]> git.proxmox.com Git - qemu.git/blob - target-sparc/op_helper.c
target-sparc: Fix compilation with --enable-debug.
[qemu.git] / target-sparc / op_helper.c
1 #include "exec.h"
2 #include "host-utils.h"
3 #include "helper.h"
4
5 //#define DEBUG_MMU
6 //#define DEBUG_MXCC
7 //#define DEBUG_UNALIGNED
8 //#define DEBUG_UNASSIGNED
9 //#define DEBUG_ASI
10 //#define DEBUG_PCALL
11 //#define DEBUG_PSTATE
12
13 #ifdef DEBUG_MMU
14 #define DPRINTF_MMU(fmt, ...) \
15 do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0)
16 #else
17 #define DPRINTF_MMU(fmt, ...) do {} while (0)
18 #endif
19
20 #ifdef DEBUG_MXCC
21 #define DPRINTF_MXCC(fmt, ...) \
22 do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0)
23 #else
24 #define DPRINTF_MXCC(fmt, ...) do {} while (0)
25 #endif
26
27 #ifdef DEBUG_ASI
28 #define DPRINTF_ASI(fmt, ...) \
29 do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0)
30 #endif
31
32 #ifdef DEBUG_PSTATE
33 #define DPRINTF_PSTATE(fmt, ...) \
34 do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0)
35 #else
36 #define DPRINTF_PSTATE(fmt, ...) do {} while (0)
37 #endif
38
39 #ifdef TARGET_SPARC64
40 #ifndef TARGET_ABI32
41 #define AM_CHECK(env1) ((env1)->pstate & PS_AM)
42 #else
43 #define AM_CHECK(env1) (1)
44 #endif
45 #endif
46
47 #define DT0 (env->dt0)
48 #define DT1 (env->dt1)
49 #define QT0 (env->qt0)
50 #define QT1 (env->qt1)
51
52 #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64)
53 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
54 int is_asi, int size);
55 #endif
56
57 #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
58 // Calculates TSB pointer value for fault page size 8k or 64k
59 static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register,
60 uint64_t tag_access_register,
61 int page_size)
62 {
63 uint64_t tsb_base = tsb_register & ~0x1fffULL;
64 int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0;
65 int tsb_size = tsb_register & 0xf;
66
67 // discard lower 13 bits which hold tag access context
68 uint64_t tag_access_va = tag_access_register & ~0x1fffULL;
69
70 // now reorder bits
71 uint64_t tsb_base_mask = ~0x1fffULL;
72 uint64_t va = tag_access_va;
73
74 // move va bits to correct position
75 if (page_size == 8*1024) {
76 va >>= 9;
77 } else if (page_size == 64*1024) {
78 va >>= 12;
79 }
80
81 if (tsb_size) {
82 tsb_base_mask <<= tsb_size;
83 }
84
85 // calculate tsb_base mask and adjust va if split is in use
86 if (tsb_split) {
87 if (page_size == 8*1024) {
88 va &= ~(1ULL << (13 + tsb_size));
89 } else if (page_size == 64*1024) {
90 va |= (1ULL << (13 + tsb_size));
91 }
92 tsb_base_mask <<= 1;
93 }
94
95 return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL;
96 }
97
98 // Calculates tag target register value by reordering bits
99 // in tag access register
100 static uint64_t ultrasparc_tag_target(uint64_t tag_access_register)
101 {
102 return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22);
103 }
104
105 static void replace_tlb_entry(SparcTLBEntry *tlb,
106 uint64_t tlb_tag, uint64_t tlb_tte,
107 CPUState *env1)
108 {
109 target_ulong mask, size, va, offset;
