]> git.proxmox.com Git - qemu.git/blob - target-ppc/kvm.c
spapr: Pass PowerPCCPU to spapr_hypercall()
[qemu.git] / target-ppc / kvm.c
1 /*
2 * PowerPC implementation of KVM hooks
3 *
4 * Copyright IBM Corp. 2007
5 * Copyright (C) 2011 Freescale Semiconductor, Inc.
6 *
7 * Authors:
8 * Jerone Young <jyoung5@us.ibm.com>
9 * Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
10 * Hollis Blanchard <hollisb@us.ibm.com>
11 *
12 * This work is licensed under the terms of the GNU GPL, version 2 or later.
13 * See the COPYING file in the top-level directory.
14 *
15 */
16
17 #include <dirent.h>
18 #include <sys/types.h>
19 #include <sys/ioctl.h>
20 #include <sys/mman.h>
21 #include <sys/vfs.h>
22
23 #include <linux/kvm.h>
24
25 #include "qemu-common.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "kvm.h"
29 #include "kvm_ppc.h"
30 #include "cpu.h"
31 #include "cpus.h"
32 #include "device_tree.h"
33 #include "hw/sysbus.h"
34 #include "hw/spapr.h"
35
36 #include "hw/sysbus.h"
37 #include "hw/spapr.h"
38 #include "hw/spapr_vio.h"
39
40 //#define DEBUG_KVM
41
42 #ifdef DEBUG_KVM
43 #define dprintf(fmt, ...) \
44 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
45 #else
46 #define dprintf(fmt, ...) \
47 do { } while (0)
48 #endif
49
50 #define PROC_DEVTREE_CPU "/proc/device-tree/cpus/"
51
52 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
53 KVM_CAP_LAST_INFO
54 };
55
56 static int cap_interrupt_unset = false;
57 static int cap_interrupt_level = false;
58 static int cap_segstate;
59 static int cap_booke_sregs;
60 static int cap_ppc_smt;
61 static int cap_ppc_rma;
62 static int cap_spapr_tce;
63 static int cap_hior;
64
65 /* XXX We have a race condition where we actually have a level triggered
66 * interrupt, but the infrastructure can't expose that yet, so the guest
67 * takes but ignores it, goes to sleep and never gets notified that there's
68 * still an interrupt pending.
69 *
70 * As a quick workaround, let's just wake up again 20 ms after we injected
71 * an interrupt. That way we can assure that we're always reinjecting
72 * interrupts in case the guest swallowed them.
73 */
74 static QEMUTimer *idle_timer;
75
76 static void kvm_kick_cpu(void *opaque)
77 {
78 PowerPCCPU *cpu = opaque;
79
80 qemu_cpu_kick(CPU(cpu));
81 }
82
83 int kvm_arch_init(KVMState *s)
84 {
85 cap_interrupt_unset = kvm_check_extension(s, KVM_CAP_PPC_UNSET_IRQ);
86 cap_interrupt_level = kvm_check_extension(s, KVM_CAP_PPC_IRQ_LEVEL);
87 cap_segstate = kvm_check_extension(s, KVM_CAP_PPC_SEGSTATE);
88 cap_booke_sregs = kvm_check_extension(s, KVM_CAP_PPC_BOOKE_SREGS);
89 cap_ppc_smt = kvm_check_extension(s, KVM_CAP_PPC_SMT);
90 cap_ppc_rma = kvm_check_extension(s, KVM_CAP_PPC_RMA);
91 cap_spapr_tce = kvm_check_extension(s, KVM_CAP_SPAPR_TCE);
92 cap_hior = kvm_check_extension(s, KVM_CAP_PPC_HIOR);
93
94 if (!cap_interrupt_level) {
95 fprintf(stderr, "KVM: Couldn't find level irq capability. Expect the "
96 "VM to stall at times!\n");
97 }
98
99 return 0;
100 }
101
102 static int kvm_arch_sync_sregs(CPUPPCState *cenv)
103 {
104 struct kvm_sregs sregs;
105 int ret;
106
107 if (cenv->excp_model == POWERPC_EXCP_BOOKE) {
108 /* What we're really trying to say is "if we're on BookE, we use
109 the native PVR for now". This is the only sane way to check
110 it though, so we potentially confuse users that they can run
111 BookE guests on BookS. Let's hope nobody dares enough :) */
112 return 0;
113 } else {
114 if (!cap_segstate) {
115 fprintf(stderr, "kvm error: missing PVR setting capability\n");
116 return -ENOSYS;
117 }
118 }
119
120 ret = kvm_vcpu_ioctl(cenv, KVM_GET_SREGS, &sregs);
121 if (ret) {
122 return ret;
123 }
124
125 sregs.pvr = cenv->spr[SPR_PVR];
126 return kvm_vcpu_ioctl(cenv, KVM_SET_SREGS, &sregs);
127 }
128
129 /* Set up a shared TLB array with KVM */
130 static int kvm_booke206_tlb_init(CPUPPCState *env)
131 {
132 struct kvm_book3e_206_tlb_params params = {};
133 struct kvm_config_tlb cfg = {};
134 struct kvm_enable_cap encap = {};
135 unsigned int entries = 0;
136 int ret, i;
137
138 if (!kvm_enabled() ||
139 !kvm_check_extension(env->kvm_state, KVM_CAP_SW_TLB)) {
140 return 0;
141 }
142
143 assert(ARRAY_SIZE(params.tlb_sizes) == BOOKE206_MAX_TLBN);
144
145 for (i = 0; i < BOOKE206_MAX_TLBN; i++) {
146 params.tlb_sizes[i] = booke206_tlb_size(env, i);
147 params.tlb_ways[i] = booke206_tlb_ways(env, i);
148 entries += params.tlb_sizes[i];
149 }
150
151 assert(entries == env->nb_tlb);
152 assert(sizeof(struct kvm_book3e_206_tlb_entry) == sizeof(ppcmas_tlb_t));
153
154 env->tlb_dirty = true;
155
156 cfg.array = (uintptr_t)env->tlb.tlbm;
157 cfg.array_len = sizeof(ppcmas_tlb_t) * entries;
158 cfg.params = (uintptr_t)&params;
159 cfg.mmu_type = KVM_MMU_FSL_BOOKE_NOHV;
160
161 encap.cap = KVM_CAP_SW_TLB;
162 encap.args[0] = (uintptr_t)&cfg;
163
164 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &encap);
165 if (ret < 0) {
166 fprintf(stderr, "%s: couldn't enable KVM_CAP_SW_TLB: %s\n",
167 __func__, strerror(-ret));
168 return ret;
169 }
170
171 env->kvm_sw_tlb = true;
172 return 0;
173 }
174
175
176 #if defined(TARGET_PPC64)
177 static void kvm_get_fallback_smmu_info(CPUPPCState *env,
178 struct kvm_ppc_smmu_info *info)
179 {
180 memset(info, 0, sizeof(*info));
181
182 /* We don't have the new KVM_PPC_GET_SMMU_INFO ioctl, so
183 * need to "guess" what the supported page sizes are.
