]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
sparc64: fix missing address masking v1
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4
5 //#define DEBUG_MMU
6 //#define DEBUG_MXCC
7 //#define DEBUG_UNALIGNED
8 //#define DEBUG_UNASSIGNED
9 //#define DEBUG_ASI
10 //#define DEBUG_PCALL
11 //#define DEBUG_PSTATE
12
13 #ifdef DEBUG_MMU
14 #define DPRINTF_MMU(fmt, ...) \
15 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 #else
17 #define DPRINTF_MMU(fmt, ...) do {} while (0)
18 #endif
19
20 #ifdef DEBUG_MXCC
21 #define DPRINTF_MXCC(fmt, ...) \
22 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 #endif
26
27 #ifdef DEBUG_ASI
28 #define DPRINTF_ASI(fmt, ...) \
29 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 #endif
31
32 #ifdef DEBUG_PSTATE
33 #define DPRINTF_PSTATE(fmt, ...) \
34 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 #endif
38
39 #ifdef TARGET_SPARC64
40 #ifndef TARGET_ABI32
41 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 #else
43 #define AM_CHECK(env1) (1)
44 #endif
45 #endif
46
47 #define DT0 (env->dt0)
48 #define DT1 (env->dt1)
49 #define QT0 (env->qt0)
50 #define QT1 (env->qt1)
51
52 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
53 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
54 int is_asi, int size);
55 #endif
56
57 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
58 // Calculates TSB pointer value for fault page size 8k or 64k
59 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
60 uint64_t tag_access_register,
61 int page_size)
62 {
63 uint64_t tsb_base = tsb_register & ~0x1fffULL;
64 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
65 int tsb_size = tsb_register & 0xf;
66
67 // discard lower 13 bits which hold tag access context
68 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
69
70 // now reorder bits
71 uint64_t tsb_base_mask = ~0x1fffULL;
72 uint64_t va = tag_access_va;
73
74 // move va bits to correct position
75 if (page_size == 8*1024) {
76 va >>= 9;
77 } else if (page_size == 64*1024) {
78 va >>= 12;
79 }
80
81 if (tsb_size) {
82 tsb_base_mask <<= tsb_size;
83 }
84
85 // calculate tsb_base mask and adjust va if split is in use
86 if (tsb_split) {
87 if (page_size == 8*1024) {
88 va &= ~(1ULL << (13 + tsb_size));
89 } else if (page_size == 64*1024) {
90 va |= (1ULL << (13 + tsb_size));
91 }
92 tsb_base_mask <<= 1;
93 }
94
95 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
96 }
97
98 // Calculates tag target register value by reordering bits
99 // in tag access register
100 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
101 {
102 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
103 }
104
105 static void replace_tlb_entry(SparcTLBEntry *tlb,
106 uint64_t tlb_tag, uint64_t tlb_tte,
107 CPUState *env1)
108 {
109 target_ulong mask, size, va, offset;
110
111 // flush page range if translation is valid
112 if (TTE_IS_VALID(tlb->tte)) {
113
114 mask = 0xffffffffffffe000ULL;
115 mask <<= 3 * ((tlb->tte >> 61) & 3);
116 size = ~mask + 1;
117
118 va = tlb->tag & mask;
119
120 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
121 tlb_flush_page(env1, va + offset);
122 }
123 }
124
125 tlb->tag = tlb_tag;
126 tlb->tte = tlb_tte;
127 }
128
129 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
130 const char* strmmu, CPUState *env1)
131 {
132 unsigned int i;
133 target_ulong mask;
134 uint64_t context;
135
136 int is_demap_context = (demap_addr >> 6) & 1;
137
138 // demap context
139 switch ((demap_addr >> 4) & 3) {
140 case 0: // primary
141 context = env1->dmmu.mmu_primary_context;
142 break;
143 case 1: // secondary
144 context = env1->dmmu.mmu_secondary_context;
145 break;
146 case 2: // nucleus
147 context = 0;
148 break;
149 case 3: // reserved
150 default:
151 return;
152 }
153
154 for (i = 0; i < 64; i++) {
155 if (TTE_IS_VALID(tlb[i].tte)) {
156
157 if (is_demap_context) {
158 // will remove non-global entries matching context value
159 if (TTE_IS_GLOBAL(tlb[i].tte) ||
160 !tlb_compare_context(&tlb[i], context)) {
161 continue;
162 }
163 } else {
164 // demap page
165 // will remove any entry matching VA
166 mask = 0xffffffffffffe000ULL;
167 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
168
169 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
170 continue;
171 }
172
173 // entry should be global or matching context value
174 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
175 !tlb_compare_context(&tlb[i], context)) {
176 continue;
177 }
178 }
179
180 replace_tlb_entry(&tlb[i], 0, 0, env1);
181 #ifdef DEBUG_MMU
182 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
183 dump_mmu(env1);
184 #endif
185 }
186 }
187 }
188
189 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
190 uint64_t tlb_tag, uint64_t tlb_tte,
191 const char* strmmu, CPUState *env1)
192 {
193 unsigned int i, replace_used;
194
195 // Try replacing invalid entry
196 for (i = 0; i < 64; i++) {
197 if (!TTE_IS_VALID(tlb[i].tte)) {
198 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 return;
204 }
205 }
206
207 // All entries are valid, try replacing unlocked entry
208
209 for (replace_used = 0; replace_used < 2; ++replace_used) {
210
211 // Used entries are not replaced on first pass
212
213 for (i = 0; i < 64; i++) {
214 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
215
216 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
217 #ifdef DEBUG_MMU
218 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
219 strmmu, (replace_used?"used":"unused"), i);
220 dump_mmu(env1);
221 #endif
222 return;
223 }
224 }
225
226 // Now reset used bit and search for unused entries again
227
228 for (i = 0; i < 64; i++) {
229 TTE_SET_UNUSED(tlb[i].tte);
230 }
231 }
232
233 #ifdef DEBUG_MMU
234 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
235 #endif
236 // error state?
237 }
238
239 #endif
240
241 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
242 {
243 #ifdef TARGET_SPARC64
244 if (AM_CHECK(env1))
245 addr &= 0xffffffffULL;
246 #endif
247 return addr;
248 }
249
250 /* returns true if access using this ASI is to have address translated by MMU
251 otherwise access is to raw physical address */
252 static inline int is_translating_asi(int asi)
253 {
254 #ifdef TARGET_SPARC64
255 /* Ultrasparc IIi translating asi
256 - note this list is defined by cpu implementation
257 */
258 switch (asi) {
259 case 0x04 ... 0x11:
260 case 0x18 ... 0x19:
261 case 0x24 ... 0x2C:
262 case 0x70 ... 0x73:
263 case 0x78 ... 0x79:
264 case 0x80 ... 0xFF:
265 return 1;
266
267 default:
268 return 0;
269 }
270 #else
271 /* TODO: check sparc32 bits */
272 return 0;
273 #endif
274 }
275
276 static inline target_ulong asi_address_mask(CPUState *env1,
277 int asi, target_ulong addr)
278 {
279 if (is_translating_asi(asi)) {
280 return address_mask(env, addr);
281 } else {
282 return addr;
283 }
284 }
285
286 static void raise_exception(int tt)
287 {
288 env->exception_index = tt;
289 cpu_loop_exit();
290 }
291
292 void HELPER(raise_exception)(int tt)
293 {
294 raise_exception(tt);
295 }
296
297 void helper_check_align(target_ulong addr, uint32_t align)
298 {
299 if (addr & align) {
300 #ifdef DEBUG_UNALIGNED
301 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
302 "\n", addr, env->pc);
303 #endif
304 raise_exception(TT_UNALIGNED);
305 }
306 }
307
308 #define F_HELPER(name, p) void helper_f##name##p(void)
309
310 #define F_BINOP(name) \
311 float32 helper_f ## name ## s (float32 src1, float32 src2) \
312 { \
313 return float32_ ## name (src1, src2, &env->fp_status); \
314 } \
315 F_HELPER(name, d) \
316 { \
317 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
318 } \
319 F_HELPER(name, q) \
320 { \
321 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
322 }
323
324 F_BINOP(add);
325 F_BINOP(sub);
326 F_BINOP(mul);
327 F_BINOP(div);
328 #undef F_BINOP
329
330 void helper_fsmuld(float32 src1, float32 src2)
331 {
332 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
333 float32_to_float64(src2, &env->fp_status),
334 &env->fp_status);
335 }
336
337 void helper_fdmulq(void)
338 {
339 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
340 float64_to_float128(DT1, &env->fp_status),
341 &env->fp_status);
342 }
343
344 float32 helper_fnegs(float32 src)
345 {
346 return float32_chs(src);
347 }
348
349 #ifdef TARGET_SPARC64
350 F_HELPER(neg, d)
351 {
352 DT0 = float64_chs(DT1);
353 }
354
355 F_HELPER(neg, q)
356 {
357 QT0 = float128_chs(QT1);
358 }
359 #endif
360
361 /* Integer to float conversion. */
362 float32 helper_fitos(int32_t src)
363 {
364 return int32_to_float32(src, &env->fp_status);
365 }
366
367 void helper_fitod(int32_t src)
368 {
369 DT0 = int32_to_float64(src, &env->fp_status);
370 }
371
372 void helper_fitoq(int32_t src)
373 {
374 QT0 = int32_to_float128(src, &env->fp_status);
375 }
376
377 #ifdef TARGET_SPARC64
378 float32 helper_fxtos(void)
379 {
380 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
381 }
382
383 F_HELPER(xto, d)
384 {
385 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
386 }
387
388 F_HELPER(xto, q)
389 {
390 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
391 }
392 #endif
393 #undef F_HELPER
394
395 /* floating point conversion */
396 float32 helper_fdtos(void)
397 {
398 return float64_to_float32(DT1, &env->fp_status);
399 }
400
401 void helper_fstod(float32 src)
402 {
403 DT0 = float32_to_float64(src, &env->fp_status);
404 }
405
406 float32 helper_fqtos(void)
407 {
408 return float128_to_float32(QT1, &env->fp_status);
409 }
410
411 void helper_fstoq(float32 src)
412 {
413 QT0 = float32_to_float128(src, &env->fp_status);
414 }
415
416 void helper_fqtod(void)
417 {
418 DT0 = float128_to_float64(QT1, &env->fp_status);
419 }
420
421 void helper_fdtoq(void)
422 {
423 QT0 = float64_to_float128(DT1, &env->fp_status);
424 }
425
426 /* Float to integer conversion. */
427 int32_t helper_fstoi(float32 src)
428 {
429 return float32_to_int32_round_to_zero(src, &env->fp_status);
430 }
431
432 int32_t helper_fdtoi(void)
433 {
434 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
435 }
436
437 int32_t helper_fqtoi(void)
438 {
439 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
440 }
441
442 #ifdef TARGET_SPARC64
443 void helper_fstox(float32 src)
444 {
445 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
446 }
447
448 void helper_fdtox(void)
449 {
450 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
451 }
452
453 void helper_fqtox(void)
454 {
455 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
456 }
457
458 void helper_faligndata(void)
459 {
460 uint64_t tmp;
461
462 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
463 /* on many architectures a shift of 64 does nothing */
464 if ((env->gsr & 7) != 0) {
465 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
466 }
467 *((uint64_t *)&DT0) = tmp;
468 }
469
470 #ifdef HOST_WORDS_BIGENDIAN
471 #define VIS_B64(n) b[7 - (n)]
472 #define VIS_W64(n) w[3 - (n)]
473 #define VIS_SW64(n) sw[3 - (n)]
474 #define VIS_L64(n) l[1 - (n)]
475 #define VIS_B32(n) b[3 - (n)]
476 #define VIS_W32(n) w[1 - (n)]
477 #else
478 #define VIS_B64(n) b[n]
479 #define VIS_W64(n) w[n]
480 #define VIS_SW64(n) sw[n]
481 #define VIS_L64(n) l[n]
482 #define VIS_B32(n) b[n]
483 #define VIS_W32(n) w[n]
484 #endif
485
486 typedef union {
487 uint8_t b[8];
488 uint16_t w[4];
489 int16_t sw[4];
490 uint32_t l[2];
491 float64 d;
492 } vis64;
493
494 typedef union {
495 uint8_t b[4];
496 uint16_t w[2];
497 uint32_t l;
498 float32 f;
499 } vis32;
500
501 void helper_fpmerge(void)
502 {
503 vis64 s, d;
504
505 s.d = DT0;
506 d.d = DT1;
507
508 // Reverse calculation order to handle overlap
509 d.VIS_B64(7) = s.VIS_B64(3);
510 d.VIS_B64(6) = d.VIS_B64(3);
511 d.VIS_B64(5) = s.VIS_B64(2);
512 d.VIS_B64(4) = d.VIS_B64(2);
513 d.VIS_B64(3) = s.VIS_B64(1);
514 d.VIS_B64(2) = d.VIS_B64(1);
515 d.VIS_B64(1) = s.VIS_B64(0);
516 //d.VIS_B64(0) = d.VIS_B64(0);
517
518 DT0 = d.d;
519 }
520
521 void helper_fmul8x16(void)
522 {
523 vis64 s, d;
524 uint32_t tmp;
525
526 s.d = DT0;
527 d.d = DT1;
528
529 #define PMUL(r) \
530 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
531 if ((tmp & 0xff) > 0x7f) \
532 tmp += 0x100; \
533 d.VIS_W64(r) = tmp >> 8;
534
535 PMUL(0);
536 PMUL(1);
537 PMUL(2);
538 PMUL(3);
539 #undef PMUL
540
541 DT0 = d.d;
542 }
543
544 void helper_fmul8x16al(void)
545 {
546 vis64 s, d;
547 uint32_t tmp;
548
549 s.d = DT0;
550 d.d = DT1;
551
552 #define PMUL(r) \
553 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
554 if ((tmp & 0xff) > 0x7f) \
555 tmp += 0x100; \
556 d.VIS_W64(r) = tmp >> 8;
557
558 PMUL(0);
559 PMUL(1);
560 PMUL(2);
561 PMUL(3);
562 #undef PMUL
563
564 DT0 = d.d;
565 }
566
567 void helper_fmul8x16au(void)
568 {
569 vis64 s, d;
570 uint32_t tmp;
571
572 s.d = DT0;
573 d.d = DT1;
574
575 #define PMUL(r) \
576 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
577 if ((tmp & 0xff) > 0x7f) \
