]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
sparc64: fix pstate privilege bits
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4
5 //#define DEBUG_MMU
6 //#define DEBUG_MXCC
7 //#define DEBUG_UNALIGNED
8 //#define DEBUG_UNASSIGNED
9 //#define DEBUG_ASI
10 //#define DEBUG_PCALL
11 //#define DEBUG_PSTATE
12
13 #ifdef DEBUG_MMU
14 #define DPRINTF_MMU(fmt, ...) \
15 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 #else
17 #define DPRINTF_MMU(fmt, ...) do {} while (0)
18 #endif
19
20 #ifdef DEBUG_MXCC
21 #define DPRINTF_MXCC(fmt, ...) \
22 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 #endif
26
27 #ifdef DEBUG_ASI
28 #define DPRINTF_ASI(fmt, ...) \
29 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 #endif
31
32 #ifdef DEBUG_PSTATE
33 #define DPRINTF_PSTATE(fmt, ...) \
34 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 #endif
38
39 #ifdef TARGET_SPARC64
40 #ifndef TARGET_ABI32
41 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 #else
43 #define AM_CHECK(env1) (1)
44 #endif
45 #endif
46
47 #define DT0 (env->dt0)
48 #define DT1 (env->dt1)
49 #define QT0 (env->qt0)
50 #define QT1 (env->qt1)
51
52 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
53 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
54 int is_asi, int size);
55 #endif
56
57 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
58 // Calculates TSB pointer value for fault page size 8k or 64k
59 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
60 uint64_t tag_access_register,
61 int page_size)
62 {
63 uint64_t tsb_base = tsb_register & ~0x1fffULL;
64 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
65 int tsb_size = tsb_register & 0xf;
66
67 // discard lower 13 bits which hold tag access context
68 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
69
70 // now reorder bits
71 uint64_t tsb_base_mask = ~0x1fffULL;
72 uint64_t va = tag_access_va;
73
74 // move va bits to correct position
75 if (page_size == 8*1024) {
76 va >>= 9;
77 } else if (page_size == 64*1024) {
78 va >>= 12;
79 }
80
81 if (tsb_size) {
82 tsb_base_mask <<= tsb_size;
83 }
84
85 // calculate tsb_base mask and adjust va if split is in use
86 if (tsb_split) {
87 if (page_size == 8*1024) {
88 va &= ~(1ULL << (13 + tsb_size));
89 } else if (page_size == 64*1024) {
90 va |= (1ULL << (13 + tsb_size));
91 }
92 tsb_base_mask <<= 1;
93 }
94
95 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
96 }
97
98 // Calculates tag target register value by reordering bits
99 // in tag access register
100 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
101 {
102 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
103 }
104
105 static void replace_tlb_entry(SparcTLBEntry *tlb,
106 uint64_t tlb_tag, uint64_t tlb_tte,
107 CPUState *env1)
108 {
109 target_ulong mask, size, va, offset;
110
111 // flush page range if translation is valid
112 if (TTE_IS_VALID(tlb->tte)) {
113
114 mask = 0xffffffffffffe000ULL;
115 mask <<= 3 * ((tlb->tte >> 61) & 3);
116 size = ~mask + 1;
117
118 va = tlb->tag & mask;
119
120 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
121 tlb_flush_page(env1, va + offset);
122 }
123 }
124
125 tlb->tag = tlb_tag;
126 tlb->tte = tlb_tte;
127 }
128
129 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
130 const char* strmmu, CPUState *env1)
131 {
132 unsigned int i;
133 target_ulong mask;
134 uint64_t context;
135
136 int is_demap_context = (demap_addr >> 6) & 1;
137
138 // demap context
139 switch ((demap_addr >> 4) & 3) {
140 case 0: // primary
141 context = env1->dmmu.mmu_primary_context;
142 break;
143 case 1: // secondary
144 context = env1->dmmu.mmu_secondary_context;
145 break;
146 case 2: // nucleus
147 context = 0;
148 break;
149 case 3: // reserved
150 default:
151 return;
152 }
153
154 for (i = 0; i < 64; i++) {
155 if (TTE_IS_VALID(tlb[i].tte)) {
156
157 if (is_demap_context) {
158 // will remove non-global entries matching context value
159 if (TTE_IS_GLOBAL(tlb[i].tte) ||
160 !tlb_compare_context(&tlb[i], context)) {
161 continue;
162 }
163 } else {
164 // demap page
165 // will remove any entry matching VA
166 mask = 0xffffffffffffe000ULL;
167 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
168
169 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
170 continue;
171 }
172
173 // entry should be global or matching context value
174 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
175 !tlb_compare_context(&tlb[i], context)) {
176 continue;
177 }
178 }
179
180 replace_tlb_entry(&tlb[i], 0, 0, env1);
181 #ifdef DEBUG_MMU
182 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
183 dump_mmu(env1);
184 #endif
185 }
186 }
187 }
188
189 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
190 uint64_t tlb_tag, uint64_t tlb_tte,
191 const char* strmmu, CPUState *env1)
192 {
193 unsigned int i, replace_used;
194
195 // Try replacing invalid entry
196 for (i = 0; i < 64; i++) {
197 if (!TTE_IS_VALID(tlb[i].tte)) {
198 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 return;
204 }
205 }
206
207 // All entries are valid, try replacing unlocked entry
208
209 for (replace_used = 0; replace_used < 2; ++replace_used) {
210
211 // Used entries are not replaced on first pass
212
213 for (i = 0; i < 64; i++) {
214 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
215
216 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
217 #ifdef DEBUG_MMU
218 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
219 strmmu, (replace_used?"used":"unused"), i);
220 dump_mmu(env1);
221 #endif
222 return;
223 }
224 }
225
226 // Now reset used bit and search for unused entries again
227
228 for (i = 0; i < 64; i++) {
229 TTE_SET_UNUSED(tlb[i].tte);
230 }
231 }
232
233 #ifdef DEBUG_MMU
234 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
235 #endif
236 // error state?
237 }
238
239 #endif
240
241 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
242 {
243 #ifdef TARGET_SPARC64
244 if (AM_CHECK(env1))
245 addr &= 0xffffffffULL;
246 #endif
247 return addr;
248 }
249
250 static void raise_exception(int tt)
251 {
252 env->exception_index = tt;
253 cpu_loop_exit();
254 }
255
256 void HELPER(raise_exception)(int tt)
257 {
258 raise_exception(tt);
259 }
260
261 void helper_check_align(target_ulong addr, uint32_t align)
262 {
263 if (addr & align) {
264 #ifdef DEBUG_UNALIGNED
265 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
266 "\n", addr, env->pc);
267 #endif
268 raise_exception(TT_UNALIGNED);
269 }
270 }
271
272 #define F_HELPER(name, p) void helper_f##name##p(void)
273
274 #define F_BINOP(name) \
275 float32 helper_f ## name ## s (float32 src1, float32 src2) \
276 { \
277 return float32_ ## name (src1, src2, &env->fp_status); \
278 } \
279 F_HELPER(name, d) \
280 { \
281 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
282 } \
283 F_HELPER(name, q) \
284 { \
285 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
286 }
287
288 F_BINOP(add);
289 F_BINOP(sub);
290 F_BINOP(mul);
291 F_BINOP(div);
292 #undef F_BINOP
293
294 void helper_fsmuld(float32 src1, float32 src2)
295 {
296 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
297 float32_to_float64(src2, &env->fp_status),
298 &env->fp_status);
299 }
300
301 void helper_fdmulq(void)
302 {
303 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
304 float64_to_float128(DT1, &env->fp_status),
305 &env->fp_status);
306 }
307
308 float32 helper_fnegs(float32 src)
309 {
310 return float32_chs(src);
311 }
312
313 #ifdef TARGET_SPARC64
314 F_HELPER(neg, d)
315 {
316 DT0 = float64_chs(DT1);
317 }
318
319 F_HELPER(neg, q)
320 {
321 QT0 = float128_chs(QT1);
322 }
323 #endif
324
325 /* Integer to float conversion. */
326 float32 helper_fitos(int32_t src)
327 {
328 return int32_to_float32(src, &env->fp_status);
329 }
330
331 void helper_fitod(int32_t src)
332 {
333 DT0 = int32_to_float64(src, &env->fp_status);
334 }
335
336 void helper_fitoq(int32_t src)
337 {
338 QT0 = int32_to_float128(src, &env->fp_status);
339 }
340
341 #ifdef TARGET_SPARC64
342 float32 helper_fxtos(void)
343 {
344 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
345 }
346
347 F_HELPER(xto, d)
348 {
349 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
350 }
351
352 F_HELPER(xto, q)
353 {
354 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
355 }
356 #endif
357 #undef F_HELPER
358
359 /* floating point conversion */
360 float32 helper_fdtos(void)
361 {
362 return float64_to_float32(DT1, &env->fp_status);
363 }
364
365 void helper_fstod(float32 src)
366 {
367 DT0 = float32_to_float64(src, &env->fp_status);
368 }
369
370 float32 helper_fqtos(void)
371 {
372 return float128_to_float32(QT1, &env->fp_status);
373 }
374
375 void helper_fstoq(float32 src)
376 {
377 QT0 = float32_to_float128(src, &env->fp_status);
378 }
379
380 void helper_fqtod(void)
381 {
382 DT0 = float128_to_float64(QT1, &env->fp_status);
383 }
384
385 void helper_fdtoq(void)
386 {
387 QT0 = float64_to_float128(DT1, &env->fp_status);
388 }
389
390 /* Float to integer conversion. */
391 int32_t helper_fstoi(float32 src)
392 {
393 return float32_to_int32_round_to_zero(src, &env->fp_status);
394 }
395
396 int32_t helper_fdtoi(void)
397 {
398 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
399 }
400
401 int32_t helper_fqtoi(void)
402 {
403 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
404 }
405
406 #ifdef TARGET_SPARC64
407 void helper_fstox(float32 src)
408 {
409 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
410 }
411
412 void helper_fdtox(void)
413 {
414 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
415 }
416
417 void helper_fqtox(void)
418 {
419 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
420 }
421
422 void helper_faligndata(void)
423 {
424 uint64_t tmp;
425
426 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
427 /* on many architectures a shift of 64 does nothing */
428 if ((env->gsr & 7) != 0) {
429 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
430 }
431 *((uint64_t *)&DT0) = tmp;
432 }
433
434 #ifdef HOST_WORDS_BIGENDIAN
435 #define VIS_B64(n) b[7 - (n)]
436 #define VIS_W64(n) w[3 - (n)]
437 #define VIS_SW64(n) sw[3 - (n)]
438 #define VIS_L64(n) l[1 - (n)]
439 #define VIS_B32(n) b[3 - (n)]
440 #define VIS_W32(n) w[1 - (n)]
441 #else
442 #define VIS_B64(n) b[n]
443 #define VIS_W64(n) w[n]
444 #define VIS_SW64(n) sw[n]
445 #define VIS_L64(n) l[n]
446 #define VIS_B32(n) b[n]
447 #define VIS_W32(n) w[n]
448 #endif
449
450 typedef union {
451 uint8_t b[8];
452 uint16_t w[4];
453 int16_t sw[4];
454 uint32_t l[2];
455 float64 d;
456 } vis64;
457
458 typedef union {
459 uint8_t b[4];
460 uint16_t w[2];
461 uint32_t l;
462 float32 f;
463 } vis32;
464
465 void helper_fpmerge(void)
466 {
467 vis64 s, d;
468
469 s.d = DT0;
470 d.d = DT1;
471
472 // Reverse calculation order to handle overlap
473 d.VIS_B64(7) = s.VIS_B64(3);
474 d.VIS_B64(6) = d.VIS_B64(3);
475 d.VIS_B64(5) = s.VIS_B64(2);
476 d.VIS_B64(4) = d.VIS_B64(2);
477 d.VIS_B64(3) = s.VIS_B64(1);
478 d.VIS_B64(2) = d.VIS_B64(1);
479 d.VIS_B64(1) = s.VIS_B64(0);
480 //d.VIS_B64(0) = d.VIS_B64(0);
481
482 DT0 = d.d;
483 }
484
485 void helper_fmul8x16(void)
486 {
487 vis64 s, d;
488 uint32_t tmp;
489
490 s.d = DT0;
491 d.d = DT1;
492
493 #define PMUL(r) \
494 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
495 if ((tmp & 0xff) > 0x7f) \
496 tmp += 0x100; \
497 d.VIS_W64(r) = tmp >> 8;
498
499 PMUL(0);
500 PMUL(1);
501 PMUL(2);
502 PMUL(3);
503 #undef PMUL
504
505 DT0 = d.d;
506 }
507
508 void helper_fmul8x16al(void)
509 {
510 vis64 s, d;
511 uint32_t tmp;
512
513 s.d = DT0;
514 d.d = DT1;
515
516 #define PMUL(r) \
517 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
518 if ((tmp & 0xff) > 0x7f) \
519 tmp += 0x100; \
520 d.VIS_W64(r) = tmp >> 8;
521
522 PMUL(0);
523 PMUL(1);
524 PMUL(2);
525 PMUL(3);
526 #undef PMUL
527
528 DT0 = d.d;
529 }
530
531 void helper_fmul8x16au(void)
532 {
533 vis64 s, d;
534 uint32_t tmp;
535
536 s.d = DT0;
537 d.d = DT1;
538
539 #define PMUL(r) \
540 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
541 if ((tmp & 0xff) > 0x7f) \
542 tmp += 0x100; \
543 d.VIS_W64(r) = tmp >> 8;
544
545 PMUL(0);
546 PMUL(1);
547 PMUL(2);
548 PMUL(3);
549 #undef PMUL
550
551 DT0 = d.d;
552 }
553
554 void helper_fmul8sux16(void)
555 {
556 vis64 s, d;
557 uint32_t tmp;
558
559 s.d = DT0;
560 d.d = DT1;
561
562 #define PMUL(r) \
563 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
564 if ((tmp & 0xff) > 0x7f) \
565 tmp += 0x100; \
566 d.VIS_W64(r) = tmp >> 8;
567
568 PMUL(0);
569 PMUL(1);
570 PMUL(2);
571 PMUL(3);
572 #undef PMUL
573
574 DT0 = d.d;
575 }
576
577 void helper_fmul8ulx16(void)
578 {
579 vis64 s, d;
580 uint32_t tmp;
581
582 s.d = DT0;
583 d.d = DT1;
584
585 #define PMUL(r) \