184 *
185 * For that to work we make a few assumptions:
186 *
187 * - If KVM_CAP_PPC_GET_PVINFO is supported we are running "PR"
188 * KVM which only supports 4K and 16M pages, but supports them
189 * regardless of the backing store characteritics. We also don't
190 * support 1T segments.
191 *
192 * This is safe as if HV KVM ever supports that capability or PR
193 * KVM grows supports for more page/segment sizes, those versions
194 * will have implemented KVM_CAP_PPC_GET_SMMU_INFO and thus we
195 * will not hit this fallback
196 *
197 * - Else we are running HV KVM. This means we only support page
198 * sizes that fit in the backing store. Additionally we only
199 * advertize 64K pages if the processor is ARCH 2.06 and we assume
200 * P7 encodings for the SLB and hash table. Here too, we assume
201 * support for any newer processor will mean a kernel that
202 * implements KVM_CAP_PPC_GET_SMMU_INFO and thus doesn't hit
203 * this fallback.
204 */
205 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
206 /* No flags */
207 info->flags = 0;
208 info->slb_size = 64;
209
210 /* Standard 4k base page size segment */
211 info->sps[0].page_shift = 12;
212 info->sps[0].slb_enc = 0;
213 info->sps[0].enc[0].page_shift = 12;
214 info->sps[0].enc[0].pte_enc = 0;
215
216 /* Standard 16M large page size segment */
217 info->sps[1].page_shift = 24;
218 info->sps[1].slb_enc = SLB_VSID_L;
219 info->sps[1].enc[0].page_shift = 24;
220 info->sps[1].enc[0].pte_enc = 0;
221 } else {
222 int i = 0;
223
224 /* HV KVM has backing store size restrictions */
225 info->flags = KVM_PPC_PAGE_SIZES_REAL;
226
227 if (env->mmu_model & POWERPC_MMU_1TSEG) {
228 info->flags |= KVM_PPC_1T_SEGMENTS;
229 }
230
231 if (env->mmu_model == POWERPC_MMU_2_06) {
232 info->slb_size = 32;
233 } else {
234 info->slb_size = 64;
235 }
236
237 /* Standard 4k base page size segment */
238 info->sps[i].page_shift = 12;
239 info->sps[i].slb_enc = 0;
240 info->sps[i].enc[0].page_shift = 12;
241 info->sps[i].enc[0].pte_enc = 0;
242 i++;
243
244 /* 64K on MMU 2.06 */
245 if (env->mmu_model == POWERPC_MMU_2_06) {
246 info->sps[i].page_shift = 16;
247 info->sps[i].slb_enc = 0x110;
248 info->sps[i].enc[0].page_shift = 16;
249 info->sps[i].enc[0].pte_enc = 1;
250 i++;
251 }
252
253 /* Standard 16M large page size segment */
254 info->sps[i].page_shift = 24;
255 info->sps[i].slb_enc = SLB_VSID_L;
256 info->sps[i].enc[0].page_shift = 24;
257 info->sps[i].enc[0].pte_enc = 0;
258 }
259 }
260
261 static void kvm_get_smmu_info(CPUPPCState *env, struct kvm_ppc_smmu_info *info)
262 {
263 int ret;
264
265 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_SMMU_INFO)) {
266 ret = kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_SMMU_INFO, info);
267 if (ret == 0) {
268 return;
269 }
270 }
271
272 kvm_get_fallback_smmu_info(env, info);
273 }
274
275 static long getrampagesize(void)
276 {
277 struct statfs fs;
278 int ret;
279
280 if (!mem_path) {
281 /* guest RAM is backed by normal anonymous pages */
282 return getpagesize();
283 }
284
285 do {
286 ret = statfs(mem_path, &fs);
287 } while (ret != 0 && errno == EINTR);
288
289 if (ret != 0) {
290 fprintf(stderr, "Couldn't statfs() memory path: %s\n",
291 strerror(errno));
292 exit(1);
293 }
294
295 #define HUGETLBFS_MAGIC 0x958458f6
296
297 if (fs.f_type != HUGETLBFS_MAGIC) {
298 /* Explicit mempath, but it's ordinary pages */
299 return getpagesize();
300 }
301
302 /* It's hugepage, return the huge page size */
303 return fs.f_bsize;
304 }
305
306 static bool kvm_valid_page_size(uint32_t flags, long rampgsize, uint32_t shift)
307 {
308 if (!(flags & KVM_PPC_PAGE_SIZES_REAL)) {
309 return true;
310 }
311
312 return (1ul << shift) <= rampgsize;
313 }
314
315 static void kvm_fixup_page_sizes(CPUPPCState *env)
316 {
317 static struct kvm_ppc_smmu_info smmu_info;
318 static bool has_smmu_info;
319 long rampagesize;
320 int iq, ik, jq, jk;
321
322 /* We only handle page sizes for 64-bit server guests for now */