578 tmp += 0x100; \
579 d.VIS_W64(r) = tmp >> 8;
580
581 PMUL(0);
582 PMUL(1);
583 PMUL(2);
584 PMUL(3);
585 #undef PMUL
586
587 DT0 = d.d;
588 }
589
590 void helper_fmul8sux16(void)
591 {
592 vis64 s, d;
593 uint32_t tmp;
594
595 s.d = DT0;
596 d.d = DT1;
597
598 #define PMUL(r) \
599 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
600 if ((tmp & 0xff) > 0x7f) \
601 tmp += 0x100; \
602 d.VIS_W64(r) = tmp >> 8;
603
604 PMUL(0);
605 PMUL(1);
606 PMUL(2);
607 PMUL(3);
608 #undef PMUL
609
610 DT0 = d.d;
611 }
612
613 void helper_fmul8ulx16(void)
614 {
615 vis64 s, d;
616 uint32_t tmp;
617
618 s.d = DT0;
619 d.d = DT1;
620
621 #define PMUL(r) \
622 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
623 if ((tmp & 0xff) > 0x7f) \
624 tmp += 0x100; \
625 d.VIS_W64(r) = tmp >> 8;
626
627 PMUL(0);
628 PMUL(1);
629 PMUL(2);
630 PMUL(3);
631 #undef PMUL
632
633 DT0 = d.d;
634 }
635
636 void helper_fmuld8sux16(void)
637 {
638 vis64 s, d;
639 uint32_t tmp;
640
641 s.d = DT0;
642 d.d = DT1;
643
644 #define PMUL(r) \
645 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
646 if ((tmp & 0xff) > 0x7f) \
647 tmp += 0x100; \
648 d.VIS_L64(r) = tmp;
649
650 // Reverse calculation order to handle overlap
651 PMUL(1);
652 PMUL(0);
653 #undef PMUL
654
655 DT0 = d.d;
656 }
657
658 void helper_fmuld8ulx16(void)
659 {
660 vis64 s, d;
661 uint32_t tmp;
662
663 s.d = DT0;
664 d.d = DT1;
665
666 #define PMUL(r) \
667 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
668 if ((tmp & 0xff) > 0x7f) \
669 tmp += 0x100; \
670 d.VIS_L64(r) = tmp;
671
672 // Reverse calculation order to handle overlap
673 PMUL(1);
674 PMUL(0);
675 #undef PMUL
676
677 DT0 = d.d;
678 }
679
680 void helper_fexpand(void)
681 {
682 vis32 s;
683 vis64 d;
684
685 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
686 d.d = DT1;
687 d.VIS_W64(0) = s.VIS_B32(0) << 4;
688 d.VIS_W64(1) = s.VIS_B32(1) << 4;
689 d.VIS_W64(2) = s.VIS_B32(2) << 4;
690 d.VIS_W64(3) = s.VIS_B32(3) << 4;
691
692 DT0 = d.d;
693 }
694
695 #define VIS_HELPER(name, F) \
696 void name##16(void) \
697 { \
698 vis64 s, d; \
699 \
700 s.d = DT0; \
701 d.d = DT1; \
702 \
703 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
704 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
705 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
706 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
707 \
708 DT0 = d.d; \
709 } \
710 \
711 uint32_t name##16s(uint32_t src1, uint32_t src2) \
712 { \
713 vis32 s, d; \
714 \
715 s.l = src1; \
716 d.l = src2; \
717 \
718 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
719 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
720 \
721 return d.l; \
722 } \
723 \
724 void name##32(void) \
725 { \
726 vis64 s, d; \
727 \
728 s.d = DT0; \
729 d.d = DT1; \
730 \
731 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
732 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
733 \
734 DT0 = d.d; \
735 } \
736 \
737 uint32_t name##32s(uint32_t src1, uint32_t src2) \
738 { \
739 vis32 s, d; \
740 \
741 s.l = src1; \
742 d.l = src2; \
743 \
744 d.l = F(d.l, s.l); \
745 \
746 return d.l; \
747 }
748
749 #define FADD(a, b) ((a) + (b))
750 #define FSUB(a, b) ((a) - (b))
751 VIS_HELPER(helper_fpadd, FADD)
752 VIS_HELPER(helper_fpsub, FSUB)
753
754 #define VIS_CMPHELPER(name, F) \
755 void name##16(void) \
756 { \
757 vis64 s, d; \
758 \
759 s.d = DT0; \
760 d.d = DT1; \
761 \
762 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
763 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
764 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
765 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
766 \
767 DT0 = d.d; \
768 } \
769 \
770 void name##32(void) \
771 { \
772 vis64 s, d; \
773 \
774 s.d = DT0; \
775 d.d = DT1; \
776 \
777 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
778 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
779 \
780 DT0 = d.d; \
781 }
782
783 #define FCMPGT(a, b) ((a) > (b))
784 #define FCMPEQ(a, b) ((a) == (b))
785 #define FCMPLE(a, b) ((a) <= (b))
786 #define FCMPNE(a, b) ((a) != (b))
787
788 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
789 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
790 VIS_CMPHELPER(helper_fcmple, FCMPLE)
791 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
792 #endif
793
794 void helper_check_ieee_exceptions(void)
795 {
796 target_ulong status;
797
798 status = get_float_exception_flags(&env->fp_status);
799 if (status) {
800 /* Copy IEEE 754 flags into FSR */
801 if (status & float_flag_invalid)
802 env->fsr |= FSR_NVC;
803 if (status & float_flag_overflow)
804 env->fsr |= FSR_OFC;
805 if (status & float_flag_underflow)
806 env->fsr |= FSR_UFC;
807 if (status & float_flag_divbyzero)
808 env->fsr |= FSR_DZC;
809 if (status & float_flag_inexact)
810 env->fsr |= FSR_NXC;
811
812 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
813 /* Unmasked exception, generate a trap */
814 env->fsr |= FSR_FTT_IEEE_EXCP;
815 raise_exception(TT_FP_EXCP);
816 } else {
817 /* Accumulate exceptions */
818 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
819 }
820 }
821 }
822
823 void helper_clear_float_exceptions(void)
824 {
825 set_float_exception_flags(0, &env->fp_status);
826 }
827
828 float32 helper_fabss(float32 src)
829 {
830 return float32_abs(src);
831 }
832
833 #ifdef TARGET_SPARC64
834 void helper_fabsd(void)
835 {
836 DT0 = float64_abs(DT1);
837 }
838
839 void helper_fabsq(void)
840 {
841 QT0 = float128_abs(QT1);
842 }
843 #endif
844
845 float32 helper_fsqrts(float32 src)
846 {
847 return float32_sqrt(src, &env->fp_status);
848 }
849
850 void helper_fsqrtd(void)
851 {
852 DT0 = float64_sqrt(DT1, &env->fp_status);
853 }
854
855 void helper_fsqrtq(void)
856 {
857 QT0 = float128_sqrt(QT1, &env->fp_status);
858 }
859
860 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
861 void glue(helper_, name) (void) \
862 { \
863 target_ulong new_fsr; \
864 \
865 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
866 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
867 case float_relation_unordered: \
868 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
869 if ((env->fsr & FSR_NVM) || TRAP) { \
870 env->fsr |= new_fsr; \
871 env->fsr |= FSR_NVC; \
872 env->fsr |= FSR_FTT_IEEE_EXCP; \
873 raise_exception(TT_FP_EXCP); \
874 } else { \
875 env->fsr |= FSR_NVA; \
876 } \
877 break; \
878 case float_relation_less: \
879 new_fsr = FSR_FCC0 << FS; \
880 break; \
881 case float_relation_greater: \
882 new_fsr = FSR_FCC1 << FS; \
883 break; \
884 default: \
885 new_fsr = 0; \
886 break; \
887 } \
888 env->fsr |= new_fsr; \
889 }
890 #define GEN_FCMPS(name, size, FS, TRAP) \
891 void glue(helper_, name)(float32 src1, float32 src2) \
892 { \
893 target_ulong new_fsr; \
894 \
895 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
896 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
897 case float_relation_unordered: \
898 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
899 if ((env->fsr & FSR_NVM) || TRAP) { \
900 env->fsr |= new_fsr; \
901 env->fsr |= FSR_NVC; \
902 env->fsr |= FSR_FTT_IEEE_EXCP; \
903 raise_exception(TT_FP_EXCP); \
904 } else { \
905 env->fsr |= FSR_NVA; \
906 } \
907 break; \
908 case float_relation_less: \
909 new_fsr = FSR_FCC0 << FS; \
910 break; \
911 case float_relation_greater: \
912 new_fsr = FSR_FCC1 << FS; \
913 break; \
914 default: \
915 new_fsr = 0; \
916 break; \
917 } \
918 env->fsr |= new_fsr; \
919 }
920
921 GEN_FCMPS(fcmps, float32, 0, 0);
922 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
923
924 GEN_FCMPS(fcmpes, float32, 0, 1);
925 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
926
927 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
928 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
929
930 static uint32_t compute_all_flags(void)
931 {
932 return env->psr & PSR_ICC;
933 }
934
935 static uint32_t compute_C_flags(void)
936 {
937 return env->psr & PSR_CARRY;
938 }
939
940 static inline uint32_t get_NZ_icc(int32_t dst)
941 {
942 uint32_t ret = 0;
943
944 if (dst == 0) {
945 ret = PSR_ZERO;
946 } else if (dst < 0) {
947 ret = PSR_NEG;
948 }
949 return ret;
950 }
951
952 #ifdef TARGET_SPARC64
953 static uint32_t compute_all_flags_xcc(void)
954 {
955 return env->xcc & PSR_ICC;
956 }
957
958 static uint32_t compute_C_flags_xcc(void)
959 {
960 return env->xcc & PSR_CARRY;
961 }
962
963 static inline uint32_t get_NZ_xcc(target_long dst)
964 {
965 uint32_t ret = 0;
966
967 if (!dst) {
968 ret = PSR_ZERO;
969 } else if (dst < 0) {
970 ret = PSR_NEG;
971 }
972 return ret;
973 }
974 #endif
975
976 static inline uint32_t get_V_div_icc(target_ulong src2)
977 {
978 uint32_t ret = 0;
979
980 if (src2 != 0) {
981 ret = PSR_OVF;
982 }
983 return ret;
984 }
985
986 static uint32_t compute_all_div(void)
987 {
988 uint32_t ret;
989
990 ret = get_NZ_icc(CC_DST);
991 ret |= get_V_div_icc(CC_SRC2);
992 return ret;
993 }
994
995 static uint32_t compute_C_div(void)
996 {
997 return 0;
998 }
999
1000 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
1001 {
1002 uint32_t ret = 0;
1003
1004 if (dst < src1) {
1005 ret = PSR_CARRY;
1006 }
1007 return ret;
1008 }
1009
1010 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
1011 uint32_t src2)
1012 {
1013 uint32_t ret = 0;
1014
1015 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
1016 ret = PSR_CARRY;
1017 }
1018 return ret;
1019 }
1020
1021 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
1022 uint32_t src2)
1023 {
1024 uint32_t ret = 0;
1025
1026 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
1027 ret = PSR_OVF;
1028 }
1029 return ret;
1030 }
1031
1032 #ifdef TARGET_SPARC64
1033 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
1034 {
1035 uint32_t ret = 0;
1036
1037 if (dst < src1) {
1038 ret = PSR_CARRY;
1039 }
1040 return ret;
1041 }
1042
1043 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1044 target_ulong src2)
1045 {
1046 uint32_t ret = 0;
1047
1048 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1049 ret = PSR_CARRY;
1050 }
1051 return ret;
1052 }
1053
1054 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1055 target_ulong src2)
1056 {
1057 uint32_t ret = 0;
1058
1059 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1060 ret = PSR_OVF;
1061 }
1062 return ret;
1063 }
1064
1065 static uint32_t compute_all_add_xcc(void)
1066 {
1067 uint32_t ret;
1068
1069 ret = get_NZ_xcc(CC_DST);
1070 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1071 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1072 return ret;
1073 }
1074
1075 static uint32_t compute_C_add_xcc(void)
1076 {
1077 return get_C_add_xcc(CC_DST, CC_SRC);
1078 }
1079 #endif
1080
1081 static uint32_t compute_all_add(void)
1082 {
1083 uint32_t ret;
1084
1085 ret = get_NZ_icc(CC_DST);
1086 ret |= get_C_add_icc(CC_DST, CC_SRC);
1087 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1088 return ret;
1089 }
1090
1091 static uint32_t compute_C_add(void)
1092 {
1093 return get_C_add_icc(CC_DST, CC_SRC);
1094 }
1095
1096 #ifdef TARGET_SPARC64
1097 static uint32_t compute_all_addx_xcc(void)
1098 {
1099 uint32_t ret;
1100
1101 ret = get_NZ_xcc(CC_DST);
1102 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1103 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1104 return ret;
1105 }
1106
1107 static uint32_t compute_C_addx_xcc(void)
1108 {
1109 uint32_t ret;
1110
1111 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1112 return ret;
1113 }
1114 #endif
1115
1116 static uint32_t compute_all_addx(void)
1117 {
1118 uint32_t ret;
1119
1120 ret = get_NZ_icc(CC_DST);
1121 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1122 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1123 return ret;
1124 }
1125
1126 static uint32_t compute_C_addx(void)
1127 {
1128 uint32_t ret;
1129
1130 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1131 return ret;
1132 }
1133
1134 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1135 {
1136 uint32_t ret = 0;
1137
1138 if ((src1 | src2) & 0x3) {
1139 ret = PSR_OVF;
1140 }
1141 return ret;
1142 }
1143
1144 static uint32_t compute_all_tadd(void)
1145 {
1146 uint32_t ret;
1147
1148 ret = get_NZ_icc(CC_DST);
1149 ret |= get_C_add_icc(CC_DST, CC_SRC);
1150 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1151 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1152 return ret;
1153 }
1154
1155 static uint32_t compute_all_taddtv(void)
1156 {
1157 uint32_t ret;
1158
1159 ret = get_NZ_icc(CC_DST);
1160 ret |= get_C_add_icc(CC_DST, CC_SRC);
1161 return ret;
1162 }
1163
1164 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1165 {
1166 uint32_t ret = 0;
1167
1168 if (src1 < src2) {
1169 ret = PSR_CARRY;
1170 }
1171 return ret;
1172 }
1173
1174 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1175 uint32_t src2)
1176 {
1177 uint32_t ret = 0;
1178
1179 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1180 ret = PSR_CARRY;
