
1192 /* NaN are not treated the same way IEEE 754 does */
1193 if (unlikely(float32_is_quiet_nan(u.f))) {
1194 return 0;
1195 }
1196
1197 return float32_to_uint32_round_to_zero(u.f, &env->vec_status);
1198 }
1199
1200 static inline uint32_t efscfsf(CPUPPCState *env, uint32_t val)
1201 {
1202 CPU_FloatU u;
1203 float32 tmp;
1204
1205 u.f = int32_to_float32(val, &env->vec_status);
1206 tmp = int64_to_float32(1ULL << 32, &env->vec_status);
1207 u.f = float32_div(u.f, tmp, &env->vec_status);
1208
1209 return u.l;
1210 }
1211
1212 static inline uint32_t efscfuf(CPUPPCState *env, uint32_t val)
1213 {
1214 CPU_FloatU u;
1215 float32 tmp;
1216
1217 u.f = uint32_to_float32(val, &env->vec_status);
1218 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1219 u.f = float32_div(u.f, tmp, &env->vec_status);
1220
1221 return u.l;
1222 }
1223
1224 static inline uint32_t efsctsf(CPUPPCState *env, uint32_t val)
1225 {
1226 CPU_FloatU u;
1227 float32 tmp;
1228
1229 u.l = val;
1230 /* NaN are not treated the same way IEEE 754 does */
1231 if (unlikely(float32_is_quiet_nan(u.f))) {
1232 return 0;
1233 }
1234 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1235 u.f = float32_mul(u.f, tmp, &env->vec_status);
1236
1237 return float32_to_int32(u.f, &env->vec_status);
1238 }
1239
1240 static inline uint32_t efsctuf(CPUPPCState *env, uint32_t val)
1241 {
1242 CPU_FloatU u;
1243 float32 tmp;
1244
1245 u.l = val;
1246 /* NaN are not treated the same way IEEE 754 does */
1247 if (unlikely(float32_is_quiet_nan(u.f))) {
1248 return 0;
1249 }
1250 tmp = uint64_to_float32(1ULL << 32, &env->vec_status);
1251 u.f = float32_mul(u.f, tmp, &env->vec_status);
1252
1253 return float32_to_uint32(u.f, &env->vec_status);
1254 }
1255
1256 #define HELPER_SPE_SINGLE_CONV(name) \
1257 uint32_t helper_e##name(CPUPPCState *env, uint32_t val) \
1258 { \
1259 return e##name(env, val); \
1260 }
1261 /* efscfsi */
1262 HELPER_SPE_SINGLE_CONV(fscfsi);
1263 /* efscfui */
1264 HELPER_SPE_SINGLE_CONV(fscfui);
1265 /* efscfuf */
1266 HELPER_SPE_SINGLE_CONV(fscfuf);
1267 /* efscfsf */
1268 HELPER_SPE_SINGLE_CONV(fscfsf);
1269 /* efsctsi */
1270 HELPER_SPE_SINGLE_CONV(fsctsi);
1271 /* efsctui */
1272 HELPER_SPE_SINGLE_CONV(fsctui);
1273 /* efsctsiz */
1274 HELPER_SPE_SINGLE_CONV(fsctsiz);
1275 /* efsctuiz */
1276 HELPER_SPE_SINGLE_CONV(fsctuiz);
1277 /* efsctsf */
1278 HELPER_SPE_SINGLE_CONV(fsctsf);
1279 /* efsctuf */
1280 HELPER_SPE_SINGLE_CONV(fsctuf);
1281
1282 #define HELPER_SPE_VECTOR_CONV(name) \
1283 uint64_t helper_ev##name(CPUPPCState *env, uint64_t val) \
1284 { \
1285 return ((uint64_t)e##name(env, val >> 32) << 32) | \
1286 (uint64_t)e##name(env, val); \
1287 }
1288 /* evfscfsi */
1289 HELPER_SPE_VECTOR_CONV(fscfsi);
1290 /* evfscfui */
1291 HELPER_SPE_VECTOR_CONV(fscfui);
1292 /* evfscfuf */
1293 HELPER_SPE_VECTOR_CONV(fscfuf);
1294 /* evfscfsf */
1295 HELPER_SPE_VECTOR_CONV(fscfsf);
1296 /* evfsctsi */