323 if (!(env->mmu_model & POWERPC_MMU_64)) {
324 return;
325 }
326
327 /* Collect MMU info from kernel if not already */
328 if (!has_smmu_info) {
329 kvm_get_smmu_info(env, &smmu_info);
330 has_smmu_info = true;
331 }
332
333 rampagesize = getrampagesize();
334
335 /* Convert to QEMU form */
336 memset(&env->sps, 0, sizeof(env->sps));
337
338 for (ik = iq = 0; ik < KVM_PPC_PAGE_SIZES_MAX_SZ; ik++) {
339 struct ppc_one_seg_page_size *qsps = &env->sps.sps[iq];
340 struct kvm_ppc_one_seg_page_size *ksps = &smmu_info.sps[ik];
341
342 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
343 ksps->page_shift)) {
344 continue;
345 }
346 qsps->page_shift = ksps->page_shift;
347 qsps->slb_enc = ksps->slb_enc;
348 for (jk = jq = 0; jk < KVM_PPC_PAGE_SIZES_MAX_SZ; jk++) {
349 if (!kvm_valid_page_size(smmu_info.flags, rampagesize,
350 ksps->enc[jk].page_shift)) {
351 continue;
352 }
353 qsps->enc[jq].page_shift = ksps->enc[jk].page_shift;
354 qsps->enc[jq].pte_enc = ksps->enc[jk].pte_enc;
355 if (++jq >= PPC_PAGE_SIZES_MAX_SZ) {
356 break;
357 }
358 }
359 if (++iq >= PPC_PAGE_SIZES_MAX_SZ) {
360 break;
361 }
362 }
363 env->slb_nr = smmu_info.slb_size;
364 if (smmu_info.flags & KVM_PPC_1T_SEGMENTS) {
365 env->mmu_model |= POWERPC_MMU_1TSEG;
366 } else {
367 env->mmu_model &= ~POWERPC_MMU_1TSEG;
368 }
369 }
370 #else /* defined (TARGET_PPC64) */
371
372 static inline void kvm_fixup_page_sizes(CPUPPCState *env)
373 {
374 }
375
376 #endif /* !defined (TARGET_PPC64) */
377
378 int kvm_arch_init_vcpu(CPUPPCState *cenv)
379 {
380 PowerPCCPU *cpu = ppc_env_get_cpu(cenv);
381 int ret;
382
383 /* Gather server mmu info from KVM and update the CPU state */
384 kvm_fixup_page_sizes(cenv);
385
386 /* Synchronize sregs with kvm */
387 ret = kvm_arch_sync_sregs(cenv);
388 if (ret) {
389 return ret;
390 }
391
392 idle_timer = qemu_new_timer_ns(vm_clock, kvm_kick_cpu, cpu);
393
394 /* Some targets support access to KVM's guest TLB. */
395 switch (cenv->mmu_model) {
396 case POWERPC_MMU_BOOKE206:
397 ret = kvm_booke206_tlb_init(cenv);
398 break;
399 default:
400 break;
401 }
402
403 return ret;
404 }
405
406 void kvm_arch_reset_vcpu(CPUPPCState *env)
407 {
408 }
409
410 static void kvm_sw_tlb_put(CPUPPCState *env)
411 {
412 struct kvm_dirty_tlb dirty_tlb;
413 unsigned char *bitmap;
414 int ret;
415
416 if (!env->kvm_sw_tlb) {
417 return;
418 }
419
420 bitmap = g_malloc((env->nb_tlb + 7) / 8);
421 memset(bitmap, 0xFF, (env->nb_tlb + 7) / 8);
422
423 dirty_tlb.bitmap = (uintptr_t)bitmap;
424 dirty_tlb.num_dirty = env->nb_tlb;
425
426 ret = kvm_vcpu_ioctl(env, KVM_DIRTY_TLB, &dirty_tlb);
427 if (ret) {
428 fprintf(stderr, "%s: KVM_DIRTY_TLB: %s\n",
429 __func__, strerror(-ret));
430 }
431
432 g_free(bitmap);
433 }
434
435 int kvm_arch_put_registers(CPUPPCState *env, int level)
436 {
437 struct kvm_regs regs;
438 int ret;
439 int i;
440
441 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
442 if (ret < 0)
443 return ret;
444
445 regs.ctr = env->ctr;
446 regs.lr = env->lr;
447 regs.xer = env->xer;
448 regs.msr = env->msr;
449 regs.pc = env->nip;
450
451 regs.srr0 = env->spr[SPR_SRR0];
452 regs.srr1 = env->spr[SPR_SRR1];
453
454 regs.sprg0 = env->spr[SPR_SPRG0];
455 regs.sprg1 = env->spr[SPR_SPRG1];
456 regs.sprg2 = env->spr[SPR_SPRG2];
457 regs.sprg3 = env->spr[SPR_SPRG3];
458 regs.sprg4 = env->spr[SPR_SPRG4];
459 regs.sprg5 = env->spr[SPR_SPRG5];
460 regs.sprg6 = env->spr[SPR_SPRG6];
461 regs.sprg7 = env->spr[SPR_SPRG7];
462
463 regs.pid = env->spr[SPR_BOOKE_PID];
464
465 for (i = 0;i < 32; i++)
466 regs.gpr[i] = env->gpr[i];
467
468 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
469 if (ret < 0)
470 return ret;
471
472 if (env->tlb_dirty) {
473 kvm_sw_tlb_put(env);
474 env->tlb_dirty = false;
475 }
476
477 if (cap_segstate && (level >= KVM_PUT_RESET_STATE)) {
478 struct kvm_sregs sregs;
479
480 sregs.pvr = env->spr[SPR_PVR];
481
482 sregs.u.s.sdr1 = env->spr[SPR_SDR1];