1181 }
1182 return ret;
1183 }
1184
1185 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1186 uint32_t src2)
1187 {
1188 uint32_t ret = 0;
1189
1190 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1191 ret = PSR_OVF;
1192 }
1193 return ret;
1194 }
1195
1196
1197 #ifdef TARGET_SPARC64
1198 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1199 {
1200 uint32_t ret = 0;
1201
1202 if (src1 < src2) {
1203 ret = PSR_CARRY;
1204 }
1205 return ret;
1206 }
1207
1208 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1209 target_ulong src2)
1210 {
1211 uint32_t ret = 0;
1212
1213 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1214 ret = PSR_CARRY;
1215 }
1216 return ret;
1217 }
1218
1219 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1220 target_ulong src2)
1221 {
1222 uint32_t ret = 0;
1223
1224 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1225 ret = PSR_OVF;
1226 }
1227 return ret;
1228 }
1229
1230 static uint32_t compute_all_sub_xcc(void)
1231 {
1232 uint32_t ret;
1233
1234 ret = get_NZ_xcc(CC_DST);
1235 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1236 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1237 return ret;
1238 }
1239
1240 static uint32_t compute_C_sub_xcc(void)
1241 {
1242 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1243 }
1244 #endif
1245
1246 static uint32_t compute_all_sub(void)
1247 {
1248 uint32_t ret;
1249
1250 ret = get_NZ_icc(CC_DST);
1251 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1252 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1253 return ret;
1254 }
1255
1256 static uint32_t compute_C_sub(void)
1257 {
1258 return get_C_sub_icc(CC_SRC, CC_SRC2);
1259 }
1260
1261 #ifdef TARGET_SPARC64
1262 static uint32_t compute_all_subx_xcc(void)
1263 {
1264 uint32_t ret;
1265
1266 ret = get_NZ_xcc(CC_DST);
1267 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1268 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1269 return ret;
1270 }
1271
1272 static uint32_t compute_C_subx_xcc(void)
1273 {
1274 uint32_t ret;
1275
1276 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1277 return ret;
1278 }
1279 #endif
1280
1281 static uint32_t compute_all_subx(void)
1282 {
1283 uint32_t ret;
1284
1285 ret = get_NZ_icc(CC_DST);
1286 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1287 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1288 return ret;
1289 }
1290
1291 static uint32_t compute_C_subx(void)
1292 {
1293 uint32_t ret;
1294
1295 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1296 return ret;
1297 }
1298
1299 static uint32_t compute_all_tsub(void)
1300 {
1301 uint32_t ret;
1302
1303 ret = get_NZ_icc(CC_DST);
1304 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1305 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1306 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1307 return ret;
1308 }
1309
1310 static uint32_t compute_all_tsubtv(void)
1311 {
1312 uint32_t ret;
1313
1314 ret = get_NZ_icc(CC_DST);
1315 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1316 return ret;
1317 }
1318
1319 static uint32_t compute_all_logic(void)
1320 {
1321 return get_NZ_icc(CC_DST);
1322 }
1323
1324 static uint32_t compute_C_logic(void)
1325 {
1326 return 0;
1327 }
1328
1329 #ifdef TARGET_SPARC64
1330 static uint32_t compute_all_logic_xcc(void)
1331 {
1332 return get_NZ_xcc(CC_DST);
1333 }
1334 #endif
1335
1336 typedef struct CCTable {
1337 uint32_t (*compute_all)(void); /* return all the flags */
1338 uint32_t (*compute_c)(void); /* return the C flag */
1339 } CCTable;
1340
1341 static const CCTable icc_table[CC_OP_NB] = {
1342 /* CC_OP_DYNAMIC should never happen */
1343 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1344 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1345 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1346 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1347 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1348 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1349 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1350 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1351 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1352 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1353 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1354 };
1355
1356 #ifdef TARGET_SPARC64
1357 static const CCTable xcc_table[CC_OP_NB] = {
1358 /* CC_OP_DYNAMIC should never happen */
1359 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1360 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1361 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1362 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1363 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1364 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1365 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1366 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1367 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1368 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1369 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1370 };
1371 #endif
1372
1373 void helper_compute_psr(void)
1374 {
1375 uint32_t new_psr;
1376
1377 new_psr = icc_table[CC_OP].compute_all();
1378 env->psr = new_psr;
1379 #ifdef TARGET_SPARC64
1380 new_psr = xcc_table[CC_OP].compute_all();
1381 env->xcc = new_psr;
1382 #endif
1383 CC_OP = CC_OP_FLAGS;
1384 }
1385
1386 uint32_t helper_compute_C_icc(void)
1387 {
1388 uint32_t ret;
1389
1390 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1391 return ret;
1392 }
1393
1394 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1395 {
1396 dst[0] = src[0];
1397 dst[1] = src[1];
1398 dst[2] = src[2];
1399 dst[3] = src[3];
1400 dst[4] = src[4];
1401 dst[5] = src[5];
1402 dst[6] = src[6];
1403 dst[7] = src[7];
1404 }
1405
1406 static void set_cwp(int new_cwp)
1407 {
1408 /* put the modified wrap registers at their proper location */
1409 if (env->cwp == env->nwindows - 1) {
1410 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1411 }
1412 env->cwp = new_cwp;
1413
1414 /* put the wrap registers at their temporary location */
1415 if (new_cwp == env->nwindows - 1) {
1416 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1417 }
1418 env->regwptr = env->regbase + (new_cwp * 16);
1419 }
1420
1421 void cpu_set_cwp(CPUState *env1, int new_cwp)
1422 {
1423 CPUState *saved_env;
1424
1425 saved_env = env;
1426 env = env1;
1427 set_cwp(new_cwp);
1428 env = saved_env;
1429 }
1430
1431 static target_ulong get_psr(void)
1432 {
1433 helper_compute_psr();
1434
1435 #if !defined (TARGET_SPARC64)
1436 return env->version | (env->psr & PSR_ICC) |
1437 (env->psref? PSR_EF : 0) |
1438 (env->psrpil << 8) |
1439 (env->psrs? PSR_S : 0) |
1440 (env->psrps? PSR_PS : 0) |
1441 (env->psret? PSR_ET : 0) | env->cwp;
1442 #else
1443 return env->psr & PSR_ICC;
1444 #endif
1445 }
1446
1447 target_ulong cpu_get_psr(CPUState *env1)
1448 {
1449 CPUState *saved_env;
1450 target_ulong ret;
1451
1452 saved_env = env;
1453 env = env1;
1454 ret = get_psr();
1455 env = saved_env;
1456 return ret;
1457 }
1458
1459 static void put_psr(target_ulong val)
1460 {
1461 env->psr = val & PSR_ICC;
1462 #if !defined (TARGET_SPARC64)
1463 env->psref = (val & PSR_EF)? 1 : 0;
1464 env->psrpil = (val & PSR_PIL) >> 8;
1465 #endif
1466 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1467 cpu_check_irqs(env);
1468 #endif
1469 #if !defined (TARGET_SPARC64)
1470 env->psrs = (val & PSR_S)? 1 : 0;
1471 env->psrps = (val & PSR_PS)? 1 : 0;
1472 env->psret = (val & PSR_ET)? 1 : 0;
1473 set_cwp(val & PSR_CWP);
1474 #endif
1475 env->cc_op = CC_OP_FLAGS;
1476 }
1477
1478 void cpu_put_psr(CPUState *env1, target_ulong val)
1479 {
1480 CPUState *saved_env;
1481
1482 saved_env = env;
1483 env = env1;
1484 put_psr(val);
1485 env = saved_env;
1486 }
1487
1488 static int cwp_inc(int cwp)
1489 {
1490 if (unlikely(cwp >= env->nwindows)) {
1491 cwp -= env->nwindows;
1492 }
1493 return cwp;
1494 }
1495
1496 int cpu_cwp_inc(CPUState *env1, int cwp)
1497 {
1498 CPUState *saved_env;
1499 target_ulong ret;
1500
1501 saved_env = env;
1502 env = env1;
1503 ret = cwp_inc(cwp);
1504 env = saved_env;
1505 return ret;
1506 }
1507
1508 static int cwp_dec(int cwp)
1509 {
1510 if (unlikely(cwp < 0)) {
1511 cwp += env->nwindows;
1512 }
1513 return cwp;
1514 }
1515
1516 int cpu_cwp_dec(CPUState *env1, int cwp)
1517 {
1518 CPUState *saved_env;
1519 target_ulong ret;
1520
1521 saved_env = env;
1522 env = env1;
1523 ret = cwp_dec(cwp);
1524 env = saved_env;
1525 return ret;
1526 }
1527
1528 #ifdef TARGET_SPARC64
1529 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1530 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1531 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1532
1533 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1534 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1535 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1536
1537 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1538 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1539 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1540
1541 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1542 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1543 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1544
1545 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1546 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1547 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1548
1549 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1550 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1551 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1552 #endif
1553 #undef GEN_FCMPS
1554
1555 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1556 defined(DEBUG_MXCC)
1557 static void dump_mxcc(CPUState *env)
1558 {
1559 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1560 "\n",
1561 env->mxccdata[0], env->mxccdata[1],
1562 env->mxccdata[2], env->mxccdata[3]);
1563 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1564 "\n"
1565 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1566 "\n",
1567 env->mxccregs[0], env->mxccregs[1],
1568 env->mxccregs[2], env->mxccregs[3],
1569 env->mxccregs[4], env->mxccregs[5],
1570 env->mxccregs[6], env->mxccregs[7]);
1571 }
1572 #endif
1573
1574 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1575 && defined(DEBUG_ASI)
1576 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1577 uint64_t r1)
1578 {
1579 switch (size)
1580 {
1581 case 1:
1582 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1583 addr, asi, r1 & 0xff);
1584 break;
1585 case 2:
1586 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1587 addr, asi, r1 & 0xffff);
1588 break;
1589 case 4:
1590 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1591 addr, asi, r1 & 0xffffffff);
1592 break;
1593 case 8:
1594 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1595 addr, asi, r1);
1596 break;
1597 }
1598 }
1599 #endif
1600
1601 #ifndef TARGET_SPARC64
1602 #ifndef CONFIG_USER_ONLY
1603 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1604 {
1605 uint64_t ret = 0;
1606 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1607 uint32_t last_addr = addr;
1608 #endif
1609
1610 helper_check_align(addr, size - 1);
1611 switch (asi) {
1612 case 2: /* SuperSparc MXCC registers */
1613 switch (addr) {
1614 case 0x01c00a00: /* MXCC control register */
1615 if (size == 8)
1616 ret = env->mxccregs[3];
1617 else
1618 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1619 size);
1620 break;
1621 case 0x01c00a04: /* MXCC control register */
1622 if (size == 4)
1623 ret = env->mxccregs[3];
1624 else
1625 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1626 size);
1627 break;
1628 case 0x01c00c00: /* Module reset register */
1629 if (size == 8) {
1630 ret = env->mxccregs[5];
1631 // should we do something here?
1632 } else
1633 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1634 size);
1635 break;
1636 case 0x01c00f00: /* MBus port address register */
1637 if (size == 8)
1638 ret = env->mxccregs[7];
1639 else
1640 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1641 size);
1642 break;
1643 default:
1644 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1645 size);
1646 break;
1647 }
1648 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1649 "addr = %08x -> ret = %" PRIx64 ","
1650 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1651 #ifdef DEBUG_MXCC
1652 dump_mxcc(env);
1653 #endif
1654 break;
1655 case 3: /* MMU probe */
1656 {
1657 int mmulev;
1658
1659 mmulev = (addr >> 8) & 15;
1660 if (mmulev > 4)
1661 ret = 0;
1662 else
1663 ret = mmu_probe(env, addr, mmulev);
1664 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1665 addr, mmulev, ret);
1666 }
1667 break;
1668 case 4: /* read MMU regs */
1669 {
1670 int reg = (addr >> 8) & 0x1f;
1671
1672 ret = env->mmuregs[reg];
