]> git.proxmox.com Git - qemu.git/blob - target-ppc/kvm.c
Merge remote branch 'rth/axp-next' into alpha-merge
[qemu.git] / target-ppc / kvm.c
1 /*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <sys/types.h>
18 #include <sys/ioctl.h>
19 #include <sys/mman.h>
20
21 #include <linux/kvm.h>
22
23 #include "qemu-common.h"
24 #include "qemu-timer.h"
25 #include "sysemu.h"
26 #include "kvm.h"
27 #include "kvm_ppc.h"
28 #include "cpu.h"
29 #include "device_tree.h"
30
31 //#define DEBUG_KVM
32
33 #ifdef DEBUG_KVM
34 #define dprintf(fmt, ...) \
35 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
36 #else
37 #define dprintf(fmt, ...) \
38 do { } while (0)
39 #endif
40
41 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
42 KVM_CAP_LAST_INFO
43 };
44
45 static int cap_interrupt_unset = false;
46 static int cap_interrupt_level = false;
47 static int cap_segstate;
48 static int cap_booke_sregs;
49
50 /* XXX We have a race condition where we actually have a level triggered
51 * interrupt, but the infrastructure can't expose that yet, so the guest
52 * takes but ignores it, goes to sleep and never gets notified that there's
53 * still an interrupt pending.
54 *
55 * As a quick workaround, let's just wake up again 20 ms after we injected
56 * an interrupt. That way we can assure that we're always reinjecting
57 * interrupts in case the guest swallowed them.
58 */
59 static QEMUTimer *idle_timer;
60
61 static void kvm_kick_env(void *env)
62 {
63 qemu_cpu_kick(env);
64 }
65
66 int kvm_arch_init(KVMState *s)
67 {
68 #ifdef KVM_CAP_PPC_UNSET_IRQ
69 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
70 #endif
71 #ifdef KVM_CAP_PPC_IRQ_LEVEL
72 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
73 #endif
74 #ifdef KVM_CAP_PPC_SEGSTATE
75 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
76 #endif
77 #ifdef KVM_CAP_PPC_BOOKE_SREGS
78 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
79 #endif
80
81 if (!cap_interrupt_level) {
82 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
83 "VM to stall at times!\n");
84 }
85
86 return 0;
87 }
88
89 static int kvm_arch_sync_sregs(CPUState *cenv)
90 {
91 struct kvm_sregs sregs;
92 int ret;
93
94 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
95 /* What we're really trying to say is "if we're on BookE, we use
96 the native PVR for now". This is the only sane way to check
97 it though, so we potentially confuse users that they can run
98 BookE guests on BookS. Let's hope nobody dares enough :) */
99 return 0;
100 } else {
101 if (!cap_segstate) {
102 fprintf(stderr, "kvm error: missing PVR setting capability\n");
103 return -ENOSYS;
104 }
105 }
106
107 #if !defined(CONFIG_KVM_PPC_PVR)
108 if (1) {
109 fprintf(stderr, "kvm error: missing PVR setting capability\n");
110 return -ENOSYS;
111 }
112 #endif
113
114 ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
115 if (ret) {
116 return ret;
117 }
118
119 #ifdef CONFIG_KVM_PPC_PVR
120 sregs.pvr = cenv->spr[SPR_PVR];
121 #endif
122 return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
123 }
124
125 int kvm_arch_init_vcpu(CPUState *cenv)
126 {
127 int ret;
128
129 ret = kvm_arch_sync_sregs(cenv);
130 if (ret) {
131 return ret;
132 }
133
134 idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_env, cenv);
135
136 return ret;
137 }
138
139 void kvm_arch_reset_vcpu(CPUState *env)
140 {
141 }
142
143 int kvm_arch_put_registers(CPUState *env, int level)
144 {
145 struct kvm_regs regs;
146 int ret;
147 int i;
148
149 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
150 if (ret < 0)
151 return ret;
152
153 regs.ctr = env->ctr;
154 regs.lr = env->lr;
155 regs.xer = env->xer;
156 regs.msr = env->msr;
157 regs.pc = env->nip;
158
159 regs.srr0 = env->spr[SPR_SRR0];
160 regs.srr1 = env->spr[SPR_SRR1];
161
162 regs.sprg0 = env->spr[SPR_SPRG0];
163 regs.sprg1 = env->spr[SPR_SPRG1];
164 regs.sprg2 = env->spr[SPR_SPRG2];
165 regs.sprg3 = env->spr[SPR_SPRG3];
166 regs.sprg4 = env->spr[SPR_SPRG4];
167 regs.sprg5 = env->spr[SPR_SPRG5];
168 regs.sprg6 = env->spr[SPR_SPRG6];
169 regs.sprg7 = env->spr[SPR_SPRG7];
170
171 regs.pid = env->spr[SPR_BOOKE_PID];
172
173 for (i = 0;i < 32; i++)
174 regs.gpr[i] = env->gpr[i];
175
176 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
177 if (ret < 0)
178 return ret;
179
180 return ret;
181 }
182
183 int kvm_arch_get_registers(CPUState *env)
184 {
185 struct kvm_regs regs;
186 struct kvm_sregs sregs;
187 uint32_t cr;
188 int i, ret;
189
190 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
191 if (ret < 0)
192 return ret;
193
194 cr = regs.cr;
195 for (i = 7; i >= 0; i--) {
196 env->crf[i] = cr & 15;
197 cr >>= 4;
198 }
199
200 env->ctr = regs.ctr;
201 env->lr = regs.lr;
202 env->xer = regs.xer;
203 env->msr = regs.msr;
204 env->nip = regs.pc;
205
206 env->spr[SPR_SRR0] = regs.srr0;
207 env->spr[SPR_SRR1] = regs.srr1;
208
209 env->spr[SPR_SPRG0] = regs.sprg0;
210 env->spr[SPR_SPRG1] = regs.sprg1;
211 env->spr[SPR_SPRG2] = regs.sprg2;
212 env->spr[SPR_SPRG3] = regs.sprg3;
213 env->spr[SPR_SPRG4] = regs.sprg4;
214 env->spr[SPR_SPRG5] = regs.sprg5;
215 env->spr[SPR_SPRG6] = regs.sprg6;
216 env->spr[SPR_SPRG7] = regs.sprg7;
217
218 env->spr[SPR_BOOKE_PID] = regs.pid;
219
220 for (i = 0;i < 32; i++)
221 env->gpr[i] = regs.gpr[i];
222
223 if (cap_booke_sregs) {
224 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
225 if (ret < 0) {
226 return ret;
227 }
228
229 #ifdef KVM_CAP_PPC_BOOKE_SREGS
230 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
231 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
232 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
233 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
234 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
235 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