483
484 /* Sync SLB */
485 #ifdef TARGET_PPC64
486 for (i = 0; i < 64; i++) {
487 sregs.u.s.ppc64.slb[i].slbe = env->slb[i].esid;
488 sregs.u.s.ppc64.slb[i].slbv = env->slb[i].vsid;
489 }
490 #endif
491
492 /* Sync SRs */
493 for (i = 0; i < 16; i++) {
494 sregs.u.s.ppc32.sr[i] = env->sr[i];
495 }
496
497 /* Sync BATs */
498 for (i = 0; i < 8; i++) {
499 /* Beware. We have to swap upper and lower bits here */
500 sregs.u.s.ppc32.dbat[i] = ((uint64_t)env->DBAT[0][i] << 32)
501 | env->DBAT[1][i];
502 sregs.u.s.ppc32.ibat[i] = ((uint64_t)env->IBAT[0][i] << 32)
503 | env->IBAT[1][i];
504 }
505
506 ret = kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
507 if (ret) {
508 return ret;
509 }
510 }
511
512 if (cap_hior && (level >= KVM_PUT_RESET_STATE)) {
513 uint64_t hior = env->spr[SPR_HIOR];
514 struct kvm_one_reg reg = {
515 .id = KVM_REG_PPC_HIOR,
516 .addr = (uintptr_t) &hior,
517 };
518
519 ret = kvm_vcpu_ioctl(env, KVM_SET_ONE_REG, &reg);
520 if (ret) {
521 return ret;
522 }
523 }
524
525 return ret;
526 }
527
528 int kvm_arch_get_registers(CPUPPCState *env)
529 {
530 struct kvm_regs regs;
531 struct kvm_sregs sregs;
532 uint32_t cr;
533 int i, ret;
534
535 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
536 if (ret < 0)
537 return ret;
538
539 cr = regs.cr;
540 for (i = 7; i >= 0; i--) {
541 env->crf[i] = cr & 15;
542 cr >>= 4;
543 }
544
545 env->ctr = regs.ctr;
546 env->lr = regs.lr;
547 env->xer = regs.xer;
548 env->msr = regs.msr;
549 env->nip = regs.pc;
550
551 env->spr[SPR_SRR0] = regs.srr0;
552 env->spr[SPR_SRR1] = regs.srr1;
553
554 env->spr[SPR_SPRG0] = regs.sprg0;
555 env->spr[SPR_SPRG1] = regs.sprg1;
556 env->spr[SPR_SPRG2] = regs.sprg2;
557 env->spr[SPR_SPRG3] = regs.sprg3;
558 env->spr[SPR_SPRG4] = regs.sprg4;
559 env->spr[SPR_SPRG5] = regs.sprg5;
560 env->spr[SPR_SPRG6] = regs.sprg6;
561 env->spr[SPR_SPRG7] = regs.sprg7;
562
563 env->spr[SPR_BOOKE_PID] = regs.pid;
564
565 for (i = 0;i < 32; i++)
566 env->gpr[i] = regs.gpr[i];
567
568 if (cap_booke_sregs) {
569 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
570 if (ret < 0) {
571 return ret;
572 }
573
574 if (sregs.u.e.features & KVM_SREGS_E_BASE) {
575 env->spr[SPR_BOOKE_CSRR0] = sregs.u.e.csrr0;
576 env->spr[SPR_BOOKE_CSRR1] = sregs.u.e.csrr1;
577 env->spr[SPR_BOOKE_ESR] = sregs.u.e.esr;
578 env->spr[SPR_BOOKE_DEAR] = sregs.u.e.dear;
579 env->spr[SPR_BOOKE_MCSR] = sregs.u.e.mcsr;
580 env->spr[SPR_BOOKE_TSR] = sregs.u.e.tsr;
581 env->spr[SPR_BOOKE_TCR] = sregs.u.e.tcr;
582 env->spr[SPR_DECR] = sregs.u.e.dec;
583 env->spr[SPR_TBL] = sregs.u.e.tb & 0xffffffff;
584 env->spr[SPR_TBU] = sregs.u.e.tb >> 32;
585 env->spr[SPR_VRSAVE] = sregs.u.e.vrsave;
586 }
587
588 if (sregs.u.e.features & KVM_SREGS_E_ARCH206) {
589 env->spr[SPR_BOOKE_PIR] = sregs.u.e.pir;
590 env->spr[SPR_BOOKE_MCSRR0] = sregs.u.e.mcsrr0;
591 env->spr[SPR_BOOKE_MCSRR1] = sregs.u.e.mcsrr1;
592 env->spr[SPR_BOOKE_DECAR] = sregs.u.e.decar;
593 env->spr[SPR_BOOKE_IVPR] = sregs.u.e.ivpr;
594 }
595
596 if (sregs.u.e.features & KVM_SREGS_E_64) {
597 env->spr[SPR_BOOKE_EPCR] = sregs.u.e.epcr;
598 }
599
600 if (sregs.u.e.features & KVM_SREGS_E_SPRG8) {
601 env->spr[SPR_BOOKE_SPRG8] = sregs.u.e.sprg8;
602 }
603
604 if (sregs.u.e.features & KVM_SREGS_E_IVOR) {
605 env->spr[SPR_BOOKE_IVOR0] = sregs.u.e.ivor_low[0];
606 env->spr[SPR_BOOKE_IVOR1] = sregs.u.e.ivor_low[1];
607 env->spr[SPR_BOOKE_IVOR2] = sregs.u.e.ivor_low[2];
608 env->spr[SPR_BOOKE_IVOR3] = sregs.u.e.ivor_low[3];
609 env->spr[SPR_BOOKE_IVOR4] = sregs.u.e.ivor_low[4];
610 env->spr[SPR_BOOKE_IVOR5] = sregs.u.e.ivor_low[5];
611 env->spr[SPR_BOOKE_IVOR6] = sregs.u.e.ivor_low[6];
612 env->spr[SPR_BOOKE_IVOR7] = sregs.u.e.ivor_low[7];
613 env->spr[SPR_BOOKE_IVOR8] = sregs.u.e.ivor_low[8];
614 env->spr[SPR_BOOKE_IVOR9] = sregs.u.e.ivor_low[9];
615 env->spr[SPR_BOOKE_IVOR10] = sregs.u.e.ivor_low[10];
616 env->spr[SPR_BOOKE_IVOR11] = sregs.u.e.ivor_low[11];
617 env->spr[SPR_BOOKE_IVOR12] = sregs.u.e.ivor_low[12];
