]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
SPARC64: Implement stfa/stdfa/stqfa instrcutions properly
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4 #include "sysemu.h"
5
6 //#define DEBUG_MMU
7 //#define DEBUG_MXCC
8 //#define DEBUG_UNALIGNED
9 //#define DEBUG_UNASSIGNED
10 //#define DEBUG_ASI
11 //#define DEBUG_PCALL
12 //#define DEBUG_PSTATE
13 //#define DEBUG_CACHE_CONTROL
14
15 #ifdef DEBUG_MMU
16 #define DPRINTF_MMU(fmt, ...) \
17 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
18 #else
19 #define DPRINTF_MMU(fmt, ...) do {} while (0)
20 #endif
21
22 #ifdef DEBUG_MXCC
23 #define DPRINTF_MXCC(fmt, ...) \
24 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
25 #else
26 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
27 #endif
28
29 #ifdef DEBUG_ASI
30 #define DPRINTF_ASI(fmt, ...) \
31 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
32 #endif
33
34 #ifdef DEBUG_PSTATE
35 #define DPRINTF_PSTATE(fmt, ...) \
36 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
37 #else
38 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
39 #endif
40
41 #ifdef DEBUG_CACHE_CONTROL
42 #define DPRINTF_CACHE_CONTROL(fmt, ...) \
43 do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0)
44 #else
45 #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0)
46 #endif
47
48 #ifdef TARGET_SPARC64
49 #ifndef TARGET_ABI32
50 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
51 #else
52 #define AM_CHECK(env1) (1)
53 #endif
54 #endif
55
56 #define DT0 (env->dt0)
57 #define DT1 (env->dt1)
58 #define QT0 (env->qt0)
59 #define QT1 (env->qt1)
60
61 /* Leon3 cache control */
62
63 /* Cache control: emulate the behavior of cache control registers but without
64 any effect on the emulated */
65
66 #define CACHE_STATE_MASK 0x3
67 #define CACHE_DISABLED 0x0
68 #define CACHE_FROZEN 0x1
69 #define CACHE_ENABLED 0x3
70
71 /* Cache Control register fields */
72
73 #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */
74 #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */
75 #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */
76 #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */
77 #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */
78 #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */
79 #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */
80 #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */
81
82 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
83 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
84 int is_asi, int size);
85 #endif
86
87 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
88 // Calculates TSB pointer value for fault page size 8k or 64k
89 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
90 uint64_t tag_access_register,
91 int page_size)
92 {
93 uint64_t tsb_base = tsb_register & ~0x1fffULL;
94 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
95 int tsb_size = tsb_register & 0xf;
96
97 // discard lower 13 bits which hold tag access context
98 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
99
100 // now reorder bits
101 uint64_t tsb_base_mask = ~0x1fffULL;
102 uint64_t va = tag_access_va;
103
104 // move va bits to correct position
105 if (page_size == 8*1024) {
106 va >>= 9;
107 } else if (page_size == 64*1024) {
108 va >>= 12;
109 }
110
111 if (tsb_size) {
112 tsb_base_mask <<= tsb_size;
113 }
114
115 // calculate tsb_base mask and adjust va if split is in use
116 if (tsb_split) {
117 if (page_size == 8*1024) {
118 va &= ~(1ULL << (13 + tsb_size));
119 } else if (page_size == 64*1024) {
120 va |= (1ULL << (13 + tsb_size));
121 }
122 tsb_base_mask <<= 1;
123 }
124
125 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
126 }
127
128 // Calculates tag target register value by reordering bits
129 // in tag access register
130 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
131 {
132 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
133 }
134
135 static void replace_tlb_entry(SparcTLBEntry *tlb,
136 uint64_t tlb_tag, uint64_t tlb_tte,
137 CPUState *env1)
138 {
139 target_ulong mask, size, va, offset;
140
141 // flush page range if translation is valid
142 if (TTE_IS_VALID(tlb->tte)) {
143
144 mask = 0xffffffffffffe000ULL;
145 mask <<= 3 * ((tlb->tte >> 61) & 3);
146 size = ~mask + 1;
147
148 va = tlb->tag & mask;
149
150 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
151 tlb_flush_page(env1, va + offset);
152 }
153 }
154
155 tlb->tag = tlb_tag;
156 tlb->tte = tlb_tte;
157 }
158
159 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
160 const char* strmmu, CPUState *env1)
161 {
162 unsigned int i;
163 target_ulong mask;
164 uint64_t context;
165
166 int is_demap_context = (demap_addr >> 6) & 1;
167
168 // demap context
169 switch ((demap_addr >> 4) & 3) {
170 case 0: // primary
171 context = env1->dmmu.mmu_primary_context;
172 break;
173 case 1: // secondary
174 context = env1->dmmu.mmu_secondary_context;
175 break;
176 case 2: // nucleus
177 context = 0;
178 break;
179 case 3: // reserved
180 default:
181 return;
182 }
183
184 for (i = 0; i < 64; i++) {
185 if (TTE_IS_VALID(tlb[i].tte)) {
186
187 if (is_demap_context) {
188 // will remove non-global entries matching context value
189 if (TTE_IS_GLOBAL(tlb[i].tte) ||
190 !tlb_compare_context(&tlb[i], context)) {
191 continue;
192 }
193 } else {
194 // demap page
195 // will remove any entry matching VA
196 mask = 0xffffffffffffe000ULL;
197 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
198
199 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
200 continue;
201 }
202
203 // entry should be global or matching context value
204 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
205 !tlb_compare_context(&tlb[i], context)) {
206 continue;
207 }
208 }
209
210 replace_tlb_entry(&tlb[i], 0, 0, env1);
211 #ifdef DEBUG_MMU
212 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
213 dump_mmu(stdout, fprintf, env1);
214 #endif
215 }
216 }
217 }
218
219 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
220 uint64_t tlb_tag, uint64_t tlb_tte,
221 const char* strmmu, CPUState *env1)
222 {
223 unsigned int i, replace_used;
224
225 // Try replacing invalid entry
226 for (i = 0; i < 64; i++) {
227 if (!TTE_IS_VALID(tlb[i].tte)) {
228 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
229 #ifdef DEBUG_MMU
230 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
231 dump_mmu(stdout, fprintf, env1);
232 #endif
233 return;
234 }
235 }
236
237 // All entries are valid, try replacing unlocked entry
238
239 for (replace_used = 0; replace_used < 2; ++replace_used) {
240
241 // Used entries are not replaced on first pass
242
243 for (i = 0; i < 64; i++) {
244 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
245
246 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
247 #ifdef DEBUG_MMU
248 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
249 strmmu, (replace_used?"used":"unused"), i);
250 dump_mmu(stdout, fprintf, env1);
251 #endif
252 return;
253 }
254 }
255
256 // Now reset used bit and search for unused entries again
257
258 for (i = 0; i < 64; i++) {
259 TTE_SET_UNUSED(tlb[i].tte);
260 }
261 }
262
263 #ifdef DEBUG_MMU
264 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
265 #endif
266 // error state?
267 }
268
269 #endif
270
271 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
272 {
273 #ifdef TARGET_SPARC64
274 if (AM_CHECK(env1))
275 addr &= 0xffffffffULL;
276 #endif
277 return addr;
278 }
279
280 /* returns true if access using this ASI is to have address translated by MMU
281 otherwise access is to raw physical address */
282 static inline int is_translating_asi(int asi)
283 {
284 #ifdef TARGET_SPARC64
285 /* Ultrasparc IIi translating asi
286 - note this list is defined by cpu implementation
287 */
288 switch (asi) {
289 case 0x04 ... 0x11:
290 case 0x18 ... 0x19:
291 case 0x24 ... 0x2C:
292 case 0x70 ... 0x73:
293 case 0x78 ... 0x79:
294 case 0x80 ... 0xFF:
295 return 1;
296
297 default:
298 return 0;
299 }
300 #else
301 /* TODO: check sparc32 bits */
302 return 0;
303 #endif
304 }
305
306 static inline target_ulong asi_address_mask(CPUState *env1,
307 int asi, target_ulong addr)
308 {
309 if (is_translating_asi(asi)) {
310 return address_mask(env, addr);
311 } else {
312 return addr;
313 }
314 }
315
316 static void raise_exception(int tt)
317 {
318 env->exception_index = tt;
319 cpu_loop_exit(env);
320 }
321
322 void HELPER(raise_exception)(int tt)
323 {
324 raise_exception(tt);
325 }
326
327 void helper_shutdown(void)
328 {
329 #if !defined(CONFIG_USER_ONLY)
330 qemu_system_shutdown_request();
331 #endif
332 }
333
334 void helper_check_align(target_ulong addr, uint32_t align)
335 {
336 if (addr & align) {
337 #ifdef DEBUG_UNALIGNED
338 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
339 "\n", addr, env->pc);
340 #endif
341 raise_exception(TT_UNALIGNED);
342 }
343 }
344
345 #define F_HELPER(name, p) void helper_f##name##p(void)
346
347 #define F_BINOP(name) \
348 float32 helper_f ## name ## s (float32 src1, float32 src2) \
349 { \
350 return float32_ ## name (src1, src2, &env->fp_status); \
351 } \
352 F_HELPER(name, d) \
353 { \
354 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
355 } \
356 F_HELPER(name, q) \
357 { \
358 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
359 }
360
361 F_BINOP(add);
362 F_BINOP(sub);
363 F_BINOP(mul);
364 F_BINOP(div);
365 #undef F_BINOP
366
367 void helper_fsmuld(float32 src1, float32 src2)
368 {
369 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
370 float32_to_float64(src2, &env->fp_status),
371 &env->fp_status);
372 }
373
374 void helper_fdmulq(void)
375 {
376 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
377 float64_to_float128(DT1, &env->fp_status),
378 &env->fp_status);
379 }
380
381 float32 helper_fnegs(float32 src)
382 {
383 return float32_chs(src);
384 }
385
386 #ifdef TARGET_SPARC64
387 F_HELPER(neg, d)
388 {
389 DT0 = float64_chs(DT1);
390 }
391
392 F_HELPER(neg, q)
393 {
394 QT0 = float128_chs(QT1);
395 }
396 #endif
397
398 /* Integer to float conversion. */
399 float32 helper_fitos(int32_t src)
400 {
401 return int32_to_float32(src, &env->fp_status);
402 }
403
404 void helper_fitod(int32_t src)
405 {
406 DT0 = int32_to_float64(src, &env->fp_status);
407 }
408
409 void helper_fitoq(int32_t src)
410 {
411 QT0 = int32_to_float128(src, &env->fp_status);
412 }
413
414 #ifdef TARGET_SPARC64
415 float32 helper_fxtos(void)
416 {
417 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
418 }
419
420 F_HELPER(xto, d)
421 {
422 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
423 }
424
425 F_HELPER(xto, q)
426 {
427 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
428 }
429 #endif
430 #undef F_HELPER
431
432 /* floating point conversion */
433 float32 helper_fdtos(void)
434 {
435 return float64_to_float32(DT1, &env->fp_status);
436 }
437
438 void helper_fstod(float32 src)
439 {
440 DT0 = float32_to_float64(src, &env->fp_status);
441 }
442
443 float32 helper_fqtos(void)
444 {
445 return float128_to_float32(QT1, &env->fp_status);
446 }
447
448 void helper_fstoq(float32 src)
449 {
450 QT0 = float32_to_float128(src, &env->fp_status);
451 }
452
453 void helper_fqtod(void)
454 {
455 DT0 = float128_to_float64(QT1, &env->fp_status);
456 }
457
458 void helper_fdtoq(void)
459 {
460 QT0 = float64_to_float128(DT1, &env->fp_status);
461 }
462
463 /* Float to integer conversion. */
464 int32_t helper_fstoi(float32 src)
465 {
466 return float32_to_int32_round_to_zero(src, &env->fp_status);
467 }
468
469 int32_t helper_fdtoi(void)
470 {
471 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
472 }
473
474 int32_t helper_fqtoi(void)
475 {
476 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
477 }
478
479 #ifdef TARGET_SPARC64
480 void helper_fstox(float32 src)
481 {
482 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
483 }
484
485 void helper_fdtox(void)
486 {
487 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
488 }
489
490 void helper_fqtox(void)
491 {
492 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
493 }
494
495 void helper_faligndata(void)
496 {
497 uint64_t tmp;
498
499 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
500 /* on many architectures a shift of 64 does nothing */
501 if ((env->gsr & 7) != 0) {
502 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
503 }
504 *((uint64_t *)&DT0) = tmp;
505 }
506
507 #ifdef HOST_WORDS_BIGENDIAN
508 #define VIS_B64(n) b[7 - (n)]
509 #define VIS_W64(n) w[3 - (n)]
510 #define VIS_SW64(n) sw[3 - (n)]
511 #define VIS_L64(n) l[1 - (n)]
512 #define VIS_B32(n) b[3 - (n)]
513 #define VIS_W32(n) w[1 - (n)]
514 #else
515 #define VIS_B64(n) b[n]
516 #define VIS_W64(n) w[n]
517 #define VIS_SW64(n) sw[n]
518 #define VIS_L64(n) l[n]
519 #define VIS_B32(n) b[n]
520 #define VIS_W32(n) w[n]
521 #endif
522
523 typedef union {
524 uint8_t b[8];
525 uint16_t w[4];
526 int16_t sw[4];
527 uint32_t l[2];
528 float64 d;
529 } vis64;
530
531 typedef union {
532 uint8_t b[4];
533 uint16_t w[2];
534 uint32_t l;
535 float32 f;
536 } vis32;
537
538 void helper_fpmerge(void)
539 {
540 vis64 s, d;
541
542 s.d = DT0;
543 d.d = DT1;
544
545 // Reverse calculation order to handle overlap
546 d.VIS_B64(7) = s.VIS_B64(3);
547 d.VIS_B64(6) = d.VIS_B64(3);
548 d.VIS_B64(5) = s.VIS_B64(2);
549 d.VIS_B64(4) = d.VIS_B64(2);
550 d.VIS_B64(3) = s.VIS_B64(1);
551 d.VIS_B64(2) = d.VIS_B64(1);
552 d.VIS_B64(1) = s.VIS_B64(0);
553 //d.VIS_B64(0) = d.VIS_B64(0);
554
555 DT0 = d.d;
556 }
557
558 void helper_fmul8x16(void)
559 {
560 vis64 s, d;
561 uint32_t tmp;
562
563 s.d = DT0;
564 d.d = DT1;
565
566 #define PMUL(r) \
567 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
568 if ((tmp & 0xff) > 0x7f) \
569 tmp += 0x100; \
570 d.VIS_W64(r) = tmp >> 8;
571
572 PMUL(0);
573 PMUL(1);
574 PMUL(2);
575 PMUL(3);
576 #undef PMUL
577
578 DT0 = d.d;
579 }
580
581 void helper_fmul8x16al(void)
582 {
583 vis64 s, d;
584 uint32_t tmp;
585
586 s.d = DT0;
587 d.d = DT1;
588
589 #define PMUL(r) \
590 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
591 if ((tmp & 0xff) > 0x7f) \
592 tmp += 0x100; \
593 d.VIS_W64(r) = tmp >> 8;
594
595 PMUL(0);
596 PMUL(1);
597 PMUL(2);
598 PMUL(3);
599 #undef PMUL
600
601 DT0 = d.d;
602 }
603
604 void helper_fmul8x16au(void)
605 {
