]> git.proxmox.com Git - qemu.git/blob - target-sh4/op_helper.c
target-sh4: move intr_at_halt out of cpu_halted()
[qemu.git] / target-sh4 / op_helper.c
1 /*
2 * SH4 emulation
3 *
4 * Copyright (c) 2005 Samuel Tardieu
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18 */
19 #include <assert.h>
20 #include <stdlib.h>
21 #include "exec.h"
22 #include "helper.h"
23
24 static void cpu_restore_state_from_retaddr(void *retaddr)
25 {
26 TranslationBlock *tb;
27 unsigned long pc;
28
29 if (retaddr) {
30 pc = (unsigned long) retaddr;
31 tb = tb_find_pc(pc);
32 if (tb) {
33 /* the PC is inside the translated code. It means that we have
34 a virtual CPU fault */
35 cpu_restore_state(tb, env, pc, NULL);
36 }
37 }
38 }
39
40 #ifndef CONFIG_USER_ONLY
41
42 #define MMUSUFFIX _mmu
43
44 #define SHIFT 0
45 #include "softmmu_template.h"
46
47 #define SHIFT 1
48 #include "softmmu_template.h"
49
50 #define SHIFT 2
51 #include "softmmu_template.h"
52
53 #define SHIFT 3
54 #include "softmmu_template.h"
55
56 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
57 {
58 CPUState *saved_env;
59 int ret;
60
61 /* XXX: hack to restore env in all cases, even if not called from
62 generated code */
63 saved_env = env;
64 env = cpu_single_env;
65 ret = cpu_sh4_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
66 if (ret) {
67 /* now we have a real cpu fault */
68 cpu_restore_state_from_retaddr(retaddr);
69 cpu_loop_exit();
70 }
71 env = saved_env;
72 }
73
74 #endif
75
76 void helper_ldtlb(void)
77 {
78 #ifdef CONFIG_USER_ONLY
79 /* XXXXX */
80 cpu_abort(env, "Unhandled ldtlb");
81 #else
82 cpu_load_tlb(env);
83 #endif
84 }
85
86 static inline void raise_exception(int index, void *retaddr)
87 {
88 env->exception_index = index;
89 cpu_restore_state_from_retaddr(retaddr);
90 cpu_loop_exit();
91 }
92
93 void helper_raise_illegal_instruction(void)
94 {
95 raise_exception(0x180, GETPC());
96 }
97
98 void helper_raise_slot_illegal_instruction(void)
99 {
100 raise_exception(0x1a0, GETPC());
101 }
102
103 void helper_raise_fpu_disable(void)
104 {
105 raise_exception(0x800, GETPC());
106 }
107
108 void helper_raise_slot_fpu_disable(void)
109 {
110 raise_exception(0x820, GETPC());
111 }
112
113 void helper_debug(void)
114 {
115 env->exception_index = EXCP_DEBUG;
116 cpu_loop_exit();
117 }
118
119 void helper_sleep(uint32_t next_pc)
120 {
121 env->halted = 1;
122 env->in_sleep = 1;
123 env->exception_index = EXCP_HLT;
124 env->pc = next_pc;
125 cpu_loop_exit();
126 }
127
128 void helper_trapa(uint32_t tra)
129 {
130 env->tra = tra << 2;
131 raise_exception(0x160, GETPC());
132 }
133
134 void helper_movcal(uint32_t address, uint32_t value)
135 {
136 if (cpu_sh4_is_cached (env, address))
137 {
138 memory_content *r = malloc (sizeof(memory_content));
139 r->address = address;
140 r->value = value;
141 r->next = NULL;
142
143 *(env->movcal_backup_tail) = r;
144 env->movcal_backup_tail = &(r->next);