618 env->spr[SPR_BOOKE_IVOR13] = sregs.u.e.ivor_low[13];
619 env->spr[SPR_BOOKE_IVOR14] = sregs.u.e.ivor_low[14];
620 env->spr[SPR_BOOKE_IVOR15] = sregs.u.e.ivor_low[15];
621
622 if (sregs.u.e.features & KVM_SREGS_E_SPE) {
623 env->spr[SPR_BOOKE_IVOR32] = sregs.u.e.ivor_high[0];
624 env->spr[SPR_BOOKE_IVOR33] = sregs.u.e.ivor_high[1];
625 env->spr[SPR_BOOKE_IVOR34] = sregs.u.e.ivor_high[2];
626 }
627
628 if (sregs.u.e.features & KVM_SREGS_E_PM) {
629 env->spr[SPR_BOOKE_IVOR35] = sregs.u.e.ivor_high[3];
630 }
631
632 if (sregs.u.e.features & KVM_SREGS_E_PC) {
633 env->spr[SPR_BOOKE_IVOR36] = sregs.u.e.ivor_high[4];
634 env->spr[SPR_BOOKE_IVOR37] = sregs.u.e.ivor_high[5];
635 }
636 }
637
638 if (sregs.u.e.features & KVM_SREGS_E_ARCH206_MMU) {
639 env->spr[SPR_BOOKE_MAS0] = sregs.u.e.mas0;
640 env->spr[SPR_BOOKE_MAS1] = sregs.u.e.mas1;
641 env->spr[SPR_BOOKE_MAS2] = sregs.u.e.mas2;
642 env->spr[SPR_BOOKE_MAS3] = sregs.u.e.mas7_3 & 0xffffffff;
643 env->spr[SPR_BOOKE_MAS4] = sregs.u.e.mas4;
644 env->spr[SPR_BOOKE_MAS6] = sregs.u.e.mas6;
645 env->spr[SPR_BOOKE_MAS7] = sregs.u.e.mas7_3 >> 32;
646 env->spr[SPR_MMUCFG] = sregs.u.e.mmucfg;
647 env->spr[SPR_BOOKE_TLB0CFG] = sregs.u.e.tlbcfg[0];
648 env->spr[SPR_BOOKE_TLB1CFG] = sregs.u.e.tlbcfg[1];
649 }
650
651 if (sregs.u.e.features & KVM_SREGS_EXP) {
652 env->spr[SPR_BOOKE_EPR] = sregs.u.e.epr;
653 }
654
655 if (sregs.u.e.features & KVM_SREGS_E_PD) {
656 env->spr[SPR_BOOKE_EPLC] = sregs.u.e.eplc;
657 env->spr[SPR_BOOKE_EPSC] = sregs.u.e.epsc;
658 }
659
660 if (sregs.u.e.impl_id == KVM_SREGS_E_IMPL_FSL) {
661 env->spr[SPR_E500_SVR] = sregs.u.e.impl.fsl.svr;
662 env->spr[SPR_Exxx_MCAR] = sregs.u.e.impl.fsl.mcar;
663 env->spr[SPR_HID0] = sregs.u.e.impl.fsl.hid0;
664
665 if (sregs.u.e.impl.fsl.features & KVM_SREGS_E_FSL_PIDn) {
666 env->spr[SPR_BOOKE_PID1] = sregs.u.e.impl.fsl.pid1;
667 env->spr[SPR_BOOKE_PID2] = sregs.u.e.impl.fsl.pid2;
668 }
669 }
670 }
671
672 if (cap_segstate) {
673 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
674 if (ret < 0) {
675 return ret;
676 }
677
678 ppc_store_sdr1(env, sregs.u.s.sdr1);
679
680 /* Sync SLB */
681 #ifdef TARGET_PPC64
682 for (i = 0; i < 64; i++) {
683 ppc_store_slb(env, sregs.u.s.ppc64.slb[i].slbe,
684 sregs.u.s.ppc64.slb[i].slbv);
685 }
686 #endif
687
688 /* Sync SRs */
689 for (i = 0; i < 16; i++) {
690 env->sr[i] = sregs.u.s.ppc32.sr[i];
691 }
692
693 /* Sync BATs */
694 for (i = 0; i < 8; i++) {
695 env->DBAT[0][i] = sregs.u.s.ppc32.dbat[i] & 0xffffffff;
696 env->DBAT[1][i] = sregs.u.s.ppc32.dbat[i] >> 32;
697 env->IBAT[0][i] = sregs.u.s.ppc32.ibat[i] & 0xffffffff;
698 env->IBAT[1][i] = sregs.u.s.ppc32.ibat[i] >> 32;
699 }
700 }
701
702 return 0;
703 }
704
705 int kvmppc_set_interrupt(CPUPPCState *env, int irq, int level)
706 {
707 unsigned virq = level ? KVM_INTERRUPT_SET_LEVEL : KVM_INTERRUPT_UNSET;
708
709 if (irq != PPC_INTERRUPT_EXT) {
710 return 0;
711 }
712
713 if (!kvm_enabled() || !cap_interrupt_unset || !cap_interrupt_level) {
714 return 0;
715 }
716
717 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &virq);
718
719 return 0;
720 }
721
722 #if defined(TARGET_PPCEMB)
723 #define PPC_INPUT_INT PPC40x_INPUT_INT
724 #elif defined(TARGET_PPC64)
725 #define PPC_INPUT_INT PPC970_INPUT_INT
726 #else
727 #define PPC_INPUT_INT PPC6xx_INPUT_INT
728 #endif
729
730 void kvm_arch_pre_run(CPUPPCState *env, struct kvm_run *run)
731 {
732 int r;
733 unsigned irq;
734
735 /* PowerPC QEMU tracks the various core input pins (interrupt, critical
736 * interrupt, reset, etc) in PPC-specific env->irq_input_state. */
737 if (!cap_interrupt_level &&
738 run->ready_for_interrupt_injection &&
739 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
740 (env->irq_input_state & (1<<PPC_INPUT_INT)))
741 {
742 /* For now KVM disregards the 'irq' argument. However, in the
743 * future KVM could cache it in-kernel to avoid a heavyweight exit
744 * when reading the UIC.