1673 if (reg == 3) /* Fault status cleared on read */
1674 env->mmuregs[3] = 0;
1675 else if (reg == 0x13) /* Fault status read */
1676 ret = env->mmuregs[3];
1677 else if (reg == 0x14) /* Fault address read */
1678 ret = env->mmuregs[4];
1679 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1680 }
1681 break;
1682 case 5: // Turbosparc ITLB Diagnostic
1683 case 6: // Turbosparc DTLB Diagnostic
1684 case 7: // Turbosparc IOTLB Diagnostic
1685 break;
1686 case 9: /* Supervisor code access */
1687 switch(size) {
1688 case 1:
1689 ret = ldub_code(addr);
1690 break;
1691 case 2:
1692 ret = lduw_code(addr);
1693 break;
1694 default:
1695 case 4:
1696 ret = ldl_code(addr);
1697 break;
1698 case 8:
1699 ret = ldq_code(addr);
1700 break;
1701 }
1702 break;
1703 case 0xa: /* User data access */
1704 switch(size) {
1705 case 1:
1706 ret = ldub_user(addr);
1707 break;
1708 case 2:
1709 ret = lduw_user(addr);
1710 break;
1711 default:
1712 case 4:
1713 ret = ldl_user(addr);
1714 break;
1715 case 8:
1716 ret = ldq_user(addr);
1717 break;
1718 }
1719 break;
1720 case 0xb: /* Supervisor data access */
1721 switch(size) {
1722 case 1:
1723 ret = ldub_kernel(addr);
1724 break;
1725 case 2:
1726 ret = lduw_kernel(addr);
1727 break;
1728 default:
1729 case 4:
1730 ret = ldl_kernel(addr);
1731 break;
1732 case 8:
1733 ret = ldq_kernel(addr);
1734 break;
1735 }
1736 break;
1737 case 0xc: /* I-cache tag */
1738 case 0xd: /* I-cache data */
1739 case 0xe: /* D-cache tag */
1740 case 0xf: /* D-cache data */
1741 break;
1742 case 0x20: /* MMU passthrough */
1743 switch(size) {
1744 case 1:
1745 ret = ldub_phys(addr);
1746 break;
1747 case 2:
1748 ret = lduw_phys(addr);
1749 break;
1750 default:
1751 case 4:
1752 ret = ldl_phys(addr);
1753 break;
1754 case 8:
1755 ret = ldq_phys(addr);
1756 break;
1757 }
1758 break;
1759 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1760 switch(size) {
1761 case 1:
1762 ret = ldub_phys((target_phys_addr_t)addr
1763 | ((target_phys_addr_t)(asi & 0xf) << 32));
1764 break;
1765 case 2:
1766 ret = lduw_phys((target_phys_addr_t)addr
1767 | ((target_phys_addr_t)(asi & 0xf) << 32));
1768 break;
1769 default:
1770 case 4:
1771 ret = ldl_phys((target_phys_addr_t)addr
1772 | ((target_phys_addr_t)(asi & 0xf) << 32));
1773 break;
1774 case 8:
1775 ret = ldq_phys((target_phys_addr_t)addr
1776 | ((target_phys_addr_t)(asi & 0xf) << 32));
1777 break;
1778 }
1779 break;
1780 case 0x30: // Turbosparc secondary cache diagnostic
1781 case 0x31: // Turbosparc RAM snoop
1782 case 0x32: // Turbosparc page table descriptor diagnostic
1783 case 0x39: /* data cache diagnostic register */
1784 case 0x4c: /* SuperSPARC MMU Breakpoint Action register */
1785 ret = 0;
1786 break;
1787 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1788 {
1789 int reg = (addr >> 8) & 3;
1790
1791 switch(reg) {
1792 case 0: /* Breakpoint Value (Addr) */
1793 ret = env->mmubpregs[reg];
1794 break;
1795 case 1: /* Breakpoint Mask */
1796 ret = env->mmubpregs[reg];
1797 break;
1798 case 2: /* Breakpoint Control */
1799 ret = env->mmubpregs[reg];
1800 break;
1801 case 3: /* Breakpoint Status */
1802 ret = env->mmubpregs[reg];
1803 env->mmubpregs[reg] = 0ULL;
1804 break;
1805 }
1806 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1807 ret);
1808 }
1809 break;
1810 case 8: /* User code access, XXX */
1811 default:
1812 do_unassigned_access(addr, 0, 0, asi, size);
1813 ret = 0;
1814 break;
1815 }
1816 if (sign) {
1817 switch(size) {
1818 case 1:
1819 ret = (int8_t) ret;
1820 break;
1821 case 2:
1822 ret = (int16_t) ret;
1823 break;
1824 case 4:
1825 ret = (int32_t) ret;
1826 break;
1827 default:
1828 break;
1829 }
1830 }
1831 #ifdef DEBUG_ASI
1832 dump_asi("read ", last_addr, asi, size, ret);
1833 #endif
1834 return ret;
1835 }
1836
1837 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1838 {
1839 helper_check_align(addr, size - 1);
1840 switch(asi) {
1841 case 2: /* SuperSparc MXCC registers */
1842 switch (addr) {
1843 case 0x01c00000: /* MXCC stream data register 0 */
1844 if (size == 8)
1845 env->mxccdata[0] = val;
1846 else
1847 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1848 size);
1849 break;
1850 case 0x01c00008: /* MXCC stream data register 1 */
1851 if (size == 8)
1852 env->mxccdata[1] = val;
1853 else
1854 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1855 size);
1856 break;
1857 case 0x01c00010: /* MXCC stream data register 2 */
1858 if (size == 8)
1859 env->mxccdata[2] = val;
1860 else
1861 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1862 size);
1863 break;
1864 case 0x01c00018: /* MXCC stream data register 3 */
1865 if (size == 8)
1866 env->mxccdata[3] = val;
1867 else
1868 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1869 size);
1870 break;
1871 case 0x01c00100: /* MXCC stream source */
1872 if (size == 8)
1873 env->mxccregs[0] = val;
1874 else
1875 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1876 size);
1877 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1878 0);
1879 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1880 8);
1881 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1882 16);
1883 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1884 24);
1885 break;
1886 case 0x01c00200: /* MXCC stream destination */
1887 if (size == 8)
1888 env->mxccregs[1] = val;
1889 else
1890 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1891 size);
1892 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1893 env->mxccdata[0]);
1894 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1895 env->mxccdata[1]);
1896 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1897 env->mxccdata[2]);
1898 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1899 env->mxccdata[3]);
1900 break;
1901 case 0x01c00a00: /* MXCC control register */
1902 if (size == 8)
1903 env->mxccregs[3] = val;
1904 else
1905 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1906 size);
1907 break;
1908 case 0x01c00a04: /* MXCC control register */
1909 if (size == 4)
1910 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1911 | val;
1912 else
1913 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1914 size);
1915 break;
1916 case 0x01c00e00: /* MXCC error register */
1917 // writing a 1 bit clears the error
1918 if (size == 8)
1919 env->mxccregs[6] &= ~val;
1920 else
1921 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1922 size);
1923 break;
1924 case 0x01c00f00: /* MBus port address register */
1925 if (size == 8)
1926 env->mxccregs[7] = val;
1927 else
1928 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1929 size);
1930 break;
1931 default:
1932 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1933 size);
1934 break;
1935 }
1936 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1937 asi, size, addr, val);
1938 #ifdef DEBUG_MXCC
1939 dump_mxcc(env);
1940 #endif
1941 break;
1942 case 3: /* MMU flush */
1943 {
1944 int mmulev;
1945
1946 mmulev = (addr >> 8) & 15;
1947 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1948 switch (mmulev) {
1949 case 0: // flush page
1950 tlb_flush_page(env, addr & 0xfffff000);
1951 break;
1952 case 1: // flush segment (256k)
1953 case 2: // flush region (16M)
1954 case 3: // flush context (4G)
1955 case 4: // flush entire
1956 tlb_flush(env, 1);
1957 break;
1958 default:
1959 break;
1960 }
1961 #ifdef DEBUG_MMU
1962 dump_mmu(env);
1963 #endif
1964 }
1965 break;
1966 case 4: /* write MMU regs */
1967 {
1968 int reg = (addr >> 8) & 0x1f;
1969 uint32_t oldreg;
1970
1971 oldreg = env->mmuregs[reg];
1972 switch(reg) {
1973 case 0: // Control Register
1974 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1975 (val & 0x00ffffff);
1976 // Mappings generated during no-fault mode or MMU
1977 // disabled mode are invalid in normal mode
1978 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1979 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1980 tlb_flush(env, 1);
1981 break;
1982 case 1: // Context Table Pointer Register
1983 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1984 break;
1985 case 2: // Context Register
1986 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1987 if (oldreg != env->mmuregs[reg]) {
1988 /* we flush when the MMU context changes because
1989 QEMU has no MMU context support */
1990 tlb_flush(env, 1);
1991 }
1992 break;
1993 case 3: // Synchronous Fault Status Register with Clear
1994 case 4: // Synchronous Fault Address Register
1995 break;
1996 case 0x10: // TLB Replacement Control Register
1997 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1998 break;
1999 case 0x13: // Synchronous Fault Status Register with Read and Clear
2000 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
2001 break;
2002 case 0x14: // Synchronous Fault Address Register
2003 env->mmuregs[4] = val;
2004 break;
2005 default:
2006 env->mmuregs[reg] = val;
2007 break;
2008 }
2009 if (oldreg != env->mmuregs[reg]) {
2010 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
2011 reg, oldreg, env->mmuregs[reg]);
2012 }
2013 #ifdef DEBUG_MMU
2014 dump_mmu(env);
2015 #endif
2016 }
2017 break;
2018 case 5: // Turbosparc ITLB Diagnostic
2019 case 6: // Turbosparc DTLB Diagnostic
2020 case 7: // Turbosparc IOTLB Diagnostic
2021 break;
2022 case 0xa: /* User data access */
2023 switch(size) {
2024 case 1:
2025 stb_user(addr, val);
2026 break;
2027 case 2:
2028 stw_user(addr, val);
2029 break;
2030 default:
2031 case 4:
2032 stl_user(addr, val);
2033 break;
2034 case 8:
2035 stq_user(addr, val);
2036 break;
2037 }
2038 break;
2039 case 0xb: /* Supervisor data access */
2040 switch(size) {
2041 case 1:
2042 stb_kernel(addr, val);
2043 break;
2044 case 2:
2045 stw_kernel(addr, val);
2046 break;
2047 default:
2048 case 4:
2049 stl_kernel(addr, val);
2050 break;
2051 case 8:
2052 stq_kernel(addr, val);
2053 break;
2054 }
2055 break;
2056 case 0xc: /* I-cache tag */
2057 case 0xd: /* I-cache data */
2058 case 0xe: /* D-cache tag */
2059 case 0xf: /* D-cache data */
2060 case 0x10: /* I/D-cache flush page */
2061 case 0x11: /* I/D-cache flush segment */
2062 case 0x12: /* I/D-cache flush region */
2063 case 0x13: /* I/D-cache flush context */
2064 case 0x14: /* I/D-cache flush user */
2065 break;
2066 case 0x17: /* Block copy, sta access */
2067 {
2068 // val = src
2069 // addr = dst
2070 // copy 32 bytes
2071 unsigned int i;
2072 uint32_t src = val & ~3, dst = addr & ~3, temp;
2073
2074 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2075 temp = ldl_kernel(src);
2076 stl_kernel(dst, temp);
2077 }
2078 }
2079 break;
2080 case 0x1f: /* Block fill, stda access */
2081 {
2082 // addr = dst
2083 // fill 32 bytes with val
2084 unsigned int i;
2085 uint32_t dst = addr & 7;
2086
2087 for (i = 0; i < 32; i += 8, dst += 8)
2088 stq_kernel(dst, val);
2089 }
2090 break;
2091 case 0x20: /* MMU passthrough */
2092 {
2093 switch(size) {
2094 case 1:
2095 stb_phys(addr, val);
2096 break;
2097 case 2:
2098 stw_phys(addr, val);
2099 break;
2100 case 4:
2101 default:
2102 stl_phys(addr, val);
2103 break;
2104 case 8:
2105 stq_phys(addr, val);
2106 break;
2107 }
2108 }
2109 break;
2110 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2111 {
2112 switch(size) {
2113 case 1:
2114 stb_phys((target_phys_addr_t)addr
2115 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2116 break;
2117 case 2:
2118 stw_phys((target_phys_addr_t)addr
2119 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2120 break;
2121 case 4:
2122 default:
2123 stl_phys((target_phys_addr_t)addr
2124 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2125 break;
2126 case 8:
2127 stq_phys((target_phys_addr_t)addr
2128 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2129 break;
2130 }
2131 }
2132 break;
2133 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2134 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2135 // Turbosparc snoop RAM
2136 case 0x32: // store buffer control or Turbosparc page table
2137 // descriptor diagnostic
2138 case 0x36: /* I-cache flash clear */
2139 case 0x37: /* D-cache flash clear */
2140 case 0x4c: /* breakpoint action */
2141 break;
2142 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2143 {
2144 int reg = (addr >> 8) & 3;
2145
2146 switch(reg) {
2147 case 0: /* Breakpoint Value (Addr) */
2148 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2149 break;
2150 case 1: /* Breakpoint Mask */
2151 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2152 break;
2153 case 2: /* Breakpoint Control */
2154 env->mmubpregs[reg] = (val & 0x7fULL);
2155 break;
2156 case 3: /* Breakpoint Status */
2157 env->mmubpregs[reg] = (val & 0xfULL);
2158 break;
2159 }
2160 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2161 env->mmuregs[reg]);
2162 }
2163 break;
2164 case 8: /* User code access, XXX */
2165 case 9: /* Supervisor code access, XXX */
2166 default:
2167 do_unassigned_access(addr, 1, 0, asi, size);
