]> git.proxmox.com Git - qemu.git/blob - target-s390x/kvm.c
s390: new contributions GPLv2 or later
[qemu.git] / target-s390x / kvm.c
1 /*
2 * QEMU S390x KVM implementation
3 *
4 * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
5 * Copyright IBM Corp. 2012
6 *
7 * This library is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2 of the License, or (at your option) any later version.
11 *
12 * This library is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * Contributions after 2012-10-29 are licensed under the terms of the
18 * GNU GPL, version 2 or (at your option) any later version.
19 *
20 * You should have received a copy of the GNU (Lesser) General Public
21 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
22 */
23
24 #include <sys/types.h>
25 #include <sys/ioctl.h>
26 #include <sys/mman.h>
27
28 #include <linux/kvm.h>
29 #include <asm/ptrace.h>
30
31 #include "qemu-common.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "sysemu/kvm.h"
35 #include "cpu.h"
36 #include "sysemu/device_tree.h"
37
38 /* #define DEBUG_KVM */
39
40 #ifdef DEBUG_KVM
41 #define dprintf(fmt, ...) \
42 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
43 #else
44 #define dprintf(fmt, ...) \
45 do { } while (0)
46 #endif
47
48 #define IPA0_DIAG 0x8300
49 #define IPA0_SIGP 0xae00
50 #define IPA0_PRIV 0xb200
51
52 #define PRIV_SCLP_CALL 0x20
53 #define DIAG_KVM_HYPERCALL 0x500
54 #define DIAG_KVM_BREAKPOINT 0x501
55
56 #define ICPT_INSTRUCTION 0x04
57 #define ICPT_WAITPSW 0x1c
58 #define ICPT_SOFT_INTERCEPT 0x24
59 #define ICPT_CPU_STOP 0x28
60 #define ICPT_IO 0x40
61
62 #define SIGP_RESTART 0x06
63 #define SIGP_INITIAL_CPU_RESET 0x0b
64 #define SIGP_STORE_STATUS_ADDR 0x0e
65 #define SIGP_SET_ARCH 0x12
66
67 const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
68 KVM_CAP_LAST_INFO
69 };
70
71 static int cap_sync_regs;
72
73 int kvm_arch_init(KVMState *s)
74 {
75 cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS);
76 return 0;
77 }
78
79 int kvm_arch_init_vcpu(CPUState *cpu)
80 {
81 int ret = 0;
82
83 if (kvm_vcpu_ioctl(cpu, KVM_S390_INITIAL_RESET, NULL) < 0) {
84 perror("cannot init reset vcpu");
85 }
86
87 return ret;
88 }
89
90 void kvm_arch_reset_vcpu(CPUState *cpu)
91 {
92 /* FIXME: add code to reset vcpu. */
93 }
94
95 int kvm_arch_put_registers(CPUState *cs, int level)
96 {
97 S390CPU *cpu = S390_CPU(cs);
98 CPUS390XState *env = &cpu->env;
99 struct kvm_sregs sregs;
100 struct kvm_regs regs;
101 int ret;
102 int i;
103
104 /* always save the PSW and the GPRS*/
105 cs->kvm_run->psw_addr = env->psw.addr;
106 cs->kvm_run->psw_mask = env->psw.mask;
107
108 if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
109 for (i = 0; i < 16; i++) {
110 cs->kvm_run->s.regs.gprs[i] = env->regs[i];
111 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS;
112 }
113 } else {
114 for (i = 0; i < 16; i++) {
115 regs.gprs[i] = env->regs[i];
116 }
117 ret = kvm_vcpu_ioctl(cs, KVM_SET_REGS, &regs);