145 }
146 }
147
148 void helper_discard_movcal_backup(void)
149 {
150 memory_content *current = env->movcal_backup;
151
152 while(current)
153 {
154 memory_content *next = current->next;
155 free (current);
156 env->movcal_backup = current = next;
157 if (current == NULL)
158 env->movcal_backup_tail = &(env->movcal_backup);
159 }
160 }
161
162 void helper_ocbi(uint32_t address)
163 {
164 memory_content **current = &(env->movcal_backup);
165 while (*current)
166 {
167 uint32_t a = (*current)->address;
168 if ((a & ~0x1F) == (address & ~0x1F))
169 {
170 memory_content *next = (*current)->next;
171 stl(a, (*current)->value);
172
173 if (next == NULL)
174 {
175 env->movcal_backup_tail = current;
176 }
177
178 free (*current);
179 *current = next;
180 break;
181 }
182 }
183 }
184
185 uint32_t helper_addc(uint32_t arg0, uint32_t arg1)
186 {
187 uint32_t tmp0, tmp1;
188
189 tmp1 = arg0 + arg1;
190 tmp0 = arg1;
191 arg1 = tmp1 + (env->sr & 1);
192 if (tmp0 > tmp1)
193 env->sr |= SR_T;
194 else
195 env->sr &= ~SR_T;
196 if (tmp1 > arg1)
197 env->sr |= SR_T;
198 return arg1;
199 }
200
201 uint32_t helper_addv(uint32_t arg0, uint32_t arg1)
202 {
203 uint32_t dest, src, ans;
204
205 if ((int32_t) arg1 >= 0)
206 dest = 0;
207 else
208 dest = 1;
209 if ((int32_t) arg0 >= 0)
210 src = 0;
211 else
212 src = 1;
213 src += dest;
214 arg1 += arg0;
215 if ((int32_t) arg1 >= 0)
216 ans = 0;
217 else
218 ans = 1;
219 ans += dest;
220 if (src == 0 || src == 2) {
221 if (ans == 1)
222 env->sr |= SR_T;
223 else
224 env->sr &= ~SR_T;
225 } else
226 env->sr &= ~SR_T;
227 return arg1;
228 }
229
230 #define T (env->sr & SR_T)
231 #define Q (env->sr & SR_Q ? 1 : 0)
232 #define M (env->sr & SR_M ? 1 : 0)
233 #define SETT env->sr |= SR_T
234 #define CLRT env->sr &= ~SR_T
235 #define SETQ env->sr |= SR_Q
236 #define CLRQ env->sr &= ~SR_Q
237 #define SETM env->sr |= SR_M
238 #define CLRM env->sr &= ~SR_M
239
240 uint32_t helper_div1(uint32_t arg0, uint32_t arg1)
241 {
242 uint32_t tmp0, tmp2;
243 uint8_t old_q, tmp1 = 0xff;
244
245 //printf("div1 arg0=0x%08x arg1=0x%08x M=%d Q=%d T=%d\n", arg0, arg1, M, Q, T);
246 old_q = Q;
247 if ((0x80000000 & arg1) != 0)
248 SETQ;
249 else
250 CLRQ;
251 tmp2 = arg0;
252 arg1 <<= 1;
253 arg1 |= T;
254 switch (old_q) {
255 case 0:
256 switch (M) {
257 case 0:
258 tmp0 = arg1;
259 arg1 -= tmp2;
260 tmp1 = arg1 > tmp0;
261 switch (Q) {
262 case 0:
263 if (tmp1)
264 SETQ;
265 else
266 CLRQ;
267 break;
268 case 1:
269 if (tmp1 == 0)
270 SETQ;
271 else
272 CLRQ;
273 break;
274 }
275 break;
276 case 1:
277 tmp0 = arg1;
278 arg1 += tmp2;
279 tmp1 = arg1 < tmp0;
280 switch (Q) {
281 case 0:
282 if (tmp1 == 0)
283 SETQ;
284 else
285 CLRQ;
286 break;
287 case 1:
288 if (tmp1)
289 SETQ;
290 else
291 CLRQ;
292 break;
293 }
294 break;
295 }
296 break;
297 case 1:
298 switch (M) {
299 case 0:
300 tmp0 = arg1;
301 arg1 += tmp2;
302 tmp1 = arg1 < tmp0;
303 switch (Q) {