1297 HELPER_SPE_VECTOR_CONV(fsctsi);
1298 /* evfsctui */
1299 HELPER_SPE_VECTOR_CONV(fsctui);
1300 /* evfsctsiz */
1301 HELPER_SPE_VECTOR_CONV(fsctsiz);
1302 /* evfsctuiz */
1303 HELPER_SPE_VECTOR_CONV(fsctuiz);
1304 /* evfsctsf */
1305 HELPER_SPE_VECTOR_CONV(fsctsf);
1306 /* evfsctuf */
1307 HELPER_SPE_VECTOR_CONV(fsctuf);
1308
1309 /* Single-precision floating-point arithmetic */
1310 static inline uint32_t efsadd(CPUPPCState *env, uint32_t op1, uint32_t op2)
1311 {
1312 CPU_FloatU u1, u2;
1313
1314 u1.l = op1;
1315 u2.l = op2;
1316 u1.f = float32_add(u1.f, u2.f, &env->vec_status);
1317 return u1.l;
1318 }
1319
1320 static inline uint32_t efssub(CPUPPCState *env, uint32_t op1, uint32_t op2)
1321 {
1322 CPU_FloatU u1, u2;
1323
1324 u1.l = op1;
1325 u2.l = op2;
1326 u1.f = float32_sub(u1.f, u2.f, &env->vec_status);
1327 return u1.l;
1328 }
1329
1330 static inline uint32_t efsmul(CPUPPCState *env, uint32_t op1, uint32_t op2)
1331 {
1332 CPU_FloatU u1, u2;
1333
1334 u1.l = op1;
1335 u2.l = op2;
1336 u1.f = float32_mul(u1.f, u2.f, &env->vec_status);
1337 return u1.l;
1338 }
1339
1340 static inline uint32_t efsdiv(CPUPPCState *env, uint32_t op1, uint32_t op2)
1341 {
1342 CPU_FloatU u1, u2;
1343
1344 u1.l = op1;
1345 u2.l = op2;
1346 u1.f = float32_div(u1.f, u2.f, &env->vec_status);
1347 return u1.l;
1348 }
1349
1350 #define HELPER_SPE_SINGLE_ARITH(name) \
1351 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1352 { \
1353 return e##name(env, op1, op2); \
1354 }
1355 /* efsadd */
1356 HELPER_SPE_SINGLE_ARITH(fsadd);
1357 /* efssub */
1358 HELPER_SPE_SINGLE_ARITH(fssub);
1359 /* efsmul */
1360 HELPER_SPE_SINGLE_ARITH(fsmul);
1361 /* efsdiv */
1362 HELPER_SPE_SINGLE_ARITH(fsdiv);
1363
1364 #define HELPER_SPE_VECTOR_ARITH(name) \
1365 uint64_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1366 { \
1367 return ((uint64_t)e##name(env, op1 >> 32, op2 >> 32) << 32) | \
1368 (uint64_t)e##name(env, op1, op2); \
1369 }
1370 /* evfsadd */
1371 HELPER_SPE_VECTOR_ARITH(fsadd);
1372 /* evfssub */
1373 HELPER_SPE_VECTOR_ARITH(fssub);
1374 /* evfsmul */
1375 HELPER_SPE_VECTOR_ARITH(fsmul);
1376 /* evfsdiv */
1377 HELPER_SPE_VECTOR_ARITH(fsdiv);
1378
1379 /* Single-precision floating-point comparisons */
1380 static inline uint32_t efscmplt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1381 {
1382 CPU_FloatU u1, u2;
1383
1384 u1.l = op1;
1385 u2.l = op2;
1386 return float32_lt(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1387 }
1388
1389 static inline uint32_t efscmpgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1390 {
1391 CPU_FloatU u1, u2;
1392
1393 u1.l = op1;
1394 u2.l = op2;
1395 return float32_le(u1.f, u2.f, &env->vec_status) ? 0 : 4;
1396 }
1397
1398 static inline uint32_t efscmpeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1399 {
1400 CPU_FloatU u1, u2;
1401
1402 u1.l = op1;
1403 u2.l = op2;
1404 return float32_eq(u1.f, u2.f, &env->vec_status) ? 4 : 0;
1405 }
1406