586 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
587 if ((tmp & 0xff) > 0x7f) \
588 tmp += 0x100; \
589 d.VIS_W64(r) = tmp >> 8;
590
591 PMUL(0);
592 PMUL(1);
593 PMUL(2);
594 PMUL(3);
595 #undef PMUL
596
597 DT0 = d.d;
598 }
599
600 void helper_fmuld8sux16(void)
601 {
602 vis64 s, d;
603 uint32_t tmp;
604
605 s.d = DT0;
606 d.d = DT1;
607
608 #define PMUL(r) \
609 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
610 if ((tmp & 0xff) > 0x7f) \
611 tmp += 0x100; \
612 d.VIS_L64(r) = tmp;
613
614 // Reverse calculation order to handle overlap
615 PMUL(1);
616 PMUL(0);
617 #undef PMUL
618
619 DT0 = d.d;
620 }
621
622 void helper_fmuld8ulx16(void)
623 {
624 vis64 s, d;
625 uint32_t tmp;
626
627 s.d = DT0;
628 d.d = DT1;
629
630 #define PMUL(r) \
631 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
632 if ((tmp & 0xff) > 0x7f) \
633 tmp += 0x100; \
634 d.VIS_L64(r) = tmp;
635
636 // Reverse calculation order to handle overlap
637 PMUL(1);
638 PMUL(0);
639 #undef PMUL
640
641 DT0 = d.d;
642 }
643
644 void helper_fexpand(void)
645 {
646 vis32 s;
647 vis64 d;
648
649 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
650 d.d = DT1;
651 d.VIS_W64(0) = s.VIS_B32(0) << 4;
652 d.VIS_W64(1) = s.VIS_B32(1) << 4;
653 d.VIS_W64(2) = s.VIS_B32(2) << 4;
654 d.VIS_W64(3) = s.VIS_B32(3) << 4;
655
656 DT0 = d.d;
657 }
658
659 #define VIS_HELPER(name, F) \
660 void name##16(void) \
661 { \
662 vis64 s, d; \
663 \
664 s.d = DT0; \
665 d.d = DT1; \
666 \
667 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
668 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
669 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
670 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
671 \
672 DT0 = d.d; \
673 } \
674 \
675 uint32_t name##16s(uint32_t src1, uint32_t src2) \
676 { \
677 vis32 s, d; \
678 \
679 s.l = src1; \
680 d.l = src2; \
681 \
682 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
683 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
684 \
685 return d.l; \
686 } \
687 \
688 void name##32(void) \
689 { \
690 vis64 s, d; \
691 \
692 s.d = DT0; \
693 d.d = DT1; \
694 \
695 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
696 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
697 \
698 DT0 = d.d; \
699 } \
700 \
701 uint32_t name##32s(uint32_t src1, uint32_t src2) \
702 { \
703 vis32 s, d; \
704 \
705 s.l = src1; \
706 d.l = src2; \
707 \
708 d.l = F(d.l, s.l); \
709 \
710 return d.l; \
711 }
712
713 #define FADD(a, b) ((a) + (b))
714 #define FSUB(a, b) ((a) - (b))
715 VIS_HELPER(helper_fpadd, FADD)
716 VIS_HELPER(helper_fpsub, FSUB)
717
718 #define VIS_CMPHELPER(name, F) \
719 void name##16(void) \
720 { \
721 vis64 s, d; \
722 \
723 s.d = DT0; \
724 d.d = DT1; \
725 \
726 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
727 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
728 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
729 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
730 \
731 DT0 = d.d; \
732 } \
733 \
734 void name##32(void) \
735 { \
736 vis64 s, d; \
737 \
738 s.d = DT0; \
739 d.d = DT1; \
740 \
741 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
742 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
743 \
744 DT0 = d.d; \
745 }
746
747 #define FCMPGT(a, b) ((a) > (b))
748 #define FCMPEQ(a, b) ((a) == (b))
749 #define FCMPLE(a, b) ((a) <= (b))
750 #define FCMPNE(a, b) ((a) != (b))
751
752 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
753 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
754 VIS_CMPHELPER(helper_fcmple, FCMPLE)
755 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
756 #endif
757
758 void helper_check_ieee_exceptions(void)
759 {
760 target_ulong status;
761
762 status = get_float_exception_flags(&env->fp_status);
763 if (status) {
764 /* Copy IEEE 754 flags into FSR */
765 if (status & float_flag_invalid)
766 env->fsr |= FSR_NVC;
767 if (status & float_flag_overflow)
768 env->fsr |= FSR_OFC;
769 if (status & float_flag_underflow)
770 env->fsr |= FSR_UFC;
771 if (status & float_flag_divbyzero)
772 env->fsr |= FSR_DZC;
773 if (status & float_flag_inexact)
774 env->fsr |= FSR_NXC;
775
776 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
777 /* Unmasked exception, generate a trap */
778 env->fsr |= FSR_FTT_IEEE_EXCP;
779 raise_exception(TT_FP_EXCP);
780 } else {
781 /* Accumulate exceptions */
782 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
783 }
784 }
785 }
786
787 void helper_clear_float_exceptions(void)
788 {
789 set_float_exception_flags(0, &env->fp_status);
790 }
791
792 float32 helper_fabss(float32 src)
793 {
794 return float32_abs(src);
795 }
796
797 #ifdef TARGET_SPARC64
798 void helper_fabsd(void)
799 {
800 DT0 = float64_abs(DT1);
801 }
802
803 void helper_fabsq(void)
804 {
805 QT0 = float128_abs(QT1);
806 }
807 #endif
808
809 float32 helper_fsqrts(float32 src)
810 {
811 return float32_sqrt(src, &env->fp_status);
812 }
813
814 void helper_fsqrtd(void)
815 {
816 DT0 = float64_sqrt(DT1, &env->fp_status);
817 }
818
819 void helper_fsqrtq(void)
820 {
821 QT0 = float128_sqrt(QT1, &env->fp_status);
822 }
823
824 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
825 void glue(helper_, name) (void) \
826 { \
827 target_ulong new_fsr; \
828 \
829 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
830 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
831 case float_relation_unordered: \
832 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
833 if ((env->fsr & FSR_NVM) || TRAP) { \
834 env->fsr |= new_fsr; \
835 env->fsr |= FSR_NVC; \
836 env->fsr |= FSR_FTT_IEEE_EXCP; \
837 raise_exception(TT_FP_EXCP); \
838 } else { \
839 env->fsr |= FSR_NVA; \
840 } \
841 break; \
842 case float_relation_less: \
843 new_fsr = FSR_FCC0 << FS; \
844 break; \
845 case float_relation_greater: \
846 new_fsr = FSR_FCC1 << FS; \
847 break; \
848 default: \
849 new_fsr = 0; \
850 break; \
851 } \
852 env->fsr |= new_fsr; \
853 }
854 #define GEN_FCMPS(name, size, FS, TRAP) \
855 void glue(helper_, name)(float32 src1, float32 src2) \
856 { \
857 target_ulong new_fsr; \
858 \
859 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
860 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
861 case float_relation_unordered: \
862 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
863 if ((env->fsr & FSR_NVM) || TRAP) { \
864 env->fsr |= new_fsr; \
865 env->fsr |= FSR_NVC; \
866 env->fsr |= FSR_FTT_IEEE_EXCP; \
867 raise_exception(TT_FP_EXCP); \
868 } else { \
869 env->fsr |= FSR_NVA; \
870 } \
871 break; \
872 case float_relation_less: \
873 new_fsr = FSR_FCC0 << FS; \
874 break; \
875 case float_relation_greater: \
876 new_fsr = FSR_FCC1 << FS; \
877 break; \
878 default: \
879 new_fsr = 0; \
880 break; \
881 } \
882 env->fsr |= new_fsr; \
883 }
884
885 GEN_FCMPS(fcmps, float32, 0, 0);
886 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
887
888 GEN_FCMPS(fcmpes, float32, 0, 1);
889 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
890
891 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
892 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
893
894 static uint32_t compute_all_flags(void)
895 {
896 return env->psr & PSR_ICC;
897 }
898
899 static uint32_t compute_C_flags(void)
900 {
901 return env->psr & PSR_CARRY;
902 }
903
904 static inline uint32_t get_NZ_icc(int32_t dst)
905 {
906 uint32_t ret = 0;
907
908 if (dst == 0) {
909 ret = PSR_ZERO;
910 } else if (dst < 0) {
911 ret = PSR_NEG;
912 }
913 return ret;
914 }
915
916 #ifdef TARGET_SPARC64
917 static uint32_t compute_all_flags_xcc(void)
918 {
919 return env->xcc & PSR_ICC;
920 }
921
922 static uint32_t compute_C_flags_xcc(void)
923 {
924 return env->xcc & PSR_CARRY;
925 }
926
927 static inline uint32_t get_NZ_xcc(target_long dst)
928 {
929 uint32_t ret = 0;
930
931 if (!dst) {
932 ret = PSR_ZERO;
933 } else if (dst < 0) {
934 ret = PSR_NEG;
935 }
936 return ret;
937 }
938 #endif
939
940 static inline uint32_t get_V_div_icc(target_ulong src2)
941 {
942 uint32_t ret = 0;
943
944 if (src2 != 0) {
945 ret = PSR_OVF;
946 }
947 return ret;
948 }
949
950 static uint32_t compute_all_div(void)
951 {
952 uint32_t ret;
953
954 ret = get_NZ_icc(CC_DST);
955 ret |= get_V_div_icc(CC_SRC2);
956 return ret;
957 }
958
959 static uint32_t compute_C_div(void)
960 {
961 return 0;
962 }
963
964 static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1)
965 {
966 uint32_t ret = 0;
967
968 if (dst < src1) {
969 ret = PSR_CARRY;
970 }
971 return ret;
972 }
973
974 static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1,
975 uint32_t src2)
976 {
977 uint32_t ret = 0;
978
979 if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) {
980 ret = PSR_CARRY;
981 }
982 return ret;
983 }
984
985 static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1,
986 uint32_t src2)
987 {
988 uint32_t ret = 0;
989
990 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) {
991 ret = PSR_OVF;
992 }
993 return ret;
994 }
995
996 #ifdef TARGET_SPARC64
997 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
998 {
999 uint32_t ret = 0;
1000
1001 if (dst < src1) {
1002 ret = PSR_CARRY;
1003 }
1004 return ret;
1005 }
1006
1007 static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1,
1008 target_ulong src2)
1009 {
1010 uint32_t ret = 0;
1011
1012 if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) {
1013 ret = PSR_CARRY;
1014 }
1015 return ret;
1016 }
1017
1018 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
1019 target_ulong src2)
1020 {
1021 uint32_t ret = 0;
1022
1023 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) {
1024 ret = PSR_OVF;
1025 }
1026 return ret;
1027 }
1028
1029 static uint32_t compute_all_add_xcc(void)
1030 {
1031 uint32_t ret;
1032
1033 ret = get_NZ_xcc(CC_DST);
1034 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1035 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1036 return ret;
1037 }
1038
1039 static uint32_t compute_C_add_xcc(void)
1040 {
1041 return get_C_add_xcc(CC_DST, CC_SRC);
1042 }
1043 #endif
1044
1045 static uint32_t compute_all_add(void)
1046 {
1047 uint32_t ret;
1048
1049 ret = get_NZ_icc(CC_DST);
1050 ret |= get_C_add_icc(CC_DST, CC_SRC);
1051 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1052 return ret;
1053 }
1054
1055 static uint32_t compute_C_add(void)
1056 {
1057 return get_C_add_icc(CC_DST, CC_SRC);
1058 }
1059
1060 #ifdef TARGET_SPARC64
1061 static uint32_t compute_all_addx_xcc(void)
1062 {
1063 uint32_t ret;
1064
1065 ret = get_NZ_xcc(CC_DST);
1066 ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1067 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1068 return ret;
1069 }
1070
1071 static uint32_t compute_C_addx_xcc(void)
1072 {
1073 uint32_t ret;
1074
1075 ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2);
1076 return ret;
1077 }
1078 #endif
1079
1080 static uint32_t compute_all_addx(void)
1081 {
1082 uint32_t ret;
1083
1084 ret = get_NZ_icc(CC_DST);
1085 ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1086 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1087 return ret;
1088 }
1089
1090 static uint32_t compute_C_addx(void)
1091 {
1092 uint32_t ret;
1093
1094 ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2);
1095 return ret;
1096 }
1097
1098 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1099 {
1100 uint32_t ret = 0;
1101
1102 if ((src1 | src2) & 0x3) {
1103 ret = PSR_OVF;
1104 }
1105 return ret;
1106 }
1107
1108 static uint32_t compute_all_tadd(void)
1109 {
1110 uint32_t ret;
1111
1112 ret = get_NZ_icc(CC_DST);
1113 ret |= get_C_add_icc(CC_DST, CC_SRC);
1114 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1115 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1116 return ret;
1117 }
1118
1119 static uint32_t compute_all_taddtv(void)
1120 {
1121 uint32_t ret;
1122
1123 ret = get_NZ_icc(CC_DST);
1124 ret |= get_C_add_icc(CC_DST, CC_SRC);
1125 return ret;
1126 }
1127
1128 static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2)
1129 {
1130 uint32_t ret = 0;
1131
1132 if (src1 < src2) {
1133 ret = PSR_CARRY;
1134 }
1135 return ret;
1136 }
1137
1138 static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1,
1139 uint32_t src2)
1140 {
1141 uint32_t ret = 0;
1142
1143 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) {
1144 ret = PSR_CARRY;
1145 }
1146 return ret;
1147 }
1148
1149 static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1,
1150 uint32_t src2)
1151 {
1152 uint32_t ret = 0;
1153
1154 if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) {
1155 ret = PSR_OVF;
1156 }
1157 return ret;
1158 }
1159
1160
1161 #ifdef TARGET_SPARC64
1162 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1163 {
1164 uint32_t ret = 0;
1165
1166 if (src1 < src2) {