606 vis64 s, d;
607 uint32_t tmp;
608
609 s.d = DT0;
610 d.d = DT1;
611
612 #define PMUL(r) \
613 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
614 if ((tmp & 0xff) > 0x7f) \
615 tmp += 0x100; \
616 d.VIS_W64(r) = tmp >> 8;
617
618 PMUL(0);
619 PMUL(1);
620 PMUL(2);
621 PMUL(3);
622 #undef PMUL
623
624 DT0 = d.d;
625 }
626
627 void helper_fmul8sux16(void)
628 {
629 vis64 s, d;
630 uint32_t tmp;
631
632 s.d = DT0;
633 d.d = DT1;
634
635 #define PMUL(r) \
636 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
637 if ((tmp & 0xff) > 0x7f) \
638 tmp += 0x100; \
639 d.VIS_W64(r) = tmp >> 8;
640
641 PMUL(0);
642 PMUL(1);
643 PMUL(2);
644 PMUL(3);
645 #undef PMUL
646
647 DT0 = d.d;
648 }
649
650 void helper_fmul8ulx16(void)
651 {
652 vis64 s, d;
653 uint32_t tmp;
654
655 s.d = DT0;
656 d.d = DT1;
657
658 #define PMUL(r) \
659 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
660 if ((tmp & 0xff) > 0x7f) \
661 tmp += 0x100; \
662 d.VIS_W64(r) = tmp >> 8;
663
664 PMUL(0);
665 PMUL(1);
666 PMUL(2);
667 PMUL(3);
668 #undef PMUL
669
670 DT0 = d.d;
671 }
672
673 void helper_fmuld8sux16(void)
674 {
675 vis64 s, d;
676 uint32_t tmp;
677
678 s.d = DT0;
679 d.d = DT1;
680
681 #define PMUL(r) \
682 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
683 if ((tmp & 0xff) > 0x7f) \
684 tmp += 0x100; \
685 d.VIS_L64(r) = tmp;
686
687 // Reverse calculation order to handle overlap
688 PMUL(1);
689 PMUL(0);
690 #undef PMUL
691
692 DT0 = d.d;
693 }
694
695 void helper_fmuld8ulx16(void)
696 {
697 vis64 s, d;
698 uint32_t tmp;
699
700 s.d = DT0;
701 d.d = DT1;
702
703 #define PMUL(r) \
704 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
705 if ((tmp & 0xff) > 0x7f) \
706 tmp += 0x100; \
707 d.VIS_L64(r) = tmp;
708
709 // Reverse calculation order to handle overlap
710 PMUL(1);
711 PMUL(0);
712 #undef PMUL
713
714 DT0 = d.d;
715 }
716
717 void helper_fexpand(void)
718 {
719 vis32 s;
720 vis64 d;
721
722 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
723 d.d = DT1;
724 d.VIS_W64(0) = s.VIS_B32(0) << 4;
725 d.VIS_W64(1) = s.VIS_B32(1) << 4;
726 d.VIS_W64(2) = s.VIS_B32(2) << 4;
727 d.VIS_W64(3) = s.VIS_B32(3) << 4;
728
729 DT0 = d.d;
730 }
731
732 #define VIS_HELPER(name, F) \
733 void name##16(void) \
734 { \
735 vis64 s, d; \
736 \
737 s.d = DT0; \
738 d.d = DT1; \
739 \
740 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
741 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
742 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
743 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
744 \
745 DT0 = d.d; \
746 } \
747 \
748 uint32_t name##16s(uint32_t src1, uint32_t src2) \
749 { \
750 vis32 s, d; \
751 \
752 s.l = src1; \
753 d.l = src2; \
754 \
755 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
756 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
757 \
758 return d.l; \
759 } \
760 \
761 void name##32(void) \
762 { \
763 vis64 s, d; \
764 \
765 s.d = DT0; \
766 d.d = DT1; \
767 \
768 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
769 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
770 \
771 DT0 = d.d; \
772 } \
773 \
774 uint32_t name##32s(uint32_t src1, uint32_t src2) \
775 { \
776 vis32 s, d; \
777 \
778 s.l = src1; \
779 d.l = src2; \
780 \
781 d.l = F(d.l, s.l); \
782 \
783 return d.l; \
784 }
785
786 #define FADD(a, b) ((a) + (b))
787 #define FSUB(a, b) ((a) - (b))
788 VIS_HELPER(helper_fpadd, FADD)
789 VIS_HELPER(helper_fpsub, FSUB)
790
791 #define VIS_CMPHELPER(name, F) \
792 void name##16(void) \
793 { \
794 vis64 s, d; \
795 \
796 s.d = DT0; \
797 d.d = DT1; \
798 \
799 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
800 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
801 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
802 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
803 \
804 DT0 = d.d; \
805 } \
806 \
807 void name##32(void) \
808 { \
809 vis64 s, d; \
810 \
811 s.d = DT0; \
812 d.d = DT1; \
813 \
814 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
815 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
816 \
817 DT0 = d.d; \
818 }
819
820 #define FCMPGT(a, b) ((a) > (b))
821 #define FCMPEQ(a, b) ((a) == (b))
822 #define FCMPLE(a, b) ((a) <= (b))
823 #define FCMPNE(a, b) ((a) != (b))
824
825 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
826 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
827 VIS_CMPHELPER(helper_fcmple, FCMPLE)
828 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
829 #endif
830
831 void helper_check_ieee_exceptions(void)
832 {
833 target_ulong status;
834
835 status = get_float_exception_flags(&env->fp_status);
836 if (status) {
837 /* Copy IEEE 754 flags into FSR */
838 if (status & float_flag_invalid)
839 env->fsr |= FSR_NVC;
840 if (status & float_flag_overflow)
841 env->fsr |= FSR_OFC;
842 if (status & float_flag_underflow)
843 env->fsr |= FSR_UFC;
844 if (status & float_flag_divbyzero)
845 env->fsr |= FSR_DZC;
846 if (status & float_flag_inexact)
847 env->fsr |= FSR_NXC;
848
849 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
850 /* Unmasked exception, generate a trap */
851 env->fsr |= FSR_FTT_IEEE_EXCP;
852 raise_exception(TT_FP_EXCP);
853 } else {
854 /* Accumulate exceptions */
855 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
856 }
857 }
858 }
859
860 void helper_clear_float_exceptions(void)
861 {
862 set_float_exception_flags(0, &env->fp_status);
863 }
864
865 float32 helper_fabss(float32 src)
866 {
867 return float32_abs(src);
868 }
869
870 #ifdef TARGET_SPARC64
871 void helper_fabsd(void)
872 {
873 DT0 = float64_abs(DT1);
874 }
875
876 void helper_fabsq(void)
877 {
878 QT0 = float128_abs(QT1);
879 }
880 #endif
881
882 float32 helper_fsqrts(float32 src)
883 {
884 return float32_sqrt(src, &env->fp_status);
885 }
886
887 void helper_fsqrtd(void)
888 {
889 DT0 = float64_sqrt(DT1, &env->fp_status);
890 }
891
892 void helper_fsqrtq(void)
893 {
894 QT0 = float128_sqrt(QT1, &env->fp_status);
895 }
896
897 #define GEN_FCMP(name, size, reg1, reg2, FS, E) \
898 void glue(helper_, name) (void) \
899 { \
900 env->fsr &= FSR_FTT_NMASK; \
901 if (E && (glue(size, _is_any_nan)(reg1) || \
902 glue(size, _is_any_nan)(reg2)) && \
903 (env->fsr & FSR_NVM)) { \
904 env->fsr |= FSR_NVC; \
905 env->fsr |= FSR_FTT_IEEE_EXCP; \
906 raise_exception(TT_FP_EXCP); \
907 } \
908 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
909 case float_relation_unordered: \
910 if ((env->fsr & FSR_NVM)) { \
911 env->fsr |= FSR_NVC; \
912 env->fsr |= FSR_FTT_IEEE_EXCP; \
913 raise_exception(TT_FP_EXCP); \
914 } else { \
915 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
916 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
917 env->fsr |= FSR_NVA; \
918 } \
919 break; \
920 case float_relation_less: \
921 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
922 env->fsr |= FSR_FCC0 << FS; \
923 break; \
924 case float_relation_greater: \
925 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
926 env->fsr |= FSR_FCC1 << FS; \
927 break; \
928 default: \
929 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
930 break; \
931 } \
932 }
933 #define GEN_FCMPS(name, size, FS, E) \
934 void glue(helper_, name)(float32 src1, float32 src2) \
935 { \
936 env->fsr &= FSR_FTT_NMASK; \
937 if (E && (glue(size, _is_any_nan)(src1) || \
938 glue(size, _is_any_nan)(src2)) && \
939 (env->fsr & FSR_NVM)) { \
940 env->fsr |= FSR_NVC; \
941 env->fsr |= FSR_FTT_IEEE_EXCP; \
942 raise_exception(TT_FP_EXCP); \
943 } \
944 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
945 case float_relation_unordered: \
946 if ((env->fsr & FSR_NVM)) { \
947 env->fsr |= FSR_NVC; \
948 env->fsr |= FSR_FTT_IEEE_EXCP; \
949 raise_exception(TT_FP_EXCP); \
950 } else { \
951 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
952 env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \
953 env->fsr |= FSR_NVA; \
954 } \
955 break; \
956 case float_relation_less: \
957 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
958 env->fsr |= FSR_FCC0 << FS; \
959 break; \
960 case float_relation_greater: \
961 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
962 env->fsr |= FSR_FCC1 << FS; \
963 break; \
964 default: \
965 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
966 break; \
967 } \
968 }
969
970 GEN_FCMPS(fcmps, float32, 0, 0);
971 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
972
973 GEN_FCMPS(fcmpes, float32, 0, 1);
974 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
975
976 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
977 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
978
979 static uint32_t compute_all_flags(void)
980 {
981 return env->psr & PSR_ICC;
982 }
983
984 static uint32_t compute_C_flags(void)
985 {
986 return env->psr & PSR_CARRY;
987 }
988
989 static inline uint32_t get_NZ_icc(int32_t dst)
990 {
991 uint32_t ret = 0;
992
993 if (dst == 0) {
994 ret = PSR_ZERO;
995 } else if (dst < 0) {
996 ret = PSR_NEG;
997 }
998 return ret;
999 }
1000
1001 #ifdef TARGET_SPARC64
1002 static uint32_t compute_all_flags_xcc(void)
1003 {
1004 return env->xcc & PSR_ICC;
1005 }
1006
1007 static uint32_t compute_C_flags_xcc(void)
1008 {
1009 return env->xcc & PSR_CARRY;
1010 }
1011
1012 static inline uint32_t get_NZ_xcc(target_long dst)
1013 {
1014 uint32_t ret = 0;
1015
1016 if (!dst) {
1017 ret = PSR_ZERO;
1018 } else if (dst < 0) {
1019 ret = PSR_NEG;
1020 }
1021 return ret;
1022 }
1023 #endif
1024
1025 static inline uint32_t get_V_div_icc(target_ulong src2)
1026 {
1027 uint32_t ret = 0;
1028
1029 if (src2 != 0) {
1030 ret = PSR_OVF;
1031 }
1032 return ret;
1033 }
1034
1035 static uint32_t compute_all_div(void)
1036 {
1037 uint32_t ret;
1038
1039 ret = get_NZ_icc(CC_DST);
1040 ret |= get_V_div_icc(CC_SRC2);
1041 return ret;
1042 }
1043
1044 static uint32_t compute_C_div(void)
1045 {
1046 return 0;
1047 }
1048
1049 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1050 {
1051 uint32_t ret = 0;
1052
1053 if (dst < src1) {
1054 ret = PSR_CARRY;
1055 }
1056 return ret;
1057 }
1058
1059 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1060 uint32_t src2)
1061 {
1062 uint32_t ret = 0;
1063
1064 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1065 ret = PSR_CARRY;
1066 }
1067 return ret;
1068 }
1069
1070 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1071 uint32_t src2)
1072 {
1073 uint32_t ret = 0;
1074
1075 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1076 ret = PSR_OVF;
1077 }
1078 return ret;
1079 }
1080
1081 #ifdef TARGET_SPARC64
1082 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1083 {
1084 uint32_t ret = 0;
1085
1086 if (dst < src1) {
1087 ret = PSR_CARRY;
1088 }
1089 return ret;
1090 }
1091
1092 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1093 target_ulong src2)
1094 {
1095 uint32_t ret = 0;
1096
1097 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1098 ret = PSR_CARRY;
1099 }
1100 return ret;
1101 }
1102
1103 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1104 target_ulong src2)
1105 {
1106 uint32_t ret = 0;
1107
1108 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1109 ret = PSR_OVF;
1110 }
1111 return ret;
1112 }
1113
1114 static uint32_t compute_all_add_xcc(void)
1115 {
1116 uint32_t ret;
1117
1118 ret = get_NZ_xcc(CC_DST);
1119 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1120 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1121 return ret;
1122 }
1123
1124 static uint32_t compute_C_add_xcc(void)
1125 {
1126 return get_C_add_xcc(CC_DST, CC_SRC);
1127 }
1128 #endif
1129
1130 static uint32_t compute_all_add(void)
1131 {
1132 uint32_t ret;
1133
1134 ret = get_NZ_icc(CC_DST);
1135 ret |= get_C_add_icc(CC_DST, CC_SRC);
1136 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1137 return ret;
1138 }
1139
1140 static uint32_t compute_C_add(void)
1141 {
1142 return get_C_add_icc(CC_DST, CC_SRC);
1143 }
1144
1145 #ifdef TARGET_SPARC64
1146 static uint32_t compute_all_addx_xcc(void)
1147 {
1148 uint32_t ret;
1149
1150 ret = get_NZ_xcc(CC_DST);
1151 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1152 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1153 return ret;
1154 }
1155
1156 static uint32_t compute_C_addx_xcc(void)
1157 {
1158 uint32_t ret;
1159
1160 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1161 return ret;
1162 }
1163 #endif
1164
1165 static uint32_t compute_all_addx(void)
1166 {
1167 uint32_t ret;
1168
1169 ret = get_NZ_icc(CC_DST);
1170 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1171 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1172 return ret;
1173 }
1174
1175 static uint32_t compute_C_addx(void)
1176 {
1177 uint32_t ret;
1178
1179 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1180 return ret;
1181 }
1182
1183 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1184 {
1185 uint32_t ret = 0;
1186
1187 if ((src1 | src2) & 0x3) {
1188 ret = PSR_OVF;
1189 }
1190 return ret;
1191 }
1192
1193 static uint32_t compute_all_tadd(void)
1194 {
1195 uint32_t ret;
1196
1197 ret = get_NZ_icc(CC_DST);
1198 ret |= get_C_add_icc(CC_DST, CC_SRC);
1199 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1200 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1201 return ret;
1202 }
1203
1204 static uint32_t compute_all_taddtv(void)
1205 {
1206 uint32_t ret;
1207
1208 ret = get_NZ_icc(CC_DST);
1209 ret |= get_C_add_icc(CC_DST, CC_SRC);
1210 return ret;
1211 }
1212
1213 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1214 {
1215 uint32_t ret = 0;
1216
1217 if (src1 < src2) {
1218 ret = PSR_CARRY;
1219 }
1220 return ret;
1221 }
1222
1223 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1224 uint32_t src2)
1225 {
1226 uint32_t ret = 0;
1227
1228 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1229 ret = PSR_CARRY;
1230 }
1231 return ret;
1232 }
1233
1234 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1235 uint32_t src2)
1236 {
1237 uint32_t ret = 0;
1238
1239 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1240 ret = PSR_OVF;
1241 }
1242 return ret;
1243 }
1244
1245
1246 #ifdef TARGET_SPARC64
1247 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1248 {
1249 uint32_t ret = 0;
1250
1251 if (src1 < src2) {
1252 ret = PSR_CARRY;
1253 }
1254 return ret;
1255 }
1256