110
111 // flush page range if translation is valid
112 if (TTE_IS_VALID(tlb->tte)) {
113
114 mask = 0xffffffffffffe000ULL;
115 mask <<= 3 * ((tlb->tte >> 61) & 3);
116 size = ~mask + 1;
117
118 va = tlb->tag & mask;
119
120 for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) {
121 tlb_flush_page(env1, va + offset);
122 }
123 }
124
125 tlb->tag = tlb_tag;
126 tlb->tte = tlb_tte;
127 }
128
129 static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr,
130 const char* strmmu, CPUState *env1)
131 {
132 unsigned int i;
133 target_ulong mask;
134 uint64_t context;
135
136 int is_demap_context = (demap_addr >> 6) & 1;
137
138 // demap context
139 switch ((demap_addr >> 4) & 3) {
140 case 0: // primary
141 context = env1->dmmu.mmu_primary_context;
142 break;
143 case 1: // secondary
144 context = env1->dmmu.mmu_secondary_context;
145 break;
146 case 2: // nucleus
147 context = 0;
148 break;
149 case 3: // reserved
150 default:
151 return;
152 }
153
154 for (i = 0; i < 64; i++) {
155 if (TTE_IS_VALID(tlb[i].tte)) {
156
157 if (is_demap_context) {
158 // will remove non-global entries matching context value
159 if (TTE_IS_GLOBAL(tlb[i].tte) ||
160 !tlb_compare_context(&tlb[i], context)) {
161 continue;
162 }
163 } else {
164 // demap page
165 // will remove any entry matching VA
166 mask = 0xffffffffffffe000ULL;
167 mask <<= 3 * ((tlb[i].tte >> 61) & 3);
168
169 if (!compare_masked(demap_addr, tlb[i].tag, mask)) {
170 continue;
171 }
172
173 // entry should be global or matching context value
174 if (!TTE_IS_GLOBAL(tlb[i].tte) &&
175 !tlb_compare_context(&tlb[i], context)) {
176 continue;
177 }
178 }
179
180 replace_tlb_entry(&tlb[i], 0, 0, env1);
181 #ifdef DEBUG_MMU
182 DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i);
183 dump_mmu(env1);
184 #endif
185 }
186 }
187 }
188
189 static void replace_tlb_1bit_lru(SparcTLBEntry *tlb,
190 uint64_t tlb_tag, uint64_t tlb_tte,
191 const char* strmmu, CPUState *env1)
192 {
193 unsigned int i, replace_used;
194
195 // Try replacing invalid entry
196 for (i = 0; i < 64; i++) {
197 if (!TTE_IS_VALID(tlb[i].tte)) {
198 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
199 #ifdef DEBUG_MMU
200 DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i);
201 dump_mmu(env1);
202 #endif
203 return;
204 }
205 }
206
207 // All entries are valid, try replacing unlocked entry
208
209 for (replace_used = 0; replace_used < 2; ++replace_used) {
210
211 // Used entries are not replaced on first pass
212
213 for (i = 0; i < 64; i++) {
214 if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) {
215
216 replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1);
217 #ifdef DEBUG_MMU
218 DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n",
219 strmmu, (replace_used?"used":"unused"), i);
220 dump_mmu(env1);
221 #endif
222 return;
223 }
224 }
225
226 // Now reset used bit and search for unused entries again
227
228 for (i = 0; i < 64; i++) {
229 TTE_SET_UNUSED(tlb[i].tte);
230 }
231 }
232
233 #ifdef DEBUG_MMU
234 DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu);
235 #endif
236 // error state?