745 */
746 irq = KVM_INTERRUPT_SET;
747
748 dprintf("injected interrupt %d\n", irq);
749 r = kvm_vcpu_ioctl(env, KVM_INTERRUPT, &irq);
750 if (r < 0)
751 printf("cpu %d fail inject %x\n", env->cpu_index, irq);
752
753 /* Always wake up soon in case the interrupt was level based */
754 qemu_mod_timer(idle_timer, qemu_get_clock_ns(vm_clock) +
755 (get_ticks_per_sec() / 50));
756 }
757
758 /* We don't know if there are more interrupts pending after this. However,
759 * the guest will return to userspace in the course of handling this one
760 * anyways, so we will get a chance to deliver the rest. */
761 }
762
763 void kvm_arch_post_run(CPUPPCState *env, struct kvm_run *run)
764 {
765 }
766
767 int kvm_arch_process_async_events(CPUPPCState *env)
768 {
769 return env->halted;
770 }
771
772 static int kvmppc_handle_halt(CPUPPCState *env)
773 {
774 if (!(env->interrupt_request & CPU_INTERRUPT_HARD) && (msr_ee)) {
775 env->halted = 1;
776 env->exception_index = EXCP_HLT;
777 }
778
779 return 0;
780 }
781
782 /* map dcr access to existing qemu dcr emulation */
783 static int kvmppc_handle_dcr_read(CPUPPCState *env, uint32_t dcrn, uint32_t *data)
784 {
785 if (ppc_dcr_read(env->dcr_env, dcrn, data) < 0)
786 fprintf(stderr, "Read to unhandled DCR (0x%x)\n", dcrn);
787
788 return 0;
789 }
790
791 static int kvmppc_handle_dcr_write(CPUPPCState *env, uint32_t dcrn, uint32_t data)
792 {
793 if (ppc_dcr_write(env->dcr_env, dcrn, data) < 0)
794 fprintf(stderr, "Write to unhandled DCR (0x%x)\n", dcrn);
795
796 return 0;
797 }
798
799 int kvm_arch_handle_exit(CPUPPCState *env, struct kvm_run *run)
800 {
801 int ret;
802
803 switch (run->exit_reason) {
804 case KVM_EXIT_DCR:
805 if (run->dcr.is_write) {
806 dprintf("handle dcr write\n");
807 ret = kvmppc_handle_dcr_write(env, run->dcr.dcrn, run->dcr.data);
808 } else {
809 dprintf("handle dcr read\n");
810 ret = kvmppc_handle_dcr_read(env, run->dcr.dcrn, &run->dcr.data);
811 }
812 break;
813 case KVM_EXIT_HLT:
814 dprintf("handle halt\n");
815 ret = kvmppc_handle_halt(env);
816 break;
817 #ifdef CONFIG_PSERIES
818 case KVM_EXIT_PAPR_HCALL:
819 dprintf("handle PAPR hypercall\n");
820 run->papr_hcall.ret = spapr_hypercall(ppc_env_get_cpu(env),
821 run->papr_hcall.nr,
822 run->papr_hcall.args);
823 ret = 0;
824 break;
825 #endif
826 default:
827 fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
828 ret = -1;
829 break;
830 }
831
832 return ret;
833 }
834
835 static int read_cpuinfo(const char *field, char *value, int len)
836 {
837 FILE *f;
838 int ret = -1;
839 int field_len = strlen(field);
840 char line[512];
841
842 f = fopen("/proc/cpuinfo", "r");
843 if (!f) {
844 return -1;
845 }
846
847 do {
848 if(!fgets(line, sizeof(line), f)) {
849 break;
850 }
851 if (!strncmp(line, field, field_len)) {
852 pstrcpy(value, len, line);
853 ret = 0;
854 break;
855 }
856 } while(*line);
857
858 fclose(f);
859
860 return ret;
861 }
862
863 uint32_t kvmppc_get_tbfreq(void)
864 {
865 char line[512];
866 char *ns;
867 uint32_t retval = get_ticks_per_sec();
868
869 if (read_cpuinfo("timebase", line, sizeof(line))) {
870 return retval;
871 }
872
873 if (!(ns = strchr(line, ':'))) {
874 return retval;
875 }
876
877 ns++;
878
879 retval = atoi(ns);
880 return retval;
881 }
882
883 /* Try to find a device tree node for a CPU with clock-frequency property */
884 static int kvmppc_find_cpu_dt(char *buf, int buf_len)
885 {