304 case 0:
305 if (tmp1)
306 SETQ;
307 else
308 CLRQ;
309 break;
310 case 1:
311 if (tmp1 == 0)
312 SETQ;
313 else
314 CLRQ;
315 break;
316 }
317 break;
318 case 1:
319 tmp0 = arg1;
320 arg1 -= tmp2;
321 tmp1 = arg1 > tmp0;
322 switch (Q) {
323 case 0:
324 if (tmp1 == 0)
325 SETQ;
326 else
327 CLRQ;
328 break;
329 case 1:
330 if (tmp1)
331 SETQ;
332 else
333 CLRQ;
334 break;
335 }
336 break;
337 }
338 break;
339 }
340 if (Q == M)
341 SETT;
342 else
343 CLRT;
344 //printf("Output: arg1=0x%08x M=%d Q=%d T=%d\n", arg1, M, Q, T);
345 return arg1;
346 }
347
348 void helper_macl(uint32_t arg0, uint32_t arg1)
349 {
350 int64_t res;
351
352 res = ((uint64_t) env->mach << 32) | env->macl;
353 res += (int64_t) (int32_t) arg0 *(int64_t) (int32_t) arg1;
354 env->mach = (res >> 32) & 0xffffffff;
355 env->macl = res & 0xffffffff;
356 if (env->sr & SR_S) {
357 if (res < 0)
358 env->mach |= 0xffff0000;
359 else
360 env->mach &= 0x00007fff;
361 }
362 }
363
364 void helper_macw(uint32_t arg0, uint32_t arg1)
365 {
366 int64_t res;
367
368 res = ((uint64_t) env->mach << 32) | env->macl;
369 res += (int64_t) (int16_t) arg0 *(int64_t) (int16_t) arg1;
370 env->mach = (res >> 32) & 0xffffffff;
371 env->macl = res & 0xffffffff;
372 if (env->sr & SR_S) {
373 if (res < -0x80000000) {
374 env->mach = 1;
375 env->macl = 0x80000000;
376 } else if (res > 0x000000007fffffff) {
377 env->mach = 1;
378 env->macl = 0x7fffffff;
379 }
380 }
381 }
382
383 uint32_t helper_subc(uint32_t arg0, uint32_t arg1)
384 {
385 uint32_t tmp0, tmp1;
386
387 tmp1 = arg1 - arg0;
388 tmp0 = arg1;
389 arg1 = tmp1 - (env->sr & SR_T);
390 if (tmp0 < tmp1)
391 env->sr |= SR_T;
392 else
393 env->sr &= ~SR_T;
394 if (tmp1 < arg1)
395 env->sr |= SR_T;
396 return arg1;
397 }
398
399 uint32_t helper_subv(uint32_t arg0, uint32_t arg1)
400 {
401 int32_t dest, src, ans;
402
403 if ((int32_t) arg1 >= 0)
404 dest = 0;
405 else
406 dest = 1;
407 if ((int32_t) arg0 >= 0)
408 src = 0;
409 else
410 src = 1;
411 src += dest;
412 arg1 -= arg0;
413 if ((int32_t) arg1 >= 0)
414 ans = 0;
415 else
416 ans = 1;
417 ans += dest;
418 if (src == 1) {
419 if (ans == 1)
420 env->sr |= SR_T;
421 else
422 env->sr &= ~SR_T;
423 } else
424 env->sr &= ~SR_T;
425 return arg1;
426 }
427
428 static inline void set_t(void)
429 {
430 env->sr |= SR_T;
431 }
432
433 static inline void clr_t(void)
434 {
435 env->sr &= ~SR_T;
436 }
437
438 void helper_ld_fpscr(uint32_t val)
439 {
440 env->fpscr = val & FPSCR_MASK;
441 if ((val & FPSCR_RM_MASK) == FPSCR_RM_ZERO) {
442 set_float_rounding_mode(float_round_to_zero, &env->fp_status);
443 } else {
444 set_float_rounding_mode(float_round_nearest_even, &env->fp_status);
445 }
446 set_flush_to_zero((val & FPSCR_DN) != 0, &env->fp_status);
447 }
448
449 static void update_fpscr(void *retaddr)
450 {
451 int xcpt, cause, enable;
452
453 xcpt = get_float_exception_flags(&env->fp_status);
454