1257 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1258 target_ulong src2)
1259 {
1260 uint32_t ret = 0;
1261
1262 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1263 ret = PSR_CARRY;
1264 }
1265 return ret;
1266 }
1267
1268 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1269 target_ulong src2)
1270 {
1271 uint32_t ret = 0;
1272
1273 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1274 ret = PSR_OVF;
1275 }
1276 return ret;
1277 }
1278
1279 static uint32_t compute_all_sub_xcc(void)
1280 {
1281 uint32_t ret;
1282
1283 ret = get_NZ_xcc(CC_DST);
1284 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1285 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1286 return ret;
1287 }
1288
1289 static uint32_t compute_C_sub_xcc(void)
1290 {
1291 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1292 }
1293 #endif
1294
1295 static uint32_t compute_all_sub(void)
1296 {
1297 uint32_t ret;
1298
1299 ret = get_NZ_icc(CC_DST);
1300 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1301 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1302 return ret;
1303 }
1304
1305 static uint32_t compute_C_sub(void)
1306 {
1307 return get_C_sub_icc(CC_SRC, CC_SRC2);
1308 }
1309
1310 #ifdef TARGET_SPARC64
1311 static uint32_t compute_all_subx_xcc(void)
1312 {
1313 uint32_t ret;
1314
1315 ret = get_NZ_xcc(CC_DST);
1316 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1317 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1318 return ret;
1319 }
1320
1321 static uint32_t compute_C_subx_xcc(void)
1322 {
1323 uint32_t ret;
1324
1325 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1326 return ret;
1327 }
1328 #endif
1329
1330 static uint32_t compute_all_subx(void)
1331 {
1332 uint32_t ret;
1333
1334 ret = get_NZ_icc(CC_DST);
1335 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1336 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1337 return ret;
1338 }
1339
1340 static uint32_t compute_C_subx(void)
1341 {
1342 uint32_t ret;
1343
1344 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1345 return ret;
1346 }
1347
1348 static uint32_t compute_all_tsub(void)
1349 {
1350 uint32_t ret;
1351
1352 ret = get_NZ_icc(CC_DST);
1353 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1354 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1355 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1356 return ret;
1357 }
1358
1359 static uint32_t compute_all_tsubtv(void)
1360 {
1361 uint32_t ret;
1362
1363 ret = get_NZ_icc(CC_DST);
1364 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1365 return ret;
1366 }
1367
1368 static uint32_t compute_all_logic(void)
1369 {
1370 return get_NZ_icc(CC_DST);
1371 }
1372
1373 static uint32_t compute_C_logic(void)
1374 {
1375 return 0;
1376 }
1377
1378 #ifdef TARGET_SPARC64
1379 static uint32_t compute_all_logic_xcc(void)
1380 {
1381 return get_NZ_xcc(CC_DST);
1382 }
1383 #endif
1384
1385 typedef struct CCTable {
1386 uint32_t (*compute_all)(void); /* return all the flags */
1387 uint32_t (*compute_c)(void); /* return the C flag */
1388 } CCTable;
1389
1390 static const CCTable icc_table[CC_OP_NB] = {
1391 /* CC_OP_DYNAMIC should never happen */
1392 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1393 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1394 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1395 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1396 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1397 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1398 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1399 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1400 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1401 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1402 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1403 };
1404
1405 #ifdef TARGET_SPARC64
1406 static const CCTable xcc_table[CC_OP_NB] = {
1407 /* CC_OP_DYNAMIC should never happen */
1408 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1409 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1410 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1411 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1412 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1413 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1414 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1415 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1416 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1417 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1418 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1419 };
1420 #endif
1421
1422 void helper_compute_psr(void)
1423 {
1424 uint32_t new_psr;
1425
1426 new_psr = icc_table[CC_OP].compute_all();
1427 env->psr = new_psr;
1428 #ifdef TARGET_SPARC64
1429 new_psr = xcc_table[CC_OP].compute_all();
1430 env->xcc = new_psr;
1431 #endif
1432 CC_OP = CC_OP_FLAGS;
1433 }
1434
1435 uint32_t helper_compute_C_icc(void)
1436 {
1437 uint32_t ret;
1438
1439 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1440 return ret;
1441 }
1442
1443 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1444 {
1445 dst[0] = src[0];
1446 dst[1] = src[1];
1447 dst[2] = src[2];
1448 dst[3] = src[3];
1449 dst[4] = src[4];
1450 dst[5] = src[5];
1451 dst[6] = src[6];
1452 dst[7] = src[7];
1453 }
1454
1455 static void set_cwp(int new_cwp)
1456 {
1457 /* put the modified wrap registers at their proper location */
1458 if (env->cwp == env->nwindows - 1) {
1459 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1460 }
1461 env->cwp = new_cwp;
1462
1463 /* put the wrap registers at their temporary location */
1464 if (new_cwp == env->nwindows - 1) {
1465 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1466 }
1467 env->regwptr = env->regbase + (new_cwp * 16);
1468 }
1469
1470 void cpu_set_cwp(CPUState *env1, int new_cwp)
1471 {
1472 CPUState *saved_env;
1473
1474 saved_env = env;
1475 env = env1;
1476 set_cwp(new_cwp);
1477 env = saved_env;
1478 }
1479
1480 static target_ulong get_psr(void)
1481 {
1482 helper_compute_psr();
1483
1484 #if !defined (TARGET_SPARC64)
1485 return env->version | (env->psr & PSR_ICC) |
1486 (env->psref? PSR_EF : 0) |
1487 (env->psrpil << 8) |
1488 (env->psrs? PSR_S : 0) |
1489 (env->psrps? PSR_PS : 0) |
1490 (env->psret? PSR_ET : 0) | env->cwp;
1491 #else
1492 return env->psr & PSR_ICC;
1493 #endif
1494 }
1495
1496 target_ulong cpu_get_psr(CPUState *env1)
1497 {
1498 CPUState *saved_env;
1499 target_ulong ret;
1500
1501 saved_env = env;
1502 env = env1;
1503 ret = get_psr();
1504 env = saved_env;
1505 return ret;
1506 }
1507
1508 static void put_psr(target_ulong val)
1509 {
1510 env->psr = val & PSR_ICC;
1511 #if !defined (TARGET_SPARC64)
1512 env->psref = (val & PSR_EF)? 1 : 0;
1513 env->psrpil = (val & PSR_PIL) >> 8;
1514 #endif
1515 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1516 cpu_check_irqs(env);
1517 #endif
1518 #if !defined (TARGET_SPARC64)
1519 env->psrs = (val & PSR_S)? 1 : 0;
1520 env->psrps = (val & PSR_PS)? 1 : 0;
1521 env->psret = (val & PSR_ET)? 1 : 0;
1522 set_cwp(val & PSR_CWP);
1523 #endif
1524 env->cc_op = CC_OP_FLAGS;
1525 }
1526
1527 void cpu_put_psr(CPUState *env1, target_ulong val)
1528 {
1529 CPUState *saved_env;
1530
1531 saved_env = env;
1532 env = env1;
1533 put_psr(val);
1534 env = saved_env;
1535 }
1536
1537 static int cwp_inc(int cwp)
1538 {
1539 if (unlikely(cwp >= env->nwindows)) {
1540 cwp -= env->nwindows;
1541 }
1542 return cwp;
1543 }
1544
1545 int cpu_cwp_inc(CPUState *env1, int cwp)
1546 {
1547 CPUState *saved_env;
1548 target_ulong ret;
1549
1550 saved_env = env;
1551 env = env1;
1552 ret = cwp_inc(cwp);
1553 env = saved_env;
1554 return ret;
1555 }
1556
1557 static int cwp_dec(int cwp)
1558 {
1559 if (unlikely(cwp < 0)) {
1560 cwp += env->nwindows;
1561 }
1562 return cwp;
1563 }
1564
1565 int cpu_cwp_dec(CPUState *env1, int cwp)
1566 {
1567 CPUState *saved_env;
1568 target_ulong ret;
1569
1570 saved_env = env;
1571 env = env1;
1572 ret = cwp_dec(cwp);
1573 env = saved_env;
1574 return ret;
1575 }
1576
1577 #ifdef TARGET_SPARC64
1578 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1579 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1580 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1581
1582 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1583 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1584 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1585
1586 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1587 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1588 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1589
1590 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1591 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1592 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1593
1594 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1595 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1596 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1597
1598 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1599 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1600 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1601 #endif
1602 #undef GEN_FCMPS
1603
1604 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1605 defined(DEBUG_MXCC)
1606 static void dump_mxcc(CPUState *env)
1607 {
1608 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1609 "\n",
1610 env->mxccdata[0], env->mxccdata[1],
1611 env->mxccdata[2], env->mxccdata[3]);
1612 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1613 "\n"
1614 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1615 "\n",
1616 env->mxccregs[0], env->mxccregs[1],
1617 env->mxccregs[2], env->mxccregs[3],
1618 env->mxccregs[4], env->mxccregs[5],
1619 env->mxccregs[6], env->mxccregs[7]);
1620 }
1621 #endif
1622
1623 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1624 && defined(DEBUG_ASI)
1625 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1626 uint64_t r1)
1627 {
1628 switch (size)
1629 {
1630 case 1:
1631 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1632 addr, asi, r1 & 0xff);
1633 break;
1634 case 2:
1635 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1636 addr, asi, r1 & 0xffff);
1637 break;
1638 case 4:
1639 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1640 addr, asi, r1 & 0xffffffff);
1641 break;
1642 case 8:
1643 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1644 addr, asi, r1);
1645 break;
1646 }
1647 }
1648 #endif
1649
1650 #ifndef TARGET_SPARC64
1651 #ifndef CONFIG_USER_ONLY
1652
1653
1654 /* Leon3 cache control */
1655
1656 static void leon3_cache_control_int(void)
1657 {
1658 uint32_t state = 0;
1659
1660 if (env->cache_control & CACHE_CTRL_IF) {
1661 /* Instruction cache state */
1662 state = env->cache_control & CACHE_STATE_MASK;
1663 if (state == CACHE_ENABLED) {
1664 state = CACHE_FROZEN;
1665 DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n");
1666 }
1667
1668 env->cache_control &= ~CACHE_STATE_MASK;
1669 env->cache_control |= state;
1670 }
1671
1672 if (env->cache_control & CACHE_CTRL_DF) {
1673 /* Data cache state */
1674 state = (env->cache_control >> 2) & CACHE_STATE_MASK;
1675 if (state == CACHE_ENABLED) {
1676 state = CACHE_FROZEN;
1677 DPRINTF_CACHE_CONTROL("Data cache: freeze\n");
1678 }
1679
1680 env->cache_control &= ~(CACHE_STATE_MASK << 2);
1681 env->cache_control |= (state << 2);
1682 }
1683 }
1684
1685 static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size)
1686 {
1687 DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n",
1688 addr, val, size);
1689
1690 if (size != 4) {
1691 DPRINTF_CACHE_CONTROL("32bits only\n");
1692 return;
1693 }
1694
1695 switch (addr) {
1696 case 0x00: /* Cache control */
1697
1698 /* These values must always be read as zeros */
1699 val &= ~CACHE_CTRL_FD;
1700 val &= ~CACHE_CTRL_FI;
1701 val &= ~CACHE_CTRL_IB;
1702 val &= ~CACHE_CTRL_IP;
1703 val &= ~CACHE_CTRL_DP;
1704
1705 env->cache_control = val;
1706 break;
1707 case 0x04: /* Instruction cache configuration */
1708 case 0x08: /* Data cache configuration */
1709 /* Read Only */
1710 break;
1711 default:
1712 DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr);
1713 break;
1714 };
1715 }
1716
1717 static uint64_t leon3_cache_control_ld(target_ulong addr, int size)
1718 {
1719 uint64_t ret = 0;
1720
1721 if (size != 4) {
1722 DPRINTF_CACHE_CONTROL("32bits only\n");
1723 return 0;
1724 }
1725
1726 switch (addr) {
1727 case 0x00: /* Cache control */
1728 ret = env->cache_control;
1729 break;
1730
1731 /* Configuration registers are read and only always keep those
1732 predefined values */
1733
1734 case 0x04: /* Instruction cache configuration */
1735 ret = 0x10220000;
1736 break;
1737 case 0x08: /* Data cache configuration */
1738 ret = 0x18220000;
1739 break;
1740 default:
1741 DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr);
1742 break;
1743 };
1744 DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n",
1745 addr, ret, size);
1746 return ret;
1747 }
1748
1749 void leon3_irq_manager(void *irq_manager, int intno)
1750 {
1751 leon3_irq_ack(irq_manager, intno);
1752 leon3_cache_control_int();
1753 }
1754
1755 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1756 {
1757 uint64_t ret = 0;
1758 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1759 uint32_t last_addr = addr;
1760 #endif
1761
1762 helper_check_align(addr, size - 1);
1763 switch (asi) {
1764 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
1765 switch (addr) {
1766 case 0x00: /* Leon3 Cache Control */
1767 case 0x08: /* Leon3 Instruction Cache config */
1768 case 0x0C: /* Leon3 Date Cache config */
1769 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
1770 ret = leon3_cache_control_ld(addr, size);
1771 }
1772 break;
1773 case 0x01c00a00: /* MXCC control register */
1774 if (size == 8)
1775 ret = env->mxccregs[3];
1776 else
1777 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1778 size);
1779 break;
1780 case 0x01c00a04: /* MXCC control register */
1781 if (size == 4)
1782 ret = env->mxccregs[3];
1783 else
1784 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1785 size);
1786 break;
1787 case 0x01c00c00: /* Module reset register */
1788 if (size == 8) {
1789 ret = env->mxccregs[5];
1790 // should we do something here?