236 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
237 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
238 env->spr[SPR_DECR] = sregs.u.e.dec;
239 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
240 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
241 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
242 }
243
244 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
245 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
246 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
247 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
248 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
249 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
250 }
251
252 if (sregs.u.e.features & KVM_SREGS_E_64) {
253 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
254 }
255
256 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
257 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
258 }
259
260 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
261 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
262 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
263 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
264 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
265 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
266 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
267 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
268 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
269 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
270 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
271 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
272 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
273 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
274 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
275 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
276 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
277
278 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
279 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
280 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
281 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
282 }
283
284 if (sregs.u.e.features & KVM_SREGS_E_PM) {
285 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
286 }
287
288 if (sregs.u.e.features & KVM_SREGS_E_PC) {
289 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
290 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
291 }
292 }
293
294 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
295 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
296 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
297 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
298 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
299 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
300 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
301 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
302 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
303 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
304 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
305 }
306
307 if (sregs.u.e.features & KVM_SREGS_EXP) {
308 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
309 }
310
311 if (sregs.u.e.features & KVM_SREGS_E_PD) {
312 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
313 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
314 }
315
316 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
317 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
318 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
319 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
320
321 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
322 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
323 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
324 }
325 }
326 #endif
327 }
328
329 if (cap_segstate) {
330 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
331 if (ret < 0) {
332 return ret;
333 }
334
335 #ifdef KVM_CAP_PPC_SEGSTATE
336 ppc_store_sdr1(env, sregs.u.s.sdr1);
337
338 /* Sync SLB */
339 #ifdef TARGET_PPC64
340 for (i = 0; i < 64; i++) {
341 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
342 sregs.u.s.ppc64.slb[i].slbv);
343 }
344 #endif
345
346 /* Sync SRs */
347 for (i = 0; i < 16; i++) {
348 env->sr[i] = sregs.u.s.ppc32.sr[i];
349 }
350
351 /* Sync BATs */
352 for (i = 0; i < 8; i++) {
353 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
354 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
355 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
356 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
357 }
358 #endif
359 }
360
361 return 0;
362 }
363
364 int kvmppc_set_interrupt(CPUState *env, int irq, int level)
365 {
366 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
367
368 if (irq != PPC_INTERRUPT_EXT) {
369 return 0;
370 }
371
372 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
373 return 0;
374 }
375
376 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
377
378 return 0;
379 }
380
381 #if defined(TARGET_PPCEMB)
382 #define PPC_INPUT_INT PPC40x_INPUT_INT
383 #elif defined(TARGET_PPC64)
384 #define PPC_INPUT_INT PPC970_INPUT_INT
385 #else
386 #define PPC_INPUT_INT PPC6xx_INPUT_INT
387 #endif
388
389 void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
390 {
391 int r;
392 unsigned irq;
393
394 /* PowerPC Qemu tracks the various core input pins (interrupt, critical
395 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
396 if (!cap_interrupt_level &&
397 run->ready_for_interrupt_injection &&
398 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
399 (env->irq_input_state & (1<<PPC_INPUT_INT)))
400 {
401 /* For now KVM disregards the 'irq' argument. However, in the
402 * future KVM could cache it in-kernel to avoid a heavyweight exit
403 * when reading the UIC.