1407 static inline uint32_t efststlt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1408 {
1409 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1410 return efscmplt(env, op1, op2);
1411 }
1412
1413 static inline uint32_t efststgt(CPUPPCState *env, uint32_t op1, uint32_t op2)
1414 {
1415 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1416 return efscmpgt(env, op1, op2);
1417 }
1418
1419 static inline uint32_t efststeq(CPUPPCState *env, uint32_t op1, uint32_t op2)
1420 {
1421 /* XXX: TODO: ignore special values (NaN, infinites, ...) */
1422 return efscmpeq(env, op1, op2);
1423 }
1424
1425 #define HELPER_SINGLE_SPE_CMP(name) \
1426 uint32_t helper_e##name(CPUPPCState *env, uint32_t op1, uint32_t op2) \
1427 { \
1428 return e##name(env, op1, op2) << 2; \
1429 }
1430 /* efststlt */
1431 HELPER_SINGLE_SPE_CMP(fststlt);
1432 /* efststgt */
1433 HELPER_SINGLE_SPE_CMP(fststgt);
1434 /* efststeq */
1435 HELPER_SINGLE_SPE_CMP(fststeq);
1436 /* efscmplt */
1437 HELPER_SINGLE_SPE_CMP(fscmplt);
1438 /* efscmpgt */
1439 HELPER_SINGLE_SPE_CMP(fscmpgt);
1440 /* efscmpeq */
1441 HELPER_SINGLE_SPE_CMP(fscmpeq);
1442
1443 static inline uint32_t evcmp_merge(int t0, int t1)
1444 {
1445 return (t0 << 3) | (t1 << 2) | ((t0 | t1) << 1) | (t0 & t1);
1446 }
1447
1448 #define HELPER_VECTOR_SPE_CMP(name) \
1449 uint32_t helper_ev##name(CPUPPCState *env, uint64_t op1, uint64_t op2) \
1450 { \
1451 return evcmp_merge(e##name(env, op1 >> 32, op2 >> 32), \
1452 e##name(env, op1, op2)); \
1453 }
1454 /* evfststlt */
1455 HELPER_VECTOR_SPE_CMP(fststlt);
1456 /* evfststgt */
1457 HELPER_VECTOR_SPE_CMP(fststgt);
1458 /* evfststeq */
1459 HELPER_VECTOR_SPE_CMP(fststeq);
1460 /* evfscmplt */
1461 HELPER_VECTOR_SPE_CMP(fscmplt);
1462 /* evfscmpgt */
1463 HELPER_VECTOR_SPE_CMP(fscmpgt);
1464 /* evfscmpeq */
1465 HELPER_VECTOR_SPE_CMP(fscmpeq);
1466
1467 /* Double-precision floating-point conversion */
1468 uint64_t helper_efdcfsi(CPUPPCState *env, uint32_t val)
1469 {
1470 CPU_DoubleU u;
1471
1472 u.d = int32_to_float64(val, &env->vec_status);
1473
1474 return u.ll;
1475 }
1476
1477 uint64_t helper_efdcfsid(CPUPPCState *env, uint64_t val)
1478 {
1479 CPU_DoubleU u;
1480
1481 u.d = int64_to_float64(val, &env->vec_status);
1482
1483 return u.ll;
1484 }
1485
1486 uint64_t helper_efdcfui(CPUPPCState *env, uint32_t val)
1487 {
1488 CPU_DoubleU u;
1489
1490 u.d = uint32_to_float64(val, &env->vec_status);
1491
1492 return u.ll;
1493 }
1494
1495 uint64_t helper_efdcfuid(CPUPPCState *env, uint64_t val)
1496 {
1497 CPU_DoubleU u;
1498
1499 u.d = uint64_to_float64(val, &env->vec_status);
1500
1501 return u.ll;
1502 }
1503
1504 uint32_t helper_efdctsi(CPUPPCState *env, uint64_t val)
1505 {
1506 CPU_DoubleU u;
1507
1508 u.ll = val;
1509 /* NaN are not treated the same way IEEE 754 does */
1510 if (unlikely(float64_is_any_nan(u.d))) {
1511 return 0;
1512 }
1513
1514 return float64_to_int32(u.d, &env->vec_status);
1515 }
1516