1791 } else
1792 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1793 size);
1794 break;
1795 case 0x01c00f00: /* MBus port address register */
1796 if (size == 8)
1797 ret = env->mxccregs[7];
1798 else
1799 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1800 size);
1801 break;
1802 default:
1803 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1804 size);
1805 break;
1806 }
1807 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1808 "addr = %08x -> ret = %" PRIx64 ","
1809 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1810 #ifdef DEBUG_MXCC
1811 dump_mxcc(env);
1812 #endif
1813 break;
1814 case 3: /* MMU probe */
1815 {
1816 int mmulev;
1817
1818 mmulev = (addr >> 8) & 15;
1819 if (mmulev > 4)
1820 ret = 0;
1821 else
1822 ret = mmu_probe(env, addr, mmulev);
1823 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1824 addr, mmulev, ret);
1825 }
1826 break;
1827 case 4: /* read MMU regs */
1828 {
1829 int reg = (addr >> 8) & 0x1f;
1830
1831 ret = env->mmuregs[reg];
1832 if (reg == 3) /* Fault status cleared on read */
1833 env->mmuregs[3] = 0;
1834 else if (reg == 0x13) /* Fault status read */
1835 ret = env->mmuregs[3];
1836 else if (reg == 0x14) /* Fault address read */
1837 ret = env->mmuregs[4];
1838 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1839 }
1840 break;
1841 case 5: // Turbosparc ITLB Diagnostic
1842 case 6: // Turbosparc DTLB Diagnostic
1843 case 7: // Turbosparc IOTLB Diagnostic
1844 break;
1845 case 9: /* Supervisor code access */
1846 switch(size) {
1847 case 1:
1848 ret = ldub_code(addr);
1849 break;
1850 case 2:
1851 ret = lduw_code(addr);
1852 break;
1853 default:
1854 case 4:
1855 ret = ldl_code(addr);
1856 break;
1857 case 8:
1858 ret = ldq_code(addr);
1859 break;
1860 }
1861 break;
1862 case 0xa: /* User data access */
1863 switch(size) {
1864 case 1:
1865 ret = ldub_user(addr);
1866 break;
1867 case 2:
1868 ret = lduw_user(addr);
1869 break;
1870 default:
1871 case 4:
1872 ret = ldl_user(addr);
1873 break;
1874 case 8:
1875 ret = ldq_user(addr);
1876 break;
1877 }
1878 break;
1879 case 0xb: /* Supervisor data access */
1880 switch(size) {
1881 case 1:
1882 ret = ldub_kernel(addr);
1883 break;
1884 case 2:
1885 ret = lduw_kernel(addr);
1886 break;
1887 default:
1888 case 4:
1889 ret = ldl_kernel(addr);
1890 break;
1891 case 8:
1892 ret = ldq_kernel(addr);
1893 break;
1894 }
1895 break;
1896 case 0xc: /* I-cache tag */
1897 case 0xd: /* I-cache data */
1898 case 0xe: /* D-cache tag */
1899 case 0xf: /* D-cache data */
1900 break;
1901 case 0x20: /* MMU passthrough */
1902 switch(size) {
1903 case 1:
1904 ret = ldub_phys(addr);
1905 break;
1906 case 2:
1907 ret = lduw_phys(addr);
1908 break;
1909 default:
1910 case 4:
1911 ret = ldl_phys(addr);
1912 break;
1913 case 8:
1914 ret = ldq_phys(addr);
1915 break;
1916 }
1917 break;
1918 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1919 switch(size) {
1920 case 1:
1921 ret = ldub_phys((target_phys_addr_t)addr
1922 | ((target_phys_addr_t)(asi & 0xf) << 32));
1923 break;
1924 case 2:
1925 ret = lduw_phys((target_phys_addr_t)addr
1926 | ((target_phys_addr_t)(asi & 0xf) << 32));
1927 break;
1928 default:
1929 case 4:
1930 ret = ldl_phys((target_phys_addr_t)addr
1931 | ((target_phys_addr_t)(asi & 0xf) << 32));
1932 break;
1933 case 8:
1934 ret = ldq_phys((target_phys_addr_t)addr
1935 | ((target_phys_addr_t)(asi & 0xf) << 32));
1936 break;
1937 }
1938 break;
1939 case 0x30: // Turbosparc secondary cache diagnostic
1940 case 0x31: // Turbosparc RAM snoop
1941 case 0x32: // Turbosparc page table descriptor diagnostic
1942 case 0x39: /* data cache diagnostic register */
1943 ret = 0;
1944 break;
1945 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1946 {
1947 int reg = (addr >> 8) & 3;
1948
1949 switch(reg) {
1950 case 0: /* Breakpoint Value (Addr) */
1951 ret = env->mmubpregs[reg];
1952 break;
1953 case 1: /* Breakpoint Mask */
1954 ret = env->mmubpregs[reg];
1955 break;
1956 case 2: /* Breakpoint Control */
1957 ret = env->mmubpregs[reg];
1958 break;
1959 case 3: /* Breakpoint Status */
1960 ret = env->mmubpregs[reg];
1961 env->mmubpregs[reg] = 0ULL;
1962 break;
1963 }
1964 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1965 ret);
1966 }
1967 break;
1968 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
1969 ret = env->mmubpctrv;
1970 break;
1971 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
1972 ret = env->mmubpctrc;
1973 break;
1974 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
1975 ret = env->mmubpctrs;
1976 break;
1977 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
1978 ret = env->mmubpaction;
1979 break;
1980 case 8: /* User code access, XXX */
1981 default:
1982 do_unassigned_access(addr, 0, 0, asi, size);
1983 ret = 0;
1984 break;
1985 }
1986 if (sign) {
1987 switch(size) {
1988 case 1:
1989 ret = (int8_t) ret;
1990 break;
1991 case 2:
1992 ret = (int16_t) ret;
1993 break;
1994 case 4:
1995 ret = (int32_t) ret;
1996 break;
1997 default:
1998 break;
1999 }
2000 }
2001 #ifdef DEBUG_ASI
2002 dump_asi("read ", last_addr, asi, size, ret);
2003 #endif
2004 return ret;
2005 }
2006
2007 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
2008 {
2009 helper_check_align(addr, size - 1);
2010 switch(asi) {
2011 case 2: /* SuperSparc MXCC registers and Leon3 cache control */
2012 switch (addr) {
2013 case 0x00: /* Leon3 Cache Control */
2014 case 0x08: /* Leon3 Instruction Cache config */
2015 case 0x0C: /* Leon3 Date Cache config */
2016 if (env->def->features & CPU_FEATURE_CACHE_CTRL) {
2017 leon3_cache_control_st(addr, val, size);
2018 }
2019 break;
2020
2021 case 0x01c00000: /* MXCC stream data register 0 */
2022 if (size == 8)
2023 env->mxccdata[0] = val;
2024 else
2025 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2026 size);
2027 break;
2028 case 0x01c00008: /* MXCC stream data register 1 */
2029 if (size == 8)
2030 env->mxccdata[1] = val;
2031 else
2032 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2033 size);
2034 break;
2035 case 0x01c00010: /* MXCC stream data register 2 */
2036 if (size == 8)
2037 env->mxccdata[2] = val;
2038 else
2039 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2040 size);
2041 break;
2042 case 0x01c00018: /* MXCC stream data register 3 */
2043 if (size == 8)
2044 env->mxccdata[3] = val;
2045 else
2046 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2047 size);
2048 break;
2049 case 0x01c00100: /* MXCC stream source */
2050 if (size == 8)
2051 env->mxccregs[0] = val;
2052 else
2053 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2054 size);
2055 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2056 0);
2057 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2058 8);
2059 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2060 16);
2061 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
2062 24);
2063 break;
2064 case 0x01c00200: /* MXCC stream destination */
2065 if (size == 8)
2066 env->mxccregs[1] = val;
2067 else
2068 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2069 size);
2070 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
2071 env->mxccdata[0]);
2072 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
2073 env->mxccdata[1]);
2074 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
2075 env->mxccdata[2]);
2076 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
2077 env->mxccdata[3]);
2078 break;
2079 case 0x01c00a00: /* MXCC control register */
2080 if (size == 8)
2081 env->mxccregs[3] = val;
2082 else
2083 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2084 size);
2085 break;
2086 case 0x01c00a04: /* MXCC control register */
2087 if (size == 4)
2088 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
2089 | val;
2090 else
2091 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2092 size);
2093 break;
2094 case 0x01c00e00: /* MXCC error register */
2095 // writing a 1 bit clears the error
2096 if (size == 8)
2097 env->mxccregs[6] &= ~val;
2098 else
2099 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2100 size);
2101 break;
2102 case 0x01c00f00: /* MBus port address register */
2103 if (size == 8)
2104 env->mxccregs[7] = val;
2105 else
2106 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
2107 size);
2108 break;
2109 default:
2110 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
2111 size);
2112 break;
2113 }
2114 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
2115 asi, size, addr, val);
2116 #ifdef DEBUG_MXCC
2117 dump_mxcc(env);
2118 #endif
2119 break;
2120 case 3: /* MMU flush */
2121 {
2122 int mmulev;
2123
2124 mmulev = (addr >> 8) & 15;
2125 DPRINTF_MMU("mmu flush level %d\n", mmulev);
2126 switch (mmulev) {
2127 case 0: // flush page
2128 tlb_flush_page(env, addr & 0xfffff000);
2129 break;
2130 case 1: // flush segment (256k)
2131 case 2: // flush region (16M)
2132 case 3: // flush context (4G)
2133 case 4: // flush entire
2134 tlb_flush(env, 1);
2135 break;
2136 default:
2137 break;
2138 }
2139 #ifdef DEBUG_MMU
2140 dump_mmu(stdout, fprintf, env);
2141 #endif
2142 }
2143 break;
2144 case 4: /* write MMU regs */
2145 {
2146 int reg = (addr >> 8) & 0x1f;
2147 uint32_t oldreg;
2148
2149 oldreg = env->mmuregs[reg];
2150 switch(reg) {
2151 case 0: // Control Register
2152 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
2153 (val & 0x00ffffff);
2154 // Mappings generated during no-fault mode or MMU
2155 // disabled mode are invalid in normal mode
2156 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
2157 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
2158 tlb_flush(env, 1);
2159 break;
2160 case 1: // Context Table Pointer Register
2161 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
2162 break;
2163 case 2: // Context Register
2164 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
2165 if (oldreg != env->mmuregs[reg]) {
2166 /* we flush when the MMU context changes because
2167 QEMU has no MMU context support */
2168 tlb_flush(env, 1);
2169 }
2170 break;
2171 case 3: // Synchronous Fault Status Register with Clear
2172 case 4: // Synchronous Fault Address Register
2173 break;
2174 case 0x10: // TLB Replacement Control Register
2175 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
2176 break;
2177 case 0x13: // Synchronous Fault Status Register with Read and Clear
2178 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2179 break;
2180 case 0x14: // Synchronous Fault Address Register
2181 env->mmuregs[4] = val;
2182 break;
2183 default:
2184 env->mmuregs[reg] = val;
2185 break;
2186 }
2187 if (oldreg != env->mmuregs[reg]) {
2188 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2189 reg, oldreg, env->mmuregs[reg]);
2190 }
2191 #ifdef DEBUG_MMU
2192 dump_mmu(stdout, fprintf, env);
2193 #endif
2194 }
2195 break;
2196 case 5: // Turbosparc ITLB Diagnostic
2197 case 6: // Turbosparc DTLB Diagnostic
2198 case 7: // Turbosparc IOTLB Diagnostic
2199 break;
2200 case 0xa: /* User data access */
2201 switch(size) {
2202 case 1:
2203 stb_user(addr, val);
2204 break;
2205 case 2:
2206 stw_user(addr, val);
2207 break;
2208 default:
2209 case 4:
2210 stl_user(addr, val);
2211 break;
2212 case 8:
2213 stq_user(addr, val);
2214 break;
2215 }
2216 break;
2217 case 0xb: /* Supervisor data access */
2218 switch(size) {
2219 case 1:
2220 stb_kernel(addr, val);
2221 break;
2222 case 2:
2223 stw_kernel(addr, val);
2224 break;
2225 default:
2226 case 4:
2227 stl_kernel(addr, val);
2228 break;
2229 case 8:
2230 stq_kernel(addr, val);
2231 break;
2232 }
2233 break;
2234 case 0xc: /* I-cache tag */
2235 case 0xd: /* I-cache data */
2236 case 0xe: /* D-cache tag */
2237 case 0xf: /* D-cache data */
2238 case 0x10: /* I/D-cache flush page */
2239 case 0x11: /* I/D-cache flush segment */
2240 case 0x12: /* I/D-cache flush region */
2241 case 0x13: /* I/D-cache flush context */
2242 case 0x14: /* I/D-cache flush user */
2243 break;
2244 case 0x17: /* Block copy, sta access */
2245 {
2246 // val = src
2247 // addr = dst
2248 // copy 32 bytes
2249 unsigned int i;
2250 uint32_t src = val & ~3, dst = addr & ~3, temp;
2251
2252 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2253 temp = ldl_kernel(src);
2254 stl_kernel(dst, temp);
2255 }
2256 }
2257 break;
2258 case 0x1f: /* Block fill, stda access */
2259 {
2260 // addr = dst
2261 // fill 32 bytes with val
2262 unsigned int i;
2263 uint32_t dst = addr & 7;
2264
2265 for (i = 0; i < 32; i += 8, dst += 8)
2266 stq_kernel(dst, val);
2267 }
2268 break;
2269 case 0x20: /* MMU passthrough */
2270 {
2271 switch(size) {
2272 case 1:
2273 stb_phys(addr, val);
2274 break;
2275 case 2:
2276 stw_phys(addr, val);
2277 break;
2278 case 4:
2279 default:
2280 stl_phys(addr, val);
2281 break;
2282 case 8:
2283 stq_phys(addr, val);
2284 break;
2285 }
2286 }
2287 break;
2288 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2289 {
2290 switch(size) {
2291 case 1:
2292 stb_phys((target_phys_addr_t)addr
2293 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2294 break;
2295 case 2:
2296 stw_phys((target_phys_addr_t)addr
2297 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2298 break;
2299 case 4:
2300 default:
2301 stl_phys((target_phys_addr_t)addr
2302 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2303 break;
2304 case 8:
2305 stq_phys((target_phys_addr_t)addr
2306 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2307 break;
2308 }
2309 }
2310 break;
2311 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2312 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2313 // Turbosparc snoop RAM
2314 case 0x32: // store buffer control or Turbosparc page table
2315 // descriptor diagnostic
2316 case 0x36: /* I-cache flash clear */
2317 case 0x37: /* D-cache flash clear */
2318 break;
2319 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2320 {
2321 int reg = (addr >> 8) & 3;
2322
2323 switch(reg) {
2324 case 0: /* Breakpoint Value (Addr) */
2325 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2326 break;
2327 case 1: /* Breakpoint Mask */
2328 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2329 break;
2330 case 2: /* Breakpoint Control */
2331 env->mmubpregs[reg] = (val & 0x7fULL);
2332 break;
2333 case 3: /* Breakpoint Status */
2334 env->mmubpregs[reg] = (val & 0xfULL);
2335 break;
2336 }
2337 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2338 env->mmuregs[reg]);
2339 }
2340 break;
2341 case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */
2342 env->mmubpctrv = val & 0xffffffff;
2343 break;
2344 case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */
2345 env->mmubpctrc = val & 0x3;
2346 break;
2347 case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */
2348 env->mmubpctrs = val & 0x3;
2349 break;
2350 case 0x4c: /* SuperSPARC MMU Breakpoint Action */
2351 env->mmubpaction = val & 0x1fff;
2352 break;
2353 case 8: /* User code access, XXX */
2354 case 9: /* Supervisor code access, XXX */
2355 default:
2356 do_unassigned_access(addr, 1, 0, asi, size);
2357 break;
2358 }
2359 #ifdef DEBUG_ASI
2360 dump_asi("write", addr, asi, size, val);
2361 #endif
2362 }
2363
2364 #endif /* CONFIG_USER_ONLY */
2365 #else /* TARGET_SPARC64 */
2366
2367 #ifdef CONFIG_USER_ONLY
2368 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2369 {
2370 uint64_t ret = 0;
2371 #if defined(DEBUG_ASI)
2372 target_ulong last_addr = addr;
2373 #endif
2374
2375 if (asi < 0x80)
2376 raise_exception(TT_PRIV_ACT);
2377
2378 helper_check_align(addr, size - 1);
2379 addr = asi_address_mask(env, asi, addr);
2380
2381 switch (asi) {
2382 case 0x82: // Primary no-fault
2383 case 0x8a: // Primary no-fault LE
2384 if (page_check_range(addr, size, PAGE_READ) == -1) {
2385 #ifdef DEBUG_ASI
2386 dump_asi("read ", last_addr, asi, size, ret);
2387 #endif
2388 return 0;
2389 }
2390 // Fall through
2391 case 0x80: // Primary
2392 case 0x88: // Primary LE
2393 {
2394 switch(size) {
2395 case 1:
2396 ret = ldub_raw(addr);
2397 break;
2398 case 2:
2399 ret = lduw_raw(addr);
2400 break;
2401 case 4:
2402 ret = ldl_raw(addr);
2403 break;
2404 default:
2405 case 8:
2406 ret = ldq_raw(addr);
2407 break;
2408 }
2409 }
2410 break;
2411 case 0x83: // Secondary no-fault
2412 case 0x8b: // Secondary no-fault LE
2413 if (page_check_range(addr, size, PAGE_READ) == -1) {
2414 #ifdef DEBUG_ASI
2415 dump_asi("read ", last_addr, asi, size, ret);
2416 #endif
2417 return 0;
2418 }
2419 // Fall through
2420 case 0x81: // Secondary
2421 case 0x89: // Secondary LE
2422 // XXX
2423 break;
2424 default:
2425 break;
2426 }
2427
2428 /* Convert from little endian */
2429 switch (asi) {
2430 case 0x88: // Primary LE
2431 case 0x89: // Secondary LE
2432 case 0x8a: // Primary no-fault LE
2433 case 0x8b: // Secondary no-fault LE
2434 switch(size) {
2435 case 2:
2436 ret = bswap16(ret);
2437 break;
2438 case 4:
2439 ret = bswap32(ret);
2440 break;
2441 case 8:
2442 ret = bswap64(ret);
2443 break;
2444 default:
2445 break;
2446 }
2447 default:
2448 break;
2449 }
2450
2451 /* Convert to signed number */
2452 if (sign) {
2453 switch(size) {
2454 case 1:
2455 ret = (int8_t) ret;
2456 break;
2457 case 2:
2458 ret = (int16_t) ret;
2459 break;
2460 case 4:
2461 ret = (int32_t) ret;
2462 break;
2463 default:
2464 break;
2465 }
2466 }
2467 #ifdef DEBUG_ASI
2468 dump_asi("read ", last_addr, asi, size, ret);
2469 #endif
2470 return ret;
2471 }
2472
2473 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2474 {
2475 #ifdef DEBUG_ASI
2476 dump_asi("write", addr, asi, size, val);
2477 #endif
2478 if (asi < 0x80)
2479 raise_exception(TT_PRIV_ACT);
2480
2481 helper_check_align(addr, size - 1);
2482 addr = asi_address_mask(env, asi, addr);
2483
2484 /* Convert to little endian */
2485 switch (asi) {
2486 case 0x88: // Primary LE
2487 case 0x89: // Secondary LE
2488 switch(size) {
2489 case 2:
2490 val = bswap16(val);
2491 break;
2492 case 4:
2493 val = bswap32(val);
2494 break;
2495 case 8:
2496 val = bswap64(val);
2497 break;
2498 default:
2499 break;
2500 }
2501 default:
2502 break;
2503 }
2504
2505 switch(asi) {
2506 case 0x80: // Primary
2507 case 0x88: // Primary LE
2508 {
2509 switch(size) {
2510 case 1:
2511 stb_raw(addr, val);
2512 break;
2513 case 2:
2514 stw_raw(addr, val);
2515 break;
2516 case 4:
2517 stl_raw(addr, val);
2518 break;
2519 case 8:
2520 default:
2521 stq_raw(addr, val);
2522 break;
2523 }
2524 }
2525 break;
2526 case 0x81: // Secondary
2527 case 0x89: // Secondary LE
2528 // XXX
2529 return;
2530
2531 case 0x82: // Primary no-fault, RO
2532 case 0x83: // Secondary no-fault, RO
2533 case 0x8a: // Primary no-fault LE, RO
2534 case 0x8b: // Secondary no-fault LE, RO
2535 default:
2536 do_unassigned_access(addr, 1, 0, 1, size);
2537 return;
2538 }
2539 }
2540
2541 #else /* CONFIG_USER_ONLY */
2542
2543 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2544 {
2545 uint64_t ret = 0;
2546 #if defined(DEBUG_ASI)
2547 target_ulong last_addr = addr;
2548 #endif
2549
2550 asi &= 0xff;
2551
2552 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2553 || (cpu_has_hypervisor(env)
2554 && asi >= 0x30 && asi < 0x80
2555 && !(env->hpstate & HS_PRIV)))
2556 raise_exception(TT_PRIV_ACT);
2557
2558 helper_check_align(addr, size - 1);
2559 addr = asi_address_mask(env, asi, addr);
2560
2561 switch (asi) {
2562 case 0x82: // Primary no-fault
2563 case 0x8a: // Primary no-fault LE
2564 case 0x83: // Secondary no-fault
2565 case 0x8b: // Secondary no-fault LE
2566 {
2567 /* secondary space access has lowest asi bit equal to 1 */
2568 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2569 : MMU_KERNEL_SECONDARY_IDX;
2570
2571 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2572 #ifdef DEBUG_ASI
2573 dump_asi("read ", last_addr, asi, size, ret);
2574 #endif
2575 return 0;
2576 }
2577 }
2578 // Fall through
2579 case 0x10: // As if user primary
2580 case 0x11: // As if user secondary
2581 case 0x18: // As if user primary LE
2582 case 0x19: // As if user secondary LE
2583 case 0x80: // Primary
2584 case 0x81: // Secondary
2585 case 0x88: // Primary LE
2586 case 0x89: // Secondary LE
2587 case 0xe2: // UA2007 Primary block init
2588 case 0xe3: // UA2007 Secondary block init
2589 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2590 if (cpu_hypervisor_mode(env)) {
2591 switch(size) {
2592 case 1:
2593 ret = ldub_hypv(addr);
2594 break;
2595 case 2:
2596 ret = lduw_hypv(addr);
2597 break;
2598 case 4:
2599 ret = ldl_hypv(addr);
2600 break;
2601 default:
2602 case 8:
2603 ret = ldq_hypv(addr);
2604 break;
2605 }
2606 } else {
2607 /* secondary space access has lowest asi bit equal to 1 */
2608 if (asi & 1) {
2609 switch(size) {
2610 case 1:
2611 ret = ldub_kernel_secondary(addr);
2612 break;
2613 case 2:
2614 ret = lduw_kernel_secondary(addr);
2615 break;
2616 case 4:
2617 ret = ldl_kernel_secondary(addr);
2618 break;
2619 default:
2620 case 8:
2621 ret = ldq_kernel_secondary(addr);
2622 break;
2623 }
2624 } else {
2625 switch(size) {
2626 case 1:
2627 ret = ldub_kernel(addr);
2628 break;
2629 case 2:
2630 ret = lduw_kernel(addr);
2631 break;
2632 case 4:
2633 ret = ldl_kernel(addr);
2634 break;
2635 default:
2636 case 8:
2637 ret = ldq_kernel(addr);
2638 break;
2639 }
2640 }
2641 }
2642 } else {
2643 /* secondary space access has lowest asi bit equal to 1 */
2644 if (asi & 1) {
2645 switch(size) {
2646 case 1:
2647 ret = ldub_user_secondary(addr);
2648 break;
2649 case 2:
2650 ret = lduw_user_secondary(addr);
2651 break;
2652 case 4:
2653 ret = ldl_user_secondary(addr);
2654 break;
2655 default:
2656 case 8:
2657 ret = ldq_user_secondary(addr);
2658 break;
2659 }
2660 } else {
2661 switch(size) {
2662 case 1:
2663 ret = ldub_user(addr);
2664 break;
2665 case 2:
2666 ret = lduw_user(addr);
2667 break;
2668 case 4:
2669 ret = ldl_user(addr);
2670 break;
2671 default:
2672 case 8:
2673 ret = ldq_user(addr);
2674 break;
2675 }
2676 }
2677 }
2678 break;
2679 case 0x14: // Bypass
2680 case 0x15: // Bypass, non-cacheable
2681 case 0x1c: // Bypass LE
2682 case 0x1d: // Bypass, non-cacheable LE
2683 {
2684 switch(size) {
2685 case 1:
2686 ret = ldub_phys(addr);
2687 break;
2688 case 2:
2689 ret = lduw_phys(addr);
2690 break;
2691 case 4:
2692 ret = ldl_phys(addr);
2693 break;
2694 default:
2695 case 8:
2696 ret = ldq_phys(addr);
2697 break;
2698 }
2699 break;
2700 }
2701 case 0x24: // Nucleus quad LDD 128 bit atomic
2702 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2703 // Only ldda allowed
2704 raise_exception(TT_ILL_INSN);
2705 return 0;
2706 case 0x04: // Nucleus
2707 case 0x0c: // Nucleus Little Endian (LE)
2708 {
2709 switch(size) {
2710 case 1:
2711 ret = ldub_nucleus(addr);
2712 break;
2713 case 2:
2714 ret = lduw_nucleus(addr);
2715 break;
2716 case 4:
2717 ret = ldl_nucleus(addr);
2718 break;
2719 default:
2720 case 8:
2721 ret = ldq_nucleus(addr);
2722 break;
2723 }
2724 break;
2725 }
2726 case 0x4a: // UPA config
2727 // XXX
2728 break;
2729 case 0x45: // LSU
2730 ret = env->lsu;
2731 break;
2732 case 0x50: // I-MMU regs
2733 {
2734 int reg = (addr >> 3) & 0xf;
2735
2736 if (reg == 0) {
2737 // I-TSB Tag Target register
2738 ret = ultrasparc_tag_target(env->immu.tag_access);
2739 } else {
2740 ret = env->immuregs[reg];
2741 }
2742
2743 break;
2744 }
2745 case 0x51: // I-MMU 8k TSB pointer
2746 {
2747 // env->immuregs[5] holds I-MMU TSB register value
2748 // env->immuregs[6] holds I-MMU Tag Access register value
2749 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2750 8*1024);
2751 break;
2752 }
2753 case 0x52: // I-MMU 64k TSB pointer
2754 {
2755 // env->immuregs[5] holds I-MMU TSB register value
2756 // env->immuregs[6] holds I-MMU Tag Access register value
2757 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2758 64*1024);
2759 break;
2760 }
2761 case 0x55: // I-MMU data access
2762 {
2763 int reg = (addr >> 3) & 0x3f;
2764
2765 ret = env->itlb[reg].tte;
2766 break;
2767 }
2768 case 0x56: // I-MMU tag read
2769 {
2770 int reg = (addr >> 3) & 0x3f;
2771
2772 ret = env->itlb[reg].tag;
2773 break;
2774 }
2775 case 0x58: // D-MMU regs
2776 {
2777 int reg = (addr >> 3) & 0xf;
2778
2779 if (reg == 0) {
2780 // D-TSB Tag Target register
2781 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2782 } else {
2783 ret = env->dmmuregs[reg];
2784 }
2785 break;
2786 }
2787 case 0x59: // D-MMU 8k TSB pointer
2788 {
2789 // env->dmmuregs[5] holds D-MMU TSB register value
2790 // env->dmmuregs[6] holds D-MMU Tag Access register value
2791 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2792 8*1024);
2793 break;
2794 }
2795 case 0x5a: // D-MMU 64k TSB pointer
2796 {
2797 // env->dmmuregs[5] holds D-MMU TSB register value
2798 // env->dmmuregs[6] holds D-MMU Tag Access register value
2799 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2800 64*1024);
2801 break;
2802 }
2803 case 0x5d: // D-MMU data access
2804 {
2805 int reg = (addr >> 3) & 0x3f;
2806
2807 ret = env->dtlb[reg].tte;
2808 break;
2809 }
2810 case 0x5e: // D-MMU tag read
2811 {
2812 int reg = (addr >> 3) & 0x3f;
2813
2814 ret = env->dtlb[reg].tag;
2815 break;
2816 }
2817 case 0x46: // D-cache data
2818 case 0x47: // D-cache tag access
2819 case 0x4b: // E-cache error enable
2820 case 0x4c: // E-cache asynchronous fault status
2821 case 0x4d: // E-cache asynchronous fault address
2822 case 0x4e: // E-cache tag data
2823 case 0x66: // I-cache instruction access
2824 case 0x67: // I-cache tag access
2825 case 0x6e: // I-cache predecode
2826 case 0x6f: // I-cache LRU etc.
