]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
MMU fixes
[qemu.git] / target-sparc / op_helper.c
1 #include <math.h>
2 #include <fenv.h>
3 #include "exec.h"
4
5 //#define DEBUG_MMU
6
7 void raise_exception(int tt)
8 {
9 env->exception_index = tt;
10 cpu_loop_exit();
11 }
12
13 #ifdef USE_INT_TO_FLOAT_HELPERS
14 void do_fitos(void)
15 {
16 FT0 = (float) *((int32_t *)&FT1);
17 }
18
19 void do_fitod(void)
20 {
21 DT0 = (double) *((int32_t *)&FT1);
22 }
23 #endif
24
25 void do_fabss(void)
26 {
27 FT0 = fabsf(FT1);
28 }
29
30 void do_fsqrts(void)
31 {
32 FT0 = sqrtf(FT1);
33 }
34
35 void do_fsqrtd(void)
36 {
37 DT0 = sqrt(DT1);
38 }
39
40 void do_fcmps (void)
41 {
42 if (isnan(FT0) || isnan(FT1)) {
43 T0 = FSR_FCC1 | FSR_FCC0;
44 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
45 env->fsr |= T0;
46 if (env->fsr & FSR_NVM) {
47 raise_exception(TT_FP_EXCP);
48 } else {
49 env->fsr |= FSR_NVA;
50 }
51 } else if (FT0 < FT1) {
52 T0 = FSR_FCC0;
53 } else if (FT0 > FT1) {
54 T0 = FSR_FCC1;
55 } else {
56 T0 = 0;
57 }
58 env->fsr = T0;
59 }
60
61 void do_fcmpd (void)
62 {
63 if (isnan(DT0) || isnan(DT1)) {
64 T0 = FSR_FCC1 | FSR_FCC0;
65 env->fsr &= ~(FSR_FCC1 | FSR_FCC0);
66 env->fsr |= T0;
67 if (env->fsr & FSR_NVM) {
68 raise_exception(TT_FP_EXCP);
69 } else {
70 env->fsr |= FSR_NVA;
71 }
72 } else if (DT0 < DT1) {
73 T0 = FSR_FCC0;
74 } else if (DT0 > DT1) {
75 T0 = FSR_FCC1;
76 } else {
77 T0 = 0;
78 }
79 env->fsr = T0;
80 }
81
82 void helper_ld_asi(int asi, int size, int sign)
83 {
84 uint32_t ret;
85
86 switch (asi) {
87 case 3: /* MMU probe */
88 {
89 int mmulev;
90
91 mmulev = (T0 >> 8) & 15;
92 if (mmulev > 4)
93 ret = 0;
94 else {
95 ret = mmu_probe(T0, mmulev);
96 //bswap32s(&ret);
97 }
98 #ifdef DEBUG_MMU
99 printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
100 #endif
101 }
102 break;
103 case 4: /* read MMU regs */
104 {
105 int reg = (T0 >> 8) & 0xf;
106
107 ret = env->mmuregs[reg];
108 if (reg == 3) /* Fault status cleared on read */
109 env->mmuregs[reg] = 0;
110 #ifdef DEBUG_MMU
111 printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
112 #endif
113 }
114 break;
115 case 0x20 ... 0x2f: /* MMU passthrough */
116 cpu_physical_memory_read(T0, (void *) &ret, size);
117 if (size == 4)
118 tswap32s(&ret);
119 else if (size == 2)
120 tswap16s((uint16_t *)&ret);
121 break;
122 default:
123 ret = 0;
124 break;
125 }
126 T1 = ret;
127 }
128
129 void helper_st_asi(int asi, int size, int sign)
130 {
131 switch(asi) {
132 case 3: /* MMU flush */
133 {
134 int mmulev;
135
136 mmulev = (T0 >> 8) & 15;
137 #ifdef DEBUG_MMU
138 printf("mmu flush level %d\n", mmulev);
139 #endif
140 switch (mmulev) {
141 case 0: // flush page
142 tlb_flush_page(env, T0 & 0xfffff000);
143 break;
144 case 1: // flush segment (256k)
145 case 2: // flush region (16M)
146 case 3: // flush context (4G)
147 case 4: // flush entire
148 tlb_flush(env, 1);
149 break;
150 default:
151 break;
152 }