118 if (ret < 0) {
119 return ret;
120 }
121 }
122
123 /* Do we need to save more than that? */
124 if (level == KVM_PUT_RUNTIME_STATE) {
125 return 0;
126 }
127
128 if (cap_sync_regs &&
129 cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
130 cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
131 for (i = 0; i < 16; i++) {
132 cs->kvm_run->s.regs.acrs[i] = env->aregs[i];
133 cs->kvm_run->s.regs.crs[i] = env->cregs[i];
134 }
135 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS;
136 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS;
137 } else {
138 for (i = 0; i < 16; i++) {
139 sregs.acrs[i] = env->aregs[i];
140 sregs.crs[i] = env->cregs[i];
141 }
142 ret = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs);
143 if (ret < 0) {
144 return ret;
145 }
146 }
147
148 /* Finally the prefix */
149 if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
150 cs->kvm_run->s.regs.prefix = env->psa;
151 cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX;
152 } else {
153 /* prefix is only supported via sync regs */
154 }
155 return 0;
156 }
157
158 int kvm_arch_get_registers(CPUState *cs)
159 {
160 S390CPU *cpu = S390_CPU(cs);
161 CPUS390XState *env = &cpu->env;
162 struct kvm_sregs sregs;
163 struct kvm_regs regs;
164 int ret;
165 int i;
166
167 /* get the PSW */
168 env->psw.addr = cs->kvm_run->psw_addr;
169 env->psw.mask = cs->kvm_run->psw_mask;
170
171 /* the GPRS */
172 if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_GPRS) {
173 for (i = 0; i < 16; i++) {
174 env->regs[i] = cs->kvm_run->s.regs.gprs[i];
175 }
176 } else {
177 ret = kvm_vcpu_ioctl(cs, KVM_GET_REGS, &regs);
178 if (ret < 0) {
179 return ret;
180 }
181 for (i = 0; i < 16; i++) {
182 env->regs[i] = regs.gprs[i];
183 }
184 }
185
186 /* The ACRS and CRS */
187 if (cap_sync_regs &&
188 cs->kvm_run->kvm_valid_regs & KVM_SYNC_ACRS &&
189 cs->kvm_run->kvm_valid_regs & KVM_SYNC_CRS) {
190 for (i = 0; i < 16; i++) {
191 env->aregs[i] = cs->kvm_run->s.regs.acrs[i];
192 env->cregs[i] = cs->kvm_run->s.regs.crs[i];
193 }
194 } else {
195 ret = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs);
196 if (ret < 0) {
197 return ret;
198 }
199 for (i = 0; i < 16; i++) {
200 env->aregs[i] = sregs.acrs[i];
201 env->cregs[i] = sregs.crs[i];
202 }
203 }
204
205 /* Finally the prefix */
206 if (cap_sync_regs && cs->kvm_run->kvm_valid_regs & KVM_SYNC_PREFIX) {
207 env->psa = cs->kvm_run->s.regs.prefix;
208 } else {
209 /* no prefix without sync regs */
210 }
211
212 return 0;
213 }
214
215 /*
216 * Legacy layout for s390:
217 * Older S390 KVM requires the topmost vma of the RAM to be
218 * smaller than an system defined value, which is at least 256GB.
219 * Larger systems have larger values. We put the guest between
220 * the end of data segment (system break) and this value. We
221 * use 32GB as a base to have enough room for the system break
222 * to grow. We also have to use MAP parameters that avoid
223 * read-only mapping of guest pages.