2827 case 0x76: // E-cache tag
2828 case 0x7e: // E-cache tag
2829 break;
2830 case 0x5b: // D-MMU data pointer
2831 case 0x48: // Interrupt dispatch, RO
2832 case 0x49: // Interrupt data receive
2833 case 0x7f: // Incoming interrupt vector, RO
2834 // XXX
2835 break;
2836 case 0x54: // I-MMU data in, WO
2837 case 0x57: // I-MMU demap, WO
2838 case 0x5c: // D-MMU data in, WO
2839 case 0x5f: // D-MMU demap, WO
2840 case 0x77: // Interrupt vector, WO
2841 default:
2842 do_unassigned_access(addr, 0, 0, 1, size);
2843 ret = 0;
2844 break;
2845 }
2846
2847 /* Convert from little endian */
2848 switch (asi) {
2849 case 0x0c: // Nucleus Little Endian (LE)
2850 case 0x18: // As if user primary LE
2851 case 0x19: // As if user secondary LE
2852 case 0x1c: // Bypass LE
2853 case 0x1d: // Bypass, non-cacheable LE
2854 case 0x88: // Primary LE
2855 case 0x89: // Secondary LE
2856 case 0x8a: // Primary no-fault LE
2857 case 0x8b: // Secondary no-fault LE
2858 switch(size) {
2859 case 2:
2860 ret = bswap16(ret);
2861 break;
2862 case 4:
2863 ret = bswap32(ret);
2864 break;
2865 case 8:
2866 ret = bswap64(ret);
2867 break;
2868 default:
2869 break;
2870 }
2871 default:
2872 break;
2873 }
2874
2875 /* Convert to signed number */
2876 if (sign) {
2877 switch(size) {
2878 case 1:
2879 ret = (int8_t) ret;
2880 break;
2881 case 2:
2882 ret = (int16_t) ret;
2883 break;
2884 case 4:
2885 ret = (int32_t) ret;
2886 break;
2887 default:
2888 break;
2889 }
2890 }
2891 #ifdef DEBUG_ASI
2892 dump_asi("read ", last_addr, asi, size, ret);
2893 #endif
2894 return ret;
2895 }
2896
2897 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2898 {
2899 #ifdef DEBUG_ASI
2900 dump_asi("write", addr, asi, size, val);
2901 #endif
2902
2903 asi &= 0xff;
2904
2905 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2906 || (cpu_has_hypervisor(env)
2907 && asi >= 0x30 && asi < 0x80
2908 && !(env->hpstate & HS_PRIV)))
2909 raise_exception(TT_PRIV_ACT);
2910
2911 helper_check_align(addr, size - 1);
2912 addr = asi_address_mask(env, asi, addr);
2913
2914 /* Convert to little endian */
2915 switch (asi) {
2916 case 0x0c: // Nucleus Little Endian (LE)
2917 case 0x18: // As if user primary LE
2918 case 0x19: // As if user secondary LE
2919 case 0x1c: // Bypass LE
2920 case 0x1d: // Bypass, non-cacheable LE
2921 case 0x88: // Primary LE
2922 case 0x89: // Secondary LE
2923 switch(size) {
2924 case 2:
2925 val = bswap16(val);
2926 break;
2927 case 4:
2928 val = bswap32(val);
2929 break;
2930 case 8:
2931 val = bswap64(val);
2932 break;
2933 default:
2934 break;
2935 }
2936 default:
2937 break;
2938 }
2939
2940 switch(asi) {
2941 case 0x10: // As if user primary
2942 case 0x11: // As if user secondary
2943 case 0x18: // As if user primary LE
2944 case 0x19: // As if user secondary LE
2945 case 0x80: // Primary
2946 case 0x81: // Secondary
2947 case 0x88: // Primary LE
2948 case 0x89: // Secondary LE
2949 case 0xe2: // UA2007 Primary block init
2950 case 0xe3: // UA2007 Secondary block init
2951 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2952 if (cpu_hypervisor_mode(env)) {
2953 switch(size) {
2954 case 1:
2955 stb_hypv(addr, val);
2956 break;
2957 case 2:
2958 stw_hypv(addr, val);
2959 break;
2960 case 4:
2961 stl_hypv(addr, val);
2962 break;
2963 case 8:
2964 default:
2965 stq_hypv(addr, val);
2966 break;
2967 }
2968 } else {
2969 /* secondary space access has lowest asi bit equal to 1 */
2970 if (asi & 1) {
2971 switch(size) {
2972 case 1:
2973 stb_kernel_secondary(addr, val);
2974 break;
2975 case 2:
2976 stw_kernel_secondary(addr, val);
2977 break;
2978 case 4:
2979 stl_kernel_secondary(addr, val);
2980 break;
2981 case 8:
2982 default:
2983 stq_kernel_secondary(addr, val);
2984 break;
2985 }
2986 } else {
2987 switch(size) {
2988 case 1:
2989 stb_kernel(addr, val);
2990 break;
2991 case 2:
2992 stw_kernel(addr, val);
2993 break;
2994 case 4:
2995 stl_kernel(addr, val);
2996 break;
2997 case 8:
2998 default:
2999 stq_kernel(addr, val);
3000 break;
3001 }
3002 }
3003 }
3004 } else {
3005 /* secondary space access has lowest asi bit equal to 1 */
3006 if (asi & 1) {
3007 switch(size) {
3008 case 1:
3009 stb_user_secondary(addr, val);
3010 break;
3011 case 2:
3012 stw_user_secondary(addr, val);
3013 break;
3014 case 4:
3015 stl_user_secondary(addr, val);
3016 break;
3017 case 8:
3018 default:
3019 stq_user_secondary(addr, val);
3020 break;
3021 }
3022 } else {
3023 switch(size) {
3024 case 1:
3025 stb_user(addr, val);
3026 break;
3027 case 2:
3028 stw_user(addr, val);
3029 break;
3030 case 4:
3031 stl_user(addr, val);
3032 break;
3033 case 8:
3034 default:
3035 stq_user(addr, val);
3036 break;
3037 }
3038 }
3039 }
3040 break;
3041 case 0x14: // Bypass
3042 case 0x15: // Bypass, non-cacheable
3043 case 0x1c: // Bypass LE
3044 case 0x1d: // Bypass, non-cacheable LE
3045 {
3046 switch(size) {
3047 case 1:
3048 stb_phys(addr, val);
3049 break;
3050 case 2:
3051 stw_phys(addr, val);
3052 break;
3053 case 4:
3054 stl_phys(addr, val);
3055 break;
3056 case 8:
3057 default:
3058 stq_phys(addr, val);
3059 break;
3060 }
3061 }
3062 return;
3063 case 0x24: // Nucleus quad LDD 128 bit atomic
3064 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3065 // Only ldda allowed
3066 raise_exception(TT_ILL_INSN);
3067 return;
3068 case 0x04: // Nucleus
3069 case 0x0c: // Nucleus Little Endian (LE)
3070 {
3071 switch(size) {
3072 case 1:
3073 stb_nucleus(addr, val);
3074 break;
3075 case 2:
3076 stw_nucleus(addr, val);
3077 break;
3078 case 4:
3079 stl_nucleus(addr, val);
3080 break;
3081 default:
3082 case 8:
3083 stq_nucleus(addr, val);
3084 break;
3085 }
3086 break;
3087 }
3088
3089 case 0x4a: // UPA config
3090 // XXX
3091 return;
3092 case 0x45: // LSU
3093 {
3094 uint64_t oldreg;
3095
3096 oldreg = env->lsu;
3097 env->lsu = val & (DMMU_E | IMMU_E);
3098 // Mappings generated during D/I MMU disabled mode are
3099 // invalid in normal mode
3100 if (oldreg != env->lsu) {
3101 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
3102 oldreg, env->lsu);
3103 #ifdef DEBUG_MMU
3104 dump_mmu(stdout, fprintf, env1);
3105 #endif
3106 tlb_flush(env, 1);
3107 }
3108 return;
3109 }
3110 case 0x50: // I-MMU regs
3111 {
3112 int reg = (addr >> 3) & 0xf;
3113 uint64_t oldreg;
3114
3115 oldreg = env->immuregs[reg];
3116 switch(reg) {
3117 case 0: // RO
3118 return;
3119 case 1: // Not in I-MMU
3120 case 2:
3121 return;
3122 case 3: // SFSR
3123 if ((val & 1) == 0)
3124 val = 0; // Clear SFSR
3125 env->immu.sfsr = val;
3126 break;
3127 case 4: // RO
3128 return;
3129 case 5: // TSB access
3130 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
3131 PRIx64 "\n", env->immu.tsb, val);
3132 env->immu.tsb = val;
3133 break;
3134 case 6: // Tag access
3135 env->immu.tag_access = val;
3136 break;
3137 case 7:
3138 case 8:
3139 return;
3140 default:
3141 break;
3142 }
3143
3144 if (oldreg != env->immuregs[reg]) {
3145 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3146 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
3147 }
3148 #ifdef DEBUG_MMU
3149 dump_mmu(stdout, fprintf, env);
3150 #endif
3151 return;
3152 }
3153 case 0x54: // I-MMU data in
3154 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
3155 return;
3156 case 0x55: // I-MMU data access
3157 {
3158 // TODO: auto demap
3159
3160 unsigned int i = (addr >> 3) & 0x3f;
3161
3162 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
3163
3164 #ifdef DEBUG_MMU
3165 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
3166 dump_mmu(stdout, fprintf, env);
3167 #endif
3168 return;
3169 }
3170 case 0x57: // I-MMU demap
3171 demap_tlb(env->itlb, addr, "immu", env);
3172 return;
3173 case 0x58: // D-MMU regs
3174 {
3175 int reg = (addr >> 3) & 0xf;
3176 uint64_t oldreg;
3177
3178 oldreg = env->dmmuregs[reg];
3179 switch(reg) {
3180 case 0: // RO
3181 case 4:
3182 return;
3183 case 3: // SFSR
3184 if ((val & 1) == 0) {
3185 val = 0; // Clear SFSR, Fault address
3186 env->dmmu.sfar = 0;
3187 }
3188 env->dmmu.sfsr = val;
3189 break;
3190 case 1: // Primary context
3191 env->dmmu.mmu_primary_context = val;
3192 /* can be optimized to only flush MMU_USER_IDX
3193 and MMU_KERNEL_IDX entries */
3194 tlb_flush(env, 1);
3195 break;
3196 case 2: // Secondary context
3197 env->dmmu.mmu_secondary_context = val;
3198 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3199 and MMU_KERNEL_SECONDARY_IDX entries */
3200 tlb_flush(env, 1);
3201 break;
3202 case 5: // TSB access
3203 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3204 PRIx64 "\n", env->dmmu.tsb, val);
3205 env->dmmu.tsb = val;
3206 break;
3207 case 6: // Tag access
3208 env->dmmu.tag_access = val;
3209 break;
3210 case 7: // Virtual Watchpoint
3211 case 8: // Physical Watchpoint
3212 default:
3213 env->dmmuregs[reg] = val;
3214 break;
3215 }
3216
3217 if (oldreg != env->dmmuregs[reg]) {
3218 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3219 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3220 }
3221 #ifdef DEBUG_MMU
3222 dump_mmu(stdout, fprintf, env);
3223 #endif
3224 return;
3225 }
3226 case 0x5c: // D-MMU data in
3227 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3228 return;
3229 case 0x5d: // D-MMU data access
3230 {
3231 unsigned int i = (addr >> 3) & 0x3f;
3232
3233 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3234
3235 #ifdef DEBUG_MMU
3236 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3237 dump_mmu(stdout, fprintf, env);
3238 #endif
3239 return;
3240 }
3241 case 0x5f: // D-MMU demap
3242 demap_tlb(env->dtlb, addr, "dmmu", env);
3243 return;
3244 case 0x49: // Interrupt data receive
3245 // XXX
3246 return;
3247 case 0x46: // D-cache data
3248 case 0x47: // D-cache tag access
3249 case 0x4b: // E-cache error enable
3250 case 0x4c: // E-cache asynchronous fault status
3251 case 0x4d: // E-cache asynchronous fault address
3252 case 0x4e: // E-cache tag data
3253 case 0x66: // I-cache instruction access
3254 case 0x67: // I-cache tag access
3255 case 0x6e: // I-cache predecode
3256 case 0x6f: // I-cache LRU etc.