1517 uint32_t helper_efdctui(CPUPPCState *env, uint64_t val)
1518 {
1519 CPU_DoubleU u;
1520
1521 u.ll = val;
1522 /* NaN are not treated the same way IEEE 754 does */
1523 if (unlikely(float64_is_any_nan(u.d))) {
1524 return 0;
1525 }
1526
1527 return float64_to_uint32(u.d, &env->vec_status);
1528 }
1529
1530 uint32_t helper_efdctsiz(CPUPPCState *env, uint64_t val)
1531 {
1532 CPU_DoubleU u;
1533
1534 u.ll = val;
1535 /* NaN are not treated the same way IEEE 754 does */
1536 if (unlikely(float64_is_any_nan(u.d))) {
1537 return 0;
1538 }
1539
1540 return float64_to_int32_round_to_zero(u.d, &env->vec_status);
1541 }
1542
1543 uint64_t helper_efdctsidz(CPUPPCState *env, uint64_t val)
1544 {
1545 CPU_DoubleU u;
1546
1547 u.ll = val;
1548 /* NaN are not treated the same way IEEE 754 does */
1549 if (unlikely(float64_is_any_nan(u.d))) {
1550 return 0;
1551 }
1552
1553 return float64_to_int64_round_to_zero(u.d, &env->vec_status);
1554 }
1555
1556 uint32_t helper_efdctuiz(CPUPPCState *env, uint64_t val)
1557 {
1558 CPU_DoubleU u;
1559
1560 u.ll = val;
1561 /* NaN are not treated the same way IEEE 754 does */
1562 if (unlikely(float64_is_any_nan(u.d))) {
1563 return 0;
1564 }
1565
1566 return float64_to_uint32_round_to_zero(u.d, &env->vec_status);
1567 }
1568
1569 uint64_t helper_efdctuidz(CPUPPCState *env, uint64_t val)
1570 {
1571 CPU_DoubleU u;
1572
1573 u.ll = val;
1574 /* NaN are not treated the same way IEEE 754 does */
1575 if (unlikely(float64_is_any_nan(u.d))) {
1576 return 0;
1577 }
1578
1579 return float64_to_uint64_round_to_zero(u.d, &env->vec_status);
1580 }
1581
1582 uint64_t helper_efdcfsf(CPUPPCState *env, uint32_t val)
1583 {
1584 CPU_DoubleU u;
1585 float64 tmp;
1586
1587 u.d = int32_to_float64(val, &env->vec_status);
1588 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1589 u.d = float64_div(u.d, tmp, &env->vec_status);
1590
1591 return u.ll;
1592 }
1593
1594 uint64_t helper_efdcfuf(CPUPPCState *env, uint32_t val)
1595 {
1596 CPU_DoubleU u;
1597 float64 tmp;
1598
1599 u.d = uint32_to_float64(val, &env->vec_status);
1600 tmp = int64_to_float64(1ULL << 32, &env->vec_status);
1601 u.d = float64_div(u.d, tmp, &env->vec_status);
1602
1603 return u.ll;
1604 }
1605
1606 uint32_t helper_efdctsf(CPUPPCState *env, uint64_t val)
1607 {
1608 CPU_DoubleU u;
1609 float64 tmp;
1610
1611 u.ll = val;
1612 /* NaN are not treated the same way IEEE 754 does */
1613 if (unlikely(float64_is_any_nan(u.d))) {
1614 return 0;
1615 }
1616 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1617 u.d = float64_mul(u.d, tmp, &env->vec_status);
1618
1619 return float64_to_int32(u.d, &env->vec_status);
1620 }
1621
1622 uint32_t helper_efdctuf(CPUPPCState *env, uint64_t val)
1623 {
1624 CPU_DoubleU u;
1625 float64 tmp;
1626
1627 u.ll = val;
1628 /* NaN are not treated the same way IEEE 754 does */
1629 if (unlikely(float64_is_any_nan(u.d))) {
1630 return 0;
1631 }
1632 tmp = uint64_to_float64(1ULL << 32, &env->vec_status);