1167 ret = PSR_CARRY;
1168 }
1169 return ret;
1170 }
1171
1172 static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1,
1173 target_ulong src2)
1174 {
1175 uint32_t ret = 0;
1176
1177 if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) {
1178 ret = PSR_CARRY;
1179 }
1180 return ret;
1181 }
1182
1183 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1184 target_ulong src2)
1185 {
1186 uint32_t ret = 0;
1187
1188 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) {
1189 ret = PSR_OVF;
1190 }
1191 return ret;
1192 }
1193
1194 static uint32_t compute_all_sub_xcc(void)
1195 {
1196 uint32_t ret;
1197
1198 ret = get_NZ_xcc(CC_DST);
1199 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1200 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1201 return ret;
1202 }
1203
1204 static uint32_t compute_C_sub_xcc(void)
1205 {
1206 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1207 }
1208 #endif
1209
1210 static uint32_t compute_all_sub(void)
1211 {
1212 uint32_t ret;
1213
1214 ret = get_NZ_icc(CC_DST);
1215 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1216 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1217 return ret;
1218 }
1219
1220 static uint32_t compute_C_sub(void)
1221 {
1222 return get_C_sub_icc(CC_SRC, CC_SRC2);
1223 }
1224
1225 #ifdef TARGET_SPARC64
1226 static uint32_t compute_all_subx_xcc(void)
1227 {
1228 uint32_t ret;
1229
1230 ret = get_NZ_xcc(CC_DST);
1231 ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1232 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1233 return ret;
1234 }
1235
1236 static uint32_t compute_C_subx_xcc(void)
1237 {
1238 uint32_t ret;
1239
1240 ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2);
1241 return ret;
1242 }
1243 #endif
1244
1245 static uint32_t compute_all_subx(void)
1246 {
1247 uint32_t ret;
1248
1249 ret = get_NZ_icc(CC_DST);
1250 ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1251 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1252 return ret;
1253 }
1254
1255 static uint32_t compute_C_subx(void)
1256 {
1257 uint32_t ret;
1258
1259 ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2);
1260 return ret;
1261 }
1262
1263 static uint32_t compute_all_tsub(void)
1264 {
1265 uint32_t ret;
1266
1267 ret = get_NZ_icc(CC_DST);
1268 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1269 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1270 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1271 return ret;
1272 }
1273
1274 static uint32_t compute_all_tsubtv(void)
1275 {
1276 uint32_t ret;
1277
1278 ret = get_NZ_icc(CC_DST);
1279 ret |= get_C_sub_icc(CC_SRC, CC_SRC2);
1280 return ret;
1281 }
1282
1283 static uint32_t compute_all_logic(void)
1284 {
1285 return get_NZ_icc(CC_DST);
1286 }
1287
1288 static uint32_t compute_C_logic(void)
1289 {
1290 return 0;
1291 }
1292
1293 #ifdef TARGET_SPARC64
1294 static uint32_t compute_all_logic_xcc(void)
1295 {
1296 return get_NZ_xcc(CC_DST);
1297 }
1298 #endif
1299
1300 typedef struct CCTable {
1301 uint32_t (*compute_all)(void); /* return all the flags */
1302 uint32_t (*compute_c)(void); /* return the C flag */
1303 } CCTable;
1304
1305 static const CCTable icc_table[CC_OP_NB] = {
1306 /* CC_OP_DYNAMIC should never happen */
1307 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1308 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1309 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1310 [CC_OP_ADDX] = { compute_all_addx, compute_C_addx },
1311 [CC_OP_TADD] = { compute_all_tadd, compute_C_add },
1312 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add },
1313 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1314 [CC_OP_SUBX] = { compute_all_subx, compute_C_subx },
1315 [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub },
1316 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub },
1317 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1318 };
1319
1320 #ifdef TARGET_SPARC64
1321 static const CCTable xcc_table[CC_OP_NB] = {
1322 /* CC_OP_DYNAMIC should never happen */
1323 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1324 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1325 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1326 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1327 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1328 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1329 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1330 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1331 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1332 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1333 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1334 };
1335 #endif
1336
1337 void helper_compute_psr(void)
1338 {
1339 uint32_t new_psr;
1340
1341 new_psr = icc_table[CC_OP].compute_all();
1342 env->psr = new_psr;
1343 #ifdef TARGET_SPARC64
1344 new_psr = xcc_table[CC_OP].compute_all();
1345 env->xcc = new_psr;
1346 #endif
1347 CC_OP = CC_OP_FLAGS;
1348 }
1349
1350 uint32_t helper_compute_C_icc(void)
1351 {
1352 uint32_t ret;
1353
1354 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1355 return ret;
1356 }
1357
1358 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1359 {
1360 dst[0] = src[0];
1361 dst[1] = src[1];
1362 dst[2] = src[2];
1363 dst[3] = src[3];
1364 dst[4] = src[4];
1365 dst[5] = src[5];
1366 dst[6] = src[6];
1367 dst[7] = src[7];
1368 }
1369
1370 static void set_cwp(int new_cwp)
1371 {
1372 /* put the modified wrap registers at their proper location */
1373 if (env->cwp == env->nwindows - 1) {
1374 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1375 }
1376 env->cwp = new_cwp;
1377
1378 /* put the wrap registers at their temporary location */
1379 if (new_cwp == env->nwindows - 1) {
1380 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1381 }
1382 env->regwptr = env->regbase + (new_cwp * 16);
1383 }
1384
1385 void cpu_set_cwp(CPUState *env1, int new_cwp)
1386 {
1387 CPUState *saved_env;
1388
1389 saved_env = env;
1390 env = env1;
1391 set_cwp(new_cwp);
1392 env = saved_env;
1393 }
1394
1395 static target_ulong get_psr(void)
1396 {
1397 helper_compute_psr();
1398
1399 #if !defined (TARGET_SPARC64)
1400 return env->version | (env->psr & PSR_ICC) |
1401 (env->psref? PSR_EF : 0) |
1402 (env->psrpil << 8) |
1403 (env->psrs? PSR_S : 0) |
1404 (env->psrps? PSR_PS : 0) |
1405 (env->psret? PSR_ET : 0) | env->cwp;
1406 #else
1407 return env->psr & PSR_ICC;
1408 #endif
1409 }
1410
1411 target_ulong cpu_get_psr(CPUState *env1)
1412 {
1413 CPUState *saved_env;
1414 target_ulong ret;
1415
1416 saved_env = env;
1417 env = env1;
1418 ret = get_psr();
1419 env = saved_env;
1420 return ret;
1421 }
1422
1423 static void put_psr(target_ulong val)
1424 {
1425 env->psr = val & PSR_ICC;
1426 #if !defined (TARGET_SPARC64)
1427 env->psref = (val & PSR_EF)? 1 : 0;
1428 env->psrpil = (val & PSR_PIL) >> 8;
1429 #endif
1430 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1431 cpu_check_irqs(env);
1432 #endif
1433 #if !defined (TARGET_SPARC64)
1434 env->psrs = (val & PSR_S)? 1 : 0;
1435 env->psrps = (val & PSR_PS)? 1 : 0;
1436 env->psret = (val & PSR_ET)? 1 : 0;
1437 set_cwp(val & PSR_CWP);
1438 #endif
1439 env->cc_op = CC_OP_FLAGS;
1440 }
1441
1442 void cpu_put_psr(CPUState *env1, target_ulong val)
1443 {
1444 CPUState *saved_env;
1445
1446 saved_env = env;
1447 env = env1;
1448 put_psr(val);
1449 env = saved_env;
1450 }
1451
1452 static int cwp_inc(int cwp)
1453 {
1454 if (unlikely(cwp >= env->nwindows)) {
1455 cwp -= env->nwindows;
1456 }
1457 return cwp;
1458 }
1459
1460 int cpu_cwp_inc(CPUState *env1, int cwp)
1461 {
1462 CPUState *saved_env;
1463 target_ulong ret;
1464
1465 saved_env = env;
1466 env = env1;
1467 ret = cwp_inc(cwp);
1468 env = saved_env;
1469 return ret;
1470 }
1471
1472 static int cwp_dec(int cwp)
1473 {
1474 if (unlikely(cwp < 0)) {
1475 cwp += env->nwindows;
1476 }
1477 return cwp;
1478 }
1479
1480 int cpu_cwp_dec(CPUState *env1, int cwp)
1481 {
1482 CPUState *saved_env;
1483 target_ulong ret;
1484
1485 saved_env = env;
1486 env = env1;
1487 ret = cwp_dec(cwp);
1488 env = saved_env;
1489 return ret;
1490 }
1491
1492 #ifdef TARGET_SPARC64
1493 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1494 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1495 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1496
1497 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1498 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1499 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1500
1501 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1502 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1503 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1504
1505 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1506 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1507 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1508
1509 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1510 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1511 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1512
1513 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1514 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1515 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1516 #endif
1517 #undef GEN_FCMPS
1518
1519 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1520 defined(DEBUG_MXCC)
1521 static void dump_mxcc(CPUState *env)
1522 {
1523 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1524 "\n",
1525 env->mxccdata[0], env->mxccdata[1],
1526 env->mxccdata[2], env->mxccdata[3]);
1527 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1528 "\n"
1529 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1530 "\n",
1531 env->mxccregs[0], env->mxccregs[1],
1532 env->mxccregs[2], env->mxccregs[3],
1533 env->mxccregs[4], env->mxccregs[5],
1534 env->mxccregs[6], env->mxccregs[7]);
1535 }
1536 #endif
1537
1538 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1539 && defined(DEBUG_ASI)
1540 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1541 uint64_t r1)
1542 {
1543 switch (size)
1544 {
1545 case 1:
1546 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1547 addr, asi, r1 & 0xff);
1548 break;
1549 case 2:
1550 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1551 addr, asi, r1 & 0xffff);
1552 break;
1553 case 4:
1554 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1555 addr, asi, r1 & 0xffffffff);
1556 break;
1557 case 8:
1558 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1559 addr, asi, r1);
1560 break;
1561 }
1562 }
1563 #endif
1564
1565 #ifndef TARGET_SPARC64
1566 #ifndef CONFIG_USER_ONLY
1567 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1568 {
1569 uint64_t ret = 0;
1570 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1571 uint32_t last_addr = addr;
1572 #endif
1573
1574 helper_check_align(addr, size - 1);
1575 switch (asi) {
1576 case 2: /* SuperSparc MXCC registers */
1577 switch (addr) {
1578 case 0x01c00a00: /* MXCC control register */
1579 if (size == 8)
1580 ret = env->mxccregs[3];
1581 else
1582 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1583 size);
1584 break;
1585 case 0x01c00a04: /* MXCC control register */
1586 if (size == 4)
1587 ret = env->mxccregs[3];
1588 else
1589 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1590 size);
1591 break;
1592 case 0x01c00c00: /* Module reset register */
1593 if (size == 8) {
1594 ret = env->mxccregs[5];
1595 // should we do something here?
1596 } else
1597 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1598 size);
1599 break;
1600 case 0x01c00f00: /* MBus port address register */
1601 if (size == 8)
1602 ret = env->mxccregs[7];
1603 else
1604 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1605 size);
1606 break;
1607 default:
1608 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1609 size);
1610 break;
1611 }
1612 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1613 "addr = %08x -> ret = %" PRIx64 ","
1614 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1615 #ifdef DEBUG_MXCC
1616 dump_mxcc(env);
1617 #endif
1618 break;
1619 case 3: /* MMU probe */
1620 {
1621 int mmulev;
1622
1623 mmulev = (addr >> 8) & 15;
1624 if (mmulev > 4)
1625 ret = 0;
1626 else
1627 ret = mmu_probe(env, addr, mmulev);
1628 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1629 addr, mmulev, ret);
1630 }
1631 break;
1632 case 4: /* read MMU regs */
1633 {
1634 int reg = (addr >> 8) & 0x1f;
1635
1636 ret = env->mmuregs[reg];
1637 if (reg == 3) /* Fault status cleared on read */
1638 env->mmuregs[3] = 0;
1639 else if (reg == 0x13) /* Fault status read */
1640 ret = env->mmuregs[3];
1641 else if (reg == 0x14) /* Fault address read */
1642 ret = env->mmuregs[4];