224 */
225 static void *legacy_s390_alloc(ram_addr_t size)
226 {
227 void *mem;
228
229 mem = mmap((void *) 0x800000000ULL, size,
230 PROT_EXEC|PROT_READ|PROT_WRITE,
231 MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
232 if (mem == MAP_FAILED) {
233 fprintf(stderr, "Allocating RAM failed\n");
234 abort();
235 }
236 return mem;
237 }
238
239 void *kvm_arch_vmalloc(ram_addr_t size)
240 {
241 /* Can we use the standard allocation ? */
242 if (kvm_check_extension(kvm_state, KVM_CAP_S390_GMAP) &&
243 kvm_check_extension(kvm_state, KVM_CAP_S390_COW)) {
244 return NULL;
245 } else {
246 return legacy_s390_alloc(size);
247 }
248 }
249
250 int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
251 {
252 S390CPU *cpu = S390_CPU(cs);
253 CPUS390XState *env = &cpu->env;
254 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
255
256 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 4, 0) ||
257 cpu_memory_rw_debug(env, bp->pc, (uint8_t *)diag_501, 4, 1)) {
258 return -EINVAL;
259 }
260 return 0;
261 }
262
263 int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp)
264 {
265 S390CPU *cpu = S390_CPU(cs);
266 CPUS390XState *env = &cpu->env;
267 uint8_t t[4];
268 static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01};
269
270 if (cpu_memory_rw_debug(env, bp->pc, t, 4, 0)) {
271 return -EINVAL;
272 } else if (memcmp(t, diag_501, 4)) {
273 return -EINVAL;
274 } else if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 1)) {
275 return -EINVAL;
276 }
277
278 return 0;
279 }
280
281 void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run)
282 {
283 }
284
285 void kvm_arch_post_run(CPUState *cpu, struct kvm_run *run)
286 {
287 }
288
289 int kvm_arch_process_async_events(CPUState *cs)
290 {
291 S390CPU *cpu = S390_CPU(cs);
292 return cpu->env.halted;
293 }
294
295 void kvm_s390_interrupt_internal(S390CPU *cpu, int type, uint32_t parm,
296 uint64_t parm64, int vm)
297 {
298 CPUState *cs = CPU(cpu);
299 struct kvm_s390_interrupt kvmint;
300 int r;
301
302 if (!cs->kvm_state) {
303 return;
304 }
305
306 kvmint.type = type;
307 kvmint.parm = parm;
308 kvmint.parm64 = parm64;
309
310 if (vm) {
311 r = kvm_vm_ioctl(cs->kvm_state, KVM_S390_INTERRUPT, &kvmint);
312 } else {
313 r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint);
314 }
315
316 if (r < 0) {
317 fprintf(stderr, "KVM failed to inject interrupt\n");
318 exit(1);
319 }
320 }
321
322 void kvm_s390_virtio_irq(S390CPU *cpu, int config_change, uint64_t token)
323 {
324 kvm_s390_interrupt_internal(cpu, KVM_S390_INT_VIRTIO, config_change,
325 token, 1);
326 }
327
328 void kvm_s390_interrupt(S390CPU *cpu, int type, uint32_t code)
329 {
330 kvm_s390_interrupt_internal(cpu, type, code, 0, 0);
331 }
332
333 static void enter_pgmcheck(S390CPU *cpu, uint16_t code)
334 {
335 kvm_s390_interrupt(cpu, KVM_S390_PROGRAM_INT, code);
336 }
337
338 static inline void setcc(S390CPU *cpu, uint64_t cc)
339 {
340 CPUS390XState *env = &cpu->env;
341 CPUState *cs = CPU(cpu);
342
343 cs->kvm_run->psw_mask &= ~(3ull << 44);
344 cs->kvm_run->psw_mask |= (cc & 3) << 44;
345
346 env->psw.mask &= ~(3ul << 44);
347 env->psw.mask |= (cc & 3) << 44;
348 }
349