237 }
238
239 #endif
240
241 static inline target_ulong address_mask(CPUState *env1, target_ulong addr)
242 {
243 #ifdef TARGET_SPARC64
244 if (AM_CHECK(env1))
245 addr &= 0xffffffffULL;
246 #endif
247 return addr;
248 }
249
250 static void raise_exception(int tt)
251 {
252 env->exception_index = tt;
253 cpu_loop_exit();
254 }
255
256 void HELPER(raise_exception)(int tt)
257 {
258 raise_exception(tt);
259 }
260
261 void helper_check_align(target_ulong addr, uint32_t align)
262 {
263 if (addr & align) {
264 #ifdef DEBUG_UNALIGNED
265 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
266 "\n", addr, env->pc);
267 #endif
268 raise_exception(TT_UNALIGNED);
269 }
270 }
271
272 #define F_HELPER(name, p) void helper_f##name##p(void)
273
274 #define F_BINOP(name) \
275 float32 helper_f ## name ## s (float32 src1, float32 src2) \
276 { \
277 return float32_ ## name (src1, src2, &env->fp_status); \
278 } \
279 F_HELPER(name, d) \
280 { \
281 DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \
282 } \
283 F_HELPER(name, q) \
284 { \
285 QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \
286 }
287
288 F_BINOP(add);
289 F_BINOP(sub);
290 F_BINOP(mul);
291 F_BINOP(div);
292 #undef F_BINOP
293
294 void helper_fsmuld(float32 src1, float32 src2)
295 {
296 DT0 = float64_mul(float32_to_float64(src1, &env->fp_status),
297 float32_to_float64(src2, &env->fp_status),
298 &env->fp_status);
299 }
300
301 void helper_fdmulq(void)
302 {
303 QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status),
304 float64_to_float128(DT1, &env->fp_status),
305 &env->fp_status);
306 }
307
308 float32 helper_fnegs(float32 src)
309 {
310 return float32_chs(src);
311 }
312
313 #ifdef TARGET_SPARC64
314 F_HELPER(neg, d)
315 {
316 DT0 = float64_chs(DT1);
317 }
318
319 F_HELPER(neg, q)
320 {
321 QT0 = float128_chs(QT1);
322 }
323 #endif
324
325 /* Integer to float conversion. */
326 float32 helper_fitos(int32_t src)
327 {
328 return int32_to_float32(src, &env->fp_status);
329 }
330
331 void helper_fitod(int32_t src)
332 {
333 DT0 = int32_to_float64(src, &env->fp_status);
334 }
335
336 void helper_fitoq(int32_t src)
337 {
338 QT0 = int32_to_float128(src, &env->fp_status);
339 }
340
341 #ifdef TARGET_SPARC64
342 float32 helper_fxtos(void)
343 {
344 return int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
345 }
346
347 F_HELPER(xto, d)
348 {
349 DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
350 }
351
352 F_HELPER(xto, q)
353 {
354 QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status);
355 }
356 #endif
357 #undef F_HELPER
358
359 /* floating point conversion */
360 float32 helper_fdtos(void)
361 {
362 return float64_to_float32(DT1, &env->fp_status);
363 }
364
365 void helper_fstod(float32 src)
366 {
367 DT0 = float32_to_float64(src, &env->fp_status);
368 }
369
370 float32 helper_fqtos(void)
371 {
372 return float128_to_float32(QT1, &env->fp_status);
373 }
374
375 void helper_fstoq(float32 src)
376 {
377 QT0 = float32_to_float128(src, &env->fp_status);
378 }
379
380 void helper_fqtod(void)
381 {
382 DT0 = float128_to_float64(QT1, &env->fp_status);
383 }
384
385 void helper_fdtoq(void)
386 {
387 QT0 = float64_to_float128(DT1, &env->fp_status);
388 }
389
390 /* Float to integer conversion. */