404 */
405 irq = KVM_INTERRUPT_SET;
406
407 dprintf("injected interrupt %d\n", irq);
408 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
409 if (r < 0)
410 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
411
412 /* Always wake up soon in case the interrupt was level based */
413 qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
414 (get_ticks_per_sec() / 50));
415 }
416
417 /* We don't know if there are more interrupts pending after this. However,
418 * the guest will return to userspace in the course of handling this one
419 * anyways, so we will get a chance to deliver the rest. */
420 }
421
422 void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
423 {
424 }
425
426 int kvm_arch_process_async_events(CPUState *env)
427 {
428 return 0;
429 }
430
431 static int kvmppc_handle_halt(CPUState *env)
432 {
433 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
434 env->halted = 1;
435 env->exception_index = EXCP_HLT;
436 }
437
438 return 0;
439 }
440
441 /* map dcr access to existing qemu dcr emulation */
442 static int kvmppc_handle_dcr_read(CPUState *env, uint32_t dcrn, uint32_t *data)
443 {
444 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
445 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
446
447 return 0;
448 }
449
450 static int kvmppc_handle_dcr_write(CPUState *env, uint32_t dcrn, uint32_t data)
451 {
452 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
453 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
454
455 return 0;
456 }
457
458 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
459 {
460 int ret;
461
462 switch (run->exit_reason) {
463 case KVM_EXIT_DCR:
464 if (run->dcr.is_write) {
465 dprintf("handle dcr write\n");
466 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
467 } else {
468 dprintf("handle dcr read\n");
469 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
470 }
471 break;
472 case KVM_EXIT_HLT:
473 dprintf("handle halt\n");
474 ret = kvmppc_handle_halt(env);
475 break;
476 default:
477 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
478 ret = -1;
479 break;
480 }
481
482 return ret;
483 }
484
485 static int read_cpuinfo(const char *field, char *value, int len)
486 {
487 FILE *f;
488 int ret = -1;
489 int field_len = strlen(field);
490 char line[512];
491
492 f = fopen("/proc/cpuinfo", "r");
493 if (!f) {
494 return -1;
495 }
496
497 do {
498 if(!fgets(line, sizeof(line), f)) {
499 break;
500 }
501 if (!strncmp(line, field, field_len)) {
502 strncpy(value, line, len);
503 ret = 0;
504 break;
505 }
506 } while(*line);
507
508 fclose(f);
509
510 return ret;
511 }
512
513 uint32_t kvmppc_get_tbfreq(void)
514 {
515 char line[512];
516 char *ns;
517 uint32_t retval = get_ticks_per_sec();
518
519 if (read_cpuinfo("timebase", line, sizeof(line))) {
520 return retval;
521 }
522
523 if (!(ns = strchr(line, ':'))) {
524 return retval;
525 }
526
527 ns++;
528
529 retval = atoi(ns);
530 return retval;
531 }
532
533 int kvmppc_get_hypercall(CPUState *env, uint8_t *buf, int buf_len)
534 {
535 uint32_t *hc = (uint32_t*)buf;
536
537 #ifdef KVM_CAP_PPC_GET_PVINFO
538 struct kvm_ppc_pvinfo pvinfo;
539
540 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
541 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
542 memcpy(buf, pvinfo.hcall, buf_len);
543
544 return 0;
545 }
546 #endif
547
548 /*
549 * Fallback to always fail hypercalls:
550 *
551 * li r3, -1
552 * nop
553 * nop
554 * nop
555 */
556
557 hc[0] = 0x3860ffff;
558 hc[1] = 0x60000000;
559 hc[2] = 0x60000000;
560 hc[3] = 0x60000000;
561
562 return 0;
563 }
564
565 bool kvm_arch_stop_on_emulation_error(CPUState *env)
566 {
567 return true;
568 }
569
570 int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
571 {
572 return 1;
573 }
574
575 int kvm_arch_on_sigbus(int code, void *addr)
576 {
577 return 1;
578 }