886 struct dirent *dirp;
887 DIR *dp;
888
889 if ((dp = opendir(PROC_DEVTREE_CPU)) == NULL) {
890 printf("Can't open directory " PROC_DEVTREE_CPU "\n");
891 return -1;
892 }
893
894 buf[0] = '\0';
895 while ((dirp = readdir(dp)) != NULL) {
896 FILE *f;
897 snprintf(buf, buf_len, "%s%s/clock-frequency", PROC_DEVTREE_CPU,
898 dirp->d_name);
899 f = fopen(buf, "r");
900 if (f) {
901 snprintf(buf, buf_len, "%s%s", PROC_DEVTREE_CPU, dirp->d_name);
902 fclose(f);
903 break;
904 }
905 buf[0] = '\0';
906 }
907 closedir(dp);
908 if (buf[0] == '\0') {
909 printf("Unknown host!\n");
910 return -1;
911 }
912
913 return 0;
914 }
915
916 /* Read a CPU node property from the host device tree that's a single
917 * integer (32-bit or 64-bit). Returns 0 if anything goes wrong
918 * (can't find or open the property, or doesn't understand the
919 * format) */
920 static uint64_t kvmppc_read_int_cpu_dt(const char *propname)
921 {
922 char buf[PATH_MAX];
923 union {
924 uint32_t v32;
925 uint64_t v64;
926 } u;
927 FILE *f;
928 int len;
929
930 if (kvmppc_find_cpu_dt(buf, sizeof(buf))) {
931 return -1;
932 }
933
934 strncat(buf, "/", sizeof(buf) - strlen(buf));
935 strncat(buf, propname, sizeof(buf) - strlen(buf));
936
937 f = fopen(buf, "rb");
938 if (!f) {
939 return -1;
940 }
941
942 len = fread(&u, 1, sizeof(u), f);
943 fclose(f);
944 switch (len) {
945 case 4:
946 /* property is a 32-bit quantity */
947 return be32_to_cpu(u.v32);
948 case 8:
949 return be64_to_cpu(u.v64);
950 }
951
952 return 0;
953 }
954
955 uint64_t kvmppc_get_clockfreq(void)
956 {
957 return kvmppc_read_int_cpu_dt("clock-frequency");
958 }
959
960 uint32_t kvmppc_get_vmx(void)
961 {
962 return kvmppc_read_int_cpu_dt("ibm,vmx");
963 }
964
965 uint32_t kvmppc_get_dfp(void)
966 {
967 return kvmppc_read_int_cpu_dt("ibm,dfp");
968 }
969
970 int kvmppc_get_hypercall(CPUPPCState *env, uint8_t *buf, int buf_len)
971 {
972 uint32_t *hc = (uint32_t*)buf;
973
974 struct kvm_ppc_pvinfo pvinfo;
975
976 if (kvm_check_extension(env->kvm_state, KVM_CAP_PPC_GET_PVINFO) &&
977 !kvm_vm_ioctl(env->kvm_state, KVM_PPC_GET_PVINFO, &pvinfo)) {
978 memcpy(buf, pvinfo.hcall, buf_len);
979
980 return 0;
981 }
982
983 /*
984 * Fallback to always fail hypercalls:
985 *
986 * li r3, -1
987 * nop
988 * nop
989 * nop
990 */
991
992 hc[0] = 0x3860ffff;
993 hc[1] = 0x60000000;
994 hc[2] = 0x60000000;
995 hc[3] = 0x60000000;
996
997 return 0;
998 }
999
1000 void kvmppc_set_papr(CPUPPCState *env)
1001 {
1002 struct kvm_enable_cap cap = {};
1003 int ret;
1004
1005 cap.cap = KVM_CAP_PPC_PAPR;
1006 ret = kvm_vcpu_ioctl(env, KVM_ENABLE_CAP, &cap);
1007
1008 if (ret) {
1009 cpu_abort(env, "This KVM version does not support PAPR\n");
1010 }
1011 }
1012
1013 int kvmppc_smt_threads(void)
1014 {
1015 return cap_ppc_smt ? cap_ppc_smt : 1;
1016 }
1017
1018 #ifdef TARGET_PPC64
1019 off_t kvmppc_alloc_rma(const char *name, MemoryRegion *sysmem)
1020 {
1021 void *rma;
1022 off_t size;
1023 int fd;
1024 struct kvm_allocate_rma ret;
1025 MemoryRegion *rma_region;
1026
1027 /* If cap_ppc_rma == 0, contiguous RMA allocation is not supported
1028 * if cap_ppc_rma == 1, contiguous RMA allocation is supported, but
1029 * not necessary on this hardware
1030 * if cap_ppc_rma == 2, contiguous RMA allocation is needed on this hardware
1031 *
1032 * FIXME: We should allow the user to force contiguous RMA
1033 * allocation in the cap_ppc_rma==1 case.