1643 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1644 }
1645 break;
1646 case 5: // Turbosparc ITLB Diagnostic
1647 case 6: // Turbosparc DTLB Diagnostic
1648 case 7: // Turbosparc IOTLB Diagnostic
1649 break;
1650 case 9: /* Supervisor code access */
1651 switch(size) {
1652 case 1:
1653 ret = ldub_code(addr);
1654 break;
1655 case 2:
1656 ret = lduw_code(addr);
1657 break;
1658 default:
1659 case 4:
1660 ret = ldl_code(addr);
1661 break;
1662 case 8:
1663 ret = ldq_code(addr);
1664 break;
1665 }
1666 break;
1667 case 0xa: /* User data access */
1668 switch(size) {
1669 case 1:
1670 ret = ldub_user(addr);
1671 break;
1672 case 2:
1673 ret = lduw_user(addr);
1674 break;
1675 default:
1676 case 4:
1677 ret = ldl_user(addr);
1678 break;
1679 case 8:
1680 ret = ldq_user(addr);
1681 break;
1682 }
1683 break;
1684 case 0xb: /* Supervisor data access */
1685 switch(size) {
1686 case 1:
1687 ret = ldub_kernel(addr);
1688 break;
1689 case 2:
1690 ret = lduw_kernel(addr);
1691 break;
1692 default:
1693 case 4:
1694 ret = ldl_kernel(addr);
1695 break;
1696 case 8:
1697 ret = ldq_kernel(addr);
1698 break;
1699 }
1700 break;
1701 case 0xc: /* I-cache tag */
1702 case 0xd: /* I-cache data */
1703 case 0xe: /* D-cache tag */
1704 case 0xf: /* D-cache data */
1705 break;
1706 case 0x20: /* MMU passthrough */
1707 switch(size) {
1708 case 1:
1709 ret = ldub_phys(addr);
1710 break;
1711 case 2:
1712 ret = lduw_phys(addr);
1713 break;
1714 default:
1715 case 4:
1716 ret = ldl_phys(addr);
1717 break;
1718 case 8:
1719 ret = ldq_phys(addr);
1720 break;
1721 }
1722 break;
1723 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1724 switch(size) {
1725 case 1:
1726 ret = ldub_phys((target_phys_addr_t)addr
1727 | ((target_phys_addr_t)(asi & 0xf) << 32));
1728 break;
1729 case 2:
1730 ret = lduw_phys((target_phys_addr_t)addr
1731 | ((target_phys_addr_t)(asi & 0xf) << 32));
1732 break;
1733 default:
1734 case 4:
1735 ret = ldl_phys((target_phys_addr_t)addr
1736 | ((target_phys_addr_t)(asi & 0xf) << 32));
1737 break;
1738 case 8:
1739 ret = ldq_phys((target_phys_addr_t)addr
1740 | ((target_phys_addr_t)(asi & 0xf) << 32));
1741 break;
1742 }
1743 break;
1744 case 0x30: // Turbosparc secondary cache diagnostic
1745 case 0x31: // Turbosparc RAM snoop
1746 case 0x32: // Turbosparc page table descriptor diagnostic
1747 case 0x39: /* data cache diagnostic register */
1748 ret = 0;
1749 break;
1750 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1751 {
1752 int reg = (addr >> 8) & 3;
1753
1754 switch(reg) {
1755 case 0: /* Breakpoint Value (Addr) */
1756 ret = env->mmubpregs[reg];
1757 break;
1758 case 1: /* Breakpoint Mask */
1759 ret = env->mmubpregs[reg];
1760 break;
1761 case 2: /* Breakpoint Control */
1762 ret = env->mmubpregs[reg];
1763 break;
1764 case 3: /* Breakpoint Status */
1765 ret = env->mmubpregs[reg];
1766 env->mmubpregs[reg] = 0ULL;
1767 break;
1768 }
1769 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1770 ret);
1771 }
1772 break;
1773 case 8: /* User code access, XXX */
1774 default:
1775 do_unassigned_access(addr, 0, 0, asi, size);
1776 ret = 0;
1777 break;
1778 }
1779 if (sign) {
1780 switch(size) {
1781 case 1:
1782 ret = (int8_t) ret;
1783 break;
1784 case 2:
1785 ret = (int16_t) ret;
1786 break;
1787 case 4:
1788 ret = (int32_t) ret;
1789 break;
1790 default:
1791 break;
1792 }
1793 }
1794 #ifdef DEBUG_ASI
1795 dump_asi("read ", last_addr, asi, size, ret);
1796 #endif
1797 return ret;
1798 }
1799
1800 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1801 {
1802 helper_check_align(addr, size - 1);
1803 switch(asi) {
1804 case 2: /* SuperSparc MXCC registers */
1805 switch (addr) {
1806 case 0x01c00000: /* MXCC stream data register 0 */
1807 if (size == 8)
1808 env->mxccdata[0] = val;
1809 else
1810 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1811 size);
1812 break;
1813 case 0x01c00008: /* MXCC stream data register 1 */
1814 if (size == 8)
1815 env->mxccdata[1] = val;
1816 else
1817 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1818 size);
1819 break;
1820 case 0x01c00010: /* MXCC stream data register 2 */
1821 if (size == 8)
1822 env->mxccdata[2] = val;
1823 else
1824 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1825 size);
1826 break;
1827 case 0x01c00018: /* MXCC stream data register 3 */
1828 if (size == 8)
1829 env->mxccdata[3] = val;
1830 else
1831 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1832 size);
1833 break;
1834 case 0x01c00100: /* MXCC stream source */
1835 if (size == 8)
1836 env->mxccregs[0] = val;
1837 else
1838 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1839 size);
1840 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1841 0);
1842 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1843 8);
1844 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1845 16);
1846 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1847 24);
1848 break;
1849 case 0x01c00200: /* MXCC stream destination */
1850 if (size == 8)
1851 env->mxccregs[1] = val;
1852 else
1853 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1854 size);
1855 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1856 env->mxccdata[0]);
1857 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1858 env->mxccdata[1]);
1859 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1860 env->mxccdata[2]);
1861 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1862 env->mxccdata[3]);
1863 break;
1864 case 0x01c00a00: /* MXCC control register */
1865 if (size == 8)
1866 env->mxccregs[3] = val;
1867 else
1868 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1869 size);
1870 break;
1871 case 0x01c00a04: /* MXCC control register */
1872 if (size == 4)
1873 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1874 | val;
1875 else
1876 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1877 size);
1878 break;
1879 case 0x01c00e00: /* MXCC error register */
1880 // writing a 1 bit clears the error
1881 if (size == 8)
1882 env->mxccregs[6] &= ~val;
1883 else
1884 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1885 size);
1886 break;
1887 case 0x01c00f00: /* MBus port address register */
1888 if (size == 8)
1889 env->mxccregs[7] = val;
1890 else
1891 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1892 size);
1893 break;
1894 default:
1895 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1896 size);
1897 break;
1898 }
1899 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1900 asi, size, addr, val);
1901 #ifdef DEBUG_MXCC
1902 dump_mxcc(env);
1903 #endif
1904 break;
1905 case 3: /* MMU flush */
1906 {
1907 int mmulev;
1908
1909 mmulev = (addr >> 8) & 15;
1910 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1911 switch (mmulev) {
1912 case 0: // flush page
1913 tlb_flush_page(env, addr & 0xfffff000);
1914 break;
1915 case 1: // flush segment (256k)
1916 case 2: // flush region (16M)
1917 case 3: // flush context (4G)
1918 case 4: // flush entire
1919 tlb_flush(env, 1);
1920 break;
1921 default:
1922 break;
1923 }
1924 #ifdef DEBUG_MMU
1925 dump_mmu(env);
1926 #endif
1927 }
1928 break;
1929 case 4: /* write MMU regs */
1930 {
1931 int reg = (addr >> 8) & 0x1f;
1932 uint32_t oldreg;
1933
1934 oldreg = env->mmuregs[reg];
1935 switch(reg) {
1936 case 0: // Control Register
1937 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1938 (val & 0x00ffffff);
1939 // Mappings generated during no-fault mode or MMU
1940 // disabled mode are invalid in normal mode
1941 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1942 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1943 tlb_flush(env, 1);
1944 break;
1945 case 1: // Context Table Pointer Register
1946 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1947 break;
1948 case 2: // Context Register
1949 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1950 if (oldreg != env->mmuregs[reg]) {
1951 /* we flush when the MMU context changes because
1952 QEMU has no MMU context support */
1953 tlb_flush(env, 1);
1954 }
1955 break;
1956 case 3: // Synchronous Fault Status Register with Clear
1957 case 4: // Synchronous Fault Address Register
1958 break;
1959 case 0x10: // TLB Replacement Control Register
1960 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1961 break;
1962 case 0x13: // Synchronous Fault Status Register with Read and Clear
1963 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1964 break;
1965 case 0x14: // Synchronous Fault Address Register
1966 env->mmuregs[4] = val;
1967 break;
1968 default:
1969 env->mmuregs[reg] = val;
1970 break;
1971 }
1972 if (oldreg != env->mmuregs[reg]) {
1973 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1974 reg, oldreg, env->mmuregs[reg]);
1975 }
1976 #ifdef DEBUG_MMU
1977 dump_mmu(env);
1978 #endif
1979 }
1980 break;
1981 case 5: // Turbosparc ITLB Diagnostic
1982 case 6: // Turbosparc DTLB Diagnostic
1983 case 7: // Turbosparc IOTLB Diagnostic
1984 break;
1985 case 0xa: /* User data access */
1986 switch(size) {
1987 case 1:
1988 stb_user(addr, val);
1989 break;
1990 case 2:
1991 stw_user(addr, val);
1992 break;
1993 default:
1994 case 4:
1995 stl_user(addr, val);
1996 break;
1997 case 8:
1998 stq_user(addr, val);
1999 break;
2000 }
2001 break;
2002 case 0xb: /* Supervisor data access */
2003 switch(size) {
2004 case 1:
2005 stb_kernel(addr, val);
2006 break;
2007 case 2:
2008 stw_kernel(addr, val);
2009 break;
2010 default:
2011 case 4:
2012 stl_kernel(addr, val);
2013 break;
2014 case 8:
2015 stq_kernel(addr, val);
2016 break;
2017 }
2018 break;
2019 case 0xc: /* I-cache tag */
2020 case 0xd: /* I-cache data */
2021 case 0xe: /* D-cache tag */
2022 case 0xf: /* D-cache data */
2023 case 0x10: /* I/D-cache flush page */
2024 case 0x11: /* I/D-cache flush segment */
2025 case 0x12: /* I/D-cache flush region */
2026 case 0x13: /* I/D-cache flush context */
2027 case 0x14: /* I/D-cache flush user */
2028 break;
2029 case 0x17: /* Block copy, sta access */
2030 {
2031 // val = src
2032 // addr = dst
2033 // copy 32 bytes
2034 unsigned int i;
2035 uint32_t src = val & ~3, dst = addr & ~3, temp;
2036
2037 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
2038 temp = ldl_kernel(src);
2039 stl_kernel(dst, temp);
2040 }
2041 }
2042 break;
2043 case 0x1f: /* Block fill, stda access */
2044 {
2045 // addr = dst
2046 // fill 32 bytes with val
2047 unsigned int i;
2048 uint32_t dst = addr & 7;
2049
2050 for (i = 0; i < 32; i += 8, dst += 8)
2051 stq_kernel(dst, val);
2052 }
2053 break;
2054 case 0x20: /* MMU passthrough */
2055 {
2056 switch(size) {
2057 case 1:
2058 stb_phys(addr, val);
2059 break;
2060 case 2:
2061 stw_phys(addr, val);
2062 break;
2063 case 4:
2064 default:
2065 stl_phys(addr, val);
2066 break;
2067 case 8:
2068 stq_phys(addr, val);
2069 break;
2070 }
2071 }
2072 break;
2073 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2074 {
2075 switch(size) {
2076 case 1:
2077 stb_phys((target_phys_addr_t)addr
2078 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2079 break;
2080 case 2:
2081 stw_phys((target_phys_addr_t)addr
2082 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2083 break;
2084 case 4:
2085 default:
2086 stl_phys((target_phys_addr_t)addr
2087 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2088 break;
2089 case 8:
2090 stq_phys((target_phys_addr_t)addr
2091 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2092 break;
2093 }
2094 }
2095 break;
2096 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2097 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2098 // Turbosparc snoop RAM
2099 case 0x32: // store buffer control or Turbosparc page table
2100 // descriptor diagnostic
2101 case 0x36: /* I-cache flash clear */
2102 case 0x37: /* D-cache flash clear */
2103 case 0x4c: /* breakpoint action */
2104 break;
2105 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2106 {
2107 int reg = (addr >> 8) & 3;
2108
2109 switch(reg) {
2110 case 0: /* Breakpoint Value (Addr) */
2111 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2112 break;
2113 case 1: /* Breakpoint Mask */
2114 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2115 break;
2116 case 2: /* Breakpoint Control */
2117 env->mmubpregs[reg] = (val & 0x7fULL);
2118 break;
2119 case 3: /* Breakpoint Status */
2120 env->mmubpregs[reg] = (val & 0xfULL);
2121 break;
2122 }
2123 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2124 env->mmuregs[reg]);
2125 }
2126 break;
2127 case 8: /* User code access, XXX */
2128 case 9: /* Supervisor code access, XXX */
2129 default:
2130 do_unassigned_access(addr, 1, 0, asi, size);
2131 break;
2132 }
2133 #ifdef DEBUG_ASI
2134 dump_asi("write", addr, asi, size, val);
2135 #endif
2136 }
2137
2138 #endif /* CONFIG_USER_ONLY */