2168 break;
2169 }
2170 #ifdef DEBUG_ASI
2171 dump_asi("write", addr, asi, size, val);
2172 #endif
2173 }
2174
2175 #endif /* CONFIG_USER_ONLY */
2176 #else /* TARGET_SPARC64 */
2177
2178 #ifdef CONFIG_USER_ONLY
2179 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2180 {
2181 uint64_t ret = 0;
2182 #if defined(DEBUG_ASI)
2183 target_ulong last_addr = addr;
2184 #endif
2185
2186 if (asi < 0x80)
2187 raise_exception(TT_PRIV_ACT);
2188
2189 helper_check_align(addr, size - 1);
2190 addr = asi_address_mask(env, asi, addr);
2191
2192 switch (asi) {
2193 case 0x82: // Primary no-fault
2194 case 0x8a: // Primary no-fault LE
2195 if (page_check_range(addr, size, PAGE_READ) == -1) {
2196 #ifdef DEBUG_ASI
2197 dump_asi("read ", last_addr, asi, size, ret);
2198 #endif
2199 return 0;
2200 }
2201 // Fall through
2202 case 0x80: // Primary
2203 case 0x88: // Primary LE
2204 {
2205 switch(size) {
2206 case 1:
2207 ret = ldub_raw(addr);
2208 break;
2209 case 2:
2210 ret = lduw_raw(addr);
2211 break;
2212 case 4:
2213 ret = ldl_raw(addr);
2214 break;
2215 default:
2216 case 8:
2217 ret = ldq_raw(addr);
2218 break;
2219 }
2220 }
2221 break;
2222 case 0x83: // Secondary no-fault
2223 case 0x8b: // Secondary no-fault LE
2224 if (page_check_range(addr, size, PAGE_READ) == -1) {
2225 #ifdef DEBUG_ASI
2226 dump_asi("read ", last_addr, asi, size, ret);
2227 #endif
2228 return 0;
2229 }
2230 // Fall through
2231 case 0x81: // Secondary
2232 case 0x89: // Secondary LE
2233 // XXX
2234 break;
2235 default:
2236 break;
2237 }
2238
2239 /* Convert from little endian */
2240 switch (asi) {
2241 case 0x88: // Primary LE
2242 case 0x89: // Secondary LE
2243 case 0x8a: // Primary no-fault LE
2244 case 0x8b: // Secondary no-fault LE
2245 switch(size) {
2246 case 2:
2247 ret = bswap16(ret);
2248 break;
2249 case 4:
2250 ret = bswap32(ret);
2251 break;
2252 case 8:
2253 ret = bswap64(ret);
2254 break;
2255 default:
2256 break;
2257 }
2258 default:
2259 break;
2260 }
2261
2262 /* Convert to signed number */
2263 if (sign) {
2264 switch(size) {
2265 case 1:
2266 ret = (int8_t) ret;
2267 break;
2268 case 2:
2269 ret = (int16_t) ret;
2270 break;
2271 case 4:
2272 ret = (int32_t) ret;
2273 break;
2274 default:
2275 break;
2276 }
2277 }
2278 #ifdef DEBUG_ASI
2279 dump_asi("read ", last_addr, asi, size, ret);
2280 #endif
2281 return ret;
2282 }
2283
2284 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2285 {
2286 #ifdef DEBUG_ASI
2287 dump_asi("write", addr, asi, size, val);
2288 #endif
2289 if (asi < 0x80)
2290 raise_exception(TT_PRIV_ACT);
2291
2292 helper_check_align(addr, size - 1);
2293 addr = asi_address_mask(env, asi, addr);
2294
2295 /* Convert to little endian */
2296 switch (asi) {
2297 case 0x88: // Primary LE
2298 case 0x89: // Secondary LE
2299 switch(size) {
2300 case 2:
2301 val = bswap16(val);
2302 break;
2303 case 4:
2304 val = bswap32(val);
2305 break;
2306 case 8:
2307 val = bswap64(val);
2308 break;
2309 default:
2310 break;
2311 }
2312 default:
2313 break;
2314 }
2315
2316 switch(asi) {
2317 case 0x80: // Primary
2318 case 0x88: // Primary LE
2319 {
2320 switch(size) {
2321 case 1:
2322 stb_raw(addr, val);
2323 break;
2324 case 2:
2325 stw_raw(addr, val);
2326 break;
2327 case 4:
2328 stl_raw(addr, val);
2329 break;
2330 case 8:
2331 default:
2332 stq_raw(addr, val);
2333 break;
2334 }
2335 }
2336 break;
2337 case 0x81: // Secondary
2338 case 0x89: // Secondary LE
2339 // XXX
2340 return;
2341
2342 case 0x82: // Primary no-fault, RO
2343 case 0x83: // Secondary no-fault, RO
2344 case 0x8a: // Primary no-fault LE, RO
2345 case 0x8b: // Secondary no-fault LE, RO
2346 default:
2347 do_unassigned_access(addr, 1, 0, 1, size);
2348 return;
2349 }
2350 }
2351
2352 #else /* CONFIG_USER_ONLY */
2353
2354 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2355 {
2356 uint64_t ret = 0;
2357 #if defined(DEBUG_ASI)
2358 target_ulong last_addr = addr;
2359 #endif
2360
2361 asi &= 0xff;
2362
2363 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2364 || (cpu_has_hypervisor(env)
2365 && asi >= 0x30 && asi < 0x80
2366 && !(env->hpstate & HS_PRIV)))
2367 raise_exception(TT_PRIV_ACT);
2368
2369 helper_check_align(addr, size - 1);
2370 addr = asi_address_mask(env, asi, addr);
2371
2372 switch (asi) {
2373 case 0x82: // Primary no-fault
2374 case 0x8a: // Primary no-fault LE
2375 case 0x83: // Secondary no-fault
2376 case 0x8b: // Secondary no-fault LE
2377 {
2378 /* secondary space access has lowest asi bit equal to 1 */
2379 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2380 : MMU_KERNEL_SECONDARY_IDX;
2381
2382 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2383 #ifdef DEBUG_ASI
2384 dump_asi("read ", last_addr, asi, size, ret);
2385 #endif
2386 return 0;
2387 }
2388 }
2389 // Fall through
2390 case 0x10: // As if user primary
2391 case 0x11: // As if user secondary
2392 case 0x18: // As if user primary LE
2393 case 0x19: // As if user secondary LE
2394 case 0x80: // Primary
2395 case 0x81: // Secondary
2396 case 0x88: // Primary LE
2397 case 0x89: // Secondary LE
2398 case 0xe2: // UA2007 Primary block init
2399 case 0xe3: // UA2007 Secondary block init
2400 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2401 if (cpu_hypervisor_mode(env)) {
2402 switch(size) {
2403 case 1:
2404 ret = ldub_hypv(addr);
2405 break;
2406 case 2:
2407 ret = lduw_hypv(addr);
2408 break;
2409 case 4:
2410 ret = ldl_hypv(addr);
2411 break;
2412 default:
2413 case 8:
2414 ret = ldq_hypv(addr);
2415 break;
2416 }
2417 } else {
2418 /* secondary space access has lowest asi bit equal to 1 */
2419 if (asi & 1) {
2420 switch(size) {
2421 case 1:
2422 ret = ldub_kernel_secondary(addr);
2423 break;
2424 case 2:
2425 ret = lduw_kernel_secondary(addr);
2426 break;
2427 case 4:
2428 ret = ldl_kernel_secondary(addr);
2429 break;
2430 default:
2431 case 8:
2432 ret = ldq_kernel_secondary(addr);
2433 break;
2434 }
2435 } else {
2436 switch(size) {
2437 case 1:
2438 ret = ldub_kernel(addr);
2439 break;
2440 case 2:
2441 ret = lduw_kernel(addr);
2442 break;
2443 case 4:
2444 ret = ldl_kernel(addr);
2445 break;
2446 default:
2447 case 8:
2448 ret = ldq_kernel(addr);
2449 break;
2450 }
2451 }
2452 }
2453 } else {
2454 /* secondary space access has lowest asi bit equal to 1 */
2455 if (asi & 1) {
2456 switch(size) {
2457 case 1:
2458 ret = ldub_user_secondary(addr);
2459 break;
2460 case 2:
2461 ret = lduw_user_secondary(addr);
2462 break;
2463 case 4:
2464 ret = ldl_user_secondary(addr);
2465 break;
2466 default:
2467 case 8:
2468 ret = ldq_user_secondary(addr);
2469 break;
2470 }
2471 } else {
2472 switch(size) {
2473 case 1:
2474 ret = ldub_user(addr);
2475 break;
2476 case 2:
2477 ret = lduw_user(addr);
2478 break;
2479 case 4:
2480 ret = ldl_user(addr);
2481 break;
2482 default:
2483 case 8:
2484 ret = ldq_user(addr);
2485 break;
2486 }
2487 }
2488 }
2489 break;
2490 case 0x14: // Bypass
2491 case 0x15: // Bypass, non-cacheable
2492 case 0x1c: // Bypass LE
2493 case 0x1d: // Bypass, non-cacheable LE
2494 {
2495 switch(size) {
2496 case 1:
2497 ret = ldub_phys(addr);
2498 break;
2499 case 2:
2500 ret = lduw_phys(addr);
2501 break;
2502 case 4:
2503 ret = ldl_phys(addr);
2504 break;
2505 default:
2506 case 8:
2507 ret = ldq_phys(addr);
2508 break;
2509 }
2510 break;
2511 }
2512 case 0x24: // Nucleus quad LDD 128 bit atomic
2513 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2514 // Only ldda allowed
2515 raise_exception(TT_ILL_INSN);
2516 return 0;
2517 case 0x04: // Nucleus
2518 case 0x0c: // Nucleus Little Endian (LE)
2519 {
2520 switch(size) {
2521 case 1:
2522 ret = ldub_nucleus(addr);
2523 break;
2524 case 2:
2525 ret = lduw_nucleus(addr);
2526 break;
2527 case 4:
2528 ret = ldl_nucleus(addr);
2529 break;
2530 default:
2531 case 8:
2532 ret = ldq_nucleus(addr);
2533 break;
2534 }
2535 break;
2536 }
2537 case 0x4a: // UPA config
2538 // XXX
2539 break;
2540 case 0x45: // LSU
2541 ret = env->lsu;
2542 break;
2543 case 0x50: // I-MMU regs
2544 {
2545 int reg = (addr >> 3) & 0xf;
2546
2547 if (reg == 0) {
2548 // I-TSB Tag Target register
2549 ret = ultrasparc_tag_target(env->immu.tag_access);
2550 } else {
2551 ret = env->immuregs[reg];
2552 }
2553
2554 break;
2555 }
2556 case 0x51: // I-MMU 8k TSB pointer
2557 {
2558 // env->immuregs[5] holds I-MMU TSB register value
2559 // env->immuregs[6] holds I-MMU Tag Access register value
2560 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2561 8*1024);
2562 break;
2563 }
2564 case 0x52: // I-MMU 64k TSB pointer
2565 {
2566 // env->immuregs[5] holds I-MMU TSB register value
2567 // env->immuregs[6] holds I-MMU Tag Access register value
2568 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2569 64*1024);
2570 break;
2571 }
2572 case 0x55: // I-MMU data access
2573 {
2574 int reg = (addr >> 3) & 0x3f;
2575
2576 ret = env->itlb[reg].tte;
2577 break;
2578 }
2579 case 0x56: // I-MMU tag read
2580 {
2581 int reg = (addr >> 3) & 0x3f;
2582
2583 ret = env->itlb[reg].tag;
2584 break;
2585 }
2586 case 0x58: // D-MMU regs
2587 {
2588 int reg = (addr >> 3) & 0xf;
2589
2590 if (reg == 0) {
2591 // D-TSB Tag Target register
2592 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2593 } else {
2594 ret = env->dmmuregs[reg];
2595 }
2596 break;
2597 }
2598 case 0x59: // D-MMU 8k TSB pointer
2599 {
2600 // env->dmmuregs[5] holds D-MMU TSB register value
2601 // env->dmmuregs[6] holds D-MMU Tag Access register value
2602 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2603 8*1024);
2604 break;
2605 }
2606 case 0x5a: // D-MMU 64k TSB pointer
2607 {
2608 // env->dmmuregs[5] holds D-MMU TSB register value
2609 // env->dmmuregs[6] holds D-MMU Tag Access register value
2610 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2611 64*1024);
2612 break;
2613 }
2614 case 0x5d: // D-MMU data access
2615 {
2616 int reg = (addr >> 3) & 0x3f;
2617
2618 ret = env->dtlb[reg].tte;
2619 break;
2620 }
2621 case 0x5e: // D-MMU tag read
2622 {
2623 int reg = (addr >> 3) & 0x3f;
2624
2625 ret = env->dtlb[reg].tag;
2626 break;
2627 }
2628 case 0x46: // D-cache data
2629 case 0x47: // D-cache tag access
2630 case 0x4b: // E-cache error enable
2631 case 0x4c: // E-cache asynchronous fault status
2632 case 0x4d: // E-cache asynchronous fault address
2633 case 0x4e: // E-cache tag data
2634 case 0x66: // I-cache instruction access
2635 case 0x67: // I-cache tag access
2636 case 0x6e: // I-cache predecode
2637 case 0x6f: // I-cache LRU etc.
2638 case 0x76: // E-cache tag
2639 case 0x7e: // E-cache tag
2640 break;
2641 case 0x5b: // D-MMU data pointer
2642 case 0x48: // Interrupt dispatch, RO
2643 case 0x49: // Interrupt data receive
2644 case 0x7f: // Incoming interrupt vector, RO
2645 // XXX
2646 break;
2647 case 0x54: // I-MMU data in, WO
2648 case 0x57: // I-MMU demap, WO
2649 case 0x5c: // D-MMU data in, WO
2650 case 0x5f: // D-MMU demap, WO
2651 case 0x77: // Interrupt vector, WO
2652 default:
2653 do_unassigned_access(addr, 0, 0, 1, size);
2654 ret = 0;
2655 break;
2656 }
2657
2658 /* Convert from little endian */
2659 switch (asi) {
2660 case 0x0c: // Nucleus Little Endian (LE)
2661 case 0x18: // As if user primary LE
2662 case 0x19: // As if user secondary LE
2663 case 0x1c: // Bypass LE
2664 case 0x1d: // Bypass, non-cacheable LE
2665 case 0x88: // Primary LE
2666 case 0x89: // Secondary LE
2667 case 0x8a: // Primary no-fault LE
2668 case 0x8b: // Secondary no-fault LE
2669 switch(size) {
2670 case 2:
2671 ret = bswap16(ret);
2672 break;
2673 case 4:
2674 ret = bswap32(ret);
2675 break;
2676 case 8:
2677 ret = bswap64(ret);
2678 break;
2679 default:
2680 break;
2681 }
2682 default:
2683 break;
2684 }
2685
2686 /* Convert to signed number */
2687 if (sign) {
2688 switch(size) {
2689 case 1:
2690 ret = (int8_t) ret;
2691 break;
2692 case 2:
2693 ret = (int16_t) ret;
2694 break;
2695 case 4:
2696 ret = (int32_t) ret;
2697 break;
2698 default:
2699 break;
2700 }
2701 }
2702 #ifdef DEBUG_ASI
2703 dump_asi("read ", last_addr, asi, size, ret);
2704 #endif
2705 return ret;
2706 }
2707
2708 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2709 {
2710 #ifdef DEBUG_ASI
2711 dump_asi("write", addr, asi, size, val);
2712 #endif
2713
2714 asi &= 0xff;
2715
2716 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2717 || (cpu_has_hypervisor(env)
2718 && asi >= 0x30 && asi < 0x80
2719 && !(env->hpstate & HS_PRIV)))
2720 raise_exception(TT_PRIV_ACT);
2721
2722 helper_check_align(addr, size - 1);
2723 addr = asi_address_mask(env, asi, addr);
2724
2725 /* Convert to little endian */
2726 switch (asi) {
2727 case 0x0c: // Nucleus Little Endian (LE)
2728 case 0x18: // As if user primary LE
2729 case 0x19: // As if user secondary LE
2730 case 0x1c: // Bypass LE
2731 case 0x1d: // Bypass, non-cacheable LE
2732 case 0x88: // Primary LE
2733 case 0x89: // Secondary LE
2734 switch(size) {
2735 case 2:
2736 val = bswap16(val);
2737 break;