455 /* Clear the flag entries */
456 env->fpscr &= ~FPSCR_FLAG_MASK;
457
458 if (unlikely(xcpt)) {
459 if (xcpt & float_flag_invalid) {
460 env->fpscr |= FPSCR_FLAG_V;
461 }
462 if (xcpt & float_flag_divbyzero) {
463 env->fpscr |= FPSCR_FLAG_Z;
464 }
465 if (xcpt & float_flag_overflow) {
466 env->fpscr |= FPSCR_FLAG_O;
467 }
468 if (xcpt & float_flag_underflow) {
469 env->fpscr |= FPSCR_FLAG_U;
470 }
471 if (xcpt & float_flag_inexact) {
472 env->fpscr |= FPSCR_FLAG_I;
473 }
474
475 /* Accumulate in cause entries */
476 env->fpscr |= (env->fpscr & FPSCR_FLAG_MASK)
477 << (FPSCR_CAUSE_SHIFT - FPSCR_FLAG_SHIFT);
478
479 /* Generate an exception if enabled */
480 cause = (env->fpscr & FPSCR_CAUSE_MASK) >> FPSCR_CAUSE_SHIFT;
481 enable = (env->fpscr & FPSCR_ENABLE_MASK) >> FPSCR_ENABLE_SHIFT;
482 if (cause & enable) {
483 cpu_restore_state_from_retaddr(retaddr);
484 env->exception_index = 0x120;
485 cpu_loop_exit();
486 }
487 }
488 }
489
490 uint32_t helper_fabs_FT(uint32_t t0)
491 {
492 CPU_FloatU f;
493 f.l = t0;
494 f.f = float32_abs(f.f);
495 return f.l;
496 }
497
498 uint64_t helper_fabs_DT(uint64_t t0)
499 {
500 CPU_DoubleU d;
501 d.ll = t0;
502 d.d = float64_abs(d.d);
503 return d.ll;
504 }
505
506 uint32_t helper_fadd_FT(uint32_t t0, uint32_t t1)
507 {
508 CPU_FloatU f0, f1;
509 f0.l = t0;
510 f1.l = t1;
511 set_float_exception_flags(0, &env->fp_status);
512 f0.f = float32_add(f0.f, f1.f, &env->fp_status);
513 update_fpscr(GETPC());
514 return f0.l;
515 }
516
517 uint64_t helper_fadd_DT(uint64_t t0, uint64_t t1)
518 {
519 CPU_DoubleU d0, d1;
520 d0.ll = t0;
521 d1.ll = t1;
522 set_float_exception_flags(0, &env->fp_status);
523 d0.d = float64_add(d0.d, d1.d, &env->fp_status);
524 update_fpscr(GETPC());
525 return d0.ll;
526 }
527
528 void helper_fcmp_eq_FT(uint32_t t0, uint32_t t1)
529 {
530 CPU_FloatU f0, f1;
531 int relation;
532 f0.l = t0;
533 f1.l = t1;
534
535 set_float_exception_flags(0, &env->fp_status);
536 relation = float32_compare(f0.f, f1.f, &env->fp_status);
537 if (unlikely(relation == float_relation_unordered)) {
538 update_fpscr(GETPC());
539 } else if (relation == float_relation_equal) {
540 set_t();
541 } else {
542 clr_t();
543 }
544 }
545
546 void helper_fcmp_eq_DT(uint64_t t0, uint64_t t1)
547 {
548 CPU_DoubleU d0, d1;
549 int relation;
550 d0.ll = t0;
551 d1.ll = t1;
552
553 set_float_exception_flags(0, &env->fp_status);
554 relation = float64_compare(d0.d, d1.d, &env->fp_status);
555 if (unlikely(relation == float_relation_unordered)) {
556 update_fpscr(GETPC());
557 } else if (relation == float_relation_equal) {
558 set_t();
559 } else {
560 clr_t();
561 }
562 }
563
564 void helper_fcmp_gt_FT(uint32_t t0, uint32_t t1)
565 {
566 CPU_FloatU f0, f1;
567 int relation;
568 f0.l = t0;
569 f1.l = t1;
570
571 set_float_exception_flags(0, &env->fp_status);
572 relation = float32_compare(f0.f, f1.f, &env->fp_status);
573 if (unlikely(relation == float_relation_unordered)) {