2139 #else /* TARGET_SPARC64 */
2140
2141 #ifdef CONFIG_USER_ONLY
2142 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2143 {
2144 uint64_t ret = 0;
2145 #if defined(DEBUG_ASI)
2146 target_ulong last_addr = addr;
2147 #endif
2148
2149 if (asi < 0x80)
2150 raise_exception(TT_PRIV_ACT);
2151
2152 helper_check_align(addr, size - 1);
2153 addr = address_mask(env, addr);
2154
2155 switch (asi) {
2156 case 0x82: // Primary no-fault
2157 case 0x8a: // Primary no-fault LE
2158 if (page_check_range(addr, size, PAGE_READ) == -1) {
2159 #ifdef DEBUG_ASI
2160 dump_asi("read ", last_addr, asi, size, ret);
2161 #endif
2162 return 0;
2163 }
2164 // Fall through
2165 case 0x80: // Primary
2166 case 0x88: // Primary LE
2167 {
2168 switch(size) {
2169 case 1:
2170 ret = ldub_raw(addr);
2171 break;
2172 case 2:
2173 ret = lduw_raw(addr);
2174 break;
2175 case 4:
2176 ret = ldl_raw(addr);
2177 break;
2178 default:
2179 case 8:
2180 ret = ldq_raw(addr);
2181 break;
2182 }
2183 }
2184 break;
2185 case 0x83: // Secondary no-fault
2186 case 0x8b: // Secondary no-fault LE
2187 if (page_check_range(addr, size, PAGE_READ) == -1) {
2188 #ifdef DEBUG_ASI
2189 dump_asi("read ", last_addr, asi, size, ret);
2190 #endif
2191 return 0;
2192 }
2193 // Fall through
2194 case 0x81: // Secondary
2195 case 0x89: // Secondary LE
2196 // XXX
2197 break;
2198 default:
2199 break;
2200 }
2201
2202 /* Convert from little endian */
2203 switch (asi) {
2204 case 0x88: // Primary LE
2205 case 0x89: // Secondary LE
2206 case 0x8a: // Primary no-fault LE
2207 case 0x8b: // Secondary no-fault LE
2208 switch(size) {
2209 case 2:
2210 ret = bswap16(ret);
2211 break;
2212 case 4:
2213 ret = bswap32(ret);
2214 break;
2215 case 8:
2216 ret = bswap64(ret);
2217 break;
2218 default:
2219 break;
2220 }
2221 default:
2222 break;
2223 }
2224
2225 /* Convert to signed number */
2226 if (sign) {
2227 switch(size) {
2228 case 1:
2229 ret = (int8_t) ret;
2230 break;
2231 case 2:
2232 ret = (int16_t) ret;
2233 break;
2234 case 4:
2235 ret = (int32_t) ret;
2236 break;
2237 default:
2238 break;
2239 }
2240 }
2241 #ifdef DEBUG_ASI
2242 dump_asi("read ", last_addr, asi, size, ret);
2243 #endif
2244 return ret;
2245 }
2246
2247 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2248 {
2249 #ifdef DEBUG_ASI
2250 dump_asi("write", addr, asi, size, val);
2251 #endif
2252 if (asi < 0x80)
2253 raise_exception(TT_PRIV_ACT);
2254
2255 helper_check_align(addr, size - 1);
2256 addr = address_mask(env, addr);
2257
2258 /* Convert to little endian */
2259 switch (asi) {
2260 case 0x88: // Primary LE
2261 case 0x89: // Secondary LE
2262 switch(size) {
2263 case 2:
2264 val = bswap16(val);
2265 break;
2266 case 4:
2267 val = bswap32(val);
2268 break;
2269 case 8:
2270 val = bswap64(val);
2271 break;
2272 default:
2273 break;
2274 }
2275 default:
2276 break;
2277 }
2278
2279 switch(asi) {
2280 case 0x80: // Primary
2281 case 0x88: // Primary LE
2282 {
2283 switch(size) {
2284 case 1:
2285 stb_raw(addr, val);
2286 break;
2287 case 2:
2288 stw_raw(addr, val);
2289 break;
2290 case 4:
2291 stl_raw(addr, val);
2292 break;
2293 case 8:
2294 default:
2295 stq_raw(addr, val);
2296 break;
2297 }
2298 }
2299 break;
2300 case 0x81: // Secondary
2301 case 0x89: // Secondary LE
2302 // XXX
2303 return;
2304
2305 case 0x82: // Primary no-fault, RO
2306 case 0x83: // Secondary no-fault, RO
2307 case 0x8a: // Primary no-fault LE, RO
2308 case 0x8b: // Secondary no-fault LE, RO
2309 default:
2310 do_unassigned_access(addr, 1, 0, 1, size);
2311 return;
2312 }
2313 }
2314
2315 #else /* CONFIG_USER_ONLY */
2316
2317 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2318 {
2319 uint64_t ret = 0;
2320 #if defined(DEBUG_ASI)
2321 target_ulong last_addr = addr;
2322 #endif
2323
2324 asi &= 0xff;
2325
2326 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2327 || (cpu_has_hypervisor(env)
2328 && asi >= 0x30 && asi < 0x80
2329 && !(env->hpstate & HS_PRIV)))
2330 raise_exception(TT_PRIV_ACT);
2331
2332 helper_check_align(addr, size - 1);
2333 switch (asi) {
2334 case 0x82: // Primary no-fault
2335 case 0x8a: // Primary no-fault LE
2336 case 0x83: // Secondary no-fault
2337 case 0x8b: // Secondary no-fault LE
2338 {
2339 /* secondary space access has lowest asi bit equal to 1 */
2340 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2341 : MMU_KERNEL_SECONDARY_IDX;
2342
2343 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2344 #ifdef DEBUG_ASI
2345 dump_asi("read ", last_addr, asi, size, ret);
2346 #endif
2347 return 0;
2348 }
2349 }
2350 // Fall through
2351 case 0x10: // As if user primary
2352 case 0x11: // As if user secondary
2353 case 0x18: // As if user primary LE
2354 case 0x19: // As if user secondary LE
2355 case 0x80: // Primary
2356 case 0x81: // Secondary
2357 case 0x88: // Primary LE
2358 case 0x89: // Secondary LE
2359 case 0xe2: // UA2007 Primary block init
2360 case 0xe3: // UA2007 Secondary block init
2361 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2362 if (cpu_hypervisor_mode(env)) {
2363 switch(size) {
2364 case 1:
2365 ret = ldub_hypv(addr);
2366 break;
2367 case 2:
2368 ret = lduw_hypv(addr);
2369 break;
2370 case 4:
2371 ret = ldl_hypv(addr);
2372 break;
2373 default:
2374 case 8:
2375 ret = ldq_hypv(addr);
2376 break;
2377 }
2378 } else {
2379 /* secondary space access has lowest asi bit equal to 1 */
2380 if (asi & 1) {
2381 switch(size) {
2382 case 1:
2383 ret = ldub_kernel_secondary(addr);
2384 break;
2385 case 2:
2386 ret = lduw_kernel_secondary(addr);
2387 break;
2388 case 4:
2389 ret = ldl_kernel_secondary(addr);
2390 break;
2391 default:
2392 case 8:
2393 ret = ldq_kernel_secondary(addr);
2394 break;
2395 }
2396 } else {
2397 switch(size) {
2398 case 1:
2399 ret = ldub_kernel(addr);
2400 break;
2401 case 2:
2402 ret = lduw_kernel(addr);
2403 break;
2404 case 4:
2405 ret = ldl_kernel(addr);
2406 break;
2407 default:
2408 case 8:
2409 ret = ldq_kernel(addr);
2410 break;
2411 }
2412 }
2413 }
2414 } else {
2415 /* secondary space access has lowest asi bit equal to 1 */
2416 if (asi & 1) {
2417 switch(size) {
2418 case 1:
2419 ret = ldub_user_secondary(addr);
2420 break;
2421 case 2:
2422 ret = lduw_user_secondary(addr);
2423 break;
2424 case 4:
2425 ret = ldl_user_secondary(addr);
2426 break;
2427 default:
2428 case 8:
2429 ret = ldq_user_secondary(addr);
2430 break;
2431 }
2432 } else {
2433 switch(size) {
2434 case 1:
2435 ret = ldub_user(addr);
2436 break;
2437 case 2:
2438 ret = lduw_user(addr);
2439 break;
2440 case 4:
2441 ret = ldl_user(addr);
2442 break;
2443 default:
2444 case 8:
2445 ret = ldq_user(addr);
2446 break;
2447 }
2448 }
2449 }
2450 break;
2451 case 0x14: // Bypass
2452 case 0x15: // Bypass, non-cacheable
2453 case 0x1c: // Bypass LE
2454 case 0x1d: // Bypass, non-cacheable LE
2455 {
2456 switch(size) {
2457 case 1:
2458 ret = ldub_phys(addr);
2459 break;
2460 case 2:
2461 ret = lduw_phys(addr);
2462 break;
2463 case 4:
2464 ret = ldl_phys(addr);
2465 break;
2466 default:
2467 case 8:
2468 ret = ldq_phys(addr);
2469 break;
2470 }
2471 break;
2472 }
2473 case 0x24: // Nucleus quad LDD 128 bit atomic
2474 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2475 // Only ldda allowed
2476 raise_exception(TT_ILL_INSN);
2477 return 0;
2478 case 0x04: // Nucleus
2479 case 0x0c: // Nucleus Little Endian (LE)
2480 {
2481 switch(size) {
2482 case 1:
2483 ret = ldub_nucleus(addr);
2484 break;
2485 case 2:
2486 ret = lduw_nucleus(addr);
2487 break;
2488 case 4:
2489 ret = ldl_nucleus(addr);
2490 break;
2491 default:
2492 case 8:
2493 ret = ldq_nucleus(addr);
2494 break;
2495 }
2496 break;
2497 }
2498 case 0x4a: // UPA config
2499 // XXX
2500 break;
2501 case 0x45: // LSU
2502 ret = env->lsu;
2503 break;
2504 case 0x50: // I-MMU regs
2505 {
2506 int reg = (addr >> 3) & 0xf;
2507
2508 if (reg == 0) {
2509 // I-TSB Tag Target register
2510 ret = ultrasparc_tag_target(env->immu.tag_access);
2511 } else {
2512 ret = env->immuregs[reg];
2513 }
2514
2515 break;
2516 }
2517 case 0x51: // I-MMU 8k TSB pointer
2518 {
2519 // env->immuregs[5] holds I-MMU TSB register value
2520 // env->immuregs[6] holds I-MMU Tag Access register value
2521 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2522 8*1024);
2523 break;
2524 }
2525 case 0x52: // I-MMU 64k TSB pointer
2526 {
2527 // env->immuregs[5] holds I-MMU TSB register value
2528 // env->immuregs[6] holds I-MMU Tag Access register value
2529 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2530 64*1024);
2531 break;
2532 }
2533 case 0x55: // I-MMU data access
2534 {
2535 int reg = (addr >> 3) & 0x3f;
2536
2537 ret = env->itlb[reg].tte;
2538 break;
2539 }
2540 case 0x56: // I-MMU tag read
2541 {
2542 int reg = (addr >> 3) & 0x3f;
2543
2544 ret = env->itlb[reg].tag;
2545 break;
2546 }
2547 case 0x58: // D-MMU regs
2548 {
2549 int reg = (addr >> 3) & 0xf;
2550
2551 if (reg == 0) {
2552 // D-TSB Tag Target register
2553 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2554 } else {
2555 ret = env->dmmuregs[reg];
2556 }
2557 break;
2558 }
2559 case 0x59: // D-MMU 8k TSB pointer
2560 {
2561 // env->dmmuregs[5] holds D-MMU TSB register value
2562 // env->dmmuregs[6] holds D-MMU Tag Access register value
2563 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2564 8*1024);
2565 break;
2566 }
2567 case 0x5a: // D-MMU 64k TSB pointer
2568 {
2569 // env->dmmuregs[5] holds D-MMU TSB register value
2570 // env->dmmuregs[6] holds D-MMU Tag Access register value
2571 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2572 64*1024);
2573 break;
2574 }
2575 case 0x5d: // D-MMU data access
2576 {
2577 int reg = (addr >> 3) & 0x3f;
2578
2579 ret = env->dtlb[reg].tte;
2580 break;
2581 }
2582 case 0x5e: // D-MMU tag read
2583 {
2584 int reg = (addr >> 3) & 0x3f;
2585
2586 ret = env->dtlb[reg].tag;
2587 break;
2588 }
2589 case 0x46: // D-cache data
2590 case 0x47: // D-cache tag access
2591 case 0x4b: // E-cache error enable
2592 case 0x4c: // E-cache asynchronous fault status
2593 case 0x4d: // E-cache asynchronous fault address
2594 case 0x4e: // E-cache tag data
2595 case 0x66: // I-cache instruction access
2596 case 0x67: // I-cache tag access
2597 case 0x6e: // I-cache predecode
2598 case 0x6f: // I-cache LRU etc.
2599 case 0x76: // E-cache tag
2600 case 0x7e: // E-cache tag
2601 break;
2602 case 0x5b: // D-MMU data pointer
2603 case 0x48: // Interrupt dispatch, RO
2604 case 0x49: // Interrupt data receive
2605 case 0x7f: // Incoming interrupt vector, RO
2606 // XXX
2607 break;
2608 case 0x54: // I-MMU data in, WO
2609 case 0x57: // I-MMU demap, WO
2610 case 0x5c: // D-MMU data in, WO
2611 case 0x5f: // D-MMU demap, WO
2612 case 0x77: // Interrupt vector, WO
2613 default:
2614 do_unassigned_access(addr, 0, 0, 1, size);
2615 ret = 0;
2616 break;
2617 }
2618
2619 /* Convert from little endian */
2620 switch (asi) {
2621 case 0x0c: // Nucleus Little Endian (LE)
2622 case 0x18: // As if user primary LE
2623 case 0x19: // As if user secondary LE
2624 case 0x1c: // Bypass LE
2625 case 0x1d: // Bypass, non-cacheable LE
2626 case 0x88: // Primary LE
2627 case 0x89: // Secondary LE
2628 case 0x8a: // Primary no-fault LE
2629 case 0x8b: // Secondary no-fault LE
2630 switch(size) {
2631 case 2:
2632 ret = bswap16(ret);
2633 break;
2634 case 4:
2635 ret = bswap32(ret);
2636 break;
2637 case 8:
2638 ret = bswap64(ret);
2639 break;
2640 default:
2641 break;
2642 }
2643 default:
2644 break;
2645 }
2646
2647 /* Convert to signed number */
2648 if (sign) {
2649 switch(size) {
2650 case 1:
2651 ret = (int8_t) ret;
2652 break;
2653 case 2:
2654 ret = (int16_t) ret;
2655 break;
2656 case 4:
2657 ret = (int32_t) ret;
2658 break;
2659 default:
2660 break;
2661 }
2662 }
2663 #ifdef DEBUG_ASI
2664 dump_asi("read ", last_addr, asi, size, ret);
2665 #endif
2666 return ret;
2667 }
2668
2669 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2670 {
2671 #ifdef DEBUG_ASI
2672 dump_asi("write", addr, asi, size, val);
2673 #endif
2674
2675 asi &= 0xff;
2676
2677 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2678 || (cpu_has_hypervisor(env)
2679 && asi >= 0x30 && asi < 0x80
2680 && !(env->hpstate & HS_PRIV)))
2681 raise_exception(TT_PRIV_ACT);
2682
2683 helper_check_align(addr, size - 1);
2684 /* Convert to little endian */
2685 switch (asi) {
2686 case 0x0c: // Nucleus Little Endian (LE)
2687 case 0x18: // As if user primary LE
2688 case 0x19: // As if user secondary LE
2689 case 0x1c: // Bypass LE
2690 case 0x1d: // Bypass, non-cacheable LE
2691 case 0x88: // Primary LE
2692 case 0x89: // Secondary LE
2693 switch(size) {
2694 case 2:
2695 val = bswap16(val);
2696 break;
2697 case 4:
2698 val = bswap32(val);
2699 break;
2700 case 8:
2701 val = bswap64(val);