2738 case 4:
2739 val = bswap32(val);
2740 break;
2741 case 8:
2742 val = bswap64(val);
2743 break;
2744 default:
2745 break;
2746 }
2747 default:
2748 break;
2749 }
2750
2751 switch(asi) {
2752 case 0x10: // As if user primary
2753 case 0x11: // As if user secondary
2754 case 0x18: // As if user primary LE
2755 case 0x19: // As if user secondary LE
2756 case 0x80: // Primary
2757 case 0x81: // Secondary
2758 case 0x88: // Primary LE
2759 case 0x89: // Secondary LE
2760 case 0xe2: // UA2007 Primary block init
2761 case 0xe3: // UA2007 Secondary block init
2762 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2763 if (cpu_hypervisor_mode(env)) {
2764 switch(size) {
2765 case 1:
2766 stb_hypv(addr, val);
2767 break;
2768 case 2:
2769 stw_hypv(addr, val);
2770 break;
2771 case 4:
2772 stl_hypv(addr, val);
2773 break;
2774 case 8:
2775 default:
2776 stq_hypv(addr, val);
2777 break;
2778 }
2779 } else {
2780 /* secondary space access has lowest asi bit equal to 1 */
2781 if (asi & 1) {
2782 switch(size) {
2783 case 1:
2784 stb_kernel_secondary(addr, val);
2785 break;
2786 case 2:
2787 stw_kernel_secondary(addr, val);
2788 break;
2789 case 4:
2790 stl_kernel_secondary(addr, val);
2791 break;
2792 case 8:
2793 default:
2794 stq_kernel_secondary(addr, val);
2795 break;
2796 }
2797 } else {
2798 switch(size) {
2799 case 1:
2800 stb_kernel(addr, val);
2801 break;
2802 case 2:
2803 stw_kernel(addr, val);
2804 break;
2805 case 4:
2806 stl_kernel(addr, val);
2807 break;
2808 case 8:
2809 default:
2810 stq_kernel(addr, val);
2811 break;
2812 }
2813 }
2814 }
2815 } else {
2816 /* secondary space access has lowest asi bit equal to 1 */
2817 if (asi & 1) {
2818 switch(size) {
2819 case 1:
2820 stb_user_secondary(addr, val);
2821 break;
2822 case 2:
2823 stw_user_secondary(addr, val);
2824 break;
2825 case 4:
2826 stl_user_secondary(addr, val);
2827 break;
2828 case 8:
2829 default:
2830 stq_user_secondary(addr, val);
2831 break;
2832 }
2833 } else {
2834 switch(size) {
2835 case 1:
2836 stb_user(addr, val);
2837 break;
2838 case 2:
2839 stw_user(addr, val);
2840 break;
2841 case 4:
2842 stl_user(addr, val);
2843 break;
2844 case 8:
2845 default:
2846 stq_user(addr, val);
2847 break;
2848 }
2849 }
2850 }
2851 break;
2852 case 0x14: // Bypass
2853 case 0x15: // Bypass, non-cacheable
2854 case 0x1c: // Bypass LE
2855 case 0x1d: // Bypass, non-cacheable LE
2856 {
2857 switch(size) {
2858 case 1:
2859 stb_phys(addr, val);
2860 break;
2861 case 2:
2862 stw_phys(addr, val);
2863 break;
2864 case 4:
2865 stl_phys(addr, val);
2866 break;
2867 case 8:
2868 default:
2869 stq_phys(addr, val);
2870 break;
2871 }
2872 }
2873 return;
2874 case 0x24: // Nucleus quad LDD 128 bit atomic
2875 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2876 // Only ldda allowed
2877 raise_exception(TT_ILL_INSN);
2878 return;
2879 case 0x04: // Nucleus
2880 case 0x0c: // Nucleus Little Endian (LE)
2881 {
2882 switch(size) {
2883 case 1:
2884 stb_nucleus(addr, val);
2885 break;
2886 case 2:
2887 stw_nucleus(addr, val);
2888 break;
2889 case 4:
2890 stl_nucleus(addr, val);
2891 break;
2892 default:
2893 case 8:
2894 stq_nucleus(addr, val);
2895 break;
2896 }
2897 break;
2898 }
2899
2900 case 0x4a: // UPA config
2901 // XXX
2902 return;
2903 case 0x45: // LSU
2904 {
2905 uint64_t oldreg;
2906
2907 oldreg = env->lsu;
2908 env->lsu = val & (DMMU_E | IMMU_E);
2909 // Mappings generated during D/I MMU disabled mode are
2910 // invalid in normal mode
2911 if (oldreg != env->lsu) {
2912 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2913 oldreg, env->lsu);
2914 #ifdef DEBUG_MMU
2915 dump_mmu(env);
2916 #endif
2917 tlb_flush(env, 1);
2918 }
2919 return;
2920 }
2921 case 0x50: // I-MMU regs
2922 {
2923 int reg = (addr >> 3) & 0xf;
2924 uint64_t oldreg;
2925
2926 oldreg = env->immuregs[reg];
2927 switch(reg) {
2928 case 0: // RO
2929 return;
2930 case 1: // Not in I-MMU
2931 case 2:
2932 return;
2933 case 3: // SFSR
2934 if ((val & 1) == 0)
2935 val = 0; // Clear SFSR
2936 env->immu.sfsr = val;
2937 break;
2938 case 4: // RO
2939 return;
2940 case 5: // TSB access
2941 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2942 PRIx64 "\n", env->immu.tsb, val);
2943 env->immu.tsb = val;
2944 break;
2945 case 6: // Tag access
2946 env->immu.tag_access = val;
2947 break;
2948 case 7:
2949 case 8:
2950 return;
2951 default:
2952 break;
2953 }
2954
2955 if (oldreg != env->immuregs[reg]) {
2956 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2957 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2958 }
2959 #ifdef DEBUG_MMU
2960 dump_mmu(env);
2961 #endif
2962 return;
2963 }
2964 case 0x54: // I-MMU data in
2965 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2966 return;
2967 case 0x55: // I-MMU data access
2968 {
2969 // TODO: auto demap
2970
2971 unsigned int i = (addr >> 3) & 0x3f;
2972
2973 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2974
2975 #ifdef DEBUG_MMU
2976 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2977 dump_mmu(env);
2978 #endif
2979 return;
2980 }
2981 case 0x57: // I-MMU demap
2982 demap_tlb(env->itlb, addr, "immu", env);
2983 return;
2984 case 0x58: // D-MMU regs
2985 {
2986 int reg = (addr >> 3) & 0xf;
2987 uint64_t oldreg;
2988
2989 oldreg = env->dmmuregs[reg];
2990 switch(reg) {
2991 case 0: // RO
2992 case 4:
2993 return;
2994 case 3: // SFSR
2995 if ((val & 1) == 0) {
2996 val = 0; // Clear SFSR, Fault address
2997 env->dmmu.sfar = 0;
2998 }
2999 env->dmmu.sfsr = val;
3000 break;
3001 case 1: // Primary context
3002 env->dmmu.mmu_primary_context = val;
3003 /* can be optimized to only flush MMU_USER_IDX
3004 and MMU_KERNEL_IDX entries */
3005 tlb_flush(env, 1);
3006 break;
3007 case 2: // Secondary context
3008 env->dmmu.mmu_secondary_context = val;
3009 /* can be optimized to only flush MMU_USER_SECONDARY_IDX
3010 and MMU_KERNEL_SECONDARY_IDX entries */
3011 tlb_flush(env, 1);
3012 break;
3013 case 5: // TSB access
3014 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
3015 PRIx64 "\n", env->dmmu.tsb, val);
3016 env->dmmu.tsb = val;
3017 break;
3018 case 6: // Tag access
3019 env->dmmu.tag_access = val;
3020 break;
3021 case 7: // Virtual Watchpoint
3022 case 8: // Physical Watchpoint
3023 default:
3024 env->dmmuregs[reg] = val;
3025 break;
3026 }
3027
3028 if (oldreg != env->dmmuregs[reg]) {
3029 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
3030 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
3031 }
3032 #ifdef DEBUG_MMU
3033 dump_mmu(env);
3034 #endif
3035 return;
3036 }
3037 case 0x5c: // D-MMU data in
3038 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
3039 return;
3040 case 0x5d: // D-MMU data access
3041 {
3042 unsigned int i = (addr >> 3) & 0x3f;
3043
3044 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
3045
3046 #ifdef DEBUG_MMU
3047 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3048 dump_mmu(env);
3049 #endif
3050 return;
3051 }
3052 case 0x5f: // D-MMU demap
3053 demap_tlb(env->dtlb, addr, "dmmu", env);
3054 return;
3055 case 0x49: // Interrupt data receive
3056 // XXX
3057 return;
3058 case 0x46: // D-cache data
3059 case 0x47: // D-cache tag access
3060 case 0x4b: // E-cache error enable
3061 case 0x4c: // E-cache asynchronous fault status
3062 case 0x4d: // E-cache asynchronous fault address
3063 case 0x4e: // E-cache tag data
3064 case 0x66: // I-cache instruction access
3065 case 0x67: // I-cache tag access
3066 case 0x6e: // I-cache predecode
3067 case 0x6f: // I-cache LRU etc.
3068 case 0x76: // E-cache tag
3069 case 0x7e: // E-cache tag
3070 return;
3071 case 0x51: // I-MMU 8k TSB pointer, RO
3072 case 0x52: // I-MMU 64k TSB pointer, RO
3073 case 0x56: // I-MMU tag read, RO
3074 case 0x59: // D-MMU 8k TSB pointer, RO
3075 case 0x5a: // D-MMU 64k TSB pointer, RO
3076 case 0x5b: // D-MMU data pointer, RO
3077 case 0x5e: // D-MMU tag read, RO
3078 case 0x48: // Interrupt dispatch, RO
3079 case 0x7f: // Incoming interrupt vector, RO
3080 case 0x82: // Primary no-fault, RO
3081 case 0x83: // Secondary no-fault, RO
3082 case 0x8a: // Primary no-fault LE, RO
3083 case 0x8b: // Secondary no-fault LE, RO
3084 default:
3085 do_unassigned_access(addr, 1, 0, 1, size);
3086 return;
3087 }
3088 }
3089 #endif /* CONFIG_USER_ONLY */
3090
3091 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3092 {
3093 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3094 || (cpu_has_hypervisor(env)
3095 && asi >= 0x30 && asi < 0x80
3096 && !(env->hpstate & HS_PRIV)))
3097 raise_exception(TT_PRIV_ACT);
3098
3099 addr = asi_address_mask(env, asi, addr);
3100
3101 switch (asi) {
3102 #if !defined(CONFIG_USER_ONLY)
3103 case 0x24: // Nucleus quad LDD 128 bit atomic
3104 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3105 helper_check_align(addr, 0xf);
3106 if (rd == 0) {
3107 env->gregs[1] = ldq_nucleus(addr + 8);
3108 if (asi == 0x2c)
3109 bswap64s(&env->gregs[1]);
3110 } else if (rd < 8) {
3111 env->gregs[rd] = ldq_nucleus(addr);
3112 env->gregs[rd + 1] = ldq_nucleus(addr + 8);
3113 if (asi == 0x2c) {
3114 bswap64s(&env->gregs[rd]);
3115 bswap64s(&env->gregs[rd + 1]);
3116 }
3117 } else {
3118 env->regwptr[rd] = ldq_nucleus(addr);
3119 env->regwptr[rd + 1] = ldq_nucleus(addr + 8);
3120 if (asi == 0x2c) {
3121 bswap64s(&env->regwptr[rd]);
3122 bswap64s(&env->regwptr[rd + 1]);
3123 }
3124 }
3125 break;
3126 #endif
3127 default:
3128 helper_check_align(addr, 0x3);
3129 if (rd == 0)
3130 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3131 else if (rd < 8) {
3132 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3133 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3134 } else {
3135 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3136 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3137 }
3138 break;
3139 }
3140 }
3141
3142 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3143 {
3144 unsigned int i;
3145 target_ulong val;
3146
3147 helper_check_align(addr, 3);
3148 addr = asi_address_mask(env, asi, addr);
3149
3150 switch (asi) {
3151 case 0xf0: // Block load primary
3152 case 0xf1: // Block load secondary
3153 case 0xf8: // Block load primary LE
3154 case 0xf9: // Block load secondary LE
3155 if (rd & 7) {
3156 raise_exception(TT_ILL_INSN);
3157 return;
3158 }
3159 helper_check_align(addr, 0x3f);
3160 for (i = 0; i < 16; i++) {
3161 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3162 0);
3163 addr += 4;
3164 }
3165
3166 return;
3167 default:
3168 break;
3169 }
3170
3171 val = helper_ld_asi(addr, asi, size, 0);
3172 switch(size) {
3173 default:
3174 case 4:
3175 *((uint32_t *)&env->fpr[rd]) = val;
3176 break;
3177 case 8:
3178 *((int64_t *)&DT0) = val;
3179 break;
3180 case 16:
3181 // XXX
3182 break;
3183 }
3184 }
3185
3186 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3187 {
3188 unsigned int i;
3189 target_ulong val = 0;
3190
3191 helper_check_align(addr, 3);
3192 addr = asi_address_mask(env, asi, addr);
3193
3194 switch (asi) {
3195 case 0xe0: // UA2007 Block commit store primary (cache flush)
3196 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3197 case 0xf0: // Block store primary
3198 case 0xf1: // Block store secondary
3199 case 0xf8: // Block store primary LE
3200 case 0xf9: // Block store secondary LE
3201 if (rd & 7) {
3202 raise_exception(TT_ILL_INSN);
3203 return;
3204 }
3205 helper_check_align(addr, 0x3f);
3206 for (i = 0; i < 16; i++) {
3207 val = *(uint32_t *)&env->fpr[rd++];
3208 helper_st_asi(addr, val, asi & 0x8f, 4);
3209 addr += 4;
3210 }
3211
3212 return;
3213 default:
3214 break;
3215 }
3216
3217 switch(size) {
3218 default:
3219 case 4:
3220 val = *((uint32_t *)&env->fpr[rd]);
3221 break;
3222 case 8:
3223 val = *((int64_t *)&DT0);
3224 break;
3225 case 16:
3226 // XXX
3227 break;
3228 }
3229 helper_st_asi(addr, val, asi, size);
3230 }
3231
3232 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3233 target_ulong val2, uint32_t asi)
3234 {
3235 target_ulong ret;
3236
3237 val2 &= 0xffffffffUL;
3238 ret = helper_ld_asi(addr, asi, 4, 0);
3239 ret &= 0xffffffffUL;
3240 if (val2 == ret)
3241 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3242 return ret;
3243 }
3244
3245 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3246 target_ulong val2, uint32_t asi)
3247 {
3248 target_ulong ret;
3249
3250 ret = helper_ld_asi(addr, asi, 8, 0);
3251 if (val2 == ret)
3252 helper_st_asi(addr, val1, asi, 8);
3253 return ret;
3254 }
3255 #endif /* TARGET_SPARC64 */
3256
3257 #ifndef TARGET_SPARC64
3258 void helper_rett(void)
3259 {
3260 unsigned int cwp;
3261
3262 if (env->psret == 1)
3263 raise_exception(TT_ILL_INSN);
3264
3265 env->psret = 1;
3266 cwp = cwp_inc(env->cwp + 1) ;
3267 if (env->wim & (1 << cwp)) {
3268 raise_exception(TT_WIN_UNF);
3269 }
3270 set_cwp(cwp);
3271 env->psrs = env->psrps;
3272 }
3273 #endif
3274
3275 target_ulong helper_udiv(target_ulong a, target_ulong b)
3276 {