1034 */
1035 if (cap_ppc_rma < 2) {
1036 return 0;
1037 }
1038
1039 fd = kvm_vm_ioctl(kvm_state, KVM_ALLOCATE_RMA, &ret);
1040 if (fd < 0) {
1041 fprintf(stderr, "KVM: Error on KVM_ALLOCATE_RMA: %s\n",
1042 strerror(errno));
1043 return -1;
1044 }
1045
1046 size = MIN(ret.rma_size, 256ul << 20);
1047
1048 rma = mmap(NULL, size, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1049 if (rma == MAP_FAILED) {
1050 fprintf(stderr, "KVM: Error mapping RMA: %s\n", strerror(errno));
1051 return -1;
1052 };
1053
1054 rma_region = g_new(MemoryRegion, 1);
1055 memory_region_init_ram_ptr(rma_region, name, size, rma);
1056 vmstate_register_ram_global(rma_region);
1057 memory_region_add_subregion(sysmem, 0, rma_region);
1058
1059 return size;
1060 }
1061
1062 uint64_t kvmppc_rma_size(uint64_t current_size, unsigned int hash_shift)
1063 {
1064 if (cap_ppc_rma >= 2) {
1065 return current_size;
1066 }
1067 return MIN(current_size,
1068 getrampagesize() << (hash_shift - 7));
1069 }
1070 #endif
1071
1072 void *kvmppc_create_spapr_tce(uint32_t liobn, uint32_t window_size, int *pfd)
1073 {
1074 struct kvm_create_spapr_tce args = {
1075 .liobn = liobn,
1076 .window_size = window_size,
1077 };
1078 long len;
1079 int fd;
1080 void *table;
1081
1082 /* Must set fd to -1 so we don't try to munmap when called for
1083 * destroying the table, which the upper layers -will- do
1084 */
1085 *pfd = -1;
1086 if (!cap_spapr_tce) {
1087 return NULL;
1088 }
1089
1090 fd = kvm_vm_ioctl(kvm_state, KVM_CREATE_SPAPR_TCE, &args);
1091 if (fd < 0) {
1092 fprintf(stderr, "KVM: Failed to create TCE table for liobn 0x%x\n",
1093 liobn);
1094 return NULL;
1095 }
1096
1097 len = (window_size / SPAPR_TCE_PAGE_SIZE) * sizeof(sPAPRTCE);
1098 /* FIXME: round this up to page size */
1099
1100 table = mmap(NULL, len, PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);
1101 if (table == MAP_FAILED) {
1102 fprintf(stderr, "KVM: Failed to map TCE table for liobn 0x%x\n",
1103 liobn);
1104 close(fd);
1105 return NULL;
1106 }
1107
1108 *pfd = fd;
1109 return table;
1110 }
1111
1112 int kvmppc_remove_spapr_tce(void *table, int fd, uint32_t window_size)
1113 {
1114 long len;
1115
1116 if (fd < 0) {
1117 return -1;
1118 }
1119
1120 len = (window_size / SPAPR_TCE_PAGE_SIZE)*sizeof(sPAPRTCE);
1121 if ((munmap(table, len) < 0) ||
1122 (close(fd) < 0)) {
1123 fprintf(stderr, "KVM: Unexpected error removing TCE table: %s",
1124 strerror(errno));
1125 /* Leak the table */
1126 }
1127
1128 return 0;
1129 }
1130
1131 int kvmppc_reset_htab(int shift_hint)
1132 {
1133 uint32_t shift = shift_hint;
1134
1135 if (!kvm_enabled()) {
1136 /* Full emulation, tell caller to allocate htab itself */
1137 return 0;
1138 }
1139 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_ALLOC_HTAB)) {
1140 int ret;
1141 ret = kvm_vm_ioctl(kvm_state, KVM_PPC_ALLOCATE_HTAB, &shift);
1142 if (ret == -ENOTTY) {
1143 /* At least some versions of PR KVM advertise the
1144 * capability, but don't implement the ioctl(). Oops.
1145 * Return 0 so that we allocate the htab in qemu, as is
1146 * correct for PR. */
1147 return 0;
1148 } else if (ret < 0) {
1149 return ret;
1150 }
1151 return shift;
1152 }
1153
1154 /* We have a kernel that predates the htab reset calls. For PR
1155 * KVM, we need to allocate the htab ourselves, for an HV KVM of
1156 * this era, it has allocated a 16MB fixed size hash table
1157 * already. Kernels of this era have the GET_PVINFO capability
1158 * only on PR, so we use this hack to determine the right
1159 * answer */
1160 if (kvm_check_extension(kvm_state, KVM_CAP_PPC_GET_PVINFO)) {
1161 /* PR - tell caller to allocate htab */
1162 return 0;
1163 } else {
1164 /* HV - assume 16MB kernel allocated htab */
1165 return 24;
1166 }
1167 }
1168
1169 static inline uint32_t mfpvr(void)
1170 {
1171 uint32_t pvr;
1172
1173 asm ("mfpvr %0"
1174 : "=r"(pvr));
1175 return pvr;
1176 }
1177
1178 static void alter_insns(uint64_t *word, uint64_t flags, bool on)
1179 {
1180 if (on) {
1181 *word |= flags;
1182 } else {
1183 *word &= ~flags;
1184 }
1185 }
1186
1187 const ppc_def_t *kvmppc_host_cpu_def(void)
1188 {
1189 uint32_t host_pvr = mfpvr();
1190 const ppc_def_t *base_spec;
1191 ppc_def_t *spec;
1192 uint32_t vmx = kvmppc_get_vmx();
1193 uint32_t dfp = kvmppc_get_dfp();
1194
1195 base_spec = ppc_find_by_pvr(host_pvr);
1196
1197 spec = g_malloc0(sizeof(*spec));
1198 memcpy(spec, base_spec, sizeof(*spec));
1199
1200 /* Now fix up the spec with information we can query from the host */
1201
1202 if (vmx != -1) {
1203 /* Only override when we know what the host supports */
1204 alter_insns(&spec->insns_flags, PPC_ALTIVEC, vmx > 0);
1205 alter_insns(&spec->insns_flags2, PPC2_VSX, vmx > 1);
1206 }
1207 if (dfp != -1) {
1208 /* Only override when we know what the host supports */
1209 alter_insns(&spec->insns_flags2, PPC2_DFP, dfp);
1210 }
1211
1212 return spec;
1213 }
1214
1215 int kvmppc_fixup_cpu(CPUPPCState *env)
1216 {
1217 int smt;
1218
1219 /* Adjust cpu index for SMT */
1220 smt = kvmppc_smt_threads();
1221 env->cpu_index = (env->cpu_index / smp_threads) * smt
1222 + (env->cpu_index % smp_threads);
1223
1224 return 0;
1225 }
1226
1227
1228 bool kvm_arch_stop_on_emulation_error(CPUPPCState *env)
1229 {
1230 return true;
1231 }
1232
1233 int kvm_arch_on_sigbus_vcpu(CPUPPCState *env, int code, void *addr)
1234 {
1235 return 1;
1236 }
1237
1238 int kvm_arch_on_sigbus(int code, void *addr)
1239 {
1240 return 1;
1241 }