350 static int kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run,
351 uint16_t ipbh0)
352 {
353 CPUS390XState *env = &cpu->env;
354 uint32_t sccb;
355 uint64_t code;
356 int r = 0;
357
358 cpu_synchronize_state(env);
359 sccb = env->regs[ipbh0 & 0xf];
360 code = env->regs[(ipbh0 & 0xf0) >> 4];
361
362 r = sclp_service_call(sccb, code);
363 if (r < 0) {
364 enter_pgmcheck(cpu, -r);
365 }
366 setcc(cpu, r);
367
368 return 0;
369 }
370
371 static int handle_priv(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
372 {
373 int r = 0;
374 uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16;
375
376 dprintf("KVM: PRIV: %d\n", ipa1);
377 switch (ipa1) {
378 case PRIV_SCLP_CALL:
379 r = kvm_sclp_service_call(cpu, run, ipbh0);
380 break;
381 default:
382 dprintf("KVM: unknown PRIV: 0x%x\n", ipa1);
383 r = -1;
384 break;
385 }
386
387 return r;
388 }
389
390 static int handle_hypercall(CPUS390XState *env, struct kvm_run *run)
391 {
392 cpu_synchronize_state(env);
393 env->regs[2] = s390_virtio_hypercall(env, env->regs[2], env->regs[1]);
394
395 return 0;
396 }
397
398 static int handle_diag(CPUS390XState *env, struct kvm_run *run, int ipb_code)
399 {
400 int r = 0;
401
402 switch (ipb_code) {
403 case DIAG_KVM_HYPERCALL:
404 r = handle_hypercall(env, run);
405 break;
406 case DIAG_KVM_BREAKPOINT:
407 sleep(10);
408 break;
409 default:
410 dprintf("KVM: unknown DIAG: 0x%x\n", ipb_code);
411 r = -1;
412 break;
413 }
414
415 return r;
416 }
417
418 static int s390_cpu_restart(S390CPU *cpu)
419 {
420 CPUS390XState *env = &cpu->env;
421
422 kvm_s390_interrupt(cpu, KVM_S390_RESTART, 0);
423 s390_add_running_cpu(env);
424 qemu_cpu_kick(CPU(cpu));
425 dprintf("DONE: SIGP cpu restart: %p\n", env);
426 return 0;
427 }
428
429 static int s390_store_status(CPUS390XState *env, uint32_t parameter)
430 {
431 /* XXX */
432 fprintf(stderr, "XXX SIGP store status\n");
433 return -1;
434 }
435
436 static int s390_cpu_initial_reset(S390CPU *cpu)
437 {
438 CPUS390XState *env = &cpu->env;
439 int i;
440
441 s390_del_running_cpu(env);
442 if (kvm_vcpu_ioctl(CPU(cpu), KVM_S390_INITIAL_RESET, NULL) < 0) {
443 perror("cannot init reset vcpu");
444 }
445
446 /* Manually zero out all registers */
447 cpu_synchronize_state(env);
448 for (i = 0; i < 16; i++) {
449 env->regs[i] = 0;
450 }
451
452 dprintf("DONE: SIGP initial reset: %p\n", env);
453 return 0;
454 }
455
456 static int handle_sigp(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1)
457 {
458 CPUS390XState *env = &cpu->env;
459 uint8_t order_code;
460 uint32_t parameter;
461 uint16_t cpu_addr;
462 uint8_t t;
463 int r = -1;
464 S390CPU *target_cpu;
465 CPUS390XState *target_env;
466
467 cpu_synchronize_state(env);
468
469 /* get order code */
470 order_code = run->s390_sieic.ipb >> 28;
471 if (order_code > 0) {
472 order_code = env->regs[order_code];
473 }
474 order_code += (run->s390_sieic.ipb & 0x0fff0000) >> 16;
475
476 /* get parameters */
477 t = (ipa1 & 0xf0) >> 4;
478 if (!(t % 2)) {
479 t++;
480 }
481
482 parameter = env->regs[t] & 0x7ffffe00;
483 cpu_addr = env->regs[ipa1 & 0x0f];
484
485 target_cpu = s390_cpu_addr2state(cpu_addr);
486 if (target_cpu == NULL) {
487 goto out;
488 }
489 target_env = &target_cpu->env;