3277 uint64_t x0;
3278 uint32_t x1;
3279
3280 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3281 x1 = b;
3282
3283 if (x1 == 0) {
3284 raise_exception(TT_DIV_ZERO);
3285 }
3286
3287 x0 = x0 / x1;
3288 if (x0 > 0xffffffff) {
3289 env->cc_src2 = 1;
3290 return 0xffffffff;
3291 } else {
3292 env->cc_src2 = 0;
3293 return x0;
3294 }
3295 }
3296
3297 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3298 {
3299 int64_t x0;
3300 int32_t x1;
3301
3302 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3303 x1 = b;
3304
3305 if (x1 == 0) {
3306 raise_exception(TT_DIV_ZERO);
3307 }
3308
3309 x0 = x0 / x1;
3310 if ((int32_t) x0 != x0) {
3311 env->cc_src2 = 1;
3312 return x0 < 0? 0x80000000: 0x7fffffff;
3313 } else {
3314 env->cc_src2 = 0;
3315 return x0;
3316 }
3317 }
3318
3319 void helper_stdf(target_ulong addr, int mem_idx)
3320 {
3321 helper_check_align(addr, 7);
3322 #if !defined(CONFIG_USER_ONLY)
3323 switch (mem_idx) {
3324 case 0:
3325 stfq_user(addr, DT0);
3326 break;
3327 case 1:
3328 stfq_kernel(addr, DT0);
3329 break;
3330 #ifdef TARGET_SPARC64
3331 case 2:
3332 stfq_hypv(addr, DT0);
3333 break;
3334 #endif
3335 default:
3336 break;
3337 }
3338 #else
3339 stfq_raw(address_mask(env, addr), DT0);
3340 #endif
3341 }
3342
3343 void helper_lddf(target_ulong addr, int mem_idx)
3344 {
3345 helper_check_align(addr, 7);
3346 #if !defined(CONFIG_USER_ONLY)
3347 switch (mem_idx) {
3348 case 0:
3349 DT0 = ldfq_user(addr);
3350 break;
3351 case 1:
3352 DT0 = ldfq_kernel(addr);
3353 break;
3354 #ifdef TARGET_SPARC64
3355 case 2:
3356 DT0 = ldfq_hypv(addr);
3357 break;
3358 #endif
3359 default:
3360 break;
3361 }
3362 #else
3363 DT0 = ldfq_raw(address_mask(env, addr));
3364 #endif
3365 }
3366
3367 void helper_ldqf(target_ulong addr, int mem_idx)
3368 {
3369 // XXX add 128 bit load
3370 CPU_QuadU u;
3371
3372 helper_check_align(addr, 7);
3373 #if !defined(CONFIG_USER_ONLY)
3374 switch (mem_idx) {
3375 case 0:
3376 u.ll.upper = ldq_user(addr);
3377 u.ll.lower = ldq_user(addr + 8);
3378 QT0 = u.q;
3379 break;
3380 case 1:
3381 u.ll.upper = ldq_kernel(addr);
3382 u.ll.lower = ldq_kernel(addr + 8);
3383 QT0 = u.q;
3384 break;
3385 #ifdef TARGET_SPARC64
3386 case 2:
3387 u.ll.upper = ldq_hypv(addr);
3388 u.ll.lower = ldq_hypv(addr + 8);
3389 QT0 = u.q;
3390 break;
3391 #endif
3392 default:
3393 break;
3394 }
3395 #else
3396 u.ll.upper = ldq_raw(address_mask(env, addr));
3397 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3398 QT0 = u.q;
3399 #endif
3400 }
3401
3402 void helper_stqf(target_ulong addr, int mem_idx)
3403 {
3404 // XXX add 128 bit store
3405 CPU_QuadU u;
3406
3407 helper_check_align(addr, 7);
3408 #if !defined(CONFIG_USER_ONLY)
3409 switch (mem_idx) {
3410 case 0:
3411 u.q = QT0;
3412 stq_user(addr, u.ll.upper);
3413 stq_user(addr + 8, u.ll.lower);
3414 break;
3415 case 1:
3416 u.q = QT0;
3417 stq_kernel(addr, u.ll.upper);
3418 stq_kernel(addr + 8, u.ll.lower);
3419 break;
3420 #ifdef TARGET_SPARC64
3421 case 2:
3422 u.q = QT0;
3423 stq_hypv(addr, u.ll.upper);
3424 stq_hypv(addr + 8, u.ll.lower);
3425 break;
3426 #endif
3427 default:
3428 break;
3429 }
3430 #else
3431 u.q = QT0;
3432 stq_raw(address_mask(env, addr), u.ll.upper);
3433 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3434 #endif
3435 }
3436
3437 static inline void set_fsr(void)
3438 {
3439 int rnd_mode;
3440
3441 switch (env->fsr & FSR_RD_MASK) {
3442 case FSR_RD_NEAREST:
3443 rnd_mode = float_round_nearest_even;
3444 break;
3445 default:
3446 case FSR_RD_ZERO:
3447 rnd_mode = float_round_to_zero;
3448 break;
3449 case FSR_RD_POS:
3450 rnd_mode = float_round_up;
3451 break;
3452 case FSR_RD_NEG:
3453 rnd_mode = float_round_down;
3454 break;
3455 }
3456 set_float_rounding_mode(rnd_mode, &env->fp_status);
3457 }
3458
3459 void helper_ldfsr(uint32_t new_fsr)
3460 {
3461 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3462 set_fsr();
3463 }
3464
3465 #ifdef TARGET_SPARC64
3466 void helper_ldxfsr(uint64_t new_fsr)
3467 {
3468 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3469 set_fsr();
3470 }
3471 #endif
3472
3473 void helper_debug(void)
3474 {
3475 env->exception_index = EXCP_DEBUG;
3476 cpu_loop_exit();
3477 }
3478
3479 #ifndef TARGET_SPARC64
3480 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3481 handling ? */
3482 void helper_save(void)
3483 {
3484 uint32_t cwp;
3485
3486 cwp = cwp_dec(env->cwp - 1);
3487 if (env->wim & (1 << cwp)) {
3488 raise_exception(TT_WIN_OVF);
3489 }
3490 set_cwp(cwp);
3491 }
3492
3493 void helper_restore(void)
3494 {
3495 uint32_t cwp;
3496
3497 cwp = cwp_inc(env->cwp + 1);
3498 if (env->wim & (1 << cwp)) {
3499 raise_exception(TT_WIN_UNF);
3500 }
3501 set_cwp(cwp);
3502 }
3503
3504 void helper_wrpsr(target_ulong new_psr)
3505 {
3506 if ((new_psr & PSR_CWP) >= env->nwindows) {
3507 raise_exception(TT_ILL_INSN);
3508 } else {
3509 cpu_put_psr(env, new_psr);
3510 }
3511 }
3512
3513 target_ulong helper_rdpsr(void)
3514 {
3515 return get_psr();
3516 }
3517
3518 #else
3519 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3520 handling ? */
3521 void helper_save(void)
3522 {
3523 uint32_t cwp;
3524
3525 cwp = cwp_dec(env->cwp - 1);
3526 if (env->cansave == 0) {
3527 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3528 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3529 ((env->wstate & 0x7) << 2)));
3530 } else {
3531 if (env->cleanwin - env->canrestore == 0) {
3532 // XXX Clean windows without trap
3533 raise_exception(TT_CLRWIN);
3534 } else {
3535 env->cansave--;
3536 env->canrestore++;
3537 set_cwp(cwp);
3538 }
3539 }
3540 }
3541
3542 void helper_restore(void)
3543 {
3544 uint32_t cwp;
3545
3546 cwp = cwp_inc(env->cwp + 1);
3547 if (env->canrestore == 0) {
3548 raise_exception(TT_FILL | (env->otherwin != 0 ?
3549 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3550 ((env->wstate & 0x7) << 2)));
3551 } else {
3552 env->cansave++;
3553 env->canrestore--;
3554 set_cwp(cwp);
3555 }
3556 }
3557
3558 void helper_flushw(void)
3559 {
3560 if (env->cansave != env->nwindows - 2) {
3561 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3562 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3563 ((env->wstate & 0x7) << 2)));
3564 }
3565 }
3566
3567 void helper_saved(void)
3568 {
3569 env->cansave++;
3570 if (env->otherwin == 0)
3571 env->canrestore--;
3572 else
3573 env->otherwin--;
3574 }
3575
3576 void helper_restored(void)
3577 {
3578 env->canrestore++;
3579 if (env->cleanwin < env->nwindows - 1)
3580 env->cleanwin++;
3581 if (env->otherwin == 0)
3582 env->cansave--;
3583 else
3584 env->otherwin--;
3585 }
3586
3587 static target_ulong get_ccr(void)
3588 {
3589 target_ulong psr;
3590
3591 psr = get_psr();
3592
3593 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3594 }
3595
3596 target_ulong cpu_get_ccr(CPUState *env1)
3597 {
3598 CPUState *saved_env;
3599 target_ulong ret;
3600
3601 saved_env = env;
3602 env = env1;
3603 ret = get_ccr();
3604 env = saved_env;
3605 return ret;
3606 }
3607
3608 static void put_ccr(target_ulong val)
3609 {
3610 target_ulong tmp = val;
3611
3612 env->xcc = (tmp >> 4) << 20;
3613 env->psr = (tmp & 0xf) << 20;
3614 CC_OP = CC_OP_FLAGS;
3615 }
3616
3617 void cpu_put_ccr(CPUState *env1, target_ulong val)
3618 {
3619 CPUState *saved_env;
3620
3621 saved_env = env;
3622 env = env1;
3623 put_ccr(val);
3624 env = saved_env;
3625 }
3626
3627 static target_ulong get_cwp64(void)
3628 {
3629 return env->nwindows - 1 - env->cwp;
3630 }
3631
3632 target_ulong cpu_get_cwp64(CPUState *env1)
3633 {
3634 CPUState *saved_env;
3635 target_ulong ret;
3636
3637 saved_env = env;
3638 env = env1;
3639 ret = get_cwp64();
3640 env = saved_env;
3641 return ret;
3642 }
3643
3644 static void put_cwp64(int cwp)
3645 {
3646 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3647 cwp %= env->nwindows;
3648 }
3649 set_cwp(env->nwindows - 1 - cwp);
3650 }
3651
3652 void cpu_put_cwp64(CPUState *env1, int cwp)
3653 {
3654 CPUState *saved_env;
3655
3656 saved_env = env;
3657 env = env1;
3658 put_cwp64(cwp);
3659 env = saved_env;
3660 }
3661
3662 target_ulong helper_rdccr(void)
3663 {
3664 return get_ccr();
3665 }
3666
3667 void helper_wrccr(target_ulong new_ccr)
3668 {
3669 put_ccr(new_ccr);
3670 }
3671
3672 // CWP handling is reversed in V9, but we still use the V8 register
3673 // order.
3674 target_ulong helper_rdcwp(void)
3675 {
3676 return get_cwp64();
3677 }
3678
3679 void helper_wrcwp(target_ulong new_cwp)
3680 {
3681 put_cwp64(new_cwp);
3682 }
3683
3684 // This function uses non-native bit order
3685 #define GET_FIELD(X, FROM, TO) \
3686 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3687
3688 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3689 #define GET_FIELD_SP(X, FROM, TO) \
3690 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3691
3692 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3693 {
3694 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3695 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3696 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3697 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3698 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3699 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3700 (((pixel_addr >> 55) & 1) << 4) |
3701 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3702 GET_FIELD_SP(pixel_addr, 11, 12);
3703 }
3704
3705 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3706 {
3707 uint64_t tmp;
3708
3709 tmp = addr + offset;
3710 env->gsr &= ~7ULL;
3711 env->gsr |= tmp & 7ULL;
3712 return tmp & ~7ULL;
3713 }
3714
3715 target_ulong helper_popc(target_ulong val)
3716 {
3717 return ctpop64(val);
3718 }
3719
3720 static inline uint64_t *get_gregset(uint32_t pstate)
3721 {
3722 switch (pstate) {
3723 default:
3724 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3725 pstate,
3726 (pstate & PS_IG) ? " IG" : "",
3727 (pstate & PS_MG) ? " MG" : "",
3728 (pstate & PS_AG) ? " AG" : "");
3729 /* pass through to normal set of global registers */
3730 case 0:
3731 return env->bgregs;
3732 case PS_AG:
3733 return env->agregs;
3734 case PS_MG:
3735 return env->mgregs;
3736 case PS_IG:
3737 return env->igregs;
3738 }
3739 }
3740
3741 static inline void change_pstate(uint32_t new_pstate)
3742 {
3743 uint32_t pstate_regs, new_pstate_regs;
3744 uint64_t *src, *dst;
3745
3746 if (env->def->features & CPU_FEATURE_GL) {
3747 // PS_AG is not implemented in this case
3748 new_pstate &= ~PS_AG;
3749 }
3750
3751 pstate_regs = env->pstate & 0xc01;
3752 new_pstate_regs = new_pstate & 0xc01;
3753
3754 if (new_pstate_regs != pstate_regs) {
3755 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3756 pstate_regs, new_pstate_regs);
3757 // Switch global register bank
3758 src = get_gregset(new_pstate_regs);
3759 dst = get_gregset(pstate_regs);
3760 memcpy32(dst, env->gregs);
3761 memcpy32(env->gregs, src);
3762 }
3763 else {
3764 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3765 new_pstate_regs);
3766 }
3767 env->pstate = new_pstate;
3768 }
3769
3770 void helper_wrpstate(target_ulong new_state)
3771 {
3772 change_pstate(new_state & 0xf3f);
3773
3774 #if !defined(CONFIG_USER_ONLY)
3775 if (cpu_interrupts_enabled(env)) {
3776 cpu_check_irqs(env);
3777 }
3778 #endif
3779 }
3780
3781 void helper_wrpil(target_ulong new_pil)
3782 {
3783 #if !defined(CONFIG_USER_ONLY)
3784 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3785 env->psrpil, (uint32_t)new_pil);
3786
3787 env->psrpil = new_pil;
3788
3789 if (cpu_interrupts_enabled(env)) {
3790 cpu_check_irqs(env);
3791 }
3792 #endif
3793 }
3794
3795 void helper_done(void)
3796 {
3797 trap_state* tsptr = cpu_tsptr(env);
3798
3799 env->pc = tsptr->tnpc;
3800 env->npc = tsptr->tnpc + 4;
3801 put_ccr(tsptr->tstate >> 32);
3802 env->asi = (tsptr->tstate >> 24) & 0xff;
3803 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3804 put_cwp64(tsptr->tstate & 0xff);
3805 env->tl--;
3806
3807 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3808
3809 #if !defined(CONFIG_USER_ONLY)
3810 if (cpu_interrupts_enabled(env)) {
3811 cpu_check_irqs(env);
3812 }
3813 #endif
3814 }
3815
3816 void helper_retry(void)
3817 {
3818 trap_state* tsptr = cpu_tsptr(env);
3819
3820 env->pc = tsptr->tpc;
3821 env->npc = tsptr->tnpc;
3822 put_ccr(tsptr->tstate >> 32);
3823 env->asi = (tsptr->tstate >> 24) & 0xff;
3824 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3825 put_cwp64(tsptr->tstate & 0xff);
3826 env->tl--;
3827
3828 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3829
3830 #if !defined(CONFIG_USER_ONLY)
3831 if (cpu_interrupts_enabled(env)) {
3832 cpu_check_irqs(env);
3833 }
3834 #endif
3835 }
3836
3837 static void do_modify_softint(const char* operation, uint32_t value)
3838 {
3839 if (env->softint != value) {
3840 env->softint = value;
3841 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3842 #if !defined(CONFIG_USER_ONLY)