3257 case 0x76: // E-cache tag
3258 case 0x7e: // E-cache tag
3259 return;
3260 case 0x51: // I-MMU 8k TSB pointer, RO
3261 case 0x52: // I-MMU 64k TSB pointer, RO
3262 case 0x56: // I-MMU tag read, RO
3263 case 0x59: // D-MMU 8k TSB pointer, RO
3264 case 0x5a: // D-MMU 64k TSB pointer, RO
3265 case 0x5b: // D-MMU data pointer, RO
3266 case 0x5e: // D-MMU tag read, RO
3267 case 0x48: // Interrupt dispatch, RO
3268 case 0x7f: // Incoming interrupt vector, RO
3269 case 0x82: // Primary no-fault, RO
3270 case 0x83: // Secondary no-fault, RO
3271 case 0x8a: // Primary no-fault LE, RO
3272 case 0x8b: // Secondary no-fault LE, RO
3273 default:
3274 do_unassigned_access(addr, 1, 0, 1, size);
3275 return;
3276 }
3277 }
3278 #endif /* CONFIG_USER_ONLY */
3279
3280 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3281 {
3282 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3283 || (cpu_has_hypervisor(env)
3284 && asi >= 0x30 && asi < 0x80
3285 && !(env->hpstate & HS_PRIV)))
3286 raise_exception(TT_PRIV_ACT);
3287
3288 addr = asi_address_mask(env, asi, addr);
3289
3290 switch (asi) {
3291 #if !defined(CONFIG_USER_ONLY)
3292 case 0x24: // Nucleus quad LDD 128 bit atomic
3293 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3294 helper_check_align(addr, 0xf);
3295 if (rd == 0) {
3296 env->gregs[1] = ldq_nucleus(addr + 8);
3297 if (asi == 0x2c)
3298 bswap64s(&env->gregs[1]);
3299 } else if (rd < 8) {
3300 env->gregs[rd] = ldq_nucleus(addr);
3301 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3302 if (asi == 0x2c) {
3303 bswap64s(&env->gregs[rd]);
3304 bswap64s(&env->gregs[rd + 1]);
3305 }
3306 } else {
3307 env->regwptr[rd] = ldq_nucleus(addr);
3308 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3309 if (asi == 0x2c) {
3310 bswap64s(&env->regwptr[rd]);
3311 bswap64s(&env->regwptr[rd + 1]);
3312 }
3313 }
3314 break;
3315 #endif
3316 default:
3317 helper_check_align(addr, 0x3);
3318 if (rd == 0)
3319 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3320 else if (rd < 8) {
3321 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3322 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3323 } else {
3324 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3325 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3326 }
3327 break;
3328 }
3329 }
3330
3331 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3332 {
3333 unsigned int i;
3334 CPU_DoubleU u;
3335
3336 helper_check_align(addr, 3);
3337 addr = asi_address_mask(env, asi, addr);
3338
3339 switch (asi) {
3340 case 0xf0: // Block load primary
3341 case 0xf1: // Block load secondary
3342 case 0xf8: // Block load primary LE
3343 case 0xf9: // Block load secondary LE
3344 if (rd & 7) {
3345 raise_exception(TT_ILL_INSN);
3346 return;
3347 }
3348 helper_check_align(addr, 0x3f);
3349 for (i = 0; i < 16; i++) {
3350 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3351 0);
3352 addr += 4;
3353 }
3354
3355 return;
3356 case 0x70: // Block load primary, user privilege
3357 case 0x71: // Block load secondary, user privilege
3358 if (rd & 7) {
3359 raise_exception(TT_ILL_INSN);
3360 return;
3361 }
3362 helper_check_align(addr, 0x3f);
3363 for (i = 0; i < 16; i++) {
3364 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4,
3365 0);
3366 addr += 4;
3367 }
3368
3369 return;
3370 default:
3371 break;
3372 }
3373
3374 switch(size) {
3375 default:
3376 case 4:
3377 *((uint32_t *)&env->fpr[rd]) = helper_ld_asi(addr, asi, size, 0);
3378 break;
3379 case 8:
3380 u.ll = helper_ld_asi(addr, asi, size, 0);
3381 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3382 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3383 break;
3384 case 16:
3385 u.ll = helper_ld_asi(addr, asi, 8, 0);
3386 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3387 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3388 u.ll = helper_ld_asi(addr + 8, asi, 8, 0);
3389 *((uint32_t *)&env->fpr[rd++]) = u.l.upper;
3390 *((uint32_t *)&env->fpr[rd++]) = u.l.lower;
3391 break;
3392 }
3393 }
3394
3395 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3396 {
3397 unsigned int i;
3398 target_ulong val = 0;
3399 CPU_DoubleU u;
3400
3401 helper_check_align(addr, 3);
3402 addr = asi_address_mask(env, asi, addr);
3403
3404 switch (asi) {
3405 case 0xe0: // UA2007 Block commit store primary (cache flush)
3406 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3407 case 0xf0: // Block store primary
3408 case 0xf1: // Block store secondary
3409 case 0xf8: // Block store primary LE
3410 case 0xf9: // Block store secondary LE
3411 if (rd & 7) {
3412 raise_exception(TT_ILL_INSN);
3413 return;
3414 }
3415 helper_check_align(addr, 0x3f);
3416 for (i = 0; i < 16; i++) {
3417 val = *(uint32_t *)&env->fpr[rd++];
3418 helper_st_asi(addr, val, asi & 0x8f, 4);
3419 addr += 4;
3420 }
3421
3422 return;
3423 case 0x70: // Block store primary, user privilege
3424 case 0x71: // Block store secondary, user privilege
3425 if (rd & 7) {
3426 raise_exception(TT_ILL_INSN);
3427 return;
3428 }
3429 helper_check_align(addr, 0x3f);
3430 for (i = 0; i < 16; i++) {
3431 val = *(uint32_t *)&env->fpr[rd++];
3432 helper_st_asi(addr, val, asi & 0x1f, 4);
3433 addr += 4;
3434 }
3435
3436 return;
3437 default:
3438 break;
3439 }
3440
3441 switch(size) {
3442 default:
3443 case 4:
3444 helper_st_asi(addr, *(uint32_t *)&env->fpr[rd], asi, size);
3445 break;
3446 case 8:
3447 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3448 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3449 helper_st_asi(addr, u.ll, asi, size);
3450 break;
3451 case 16:
3452 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3453 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3454 helper_st_asi(addr, u.ll, asi, 8);
3455 u.l.upper = *(uint32_t *)&env->fpr[rd++];
3456 u.l.lower = *(uint32_t *)&env->fpr[rd++];
3457 helper_st_asi(addr + 8, u.ll, asi, 8);
3458 break;
3459 }
3460 }
3461
3462 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3463 target_ulong val2, uint32_t asi)
3464 {
3465 target_ulong ret;
3466
3467 val2 &= 0xffffffffUL;
3468 ret = helper_ld_asi(addr, asi, 4, 0);
3469 ret &= 0xffffffffUL;
3470 if (val2 == ret)
3471 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3472 return ret;
3473 }
3474
3475 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3476 target_ulong val2, uint32_t asi)
3477 {
3478 target_ulong ret;
3479
3480 ret = helper_ld_asi(addr, asi, 8, 0);
3481 if (val2 == ret)
3482 helper_st_asi(addr, val1, asi, 8);
3483 return ret;
3484 }
3485 #endif /* TARGET_SPARC64 */
3486
3487 #ifndef TARGET_SPARC64
3488 void helper_rett(void)
3489 {
3490 unsigned int cwp;
3491
3492 if (env->psret == 1)
3493 raise_exception(TT_ILL_INSN);
3494
3495 env->psret = 1;
3496 cwp = cwp_inc(env->cwp + 1) ;
3497 if (env->wim & (1 << cwp)) {
3498 raise_exception(TT_WIN_UNF);
3499 }
3500 set_cwp(cwp);
3501 env->psrs = env->psrps;
3502 }
3503 #endif
3504
3505 static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc)
3506 {
3507 int overflow = 0;
3508 uint64_t x0;
3509 uint32_t x1;
3510
3511 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3512 x1 = (b & 0xffffffff);
3513
3514 if (x1 == 0) {
3515 raise_exception(TT_DIV_ZERO);
3516 }
3517
3518 x0 = x0 / x1;
3519 if (x0 > 0xffffffff) {
3520 x0 = 0xffffffff;
3521 overflow = 1;
3522 }
3523
3524 if (cc) {
3525 env->cc_dst = x0;
3526 env->cc_src2 = overflow;
3527 env->cc_op = CC_OP_DIV;
3528 }
3529 return x0;
3530 }
3531
3532 target_ulong helper_udiv(target_ulong a, target_ulong b)
3533 {
3534 return helper_udiv_common(a, b, 0);
3535 }
3536
3537 target_ulong helper_udiv_cc(target_ulong a, target_ulong b)
3538 {
3539 return helper_udiv_common(a, b, 1);
3540 }
3541
3542 static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc)
3543 {
3544 int overflow = 0;
3545 int64_t x0;
3546 int32_t x1;
3547
3548 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3549 x1 = (b & 0xffffffff);
3550
3551 if (x1 == 0) {
3552 raise_exception(TT_DIV_ZERO);
3553 }
3554
3555 x0 = x0 / x1;
3556 if ((int32_t) x0 != x0) {
3557 x0 = x0 < 0 ? 0x80000000: 0x7fffffff;
3558 overflow = 1;
3559 }
3560
3561 if (cc) {
3562 env->cc_dst = x0;
3563 env->cc_src2 = overflow;
3564 env->cc_op = CC_OP_DIV;
3565 }
3566 return x0;
3567 }
3568
3569 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3570 {
3571 return helper_sdiv_common(a, b, 0);
3572 }
3573
3574 target_ulong helper_sdiv_cc(target_ulong a, target_ulong b)
3575 {
3576 return helper_sdiv_common(a, b, 1);
3577 }
3578
3579 void helper_stdf(target_ulong addr, int mem_idx)
3580 {
3581 helper_check_align(addr, 7);
3582 #if !defined(CONFIG_USER_ONLY)
3583 switch (mem_idx) {
3584 case MMU_USER_IDX:
3585 stfq_user(addr, DT0);
3586 break;
3587 case MMU_KERNEL_IDX:
3588 stfq_kernel(addr, DT0);
3589 break;
3590 #ifdef TARGET_SPARC64
3591 case MMU_HYPV_IDX:
3592 stfq_hypv(addr, DT0);
3593 break;
3594 #endif
3595 default:
3596 DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx);
3597 break;
3598 }
3599 #else
3600 stfq_raw(address_mask(env, addr), DT0);
3601 #endif
3602 }
3603
3604 void helper_lddf(target_ulong addr, int mem_idx)
3605 {
3606 helper_check_align(addr, 7);
3607 #if !defined(CONFIG_USER_ONLY)
3608 switch (mem_idx) {
3609 case MMU_USER_IDX:
3610 DT0 = ldfq_user(addr);
3611 break;
3612 case MMU_KERNEL_IDX:
3613 DT0 = ldfq_kernel(addr);
3614 break;
3615 #ifdef TARGET_SPARC64
3616 case MMU_HYPV_IDX:
3617 DT0 = ldfq_hypv(addr);
3618 break;
3619 #endif
3620 default:
3621 DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx);
3622 break;
3623 }
3624 #else
3625 DT0 = ldfq_raw(address_mask(env, addr));
3626 #endif
3627 }
3628
3629 void helper_ldqf(target_ulong addr, int mem_idx)
3630 {
3631 // XXX add 128 bit load
3632 CPU_QuadU u;
3633
3634 helper_check_align(addr, 7);
3635 #if !defined(CONFIG_USER_ONLY)
3636 switch (mem_idx) {
3637 case MMU_USER_IDX:
3638 u.ll.upper = ldq_user(addr);
3639 u.ll.lower = ldq_user(addr + 8);
3640 QT0 = u.q;
3641 break;
3642 case MMU_KERNEL_IDX:
3643 u.ll.upper = ldq_kernel(addr);
3644 u.ll.lower = ldq_kernel(addr + 8);
3645 QT0 = u.q;
3646 break;
3647 #ifdef TARGET_SPARC64
3648 case MMU_HYPV_IDX:
3649 u.ll.upper = ldq_hypv(addr);
3650 u.ll.lower = ldq_hypv(addr + 8);
3651 QT0 = u.q;
3652 break;
3653 #endif
3654 default:
3655 DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx);
3656 break;
3657 }
3658 #else
3659 u.ll.upper = ldq_raw(address_mask(env, addr));
3660 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3661 QT0 = u.q;
3662 #endif
3663 }
3664
3665 void helper_stqf(target_ulong addr, int mem_idx)
3666 {
3667 // XXX add 128 bit store
3668 CPU_QuadU u;
3669
3670 helper_check_align(addr, 7);
3671 #if !defined(CONFIG_USER_ONLY)
3672 switch (mem_idx) {
3673 case MMU_USER_IDX:
3674 u.q = QT0;
3675 stq_user(addr, u.ll.upper);
3676 stq_user(addr + 8, u.ll.lower);
3677 break;
3678 case MMU_KERNEL_IDX:
3679 u.q = QT0;
3680 stq_kernel(addr, u.ll.upper);
3681 stq_kernel(addr + 8, u.ll.lower);
3682 break;
3683 #ifdef TARGET_SPARC64
3684 case MMU_HYPV_IDX:
3685 u.q = QT0;
3686 stq_hypv(addr, u.ll.upper);
3687 stq_hypv(addr + 8, u.ll.lower);
3688 break;
3689 #endif
3690 default:
3691 DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx);
3692 break;
3693 }
3694 #else
3695 u.q = QT0;
3696 stq_raw(address_mask(env, addr), u.ll.upper);
3697 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3698 #endif
3699 }
3700
3701 static inline void set_fsr(void)
3702 {
3703 int rnd_mode;
3704
3705 switch (env->fsr & FSR_RD_MASK) {
3706 case FSR_RD_NEAREST:
3707 rnd_mode = float_round_nearest_even;
3708 break;
3709 default:
3710 case FSR_RD_ZERO:
3711 rnd_mode = float_round_to_zero;
3712 break;
3713 case FSR_RD_POS:
3714 rnd_mode = float_round_up;
3715 break;
3716 case FSR_RD_NEG:
3717 rnd_mode = float_round_down;
3718 break;
3719 }
3720 set_float_rounding_mode(rnd_mode, &env->fp_status);
3721 }
3722
3723 void helper_ldfsr(uint32_t new_fsr)
3724 {
3725 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3726 set_fsr();
3727 }
3728
3729 #ifdef TARGET_SPARC64
3730 void helper_ldxfsr(uint64_t new_fsr)
3731 {
3732 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3733 set_fsr();
3734 }
3735 #endif
3736
3737 void helper_debug(void)
3738 {
3739 env->exception_index = EXCP_DEBUG;
3740 cpu_loop_exit(env);
3741 }
3742
3743 #ifndef TARGET_SPARC64
3744 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3745 handling ? */
3746 void helper_save(void)
3747 {
3748 uint32_t cwp;
3749
3750 cwp = cwp_dec(env->cwp - 1);
3751 if (env->wim & (1 << cwp)) {
3752 raise_exception(TT_WIN_OVF);
3753 }
3754 set_cwp(cwp);
3755 }
3756
3757 void helper_restore(void)
3758 {
3759 uint32_t cwp;
3760
3761 cwp = cwp_inc(env->cwp + 1);
3762 if (env->wim & (1 << cwp)) {
3763 raise_exception(TT_WIN_UNF);
3764 }
3765 set_cwp(cwp);
3766 }
3767
3768 void helper_wrpsr(target_ulong new_psr)
3769 {
3770 if ((new_psr & PSR_CWP) >= env->nwindows) {
3771 raise_exception(TT_ILL_INSN);
3772 } else {
3773 cpu_put_psr(env, new_psr);
3774 }
3775 }
3776
3777 target_ulong helper_rdpsr(void)
3778 {
3779 return get_psr();
3780 }
3781
3782 #else
3783 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3784 handling ? */
3785 void helper_save(void)
3786 {
3787 uint32_t cwp;
3788
3789 cwp = cwp_dec(env->cwp - 1);
3790 if (env->cansave == 0) {
3791 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3792 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3793 ((env->wstate & 0x7) << 2)));
3794 } else {
3795 if (env->cleanwin - env->canrestore == 0) {
3796 // XXX Clean windows without trap
3797 raise_exception(TT_CLRWIN);
3798 } else {
3799 env->cansave--;
3800 env->canrestore++;
3801 set_cwp(cwp);
3802 }
3803 }
3804 }
3805
3806 void helper_restore(void)
3807 {
3808 uint32_t cwp;
3809
3810 cwp = cwp_inc(env->cwp + 1);
3811 if (env->canrestore == 0) {
3812 raise_exception(TT_FILL | (env->otherwin != 0 ?