153 #ifdef DEBUG_MMU
154 dump_mmu();
155 #endif
156 return;
157 }
158 case 4: /* write MMU regs */
159 {
160 int reg = (T0 >> 8) & 0xf, oldreg;
161
162 oldreg = env->mmuregs[reg];
163 switch(reg) {
164 case 0:
165 env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
166 env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
167 if ((oldreg & MMU_E) != (env->mmuregs[reg] & MMU_E))
168 tlb_flush(env, 1);
169 break;
170 case 2:
171 env->mmuregs[reg] = T1;
172 if (oldreg != env->mmuregs[reg]) {
173 /* we flush when the MMU context changes because
174 QEMU has no MMU context support */
175 tlb_flush(env, 1);
176 }
177 break;
178 case 3:
179 case 4:
180 break;
181 default:
182 env->mmuregs[reg] = T1;
183 break;
184 }
185 #ifdef DEBUG_MMU
186 if (oldreg != env->mmuregs[reg]) {
187 printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
188 }
189 dump_mmu();
190 #endif
191 return;
192 }
193 case 0x17: /* Block copy, sta access */
194 {
195 // value (T1) = src
196 // address (T0) = dst
197 // copy 32 bytes
198 int src = T1, dst = T0;
199 uint8_t temp[32];
200
201 tswap32s(&src);
202
203 cpu_physical_memory_read(src, (void *) &temp, 32);
204 cpu_physical_memory_write(dst, (void *) &temp, 32);
205 }
206 return;
207 case 0x1f: /* Block fill, stda access */
208 {
209 // value (T1, T2)
210 // address (T0) = dst
211 // fill 32 bytes
212 int i, dst = T0;
213 uint64_t val;
214
215 val = (((uint64_t)T1) << 32) | T2;
216 tswap64s(&val);
217
218 for (i = 0; i < 32; i += 8, dst += 8) {
219 cpu_physical_memory_write(dst, (void *) &val, 8);
220 }
221 }
222 return;
223 case 0x20 ... 0x2f: /* MMU passthrough */
224 {
225 int temp = T1;
226 if (size == 4)
227 tswap32s(&temp);
228 else if (size == 2)
229 tswap16s((uint16_t *)&temp);
230 cpu_physical_memory_write(T0, (void *) &temp, size);
231 }
232 return;
233 default:
234 return;
235 }
236 }
237
238 void helper_rett()
239 {
240 unsigned int cwp;
241
242 env->psret = 1;
243 cwp = (env->cwp + 1) & (NWINDOWS - 1);
244 if (env->wim & (1 << cwp)) {
245 raise_exception(TT_WIN_UNF);
246 }
247 set_cwp(cwp);
248 env->psrs = env->psrps;
249 }
250
251 void helper_ldfsr(void)
252 {
253 switch (env->fsr & FSR_RD_MASK) {
254 case FSR_RD_NEAREST:
255 fesetround(FE_TONEAREST);
256 break;
257 case FSR_RD_ZERO:
258 fesetround(FE_TOWARDZERO);
259 break;
260 case FSR_RD_POS:
261 fesetround(FE_UPWARD);
262 break;
263 case FSR_RD_NEG:
264 fesetround(FE_DOWNWARD);
265 break;
266 }
267 }
268
269 void cpu_get_fp64(uint64_t *pmant, uint16_t *pexp, double f)
270 {
271 int exptemp;
272
273 *pmant = ldexp(frexp(f, &exptemp), 53);
274 *pexp = exptemp;
275 }
276
277 double cpu_put_fp64(uint64_t mant, uint16_t exp)
278 {
279 return ldexp((double) mant, exp - 53);
280 }
281
282 void helper_debug()
283 {
284 env->exception_index = EXCP_DEBUG;
285 cpu_loop_exit();
286 }
287
288 void do_wrpsr()
289 {
290 PUT_PSR(env, T0);
291 }
292
293 void do_rdpsr()
294 {
295 T0 = GET_PSR(env);
296 }