2702 break;
2703 default:
2704 break;
2705 }
2706 default:
2707 break;
2708 }
2709
2710 switch(asi) {
2711 case 0x10: // As if user primary
2712 case 0x11: // As if user secondary
2713 case 0x18: // As if user primary LE
2714 case 0x19: // As if user secondary LE
2715 case 0x80: // Primary
2716 case 0x81: // Secondary
2717 case 0x88: // Primary LE
2718 case 0x89: // Secondary LE
2719 case 0xe2: // UA2007 Primary block init
2720 case 0xe3: // UA2007 Secondary block init
2721 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2722 if (cpu_hypervisor_mode(env)) {
2723 switch(size) {
2724 case 1:
2725 stb_hypv(addr, val);
2726 break;
2727 case 2:
2728 stw_hypv(addr, val);
2729 break;
2730 case 4:
2731 stl_hypv(addr, val);
2732 break;
2733 case 8:
2734 default:
2735 stq_hypv(addr, val);
2736 break;
2737 }
2738 } else {
2739 /* secondary space access has lowest asi bit equal to 1 */
2740 if (asi & 1) {
2741 switch(size) {
2742 case 1:
2743 stb_kernel_secondary(addr, val);
2744 break;
2745 case 2:
2746 stw_kernel_secondary(addr, val);
2747 break;
2748 case 4:
2749 stl_kernel_secondary(addr, val);
2750 break;
2751 case 8:
2752 default:
2753 stq_kernel_secondary(addr, val);
2754 break;
2755 }
2756 } else {
2757 switch(size) {
2758 case 1:
2759 stb_kernel(addr, val);
2760 break;
2761 case 2:
2762 stw_kernel(addr, val);
2763 break;
2764 case 4:
2765 stl_kernel(addr, val);
2766 break;
2767 case 8:
2768 default:
2769 stq_kernel(addr, val);
2770 break;
2771 }
2772 }
2773 }
2774 } else {
2775 /* secondary space access has lowest asi bit equal to 1 */
2776 if (asi & 1) {
2777 switch(size) {
2778 case 1:
2779 stb_user_secondary(addr, val);
2780 break;
2781 case 2:
2782 stw_user_secondary(addr, val);
2783 break;
2784 case 4:
2785 stl_user_secondary(addr, val);
2786 break;
2787 case 8:
2788 default:
2789 stq_user_secondary(addr, val);
2790 break;
2791 }
2792 } else {
2793 switch(size) {
2794 case 1:
2795 stb_user(addr, val);
2796 break;
2797 case 2:
2798 stw_user(addr, val);
2799 break;
2800 case 4:
2801 stl_user(addr, val);
2802 break;
2803 case 8:
2804 default:
2805 stq_user(addr, val);
2806 break;
2807 }
2808 }
2809 }
2810 break;
2811 case 0x14: // Bypass
2812 case 0x15: // Bypass, non-cacheable
2813 case 0x1c: // Bypass LE
2814 case 0x1d: // Bypass, non-cacheable LE
2815 {
2816 switch(size) {
2817 case 1:
2818 stb_phys(addr, val);
2819 break;
2820 case 2:
2821 stw_phys(addr, val);
2822 break;
2823 case 4:
2824 stl_phys(addr, val);
2825 break;
2826 case 8:
2827 default:
2828 stq_phys(addr, val);
2829 break;
2830 }
2831 }
2832 return;
2833 case 0x24: // Nucleus quad LDD 128 bit atomic
2834 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2835 // Only ldda allowed
2836 raise_exception(TT_ILL_INSN);
2837 return;
2838 case 0x04: // Nucleus
2839 case 0x0c: // Nucleus Little Endian (LE)
2840 {
2841 switch(size) {
2842 case 1:
2843 stb_nucleus(addr, val);
2844 break;
2845 case 2:
2846 stw_nucleus(addr, val);
2847 break;
2848 case 4:
2849 stl_nucleus(addr, val);
2850 break;
2851 default:
2852 case 8:
2853 stq_nucleus(addr, val);
2854 break;
2855 }
2856 break;
2857 }
2858
2859 case 0x4a: // UPA config
2860 // XXX
2861 return;
2862 case 0x45: // LSU
2863 {
2864 uint64_t oldreg;
2865
2866 oldreg = env->lsu;
2867 env->lsu = val & (DMMU_E | IMMU_E);
2868 // Mappings generated during D/I MMU disabled mode are
2869 // invalid in normal mode
2870 if (oldreg != env->lsu) {
2871 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2872 oldreg, env->lsu);
2873 #ifdef DEBUG_MMU
2874 dump_mmu(env);
2875 #endif
2876 tlb_flush(env, 1);
2877 }
2878 return;
2879 }
2880 case 0x50: // I-MMU regs
2881 {
2882 int reg = (addr >> 3) & 0xf;
2883 uint64_t oldreg;
2884
2885 oldreg = env->immuregs[reg];
2886 switch(reg) {
2887 case 0: // RO
2888 return;
2889 case 1: // Not in I-MMU
2890 case 2:
2891 return;
2892 case 3: // SFSR
2893 if ((val & 1) == 0)
2894 val = 0; // Clear SFSR
2895 env->immu.sfsr = val;
2896 break;
2897 case 4: // RO
2898 return;
2899 case 5: // TSB access
2900 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2901 PRIx64 "\n", env->immu.tsb, val);
2902 env->immu.tsb = val;
2903 break;
2904 case 6: // Tag access
2905 env->immu.tag_access = val;
2906 break;
2907 case 7:
2908 case 8:
2909 return;
2910 default:
2911 break;
2912 }
2913
2914 if (oldreg != env->immuregs[reg]) {
2915 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2916 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2917 }
2918 #ifdef DEBUG_MMU
2919 dump_mmu(env);
2920 #endif
2921 return;
2922 }
2923 case 0x54: // I-MMU data in
2924 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2925 return;
2926 case 0x55: // I-MMU data access
2927 {
2928 // TODO: auto demap
2929
2930 unsigned int i = (addr >> 3) & 0x3f;
2931
2932 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2933
2934 #ifdef DEBUG_MMU
2935 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2936 dump_mmu(env);
2937 #endif
2938 return;
2939 }
2940 case 0x57: // I-MMU demap
2941 demap_tlb(env->itlb, addr, "immu", env);
2942 return;
2943 case 0x58: // D-MMU regs
2944 {
2945 int reg = (addr >> 3) & 0xf;
2946 uint64_t oldreg;
2947
2948 oldreg = env->dmmuregs[reg];
2949 switch(reg) {
2950 case 0: // RO
2951 case 4:
2952 return;
2953 case 3: // SFSR
2954 if ((val & 1) == 0) {
2955 val = 0; // Clear SFSR, Fault address
2956 env->dmmu.sfar = 0;
2957 }
2958 env->dmmu.sfsr = val;
2959 break;
2960 case 1: // Primary context
2961 env->dmmu.mmu_primary_context = val;
2962 break;
2963 case 2: // Secondary context
2964 env->dmmu.mmu_secondary_context = val;
2965 break;
2966 case 5: // TSB access
2967 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2968 PRIx64 "\n", env->dmmu.tsb, val);
2969 env->dmmu.tsb = val;
2970 break;
2971 case 6: // Tag access
2972 env->dmmu.tag_access = val;
2973 break;
2974 case 7: // Virtual Watchpoint
2975 case 8: // Physical Watchpoint
2976 default:
2977 env->dmmuregs[reg] = val;
2978 break;
2979 }
2980
2981 if (oldreg != env->dmmuregs[reg]) {
2982 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2983 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2984 }
2985 #ifdef DEBUG_MMU
2986 dump_mmu(env);
2987 #endif
2988 return;
2989 }
2990 case 0x5c: // D-MMU data in
2991 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2992 return;
2993 case 0x5d: // D-MMU data access
2994 {
2995 unsigned int i = (addr >> 3) & 0x3f;
2996
2997 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2998
2999 #ifdef DEBUG_MMU
3000 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
3001 dump_mmu(env);
3002 #endif
3003 return;
3004 }
3005 case 0x5f: // D-MMU demap
3006 demap_tlb(env->dtlb, addr, "dmmu", env);
3007 return;
3008 case 0x49: // Interrupt data receive
3009 // XXX
3010 return;
3011 case 0x46: // D-cache data
3012 case 0x47: // D-cache tag access
3013 case 0x4b: // E-cache error enable
3014 case 0x4c: // E-cache asynchronous fault status
3015 case 0x4d: // E-cache asynchronous fault address
3016 case 0x4e: // E-cache tag data
3017 case 0x66: // I-cache instruction access
3018 case 0x67: // I-cache tag access
3019 case 0x6e: // I-cache predecode
3020 case 0x6f: // I-cache LRU etc.
3021 case 0x76: // E-cache tag
3022 case 0x7e: // E-cache tag
3023 return;
3024 case 0x51: // I-MMU 8k TSB pointer, RO
3025 case 0x52: // I-MMU 64k TSB pointer, RO
3026 case 0x56: // I-MMU tag read, RO
3027 case 0x59: // D-MMU 8k TSB pointer, RO
3028 case 0x5a: // D-MMU 64k TSB pointer, RO
3029 case 0x5b: // D-MMU data pointer, RO
3030 case 0x5e: // D-MMU tag read, RO
3031 case 0x48: // Interrupt dispatch, RO
3032 case 0x7f: // Incoming interrupt vector, RO
3033 case 0x82: // Primary no-fault, RO
3034 case 0x83: // Secondary no-fault, RO
3035 case 0x8a: // Primary no-fault LE, RO
3036 case 0x8b: // Secondary no-fault LE, RO
3037 default:
3038 do_unassigned_access(addr, 1, 0, 1, size);
3039 return;
3040 }
3041 }
3042 #endif /* CONFIG_USER_ONLY */
3043
3044 void helper_ldda_asi(target_ulong addr, int asi, int rd)
3045 {
3046 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
3047 || (cpu_has_hypervisor(env)
3048 && asi >= 0x30 && asi < 0x80
3049 && !(env->hpstate & HS_PRIV)))
3050 raise_exception(TT_PRIV_ACT);
3051
3052 switch (asi) {
3053 case 0x24: // Nucleus quad LDD 128 bit atomic
3054 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
3055 helper_check_align(addr, 0xf);
3056 if (rd == 0) {
3057 env->gregs[1] = ldq_kernel(addr + 8);
3058 if (asi == 0x2c)
3059 bswap64s(&env->gregs[1]);
3060 } else if (rd < 8) {
3061 env->gregs[rd] = ldq_kernel(addr);
3062 env->gregs[rd + 1] = ldq_kernel(addr + 8);
3063 if (asi == 0x2c) {
3064 bswap64s(&env->gregs[rd]);
3065 bswap64s(&env->gregs[rd + 1]);
3066 }
3067 } else {
3068 env->regwptr[rd] = ldq_kernel(addr);
3069 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
3070 if (asi == 0x2c) {
3071 bswap64s(&env->regwptr[rd]);
3072 bswap64s(&env->regwptr[rd + 1]);
3073 }
3074 }
3075 break;
3076 default:
3077 helper_check_align(addr, 0x3);
3078 if (rd == 0)
3079 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3080 else if (rd < 8) {
3081 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3082 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3083 } else {
3084 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3085 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3086 }
3087 break;
3088 }
3089 }
3090
3091 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3092 {
3093 unsigned int i;
3094 target_ulong val;
3095
3096 helper_check_align(addr, 3);
3097 switch (asi) {
3098 case 0xf0: // Block load primary
3099 case 0xf1: // Block load secondary
3100 case 0xf8: // Block load primary LE
3101 case 0xf9: // Block load secondary LE
3102 if (rd & 7) {
3103 raise_exception(TT_ILL_INSN);
3104 return;
3105 }
3106 helper_check_align(addr, 0x3f);
3107 for (i = 0; i < 16; i++) {
3108 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3109 0);
3110 addr += 4;
3111 }
3112
3113 return;
3114 default:
3115 break;
3116 }
3117
3118 val = helper_ld_asi(addr, asi, size, 0);
3119 switch(size) {
3120 default:
3121 case 4:
3122 *((uint32_t *)&env->fpr[rd]) = val;
3123 break;
3124 case 8:
3125 *((int64_t *)&DT0) = val;
3126 break;
3127 case 16:
3128 // XXX
3129 break;
3130 }
3131 }
3132
3133 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3134 {
3135 unsigned int i;
3136 target_ulong val = 0;
3137
3138 helper_check_align(addr, 3);
3139 switch (asi) {
3140 case 0xe0: // UA2007 Block commit store primary (cache flush)
3141 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3142 case 0xf0: // Block store primary
3143 case 0xf1: // Block store secondary
3144 case 0xf8: // Block store primary LE
3145 case 0xf9: // Block store secondary LE
3146 if (rd & 7) {
3147 raise_exception(TT_ILL_INSN);
3148 return;
3149 }
3150 helper_check_align(addr, 0x3f);
3151 for (i = 0; i < 16; i++) {
3152 val = *(uint32_t *)&env->fpr[rd++];
3153 helper_st_asi(addr, val, asi & 0x8f, 4);
3154 addr += 4;
3155 }
3156
3157 return;
3158 default:
3159 break;
3160 }
3161
3162 switch(size) {
3163 default:
3164 case 4:
3165 val = *((uint32_t *)&env->fpr[rd]);
3166 break;
3167 case 8:
3168 val = *((int64_t *)&DT0);
3169 break;
3170 case 16:
3171 // XXX
3172 break;
3173 }
3174 helper_st_asi(addr, val, asi, size);
3175 }
3176
3177 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3178 target_ulong val2, uint32_t asi)
3179 {
3180 target_ulong ret;
3181
3182 val2 &= 0xffffffffUL;
3183 ret = helper_ld_asi(addr, asi, 4, 0);
3184 ret &= 0xffffffffUL;
3185 if (val2 == ret)
3186 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3187 return ret;
3188 }
3189
3190 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3191 target_ulong val2, uint32_t asi)
3192 {
3193 target_ulong ret;
3194
3195 ret = helper_ld_asi(addr, asi, 8, 0);
3196 if (val2 == ret)
3197 helper_st_asi(addr, val1, asi, 8);
3198 return ret;
3199 }
3200 #endif /* TARGET_SPARC64 */
3201
3202 #ifndef TARGET_SPARC64
3203 void helper_rett(void)
3204 {
3205 unsigned int cwp;
3206
3207 if (env->psret == 1)
3208 raise_exception(TT_ILL_INSN);
3209
3210 env->psret = 1;
3211 cwp = cwp_inc(env->cwp + 1) ;
3212 if (env->wim & (1 << cwp)) {
3213 raise_exception(TT_WIN_UNF);
3214 }
3215 set_cwp(cwp);
3216 env->psrs = env->psrps;
3217 }
3218 #endif
3219
3220 target_ulong helper_udiv(target_ulong a, target_ulong b)
3221 {
3222 uint64_t x0;
3223 uint32_t x1;
3224
3225 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3226 x1 = b;
3227
3228 if (x1 == 0) {
3229 raise_exception(TT_DIV_ZERO);
3230 }
3231
3232 x0 = x0 / x1;
3233 if (x0 > 0xffffffff) {
3234 env->cc_src2 = 1;
3235 return 0xffffffff;
3236 } else {
3237 env->cc_src2 = 0;
3238 return x0;
3239 }
3240 }
3241