1633 u.d = float64_mul(u.d, tmp, &env->vec_status);
1634
1635 return float64_to_uint32(u.d, &env->vec_status);
1636 }
1637
1638 uint32_t helper_efscfd(CPUPPCState *env, uint64_t val)
1639 {
1640 CPU_DoubleU u1;
1641 CPU_FloatU u2;
1642
1643 u1.ll = val;
1644 u2.f = float64_to_float32(u1.d, &env->vec_status);
1645
1646 return u2.l;
1647 }
1648
1649 uint64_t helper_efdcfs(CPUPPCState *env, uint32_t val)
1650 {
1651 CPU_DoubleU u2;
1652 CPU_FloatU u1;
1653
1654 u1.l = val;
1655 u2.d = float32_to_float64(u1.f, &env->vec_status);
1656
1657 return u2.ll;
1658 }
1659
1660 /* Double precision fixed-point arithmetic */
1661 uint64_t helper_efdadd(CPUPPCState *env, uint64_t op1, uint64_t op2)
1662 {
1663 CPU_DoubleU u1, u2;
1664
1665 u1.ll = op1;
1666 u2.ll = op2;
1667 u1.d = float64_add(u1.d, u2.d, &env->vec_status);
1668 return u1.ll;
1669 }
1670
1671 uint64_t helper_efdsub(CPUPPCState *env, uint64_t op1, uint64_t op2)
1672 {
1673 CPU_DoubleU u1, u2;
1674
1675 u1.ll = op1;
1676 u2.ll = op2;
1677 u1.d = float64_sub(u1.d, u2.d, &env->vec_status);
1678 return u1.ll;
1679 }
1680
1681 uint64_t helper_efdmul(CPUPPCState *env, uint64_t op1, uint64_t op2)
1682 {
1683 CPU_DoubleU u1, u2;
1684
1685 u1.ll = op1;
1686 u2.ll = op2;
1687 u1.d = float64_mul(u1.d, u2.d, &env->vec_status);
1688 return u1.ll;
1689 }
1690
1691 uint64_t helper_efddiv(CPUPPCState *env, uint64_t op1, uint64_t op2)
1692 {
1693 CPU_DoubleU u1, u2;
1694
1695 u1.ll = op1;
1696 u2.ll = op2;
1697 u1.d = float64_div(u1.d, u2.d, &env->vec_status);
1698 return u1.ll;
1699 }
1700
1701 /* Double precision floating point helpers */
1702 uint32_t helper_efdtstlt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1703 {
1704 CPU_DoubleU u1, u2;
1705
1706 u1.ll = op1;
1707 u2.ll = op2;
1708 return float64_lt(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1709 }
1710
1711 uint32_t helper_efdtstgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1712 {
1713 CPU_DoubleU u1, u2;
1714
1715 u1.ll = op1;
1716 u2.ll = op2;
1717 return float64_le(u1.d, u2.d, &env->vec_status) ? 0 : 4;
1718 }
1719
1720 uint32_t helper_efdtsteq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1721 {
1722 CPU_DoubleU u1, u2;
1723
1724 u1.ll = op1;
1725 u2.ll = op2;
1726 return float64_eq_quiet(u1.d, u2.d, &env->vec_status) ? 4 : 0;
1727 }
1728
1729 uint32_t helper_efdcmplt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1730 {
1731 /* XXX: TODO: test special values (NaN, infinites, ...) */
1732 return helper_efdtstlt(env, op1, op2);
1733 }
1734
1735 uint32_t helper_efdcmpgt(CPUPPCState *env, uint64_t op1, uint64_t op2)
1736 {
1737 /* XXX: TODO: test special values (NaN, infinites, ...) */
1738 return helper_efdtstgt(env, op1, op2);
1739 }
1740
1741 uint32_t helper_efdcmpeq(CPUPPCState *env, uint64_t op1, uint64_t op2)
1742 {
1743 /* XXX: TODO: test special values (NaN, infinites, ...) */
1744 return helper_efdtsteq(env, op1, op2);
1745 }