574 update_fpscr(GETPC());
575 } else if (relation == float_relation_greater) {
576 set_t();
577 } else {
578 clr_t();
579 }
580 }
581
582 void helper_fcmp_gt_DT(uint64_t t0, uint64_t t1)
583 {
584 CPU_DoubleU d0, d1;
585 int relation;
586 d0.ll = t0;
587 d1.ll = t1;
588
589 set_float_exception_flags(0, &env->fp_status);
590 relation = float64_compare(d0.d, d1.d, &env->fp_status);
591 if (unlikely(relation == float_relation_unordered)) {
592 update_fpscr(GETPC());
593 } else if (relation == float_relation_greater) {
594 set_t();
595 } else {
596 clr_t();
597 }
598 }
599
600 uint64_t helper_fcnvsd_FT_DT(uint32_t t0)
601 {
602 CPU_DoubleU d;
603 CPU_FloatU f;
604 f.l = t0;
605 set_float_exception_flags(0, &env->fp_status);
606 d.d = float32_to_float64(f.f, &env->fp_status);
607 update_fpscr(GETPC());
608 return d.ll;
609 }
610
611 uint32_t helper_fcnvds_DT_FT(uint64_t t0)
612 {
613 CPU_DoubleU d;
614 CPU_FloatU f;
615 d.ll = t0;
616 set_float_exception_flags(0, &env->fp_status);
617 f.f = float64_to_float32(d.d, &env->fp_status);
618 update_fpscr(GETPC());
619 return f.l;
620 }
621
622 uint32_t helper_fdiv_FT(uint32_t t0, uint32_t t1)
623 {
624 CPU_FloatU f0, f1;
625 f0.l = t0;
626 f1.l = t1;
627 set_float_exception_flags(0, &env->fp_status);
628 f0.f = float32_div(f0.f, f1.f, &env->fp_status);
629 update_fpscr(GETPC());
630 return f0.l;
631 }
632
633 uint64_t helper_fdiv_DT(uint64_t t0, uint64_t t1)
634 {
635 CPU_DoubleU d0, d1;
636 d0.ll = t0;
637 d1.ll = t1;
638 set_float_exception_flags(0, &env->fp_status);
639 d0.d = float64_div(d0.d, d1.d, &env->fp_status);
640 update_fpscr(GETPC());
641 return d0.ll;
642 }
643
644 uint32_t helper_float_FT(uint32_t t0)
645 {
646 CPU_FloatU f;
647
648 set_float_exception_flags(0, &env->fp_status);
649 f.f = int32_to_float32(t0, &env->fp_status);
650 update_fpscr(GETPC());
651
652 return f.l;
653 }
654
655 uint64_t helper_float_DT(uint32_t t0)
656 {
657 CPU_DoubleU d;
658 set_float_exception_flags(0, &env->fp_status);
659 d.d = int32_to_float64(t0, &env->fp_status);
660 update_fpscr(GETPC());
661 return d.ll;
662 }
663
664 uint32_t helper_fmac_FT(uint32_t t0, uint32_t t1, uint32_t t2)
665 {
666 CPU_FloatU f0, f1, f2;
667 f0.l = t0;
668 f1.l = t1;
669 f2.l = t2;
670 set_float_exception_flags(0, &env->fp_status);
671 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
672 f0.f = float32_add(f0.f, f2.f, &env->fp_status);
673 update_fpscr(GETPC());
674
675 return f0.l;
676 }
677
678 uint32_t helper_fmul_FT(uint32_t t0, uint32_t t1)
679 {
680 CPU_FloatU f0, f1;
681 f0.l = t0;
682 f1.l = t1;
683 set_float_exception_flags(0, &env->fp_status);
684 f0.f = float32_mul(f0.f, f1.f, &env->fp_status);
685 update_fpscr(GETPC());
686 return f0.l;
687 }
688
689 uint64_t helper_fmul_DT(uint64_t t0, uint64_t t1)
690 {
691 CPU_DoubleU d0, d1;
692 d0.ll = t0;
693 d1.ll = t1;
694 set_float_exception_flags(0, &env->fp_status);