3242 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3243 {
3244 int64_t x0;
3245 int32_t x1;
3246
3247 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3248 x1 = b;
3249
3250 if (x1 == 0) {
3251 raise_exception(TT_DIV_ZERO);
3252 }
3253
3254 x0 = x0 / x1;
3255 if ((int32_t) x0 != x0) {
3256 env->cc_src2 = 1;
3257 return x0 < 0? 0x80000000: 0x7fffffff;
3258 } else {
3259 env->cc_src2 = 0;
3260 return x0;
3261 }
3262 }
3263
3264 void helper_stdf(target_ulong addr, int mem_idx)
3265 {
3266 helper_check_align(addr, 7);
3267 #if !defined(CONFIG_USER_ONLY)
3268 switch (mem_idx) {
3269 case 0:
3270 stfq_user(addr, DT0);
3271 break;
3272 case 1:
3273 stfq_kernel(addr, DT0);
3274 break;
3275 #ifdef TARGET_SPARC64
3276 case 2:
3277 stfq_hypv(addr, DT0);
3278 break;
3279 #endif
3280 default:
3281 break;
3282 }
3283 #else
3284 stfq_raw(address_mask(env, addr), DT0);
3285 #endif
3286 }
3287
3288 void helper_lddf(target_ulong addr, int mem_idx)
3289 {
3290 helper_check_align(addr, 7);
3291 #if !defined(CONFIG_USER_ONLY)
3292 switch (mem_idx) {
3293 case 0:
3294 DT0 = ldfq_user(addr);
3295 break;
3296 case 1:
3297 DT0 = ldfq_kernel(addr);
3298 break;
3299 #ifdef TARGET_SPARC64
3300 case 2:
3301 DT0 = ldfq_hypv(addr);
3302 break;
3303 #endif
3304 default:
3305 break;
3306 }
3307 #else
3308 DT0 = ldfq_raw(address_mask(env, addr));
3309 #endif
3310 }
3311
3312 void helper_ldqf(target_ulong addr, int mem_idx)
3313 {
3314 // XXX add 128 bit load
3315 CPU_QuadU u;
3316
3317 helper_check_align(addr, 7);
3318 #if !defined(CONFIG_USER_ONLY)
3319 switch (mem_idx) {
3320 case 0:
3321 u.ll.upper = ldq_user(addr);
3322 u.ll.lower = ldq_user(addr + 8);
3323 QT0 = u.q;
3324 break;
3325 case 1:
3326 u.ll.upper = ldq_kernel(addr);
3327 u.ll.lower = ldq_kernel(addr + 8);
3328 QT0 = u.q;
3329 break;
3330 #ifdef TARGET_SPARC64
3331 case 2:
3332 u.ll.upper = ldq_hypv(addr);
3333 u.ll.lower = ldq_hypv(addr + 8);
3334 QT0 = u.q;
3335 break;
3336 #endif
3337 default:
3338 break;
3339 }
3340 #else
3341 u.ll.upper = ldq_raw(address_mask(env, addr));
3342 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3343 QT0 = u.q;
3344 #endif
3345 }
3346
3347 void helper_stqf(target_ulong addr, int mem_idx)
3348 {
3349 // XXX add 128 bit store
3350 CPU_QuadU u;
3351
3352 helper_check_align(addr, 7);
3353 #if !defined(CONFIG_USER_ONLY)
3354 switch (mem_idx) {
3355 case 0:
3356 u.q = QT0;
3357 stq_user(addr, u.ll.upper);
3358 stq_user(addr + 8, u.ll.lower);
3359 break;
3360 case 1:
3361 u.q = QT0;
3362 stq_kernel(addr, u.ll.upper);
3363 stq_kernel(addr + 8, u.ll.lower);
3364 break;
3365 #ifdef TARGET_SPARC64
3366 case 2:
3367 u.q = QT0;
3368 stq_hypv(addr, u.ll.upper);
3369 stq_hypv(addr + 8, u.ll.lower);
3370 break;
3371 #endif
3372 default:
3373 break;
3374 }
3375 #else
3376 u.q = QT0;
3377 stq_raw(address_mask(env, addr), u.ll.upper);
3378 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3379 #endif
3380 }
3381
3382 static inline void set_fsr(void)
3383 {
3384 int rnd_mode;
3385
3386 switch (env->fsr & FSR_RD_MASK) {
3387 case FSR_RD_NEAREST:
3388 rnd_mode = float_round_nearest_even;
3389 break;
3390 default:
3391 case FSR_RD_ZERO:
3392 rnd_mode = float_round_to_zero;
3393 break;
3394 case FSR_RD_POS:
3395 rnd_mode = float_round_up;
3396 break;
3397 case FSR_RD_NEG:
3398 rnd_mode = float_round_down;
3399 break;
3400 }
3401 set_float_rounding_mode(rnd_mode, &env->fp_status);
3402 }
3403
3404 void helper_ldfsr(uint32_t new_fsr)
3405 {
3406 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3407 set_fsr();
3408 }
3409
3410 #ifdef TARGET_SPARC64
3411 void helper_ldxfsr(uint64_t new_fsr)
3412 {
3413 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3414 set_fsr();
3415 }
3416 #endif
3417
3418 void helper_debug(void)
3419 {
3420 env->exception_index = EXCP_DEBUG;
3421 cpu_loop_exit();
3422 }
3423
3424 #ifndef TARGET_SPARC64
3425 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3426 handling ? */
3427 void helper_save(void)
3428 {
3429 uint32_t cwp;
3430
3431 cwp = cwp_dec(env->cwp - 1);
3432 if (env->wim & (1 << cwp)) {
3433 raise_exception(TT_WIN_OVF);
3434 }
3435 set_cwp(cwp);
3436 }
3437
3438 void helper_restore(void)
3439 {
3440 uint32_t cwp;
3441
3442 cwp = cwp_inc(env->cwp + 1);
3443 if (env->wim & (1 << cwp)) {
3444 raise_exception(TT_WIN_UNF);
3445 }
3446 set_cwp(cwp);
3447 }
3448
3449 void helper_wrpsr(target_ulong new_psr)
3450 {
3451 if ((new_psr & PSR_CWP) >= env->nwindows) {
3452 raise_exception(TT_ILL_INSN);
3453 } else {
3454 cpu_put_psr(env, new_psr);
3455 }
3456 }
3457
3458 target_ulong helper_rdpsr(void)
3459 {
3460 return get_psr();
3461 }
3462
3463 #else
3464 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3465 handling ? */
3466 void helper_save(void)
3467 {
3468 uint32_t cwp;
3469
3470 cwp = cwp_dec(env->cwp - 1);
3471 if (env->cansave == 0) {
3472 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3473 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3474 ((env->wstate & 0x7) << 2)));
3475 } else {
3476 if (env->cleanwin - env->canrestore == 0) {
3477 // XXX Clean windows without trap
3478 raise_exception(TT_CLRWIN);
3479 } else {
3480 env->cansave--;
3481 env->canrestore++;
3482 set_cwp(cwp);
3483 }
3484 }
3485 }
3486
3487 void helper_restore(void)
3488 {
3489 uint32_t cwp;
3490
3491 cwp = cwp_inc(env->cwp + 1);
3492 if (env->canrestore == 0) {
3493 raise_exception(TT_FILL | (env->otherwin != 0 ?
3494 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3495 ((env->wstate & 0x7) << 2)));
3496 } else {
3497 env->cansave++;
3498 env->canrestore--;
3499 set_cwp(cwp);
3500 }
3501 }
3502
3503 void helper_flushw(void)
3504 {
3505 if (env->cansave != env->nwindows - 2) {
3506 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3507 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3508 ((env->wstate & 0x7) << 2)));
3509 }
3510 }
3511
3512 void helper_saved(void)
3513 {
3514 env->cansave++;
3515 if (env->otherwin == 0)
3516 env->canrestore--;
3517 else
3518 env->otherwin--;
3519 }
3520
3521 void helper_restored(void)
3522 {
3523 env->canrestore++;
3524 if (env->cleanwin < env->nwindows - 1)
3525 env->cleanwin++;
3526 if (env->otherwin == 0)
3527 env->cansave--;
3528 else
3529 env->otherwin--;
3530 }
3531
3532 static target_ulong get_ccr(void)
3533 {
3534 target_ulong psr;
3535
3536 psr = get_psr();
3537
3538 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3539 }
3540
3541 target_ulong cpu_get_ccr(CPUState *env1)
3542 {
3543 CPUState *saved_env;
3544 target_ulong ret;
3545
3546 saved_env = env;
3547 env = env1;
3548 ret = get_ccr();
3549 env = saved_env;
3550 return ret;
3551 }
3552
3553 static void put_ccr(target_ulong val)
3554 {
3555 target_ulong tmp = val;
3556
3557 env->xcc = (tmp >> 4) << 20;
3558 env->psr = (tmp & 0xf) << 20;
3559 CC_OP = CC_OP_FLAGS;
3560 }
3561
3562 void cpu_put_ccr(CPUState *env1, target_ulong val)
3563 {
3564 CPUState *saved_env;
3565
3566 saved_env = env;
3567 env = env1;
3568 put_ccr(val);
3569 env = saved_env;
3570 }
3571
3572 static target_ulong get_cwp64(void)
3573 {
3574 return env->nwindows - 1 - env->cwp;
3575 }
3576
3577 target_ulong cpu_get_cwp64(CPUState *env1)
3578 {
3579 CPUState *saved_env;
3580 target_ulong ret;
3581
3582 saved_env = env;
3583 env = env1;
3584 ret = get_cwp64();
3585 env = saved_env;
3586 return ret;
3587 }
3588
3589 static void put_cwp64(int cwp)
3590 {
3591 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3592 cwp %= env->nwindows;
3593 }
3594 set_cwp(env->nwindows - 1 - cwp);
3595 }
3596
3597 void cpu_put_cwp64(CPUState *env1, int cwp)
3598 {
3599 CPUState *saved_env;
3600
3601 saved_env = env;
3602 env = env1;
3603 put_cwp64(cwp);
3604 env = saved_env;
3605 }
3606
3607 target_ulong helper_rdccr(void)
3608 {
3609 return get_ccr();
3610 }
3611
3612 void helper_wrccr(target_ulong new_ccr)
3613 {
3614 put_ccr(new_ccr);
3615 }
3616
3617 // CWP handling is reversed in V9, but we still use the V8 register
3618 // order.
3619 target_ulong helper_rdcwp(void)
3620 {
3621 return get_cwp64();
3622 }
3623
3624 void helper_wrcwp(target_ulong new_cwp)
3625 {
3626 put_cwp64(new_cwp);
3627 }
3628
3629 // This function uses non-native bit order
3630 #define GET_FIELD(X, FROM, TO) \
3631 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3632
3633 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3634 #define GET_FIELD_SP(X, FROM, TO) \
3635 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3636
3637 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3638 {
3639 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3640 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3641 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3642 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3643 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3644 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3645 (((pixel_addr >> 55) & 1) << 4) |
3646 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3647 GET_FIELD_SP(pixel_addr, 11, 12);
3648 }
3649
3650 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3651 {
3652 uint64_t tmp;
3653
3654 tmp = addr + offset;
3655 env->gsr &= ~7ULL;
3656 env->gsr |= tmp & 7ULL;
3657 return tmp & ~7ULL;
3658 }
3659
3660 target_ulong helper_popc(target_ulong val)
3661 {
3662 return ctpop64(val);
3663 }
3664
3665 static inline uint64_t *get_gregset(uint32_t pstate)
3666 {
3667 switch (pstate) {
3668 default:
3669 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3670 pstate,
3671 (pstate & PS_IG) ? " IG" : "",
3672 (pstate & PS_MG) ? " MG" : "",
3673 (pstate & PS_AG) ? " AG" : "");
3674 /* pass through to normal set of global registers */
3675 case 0:
3676 return env->bgregs;
3677 case PS_AG:
3678 return env->agregs;
3679 case PS_MG:
3680 return env->mgregs;
3681 case PS_IG:
3682 return env->igregs;
3683 }
3684 }
3685
3686 static inline void change_pstate(uint32_t new_pstate)
3687 {
3688 uint32_t pstate_regs, new_pstate_regs;
3689 uint64_t *src, *dst;
3690
3691 if (env->def->features & CPU_FEATURE_GL) {
3692 // PS_AG is not implemented in this case
3693 new_pstate &= ~PS_AG;
3694 }
3695
3696 pstate_regs = env->pstate & 0xc01;
3697 new_pstate_regs = new_pstate & 0xc01;
3698
3699 if (new_pstate_regs != pstate_regs) {
3700 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3701 pstate_regs, new_pstate_regs);
3702 // Switch global register bank
3703 src = get_gregset(new_pstate_regs);
3704 dst = get_gregset(pstate_regs);
3705 memcpy32(dst, env->gregs);
3706 memcpy32(env->gregs, src);
3707 }
3708 else {
3709 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3710 new_pstate_regs);
3711 }
3712 env->pstate = new_pstate;
3713 }
3714
3715 void helper_wrpstate(target_ulong new_state)
3716 {
3717 change_pstate(new_state & 0xf3f);
3718
3719 #if !defined(CONFIG_USER_ONLY)
3720 if (cpu_interrupts_enabled(env)) {
3721 cpu_check_irqs(env);
3722 }
3723 #endif
3724 }
3725
3726 void helper_wrpil(target_ulong new_pil)
3727 {
3728 #if !defined(CONFIG_USER_ONLY)
3729 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3730 env->psrpil, (uint32_t)new_pil);
3731
3732 env->psrpil = new_pil;
3733
3734 if (cpu_interrupts_enabled(env)) {
3735 cpu_check_irqs(env);
3736 }
3737 #endif
3738 }
3739
3740 void helper_done(void)
3741 {
3742 trap_state* tsptr = cpu_tsptr(env);
3743
3744 env->pc = tsptr->tnpc;
3745 env->npc = tsptr->tnpc + 4;
3746 put_ccr(tsptr->tstate >> 32);
3747 env->asi = (tsptr->tstate >> 24) & 0xff;
3748 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3749 put_cwp64(tsptr->tstate & 0xff);
3750 env->tl--;
3751
3752 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3753
3754 #if !defined(CONFIG_USER_ONLY)
3755 if (cpu_interrupts_enabled(env)) {
3756 cpu_check_irqs(env);
3757 }
3758 #endif
3759 }
3760
3761 void helper_retry(void)
3762 {
3763 trap_state* tsptr = cpu_tsptr(env);
3764
3765 env->pc = tsptr->tpc;
3766 env->npc = tsptr->tnpc;
3767 put_ccr(tsptr->tstate >> 32);
3768 env->asi = (tsptr->tstate >> 24) & 0xff;
3769 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3770 put_cwp64(tsptr->tstate & 0xff);
3771 env->tl--;
3772
3773 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3774
3775 #if !defined(CONFIG_USER_ONLY)
3776 if (cpu_interrupts_enabled(env)) {
3777 cpu_check_irqs(env);
3778 }
3779 #endif
3780 }
3781
3782 static void do_modify_softint(const char* operation, uint32_t value)
3783 {
3784 if (env->softint != value) {
3785 env->softint = value;
3786 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3787 #if !defined(CONFIG_USER_ONLY)
3788 if (cpu_interrupts_enabled(env)) {
3789 cpu_check_irqs(env);
3790 }
3791 #endif
3792 }
3793 }
3794
3795 void helper_set_softint(uint64_t value)
3796 {
3797 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3798 }