490
491 switch (order_code) {
492 case SIGP_RESTART:
493 r = s390_cpu_restart(target_cpu);
494 break;
495 case SIGP_STORE_STATUS_ADDR:
496 r = s390_store_status(target_env, parameter);
497 break;
498 case SIGP_SET_ARCH:
499 /* make the caller panic */
500 return -1;
501 case SIGP_INITIAL_CPU_RESET:
502 r = s390_cpu_initial_reset(target_cpu);
503 break;
504 default:
505 fprintf(stderr, "KVM: unknown SIGP: 0x%x\n", order_code);
506 break;
507 }
508
509 out:
510 setcc(cpu, r ? 3 : 0);
511 return 0;
512 }
513
514 static int handle_instruction(S390CPU *cpu, struct kvm_run *run)
515 {
516 CPUS390XState *env = &cpu->env;
517 unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00);
518 uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff;
519 int ipb_code = (run->s390_sieic.ipb & 0x0fff0000) >> 16;
520 int r = -1;
521
522 dprintf("handle_instruction 0x%x 0x%x\n", run->s390_sieic.ipa, run->s390_sieic.ipb);
523 switch (ipa0) {
524 case IPA0_PRIV:
525 r = handle_priv(cpu, run, ipa1);
526 break;
527 case IPA0_DIAG:
528 r = handle_diag(env, run, ipb_code);
529 break;
530 case IPA0_SIGP:
531 r = handle_sigp(cpu, run, ipa1);
532 break;
533 }
534
535 if (r < 0) {
536 enter_pgmcheck(cpu, 0x0001);
537 }
538 return 0;
539 }
540
541 static bool is_special_wait_psw(CPUState *cs)
542 {
543 /* signal quiesce */
544 return cs->kvm_run->psw_addr == 0xfffUL;
545 }
546
547 static int handle_intercept(S390CPU *cpu)
548 {
549 CPUS390XState *env = &cpu->env;
550 CPUState *cs = CPU(cpu);
551 struct kvm_run *run = cs->kvm_run;
552 int icpt_code = run->s390_sieic.icptcode;
553 int r = 0;
554
555 dprintf("intercept: 0x%x (at 0x%lx)\n", icpt_code,
556 (long)cs->kvm_run->psw_addr);
557 switch (icpt_code) {
558 case ICPT_INSTRUCTION:
559 r = handle_instruction(cpu, run);
560 break;
561 case ICPT_WAITPSW:
562 if (s390_del_running_cpu(env) == 0 &&
563 is_special_wait_psw(cs)) {
564 qemu_system_shutdown_request();
565 }
566 r = EXCP_HALTED;
567 break;
568 case ICPT_CPU_STOP:
569 if (s390_del_running_cpu(env) == 0) {
570 qemu_system_shutdown_request();
571 }
572 r = EXCP_HALTED;
573 break;
574 case ICPT_SOFT_INTERCEPT:
575 fprintf(stderr, "KVM unimplemented icpt SOFT\n");
576 exit(1);
577 break;
578 case ICPT_IO:
579 fprintf(stderr, "KVM unimplemented icpt IO\n");
580 exit(1);
581 break;
582 default:
583 fprintf(stderr, "Unknown intercept code: %d\n", icpt_code);
584 exit(1);
585 break;
586 }
587
588 return r;
589 }
590
591 int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run)
592 {
593 S390CPU *cpu = S390_CPU(cs);
594 int ret = 0;
595
596 switch (run->exit_reason) {
597 case KVM_EXIT_S390_SIEIC:
598 ret = handle_intercept(cpu);
599 break;
600 case KVM_EXIT_S390_RESET:
601 qemu_system_reset_request();
602 break;
603 default:
604 fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason);
605 break;
606 }
607
608 if (ret == 0) {
609 ret = EXCP_INTERRUPT;
610 }
611 return ret;
612 }
613
614 bool kvm_arch_stop_on_emulation_error(CPUState *cpu)
615 {
616 return true;
617 }
618
619 int kvm_arch_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
620 {
621 return 1;
622 }
623
624 int kvm_arch_on_sigbus(int code, void *addr)
625 {
626 return 1;
627 }