3843 if (cpu_interrupts_enabled(env)) {
3844 cpu_check_irqs(env);
3845 }
3846 #endif
3847 }
3848 }
3849
3850 void helper_set_softint(uint64_t value)
3851 {
3852 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3853 }
3854
3855 void helper_clear_softint(uint64_t value)
3856 {
3857 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3858 }
3859
3860 void helper_write_softint(uint64_t value)
3861 {
3862 do_modify_softint("helper_write_softint", (uint32_t)value);
3863 }
3864 #endif
3865
3866 void helper_flush(target_ulong addr)
3867 {
3868 addr &= ~7;
3869 tb_invalidate_page_range(addr, addr + 8);
3870 }
3871
3872 #ifdef TARGET_SPARC64
3873 #ifdef DEBUG_PCALL
3874 static const char * const excp_names[0x80] = {
3875 [TT_TFAULT] = "Instruction Access Fault",
3876 [TT_TMISS] = "Instruction Access MMU Miss",
3877 [TT_CODE_ACCESS] = "Instruction Access Error",
3878 [TT_ILL_INSN] = "Illegal Instruction",
3879 [TT_PRIV_INSN] = "Privileged Instruction",
3880 [TT_NFPU_INSN] = "FPU Disabled",
3881 [TT_FP_EXCP] = "FPU Exception",
3882 [TT_TOVF] = "Tag Overflow",
3883 [TT_CLRWIN] = "Clean Windows",
3884 [TT_DIV_ZERO] = "Division By Zero",
3885 [TT_DFAULT] = "Data Access Fault",
3886 [TT_DMISS] = "Data Access MMU Miss",
3887 [TT_DATA_ACCESS] = "Data Access Error",
3888 [TT_DPROT] = "Data Protection Error",
3889 [TT_UNALIGNED] = "Unaligned Memory Access",
3890 [TT_PRIV_ACT] = "Privileged Action",
3891 [TT_EXTINT | 0x1] = "External Interrupt 1",
3892 [TT_EXTINT | 0x2] = "External Interrupt 2",
3893 [TT_EXTINT | 0x3] = "External Interrupt 3",
3894 [TT_EXTINT | 0x4] = "External Interrupt 4",
3895 [TT_EXTINT | 0x5] = "External Interrupt 5",
3896 [TT_EXTINT | 0x6] = "External Interrupt 6",
3897 [TT_EXTINT | 0x7] = "External Interrupt 7",
3898 [TT_EXTINT | 0x8] = "External Interrupt 8",
3899 [TT_EXTINT | 0x9] = "External Interrupt 9",
3900 [TT_EXTINT | 0xa] = "External Interrupt 10",
3901 [TT_EXTINT | 0xb] = "External Interrupt 11",
3902 [TT_EXTINT | 0xc] = "External Interrupt 12",
3903 [TT_EXTINT | 0xd] = "External Interrupt 13",
3904 [TT_EXTINT | 0xe] = "External Interrupt 14",
3905 [TT_EXTINT | 0xf] = "External Interrupt 15",
3906 };
3907 #endif
3908
3909 trap_state* cpu_tsptr(CPUState* env)
3910 {
3911 return &env->ts[env->tl & MAXTL_MASK];
3912 }
3913
3914 void do_interrupt(CPUState *env)
3915 {
3916 int intno = env->exception_index;
3917 trap_state* tsptr;
3918
3919 #ifdef DEBUG_PCALL
3920 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3921 static int count;
3922 const char *name;
3923
3924 if (intno < 0 || intno >= 0x180)
3925 name = "Unknown";
3926 else if (intno >= 0x100)
3927 name = "Trap Instruction";
3928 else if (intno >= 0xc0)
3929 name = "Window Fill";
3930 else if (intno >= 0x80)
3931 name = "Window Spill";
3932 else {
3933 name = excp_names[intno];
3934 if (!name)
3935 name = "Unknown";
3936 }
3937
3938 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3939 " SP=%016" PRIx64 "\n",
3940 count, name, intno,
3941 env->pc,
3942 env->npc, env->regwptr[6]);
3943 log_cpu_state(env, 0);
3944 #if 0
3945 {
3946 int i;
3947 uint8_t *ptr;
3948
3949 qemu_log(" code=");
3950 ptr = (uint8_t *)env->pc;
3951 for(i = 0; i < 16; i++) {
3952 qemu_log(" %02x", ldub(ptr + i));
3953 }
3954 qemu_log("\n");
3955 }
3956 #endif
3957 count++;
3958 }
3959 #endif
3960 #if !defined(CONFIG_USER_ONLY)
3961 if (env->tl >= env->maxtl) {
3962 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3963 " Error state", env->exception_index, env->tl, env->maxtl);
3964 return;
3965 }
3966 #endif
3967 if (env->tl < env->maxtl - 1) {
3968 env->tl++;
3969 } else {
3970 env->pstate |= PS_RED;
3971 if (env->tl < env->maxtl)
3972 env->tl++;
3973 }
3974 tsptr = cpu_tsptr(env);
3975
3976 tsptr->tstate = (get_ccr() << 32) |
3977 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3978 get_cwp64();
3979 tsptr->tpc = env->pc;
3980 tsptr->tnpc = env->npc;
3981 tsptr->tt = intno;
3982
3983 switch (intno) {
3984 case TT_IVEC:
3985 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3986 break;
3987 case TT_TFAULT:
3988 case TT_DFAULT:
3989 case TT_TMISS ... TT_TMISS + 3:
3990 case TT_DMISS ... TT_DMISS + 3:
3991 case TT_DPROT ... TT_DPROT + 3:
3992 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3993 break;
3994 default:
3995 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3996 break;
3997 }
3998
3999 if (intno == TT_CLRWIN) {
4000 set_cwp(cwp_dec(env->cwp - 1));
4001 } else if ((intno & 0x1c0) == TT_SPILL) {
4002 set_cwp(cwp_dec(env->cwp - env->cansave - 2));
4003 } else if ((intno & 0x1c0) == TT_FILL) {
4004 set_cwp(cwp_inc(env->cwp + 1));
4005 }
4006 env->tbr &= ~0x7fffULL;
4007 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
4008 env->pc = env->tbr;
4009 env->npc = env->pc + 4;
4010 env->exception_index = -1;
4011 }
4012 #else
4013 #ifdef DEBUG_PCALL
4014 static const char * const excp_names[0x80] = {
4015 [TT_TFAULT] = "Instruction Access Fault",
4016 [TT_ILL_INSN] = "Illegal Instruction",
4017 [TT_PRIV_INSN] = "Privileged Instruction",
4018 [TT_NFPU_INSN] = "FPU Disabled",
4019 [TT_WIN_OVF] = "Window Overflow",
4020 [TT_WIN_UNF] = "Window Underflow",
4021 [TT_UNALIGNED] = "Unaligned Memory Access",
4022 [TT_FP_EXCP] = "FPU Exception",
4023 [TT_DFAULT] = "Data Access Fault",
4024 [TT_TOVF] = "Tag Overflow",
4025 [TT_EXTINT | 0x1] = "External Interrupt 1",
4026 [TT_EXTINT | 0x2] = "External Interrupt 2",
4027 [TT_EXTINT | 0x3] = "External Interrupt 3",
4028 [TT_EXTINT | 0x4] = "External Interrupt 4",
4029 [TT_EXTINT | 0x5] = "External Interrupt 5",
4030 [TT_EXTINT | 0x6] = "External Interrupt 6",
4031 [TT_EXTINT | 0x7] = "External Interrupt 7",
4032 [TT_EXTINT | 0x8] = "External Interrupt 8",
4033 [TT_EXTINT | 0x9] = "External Interrupt 9",
4034 [TT_EXTINT | 0xa] = "External Interrupt 10",
4035 [TT_EXTINT | 0xb] = "External Interrupt 11",
4036 [TT_EXTINT | 0xc] = "External Interrupt 12",
4037 [TT_EXTINT | 0xd] = "External Interrupt 13",
4038 [TT_EXTINT | 0xe] = "External Interrupt 14",
4039 [TT_EXTINT | 0xf] = "External Interrupt 15",
4040 [TT_TOVF] = "Tag Overflow",
4041 [TT_CODE_ACCESS] = "Instruction Access Error",
4042 [TT_DATA_ACCESS] = "Data Access Error",
4043 [TT_DIV_ZERO] = "Division By Zero",
4044 [TT_NCP_INSN] = "Coprocessor Disabled",
4045 };
4046 #endif
4047
4048 void do_interrupt(CPUState *env)
4049 {
4050 int cwp, intno = env->exception_index;
4051
4052 #ifdef DEBUG_PCALL
4053 if (qemu_loglevel_mask(CPU_LOG_INT)) {
4054 static int count;
4055 const char *name;
4056
4057 if (intno < 0 || intno >= 0x100)
4058 name = "Unknown";
4059 else if (intno >= 0x80)
4060 name = "Trap Instruction";
4061 else {
4062 name = excp_names[intno];
4063 if (!name)
4064 name = "Unknown";
4065 }
4066
4067 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
4068 count, name, intno,
4069 env->pc,
4070 env->npc, env->regwptr[6]);
4071 log_cpu_state(env, 0);
4072 #if 0
4073 {
4074 int i;
4075 uint8_t *ptr;
4076
4077 qemu_log(" code=");
4078 ptr = (uint8_t *)env->pc;
4079 for(i = 0; i < 16; i++) {
4080 qemu_log(" %02x", ldub(ptr + i));
4081 }
4082 qemu_log("\n");
4083 }
4084 #endif
4085 count++;
4086 }
4087 #endif
4088 #if !defined(CONFIG_USER_ONLY)
4089 if (env->psret == 0) {
4090 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
4091 env->exception_index);
4092 return;
4093 }
4094 #endif
4095 env->psret = 0;
4096 cwp = cwp_dec(env->cwp - 1);
4097 set_cwp(cwp);
4098 env->regwptr[9] = env->pc;
4099 env->regwptr[10] = env->npc;
4100 env->psrps = env->psrs;
4101 env->psrs = 1;
4102 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
4103 env->pc = env->tbr;
4104 env->npc = env->pc + 4;
4105 env->exception_index = -1;
4106 }
4107 #endif
4108
4109 #if !defined(CONFIG_USER_ONLY)
4110
4111 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4112 void *retaddr);
4113
4114 #define MMUSUFFIX _mmu
4115 #define ALIGNED_ONLY
4116
4117 #define SHIFT 0
4118 #include "softmmu_template.h"
4119
4120 #define SHIFT 1
4121 #include "softmmu_template.h"
4122
4123 #define SHIFT 2
4124 #include "softmmu_template.h"
4125
4126 #define SHIFT 3
4127 #include "softmmu_template.h"
4128
4129 /* XXX: make it generic ? */
4130 static void cpu_restore_state2(void *retaddr)
4131 {
4132 TranslationBlock *tb;
4133 unsigned long pc;
4134
4135 if (retaddr) {
4136 /* now we have a real cpu fault */
4137 pc = (unsigned long)retaddr;
4138 tb = tb_find_pc(pc);
4139 if (tb) {
4140 /* the PC is inside the translated code. It means that we have
4141 a virtual CPU fault */
4142 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4143 }
4144 }
4145 }
4146
4147 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4148 void *retaddr)
4149 {
4150 #ifdef DEBUG_UNALIGNED
4151 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4152 "\n", addr, env->pc);
4153 #endif
4154 cpu_restore_state2(retaddr);
4155 raise_exception(TT_UNALIGNED);
4156 }
4157
4158 /* try to fill the TLB and return an exception if error. If retaddr is
4159 NULL, it means that the function was called in C code (i.e. not
4160 from generated code or from helper.c) */
4161 /* XXX: fix it to restore all registers */
4162 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4163 {
4164 int ret;
4165 CPUState *saved_env;
4166
4167 /* XXX: hack to restore env in all cases, even if not called from
4168 generated code */
4169 saved_env = env;
4170 env = cpu_single_env;
4171
4172 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4173 if (ret) {
4174 cpu_restore_state2(retaddr);
4175 cpu_loop_exit();
4176 }
4177 env = saved_env;
4178 }
4179
4180 #endif /* !CONFIG_USER_ONLY */
4181
4182 #ifndef TARGET_SPARC64
4183 #if !defined(CONFIG_USER_ONLY)
4184 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4185 int is_asi, int size)
4186 {
4187 CPUState *saved_env;
4188 int fault_type;
4189
4190 /* XXX: hack to restore env in all cases, even if not called from
4191 generated code */
4192 saved_env = env;
4193 env = cpu_single_env;
4194 #ifdef DEBUG_UNASSIGNED
4195 if (is_asi)
4196 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4197 " asi 0x%02x from " TARGET_FMT_lx "\n",
4198 is_exec ? "exec" : is_write ? "write" : "read", size,
4199 size == 1 ? "" : "s", addr, is_asi, env->pc);
4200 else
4201 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4202 " from " TARGET_FMT_lx "\n",
4203 is_exec ? "exec" : is_write ? "write" : "read", size,
4204 size == 1 ? "" : "s", addr, env->pc);
4205 #endif
4206 /* Don't overwrite translation and access faults */
4207 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4208 if ((fault_type > 4) || (fault_type == 0)) {
4209 env->mmuregs[3] = 0; /* Fault status register */
4210 if (is_asi)
4211 env->mmuregs[3] |= 1 << 16;
4212 if (env->psrs)
4213 env->mmuregs[3] |= 1 << 5;
4214 if (is_exec)
4215 env->mmuregs[3] |= 1 << 6;
4216 if (is_write)
4217 env->mmuregs[3] |= 1 << 7;
4218 env->mmuregs[3] |= (5 << 2) | 2;
4219 /* SuperSPARC will never place instruction fault addresses in the FAR */
4220 if (!is_exec) {
4221 env->mmuregs[4] = addr; /* Fault address register */
4222 }
4223 }
4224 /* overflow (same type fault was not read before another fault) */
4225 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4226 env->mmuregs[3] |= 1;
4227 }
4228
4229 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4230 if (is_exec)
4231 raise_exception(TT_CODE_ACCESS);
4232 else
4233 raise_exception(TT_DATA_ACCESS);
4234 }
4235
4236 /* flush neverland mappings created during no-fault mode,
4237 so the sequential MMU faults report proper fault types */
4238 if (env->mmuregs[0] & MMU_NF) {
4239 tlb_flush(env, 1);
4240 }
4241
4242 env = saved_env;
4243 }
4244 #endif
4245 #else
4246 #if defined(CONFIG_USER_ONLY)
4247 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4248 int is_asi, int size)
4249 #else
4250 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4251 int is_asi, int size)
4252 #endif
4253 {
4254 CPUState *saved_env;
4255
4256 /* XXX: hack to restore env in all cases, even if not called from
4257 generated code */
4258 saved_env = env;
4259 env = cpu_single_env;
4260
4261 #ifdef DEBUG_UNASSIGNED
4262 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4263 "\n", addr, env->pc);
4264 #endif
4265
4266 if (is_exec)
4267 raise_exception(TT_CODE_ACCESS);
4268 else
4269 raise_exception(TT_DATA_ACCESS);
4270
4271 env = saved_env;
4272 }
4273 #endif
4274
4275
4276 #ifdef TARGET_SPARC64
4277 void helper_tick_set_count(void *opaque, uint64_t count)
4278 {
4279 #if !defined(CONFIG_USER_ONLY)
4280 cpu_tick_set_count(opaque, count);
4281 #endif
4282 }
4283
4284 uint64_t helper_tick_get_count(void *opaque)
4285 {
4286 #if !defined(CONFIG_USER_ONLY)
4287 return cpu_tick_get_count(opaque);
4288 #else
4289 return 0;
4290 #endif
4291 }
4292
4293 void helper_tick_set_limit(void *opaque, uint64_t limit)
4294 {
4295 #if !defined(CONFIG_USER_ONLY)
4296 cpu_tick_set_limit(opaque, limit);
4297 #endif
4298 }
4299 #endif