695 d0.d = float64_mul(d0.d, d1.d, &env->fp_status);
696 update_fpscr(GETPC());
697
698 return d0.ll;
699 }
700
701 uint32_t helper_fneg_T(uint32_t t0)
702 {
703 CPU_FloatU f;
704 f.l = t0;
705 f.f = float32_chs(f.f);
706 return f.l;
707 }
708
709 uint32_t helper_fsqrt_FT(uint32_t t0)
710 {
711 CPU_FloatU f;
712 f.l = t0;
713 set_float_exception_flags(0, &env->fp_status);
714 f.f = float32_sqrt(f.f, &env->fp_status);
715 update_fpscr(GETPC());
716 return f.l;
717 }
718
719 uint64_t helper_fsqrt_DT(uint64_t t0)
720 {
721 CPU_DoubleU d;
722 d.ll = t0;
723 set_float_exception_flags(0, &env->fp_status);
724 d.d = float64_sqrt(d.d, &env->fp_status);
725 update_fpscr(GETPC());
726 return d.ll;
727 }
728
729 uint32_t helper_fsub_FT(uint32_t t0, uint32_t t1)
730 {
731 CPU_FloatU f0, f1;
732 f0.l = t0;
733 f1.l = t1;
734 set_float_exception_flags(0, &env->fp_status);
735 f0.f = float32_sub(f0.f, f1.f, &env->fp_status);
736 update_fpscr(GETPC());
737 return f0.l;
738 }
739
740 uint64_t helper_fsub_DT(uint64_t t0, uint64_t t1)
741 {
742 CPU_DoubleU d0, d1;
743
744 d0.ll = t0;
745 d1.ll = t1;
746 set_float_exception_flags(0, &env->fp_status);
747 d0.d = float64_sub(d0.d, d1.d, &env->fp_status);
748 update_fpscr(GETPC());
749 return d0.ll;
750 }
751
752 uint32_t helper_ftrc_FT(uint32_t t0)
753 {
754 CPU_FloatU f;
755 uint32_t ret;
756 f.l = t0;
757 set_float_exception_flags(0, &env->fp_status);
758 ret = float32_to_int32_round_to_zero(f.f, &env->fp_status);
759 update_fpscr(GETPC());
760 return ret;
761 }
762
763 uint32_t helper_ftrc_DT(uint64_t t0)
764 {
765 CPU_DoubleU d;
766 uint32_t ret;
767 d.ll = t0;
768 set_float_exception_flags(0, &env->fp_status);
769 ret = float64_to_int32_round_to_zero(d.d, &env->fp_status);
770 update_fpscr(GETPC());
771 return ret;
772 }
773
774 void helper_fipr(uint32_t m, uint32_t n)
775 {
776 int bank, i;
777 float32 r, p;
778
779 bank = (env->sr & FPSCR_FR) ? 16 : 0;
780 r = float32_zero;
781 set_float_exception_flags(0, &env->fp_status);
782
783 for (i = 0 ; i < 4 ; i++) {
784 p = float32_mul(env->fregs[bank + m + i],
785 env->fregs[bank + n + i],
786 &env->fp_status);
787 r = float32_add(r, p, &env->fp_status);
788 }
789 update_fpscr(GETPC());
790
791 env->fregs[bank + n + 3] = r;
792 }
793
794 void helper_ftrv(uint32_t n)
795 {
796 int bank_matrix, bank_vector;
797 int i, j;
798 float32 r[4];
799 float32 p;
800
801 bank_matrix = (env->sr & FPSCR_FR) ? 0 : 16;
802 bank_vector = (env->sr & FPSCR_FR) ? 16 : 0;
803 set_float_exception_flags(0, &env->fp_status);
804 for (i = 0 ; i < 4 ; i++) {
805 r[i] = float32_zero;
806 for (j = 0 ; j < 4 ; j++) {
807 p = float32_mul(env->fregs[bank_matrix + 4 * j + i],
808 env->fregs[bank_vector + j],
809 &env->fp_status);
810 r[i] = float32_add(r[i], p, &env->fp_status);
811 }
812 }
813 update_fpscr(GETPC());
814
815 for (i = 0 ; i < 4 ; i++) {
816 env->fregs[bank_vector + i] = r[i];
817 }
818 }