3799
3800 void helper_clear_softint(uint64_t value)
3801 {
3802 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3803 }
3804
3805 void helper_write_softint(uint64_t value)
3806 {
3807 do_modify_softint("helper_write_softint", (uint32_t)value);
3808 }
3809 #endif
3810
3811 void helper_flush(target_ulong addr)
3812 {
3813 addr &= ~7;
3814 tb_invalidate_page_range(addr, addr + 8);
3815 }
3816
3817 #ifdef TARGET_SPARC64
3818 #ifdef DEBUG_PCALL
3819 static const char * const excp_names[0x80] = {
3820 [TT_TFAULT] = "Instruction Access Fault",
3821 [TT_TMISS] = "Instruction Access MMU Miss",
3822 [TT_CODE_ACCESS] = "Instruction Access Error",
3823 [TT_ILL_INSN] = "Illegal Instruction",
3824 [TT_PRIV_INSN] = "Privileged Instruction",
3825 [TT_NFPU_INSN] = "FPU Disabled",
3826 [TT_FP_EXCP] = "FPU Exception",
3827 [TT_TOVF] = "Tag Overflow",
3828 [TT_CLRWIN] = "Clean Windows",
3829 [TT_DIV_ZERO] = "Division By Zero",
3830 [TT_DFAULT] = "Data Access Fault",
3831 [TT_DMISS] = "Data Access MMU Miss",
3832 [TT_DATA_ACCESS] = "Data Access Error",
3833 [TT_DPROT] = "Data Protection Error",
3834 [TT_UNALIGNED] = "Unaligned Memory Access",
3835 [TT_PRIV_ACT] = "Privileged Action",
3836 [TT_EXTINT | 0x1] = "External Interrupt 1",
3837 [TT_EXTINT | 0x2] = "External Interrupt 2",
3838 [TT_EXTINT | 0x3] = "External Interrupt 3",
3839 [TT_EXTINT | 0x4] = "External Interrupt 4",
3840 [TT_EXTINT | 0x5] = "External Interrupt 5",
3841 [TT_EXTINT | 0x6] = "External Interrupt 6",
3842 [TT_EXTINT | 0x7] = "External Interrupt 7",
3843 [TT_EXTINT | 0x8] = "External Interrupt 8",
3844 [TT_EXTINT | 0x9] = "External Interrupt 9",
3845 [TT_EXTINT | 0xa] = "External Interrupt 10",
3846 [TT_EXTINT | 0xb] = "External Interrupt 11",
3847 [TT_EXTINT | 0xc] = "External Interrupt 12",
3848 [TT_EXTINT | 0xd] = "External Interrupt 13",
3849 [TT_EXTINT | 0xe] = "External Interrupt 14",
3850 [TT_EXTINT | 0xf] = "External Interrupt 15",
3851 };
3852 #endif
3853
3854 trap_state* cpu_tsptr(CPUState* env)
3855 {
3856 return &env->ts[env->tl & MAXTL_MASK];
3857 }
3858
3859 void do_interrupt(CPUState *env)
3860 {
3861 int intno = env->exception_index;
3862 trap_state* tsptr;
3863
3864 #ifdef DEBUG_PCALL
3865 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3866 static int count;
3867 const char *name;
3868
3869 if (intno < 0 || intno >= 0x180)
3870 name = "Unknown";
3871 else if (intno >= 0x100)
3872 name = "Trap Instruction";
3873 else if (intno >= 0xc0)
3874 name = "Window Fill";
3875 else if (intno >= 0x80)
3876 name = "Window Spill";
3877 else {
3878 name = excp_names[intno];
3879 if (!name)
3880 name = "Unknown";
3881 }
3882
3883 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3884 " SP=%016" PRIx64 "\n",
3885 count, name, intno,
3886 env->pc,
3887 env->npc, env->regwptr[6]);
3888 log_cpu_state(env, 0);
3889 #if 0
3890 {
3891 int i;
3892 uint8_t *ptr;
3893
3894 qemu_log(" code=");
3895 ptr = (uint8_t *)env->pc;
3896 for(i = 0; i < 16; i++) {
3897 qemu_log(" %02x", ldub(ptr + i));
3898 }
3899 qemu_log("\n");
3900 }
3901 #endif
3902 count++;
3903 }
3904 #endif
3905 #if !defined(CONFIG_USER_ONLY)
3906 if (env->tl >= env->maxtl) {
3907 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3908 " Error state", env->exception_index, env->tl, env->maxtl);
3909 return;
3910 }
3911 #endif
3912 if (env->tl < env->maxtl - 1) {
3913 env->tl++;
3914 } else {
3915 env->pstate |= PS_RED;
3916 if (env->tl < env->maxtl)
3917 env->tl++;
3918 }
3919 tsptr = cpu_tsptr(env);
3920
3921 tsptr->tstate = (get_ccr() << 32) |
3922 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3923 get_cwp64();
3924 tsptr->tpc = env->pc;
3925 tsptr->tnpc = env->npc;
3926 tsptr->tt = intno;
3927
3928 switch (intno) {
3929 case TT_IVEC:
3930 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3931 break;
3932 case TT_TFAULT:
3933 case TT_DFAULT:
3934 case TT_TMISS ... TT_TMISS + 3:
3935 case TT_DMISS ... TT_DMISS + 3:
3936 case TT_DPROT ... TT_DPROT + 3:
3937 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3938 break;
3939 default:
3940 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3941 break;
3942 }
3943
3944 if (intno == TT_CLRWIN) {
3945 set_cwp(cwp_dec(env->cwp - 1));
3946 } else if ((intno & 0x1c0) == TT_SPILL) {
3947 set_cwp(cwp_dec(env->cwp - env->cansave - 2));
3948 } else if ((intno & 0x1c0) == TT_FILL) {
3949 set_cwp(cwp_inc(env->cwp + 1));
3950 }
3951 env->tbr &= ~0x7fffULL;
3952 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3953 env->pc = env->tbr;
3954 env->npc = env->pc + 4;
3955 env->exception_index = -1;
3956 }
3957 #else
3958 #ifdef DEBUG_PCALL
3959 static const char * const excp_names[0x80] = {
3960 [TT_TFAULT] = "Instruction Access Fault",
3961 [TT_ILL_INSN] = "Illegal Instruction",
3962 [TT_PRIV_INSN] = "Privileged Instruction",
3963 [TT_NFPU_INSN] = "FPU Disabled",
3964 [TT_WIN_OVF] = "Window Overflow",
3965 [TT_WIN_UNF] = "Window Underflow",
3966 [TT_UNALIGNED] = "Unaligned Memory Access",
3967 [TT_FP_EXCP] = "FPU Exception",
3968 [TT_DFAULT] = "Data Access Fault",
3969 [TT_TOVF] = "Tag Overflow",
3970 [TT_EXTINT | 0x1] = "External Interrupt 1",
3971 [TT_EXTINT | 0x2] = "External Interrupt 2",
3972 [TT_EXTINT | 0x3] = "External Interrupt 3",
3973 [TT_EXTINT | 0x4] = "External Interrupt 4",
3974 [TT_EXTINT | 0x5] = "External Interrupt 5",
3975 [TT_EXTINT | 0x6] = "External Interrupt 6",
3976 [TT_EXTINT | 0x7] = "External Interrupt 7",
3977 [TT_EXTINT | 0x8] = "External Interrupt 8",
3978 [TT_EXTINT | 0x9] = "External Interrupt 9",
3979 [TT_EXTINT | 0xa] = "External Interrupt 10",
3980 [TT_EXTINT | 0xb] = "External Interrupt 11",
3981 [TT_EXTINT | 0xc] = "External Interrupt 12",
3982 [TT_EXTINT | 0xd] = "External Interrupt 13",
3983 [TT_EXTINT | 0xe] = "External Interrupt 14",
3984 [TT_EXTINT | 0xf] = "External Interrupt 15",
3985 [TT_TOVF] = "Tag Overflow",
3986 [TT_CODE_ACCESS] = "Instruction Access Error",
3987 [TT_DATA_ACCESS] = "Data Access Error",
3988 [TT_DIV_ZERO] = "Division By Zero",
3989 [TT_NCP_INSN] = "Coprocessor Disabled",
3990 };
3991 #endif
3992
3993 void do_interrupt(CPUState *env)
3994 {
3995 int cwp, intno = env->exception_index;
3996
3997 #ifdef DEBUG_PCALL
3998 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3999 static int count;
4000 const char *name;
4001
4002 if (intno < 0 || intno >= 0x100)
4003 name = "Unknown";
4004 else if (intno >= 0x80)
4005 name = "Trap Instruction";
4006 else {
4007 name = excp_names[intno];
4008 if (!name)
4009 name = "Unknown";
4010 }
4011
4012 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
4013 count, name, intno,
4014 env->pc,
4015 env->npc, env->regwptr[6]);
4016 log_cpu_state(env, 0);
4017 #if 0
4018 {
4019 int i;
4020 uint8_t *ptr;
4021
4022 qemu_log(" code=");
4023 ptr = (uint8_t *)env->pc;
4024 for(i = 0; i < 16; i++) {
4025 qemu_log(" %02x", ldub(ptr + i));
4026 }
4027 qemu_log("\n");
4028 }
4029 #endif
4030 count++;
4031 }
4032 #endif
4033 #if !defined(CONFIG_USER_ONLY)
4034 if (env->psret == 0) {
4035 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
4036 env->exception_index);
4037 return;
4038 }
4039 #endif
4040 env->psret = 0;
4041 cwp = cwp_dec(env->cwp - 1);
4042 set_cwp(cwp);
4043 env->regwptr[9] = env->pc;
4044 env->regwptr[10] = env->npc;
4045 env->psrps = env->psrs;
4046 env->psrs = 1;
4047 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
4048 env->pc = env->tbr;
4049 env->npc = env->pc + 4;
4050 env->exception_index = -1;
4051 }
4052 #endif
4053
4054 #if !defined(CONFIG_USER_ONLY)
4055
4056 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4057 void *retaddr);
4058
4059 #define MMUSUFFIX _mmu
4060 #define ALIGNED_ONLY
4061
4062 #define SHIFT 0
4063 #include "softmmu_template.h"
4064
4065 #define SHIFT 1
4066 #include "softmmu_template.h"
4067
4068 #define SHIFT 2
4069 #include "softmmu_template.h"
4070
4071 #define SHIFT 3
4072 #include "softmmu_template.h"
4073
4074 /* XXX: make it generic ? */
4075 static void cpu_restore_state2(void *retaddr)
4076 {
4077 TranslationBlock *tb;
4078 unsigned long pc;
4079
4080 if (retaddr) {
4081 /* now we have a real cpu fault */
4082 pc = (unsigned long)retaddr;
4083 tb = tb_find_pc(pc);
4084 if (tb) {
4085 /* the PC is inside the translated code. It means that we have
4086 a virtual CPU fault */
4087 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4088 }
4089 }
4090 }
4091
4092 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4093 void *retaddr)
4094 {
4095 #ifdef DEBUG_UNALIGNED
4096 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4097 "\n", addr, env->pc);
4098 #endif
4099 cpu_restore_state2(retaddr);
4100 raise_exception(TT_UNALIGNED);
4101 }
4102
4103 /* try to fill the TLB and return an exception if error. If retaddr is
4104 NULL, it means that the function was called in C code (i.e. not
4105 from generated code or from helper.c) */
4106 /* XXX: fix it to restore all registers */
4107 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4108 {
4109 int ret;
4110 CPUState *saved_env;
4111
4112 /* XXX: hack to restore env in all cases, even if not called from
4113 generated code */
4114 saved_env = env;
4115 env = cpu_single_env;
4116
4117 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4118 if (ret) {
4119 cpu_restore_state2(retaddr);
4120 cpu_loop_exit();
4121 }
4122 env = saved_env;
4123 }
4124
4125 #endif /* !CONFIG_USER_ONLY */
4126
4127 #ifndef TARGET_SPARC64
4128 #if !defined(CONFIG_USER_ONLY)
4129 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4130 int is_asi, int size)
4131 {
4132 CPUState *saved_env;
4133 int fault_type;
4134
4135 /* XXX: hack to restore env in all cases, even if not called from
4136 generated code */
4137 saved_env = env;
4138 env = cpu_single_env;
4139 #ifdef DEBUG_UNASSIGNED
4140 if (is_asi)
4141 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4142 " asi 0x%02x from " TARGET_FMT_lx "\n",
4143 is_exec ? "exec" : is_write ? "write" : "read", size,
4144 size == 1 ? "" : "s", addr, is_asi, env->pc);
4145 else
4146 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4147 " from " TARGET_FMT_lx "\n",
4148 is_exec ? "exec" : is_write ? "write" : "read", size,
4149 size == 1 ? "" : "s", addr, env->pc);
4150 #endif
4151 /* Don't overwrite translation and access faults */
4152 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4153 if ((fault_type > 4) || (fault_type == 0)) {
4154 env->mmuregs[3] = 0; /* Fault status register */
4155 if (is_asi)
4156 env->mmuregs[3] |= 1 << 16;
4157 if (env->psrs)
4158 env->mmuregs[3] |= 1 << 5;
4159 if (is_exec)
4160 env->mmuregs[3] |= 1 << 6;
4161 if (is_write)
4162 env->mmuregs[3] |= 1 << 7;
4163 env->mmuregs[3] |= (5 << 2) | 2;
4164 /* SuperSPARC will never place instruction fault addresses in the FAR */
4165 if (!is_exec) {
4166 env->mmuregs[4] = addr; /* Fault address register */
4167 }
4168 }
4169 /* overflow (same type fault was not read before another fault) */
4170 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4171 env->mmuregs[3] |= 1;
4172 }
4173
4174 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4175 if (is_exec)
4176 raise_exception(TT_CODE_ACCESS);
4177 else
4178 raise_exception(TT_DATA_ACCESS);
4179 }
4180
4181 /* flush neverland mappings created during no-fault mode,
4182 so the sequential MMU faults report proper fault types */
4183 if (env->mmuregs[0] & MMU_NF) {
4184 tlb_flush(env, 1);
4185 }
4186
4187 env = saved_env;
4188 }
4189 #endif
4190 #else
4191 #if defined(CONFIG_USER_ONLY)
4192 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4193 int is_asi, int size)
4194 #else
4195 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4196 int is_asi, int size)
4197 #endif
4198 {
4199 CPUState *saved_env;
4200
4201 /* XXX: hack to restore env in all cases, even if not called from
4202 generated code */
4203 saved_env = env;
4204 env = cpu_single_env;
4205
4206 #ifdef DEBUG_UNASSIGNED
4207 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4208 "\n", addr, env->pc);
4209 #endif
4210
4211 if (is_exec)
4212 raise_exception(TT_CODE_ACCESS);
4213 else
4214 raise_exception(TT_DATA_ACCESS);
4215
4216 env = saved_env;
4217 }
4218 #endif
4219
4220
4221 #ifdef TARGET_SPARC64
4222 void helper_tick_set_count(void *opaque, uint64_t count)
4223 {
4224 #if !defined(CONFIG_USER_ONLY)
4225 cpu_tick_set_count(opaque, count);
4226 #endif
4227 }
4228
4229 uint64_t helper_tick_get_count(void *opaque)
4230 {
4231 #if !defined(CONFIG_USER_ONLY)
4232 return cpu_tick_get_count(opaque);
4233 #else
4234 return 0;
4235 #endif
4236 }
4237
4238 void helper_tick_set_limit(void *opaque, uint64_t limit)
4239 {
4240 #if !defined(CONFIG_USER_ONLY)
4241 cpu_tick_set_limit(opaque, limit);
4242 #endif
4243 }
4244 #endif