3813 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3814 ((env->wstate & 0x7) << 2)));
3815 } else {
3816 env->cansave++;
3817 env->canrestore--;
3818 set_cwp(cwp);
3819 }
3820 }
3821
3822 void helper_flushw(void)
3823 {
3824 if (env->cansave != env->nwindows - 2) {
3825 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3826 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3827 ((env->wstate & 0x7) << 2)));
3828 }
3829 }
3830
3831 void helper_saved(void)
3832 {
3833 env->cansave++;
3834 if (env->otherwin == 0)
3835 env->canrestore--;
3836 else
3837 env->otherwin--;
3838 }
3839
3840 void helper_restored(void)
3841 {
3842 env->canrestore++;
3843 if (env->cleanwin < env->nwindows - 1)
3844 env->cleanwin++;
3845 if (env->otherwin == 0)
3846 env->cansave--;
3847 else
3848 env->otherwin--;
3849 }
3850
3851 static target_ulong get_ccr(void)
3852 {
3853 target_ulong psr;
3854
3855 psr = get_psr();
3856
3857 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3858 }
3859
3860 target_ulong cpu_get_ccr(CPUState *env1)
3861 {
3862 CPUState *saved_env;
3863 target_ulong ret;
3864
3865 saved_env = env;
3866 env = env1;
3867 ret = get_ccr();
3868 env = saved_env;
3869 return ret;
3870 }
3871
3872 static void put_ccr(target_ulong val)
3873 {
3874 target_ulong tmp = val;
3875
3876 env->xcc = (tmp >> 4) << 20;
3877 env->psr = (tmp & 0xf) << 20;
3878 CC_OP = CC_OP_FLAGS;
3879 }
3880
3881 void cpu_put_ccr(CPUState *env1, target_ulong val)
3882 {
3883 CPUState *saved_env;
3884
3885 saved_env = env;
3886 env = env1;
3887 put_ccr(val);
3888 env = saved_env;
3889 }
3890
3891 static target_ulong get_cwp64(void)
3892 {
3893 return env->nwindows - 1 - env->cwp;
3894 }
3895
3896 target_ulong cpu_get_cwp64(CPUState *env1)
3897 {
3898 CPUState *saved_env;
3899 target_ulong ret;
3900
3901 saved_env = env;
3902 env = env1;
3903 ret = get_cwp64();
3904 env = saved_env;
3905 return ret;
3906 }
3907
3908 static void put_cwp64(int cwp)
3909 {
3910 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3911 cwp %= env->nwindows;
3912 }
3913 set_cwp(env->nwindows - 1 - cwp);
3914 }
3915
3916 void cpu_put_cwp64(CPUState *env1, int cwp)
3917 {
3918 CPUState *saved_env;
3919
3920 saved_env = env;
3921 env = env1;
3922 put_cwp64(cwp);
3923 env = saved_env;
3924 }
3925
3926 target_ulong helper_rdccr(void)
3927 {
3928 return get_ccr();
3929 }
3930
3931 void helper_wrccr(target_ulong new_ccr)
3932 {
3933 put_ccr(new_ccr);
3934 }
3935
3936 // CWP handling is reversed in V9, but we still use the V8 register
3937 // order.
3938 target_ulong helper_rdcwp(void)
3939 {
3940 return get_cwp64();
3941 }
3942
3943 void helper_wrcwp(target_ulong new_cwp)
3944 {
3945 put_cwp64(new_cwp);
3946 }
3947
3948 // This function uses non-native bit order
3949 #define GET_FIELD(X, FROM, TO) \
3950 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3951
3952 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3953 #define GET_FIELD_SP(X, FROM, TO) \
3954 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3955
3956 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3957 {
3958 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3959 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3960 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3961 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3962 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3963 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3964 (((pixel_addr >> 55) & 1) << 4) |
3965 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3966 GET_FIELD_SP(pixel_addr, 11, 12);
3967 }
3968
3969 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3970 {
3971 uint64_t tmp;
3972
3973 tmp = addr + offset;
3974 env->gsr &= ~7ULL;
3975 env->gsr |= tmp & 7ULL;
3976 return tmp & ~7ULL;
3977 }
3978
3979 target_ulong helper_popc(target_ulong val)
3980 {
3981 return ctpop64(val);
3982 }
3983
3984 static inline uint64_t *get_gregset(uint32_t pstate)
3985 {
3986 switch (pstate) {
3987 default:
3988 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3989 pstate,
3990 (pstate & PS_IG) ? " IG" : "",
3991 (pstate & PS_MG) ? " MG" : "",
3992 (pstate & PS_AG) ? " AG" : "");
3993 /* pass through to normal set of global registers */
3994 case 0:
3995 return env->bgregs;
3996 case PS_AG:
3997 return env->agregs;
3998 case PS_MG:
3999 return env->mgregs;
4000 case PS_IG:
4001 return env->igregs;
4002 }
4003 }
4004
4005 static inline void change_pstate(uint32_t new_pstate)
4006 {
4007 uint32_t pstate_regs, new_pstate_regs;
4008 uint64_t *src, *dst;
4009
4010 if (env->def->features & CPU_FEATURE_GL) {
4011 // PS_AG is not implemented in this case
4012 new_pstate &= ~PS_AG;
4013 }
4014
4015 pstate_regs = env->pstate & 0xc01;
4016 new_pstate_regs = new_pstate & 0xc01;
4017
4018 if (new_pstate_regs != pstate_regs) {
4019 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
4020 pstate_regs, new_pstate_regs);
4021 // Switch global register bank
4022 src = get_gregset(new_pstate_regs);
4023 dst = get_gregset(pstate_regs);
4024 memcpy32(dst, env->gregs);
4025 memcpy32(env->gregs, src);
4026 }
4027 else {
4028 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
4029 new_pstate_regs);
4030 }
4031 env->pstate = new_pstate;
4032 }
4033
4034 void helper_wrpstate(target_ulong new_state)
4035 {
4036 change_pstate(new_state & 0xf3f);
4037
4038 #if !defined(CONFIG_USER_ONLY)
4039 if (cpu_interrupts_enabled(env)) {
4040 cpu_check_irqs(env);
4041 }
4042 #endif
4043 }
4044
4045 void cpu_change_pstate(CPUState *env1, uint32_t new_pstate)
4046 {
4047 CPUState *saved_env;
4048
4049 saved_env = env;
4050 env = env1;
4051 change_pstate(new_pstate);
4052 env = saved_env;
4053 }
4054
4055 void helper_wrpil(target_ulong new_pil)
4056 {
4057 #if !defined(CONFIG_USER_ONLY)
4058 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
4059 env->psrpil, (uint32_t)new_pil);
4060
4061 env->psrpil = new_pil;
4062
4063 if (cpu_interrupts_enabled(env)) {
4064 cpu_check_irqs(env);
4065 }
4066 #endif
4067 }
4068
4069 void helper_done(void)
4070 {
4071 trap_state* tsptr = cpu_tsptr(env);
4072
4073 env->pc = tsptr->tnpc;
4074 env->npc = tsptr->tnpc + 4;
4075 put_ccr(tsptr->tstate >> 32);
4076 env->asi = (tsptr->tstate >> 24) & 0xff;
4077 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4078 put_cwp64(tsptr->tstate & 0xff);
4079 env->tl--;
4080
4081 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
4082
4083 #if !defined(CONFIG_USER_ONLY)
4084 if (cpu_interrupts_enabled(env)) {
4085 cpu_check_irqs(env);
4086 }
4087 #endif
4088 }
4089
4090 void helper_retry(void)
4091 {
4092 trap_state* tsptr = cpu_tsptr(env);
4093
4094 env->pc = tsptr->tpc;
4095 env->npc = tsptr->tnpc;
4096 put_ccr(tsptr->tstate >> 32);
4097 env->asi = (tsptr->tstate >> 24) & 0xff;
4098 change_pstate((tsptr->tstate >> 8) & 0xf3f);
4099 put_cwp64(tsptr->tstate & 0xff);
4100 env->tl--;
4101
4102 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
4103
4104 #if !defined(CONFIG_USER_ONLY)
4105 if (cpu_interrupts_enabled(env)) {
4106 cpu_check_irqs(env);
4107 }
4108 #endif
4109 }
4110
4111 static void do_modify_softint(const char* operation, uint32_t value)
4112 {
4113 if (env->softint != value) {
4114 env->softint = value;
4115 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
4116 #if !defined(CONFIG_USER_ONLY)
4117 if (cpu_interrupts_enabled(env)) {
4118 cpu_check_irqs(env);
4119 }
4120 #endif
4121 }
4122 }
4123
4124 void helper_set_softint(uint64_t value)
4125 {
4126 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
4127 }
4128
4129 void helper_clear_softint(uint64_t value)
4130 {
4131 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
4132 }
4133
4134 void helper_write_softint(uint64_t value)
4135 {
4136 do_modify_softint("helper_write_softint", (uint32_t)value);
4137 }
4138 #endif
4139
4140 #ifdef TARGET_SPARC64
4141 trap_state* cpu_tsptr(CPUState* env)
4142 {
4143 return &env->ts[env->tl & MAXTL_MASK];
4144 }
4145 #endif
4146
4147 #if !defined(CONFIG_USER_ONLY)
4148
4149 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4150 void *retaddr);
4151
4152 #define MMUSUFFIX _mmu
4153 #define ALIGNED_ONLY
4154
4155 #define SHIFT 0
4156 #include "softmmu_template.h"
4157
4158 #define SHIFT 1
4159 #include "softmmu_template.h"
4160
4161 #define SHIFT 2
4162 #include "softmmu_template.h"
4163
4164 #define SHIFT 3
4165 #include "softmmu_template.h"
4166
4167 /* XXX: make it generic ? */
4168 static void cpu_restore_state2(void *retaddr)
4169 {
4170 TranslationBlock *tb;
4171 unsigned long pc;
4172
4173 if (retaddr) {
4174 /* now we have a real cpu fault */
4175 pc = (unsigned long)retaddr;
4176 tb = tb_find_pc(pc);
4177 if (tb) {
4178 /* the PC is inside the translated code. It means that we have
4179 a virtual CPU fault */
4180 cpu_restore_state(tb, env, pc);
4181 }
4182 }
4183 }
4184
4185 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4186 void *retaddr)
4187 {
4188 #ifdef DEBUG_UNALIGNED
4189 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4190 "\n", addr, env->pc);
4191 #endif
4192 cpu_restore_state2(retaddr);
4193 raise_exception(TT_UNALIGNED);
4194 }
4195
4196 /* try to fill the TLB and return an exception if error. If retaddr is
4197 NULL, it means that the function was called in C code (i.e. not
4198 from generated code or from helper.c) */
4199 /* XXX: fix it to restore all registers */
4200 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4201 {
4202 int ret;
4203 CPUState *saved_env;
4204
4205 /* XXX: hack to restore env in all cases, even if not called from
4206 generated code */
4207 saved_env = env;
4208 env = cpu_single_env;
4209
4210 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4211 if (ret) {
4212 cpu_restore_state2(retaddr);
4213 cpu_loop_exit(env);
4214 }
4215 env = saved_env;
4216 }
4217
4218 #endif /* !CONFIG_USER_ONLY */
4219
4220 #ifndef TARGET_SPARC64
4221 #if !defined(CONFIG_USER_ONLY)
4222 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4223 int is_asi, int size)
4224 {
4225 CPUState *saved_env;
4226 int fault_type;
4227
4228 /* XXX: hack to restore env in all cases, even if not called from
4229 generated code */
4230 saved_env = env;
4231 env = cpu_single_env;
4232 #ifdef DEBUG_UNASSIGNED
4233 if (is_asi)
4234 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4235 " asi 0x%02x from " TARGET_FMT_lx "\n",
4236 is_exec ? "exec" : is_write ? "write" : "read", size,
4237 size == 1 ? "" : "s", addr, is_asi, env->pc);
4238 else
4239 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4240 " from " TARGET_FMT_lx "\n",
4241 is_exec ? "exec" : is_write ? "write" : "read", size,
4242 size == 1 ? "" : "s", addr, env->pc);
4243 #endif
4244 /* Don't overwrite translation and access faults */
4245 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4246 if ((fault_type > 4) || (fault_type == 0)) {
4247 env->mmuregs[3] = 0; /* Fault status register */
4248 if (is_asi)
4249 env->mmuregs[3] |= 1 << 16;
4250 if (env->psrs)
4251 env->mmuregs[3] |= 1 << 5;
4252 if (is_exec)
4253 env->mmuregs[3] |= 1 << 6;
4254 if (is_write)
4255 env->mmuregs[3] |= 1 << 7;
4256 env->mmuregs[3] |= (5 << 2) | 2;
4257 /* SuperSPARC will never place instruction fault addresses in the FAR */
4258 if (!is_exec) {
4259 env->mmuregs[4] = addr; /* Fault address register */
4260 }
4261 }
4262 /* overflow (same type fault was not read before another fault) */
4263 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4264 env->mmuregs[3] |= 1;
4265 }
4266
4267 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4268 if (is_exec)
4269 raise_exception(TT_CODE_ACCESS);
4270 else
4271 raise_exception(TT_DATA_ACCESS);
4272 }
4273
4274 /* flush neverland mappings created during no-fault mode,
4275 so the sequential MMU faults report proper fault types */
4276 if (env->mmuregs[0] & MMU_NF) {
4277 tlb_flush(env, 1);
4278 }
4279
4280 env = saved_env;
4281 }
4282 #endif
4283 #else
4284 #if defined(CONFIG_USER_ONLY)
4285 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4286 int is_asi, int size)
4287 #else
4288 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4289 int is_asi, int size)
4290 #endif
4291 {
4292 CPUState *saved_env;
4293
4294 /* XXX: hack to restore env in all cases, even if not called from
4295 generated code */
4296 saved_env = env;
4297 env = cpu_single_env;
4298
4299 #ifdef DEBUG_UNASSIGNED
4300 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4301 "\n", addr, env->pc);
4302 #endif
4303
4304 if (is_exec)
4305 raise_exception(TT_CODE_ACCESS);
4306 else
4307 raise_exception(TT_DATA_ACCESS);
4308
4309 env = saved_env;
4310 }
4311 #endif
4312
4313
4314 #ifdef TARGET_SPARC64
4315 void helper_tick_set_count(void *opaque, uint64_t count)
4316 {
4317 #if !defined(CONFIG_USER_ONLY)
4318 cpu_tick_set_count(opaque, count);
4319 #endif
4320 }
4321
4322 uint64_t helper_tick_get_count(void *opaque)
4323 {
4324 #if !defined(CONFIG_USER_ONLY)
4325 return cpu_tick_get_count(opaque);
4326 #else
4327 return 0;
4328 #endif
4329 }
4330
4331 void helper_tick_set_limit(void *opaque, uint64_t limit)
4332 {
4333 #if !defined(CONFIG_USER_ONLY)
4334 cpu_tick_set_limit(opaque, limit);
4335 #endif
4336 }
4337 #endif