391 int32_t helper_fstoi(float32 src)
392 {
393 return float32_to_int32_round_to_zero(src, &env->fp_status);
394 }
395
396 int32_t helper_fdtoi(void)
397 {
398 return float64_to_int32_round_to_zero(DT1, &env->fp_status);
399 }
400
401 int32_t helper_fqtoi(void)
402 {
403 return float128_to_int32_round_to_zero(QT1, &env->fp_status);
404 }
405
406 #ifdef TARGET_SPARC64
407 void helper_fstox(float32 src)
408 {
409 *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status);
410 }
411
412 void helper_fdtox(void)
413 {
414 *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status);
415 }
416
417 void helper_fqtox(void)
418 {
419 *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status);
420 }
421
422 void helper_faligndata(void)
423 {
424 uint64_t tmp;
425
426 tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8);
427 /* on many architectures a shift of 64 does nothing */
428 if ((env->gsr & 7) != 0) {
429 tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8);
430 }
431 *((uint64_t *)&DT0) = tmp;
432 }
433
434 #ifdef HOST_WORDS_BIGENDIAN
435 #define VIS_B64(n) b[7 - (n)]
436 #define VIS_W64(n) w[3 - (n)]
437 #define VIS_SW64(n) sw[3 - (n)]
438 #define VIS_L64(n) l[1 - (n)]
439 #define VIS_B32(n) b[3 - (n)]
440 #define VIS_W32(n) w[1 - (n)]
441 #else
442 #define VIS_B64(n) b[n]
443 #define VIS_W64(n) w[n]
444 #define VIS_SW64(n) sw[n]
445 #define VIS_L64(n) l[n]
446 #define VIS_B32(n) b[n]
447 #define VIS_W32(n) w[n]
448 #endif
449
450 typedef union {
451 uint8_t b[8];
452 uint16_t w[4];
453 int16_t sw[4];
454 uint32_t l[2];
455 float64 d;
456 } vis64;
457
458 typedef union {
459 uint8_t b[4];
460 uint16_t w[2];
461 uint32_t l;
462 float32 f;
463 } vis32;
464
465 void helper_fpmerge(void)
466 {
467 vis64 s, d;
468
469 s.d = DT0;
470 d.d = DT1;
471
472 // Reverse calculation order to handle overlap
473 d.VIS_B64(7) = s.VIS_B64(3);
474 d.VIS_B64(6) = d.VIS_B64(3);
475 d.VIS_B64(5) = s.VIS_B64(2);
476 d.VIS_B64(4) = d.VIS_B64(2);
477 d.VIS_B64(3) = s.VIS_B64(1);
478 d.VIS_B64(2) = d.VIS_B64(1);
479 d.VIS_B64(1) = s.VIS_B64(0);
480 //d.VIS_B64(0) = d.VIS_B64(0);
481
482 DT0 = d.d;
483 }
484
485 void helper_fmul8x16(void)
486 {
487 vis64 s, d;
488 uint32_t tmp;
489
490 s.d = DT0;
491 d.d = DT1;
492
493 #define PMUL(r) \
494 tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \
495 if ((tmp & 0xff) > 0x7f) \
496 tmp += 0x100; \
497 d.VIS_W64(r) = tmp >> 8;
498
499 PMUL(0);
500 PMUL(1);
501 PMUL(2);
502 PMUL(3);
503 #undef PMUL
504
505 DT0 = d.d;
506 }
507
508 void helper_fmul8x16al(void)
509 {
510 vis64 s, d;
511 uint32_t tmp;
512
513 s.d = DT0;
514 d.d = DT1;
515
516 #define PMUL(r) \
517 tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \
518 if ((tmp & 0xff) > 0x7f) \
519 tmp += 0x100; \
520 d.VIS_W64(r) = tmp >> 8;
521
522 PMUL(0);
523 PMUL(1);
524 PMUL(2);
525 PMUL(3);
526 #undef PMUL
527
528 DT0 = d.d;
529 }
530
531 void helper_fmul8x16au(void)
532 {
533 vis64 s, d;
534 uint32_t tmp;
535
536 s.d = DT0;
537 d.d = DT1;
538
539 #define PMUL(r) \
540 tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \
541 if ((tmp & 0xff) > 0x7f) \
542 tmp += 0x100; \
543 d.VIS_W64(r) = tmp >> 8;
544
545 PMUL(0);
546 PMUL(1);
547 PMUL(2);
548 PMUL(3);
549 #undef PMUL
550
551 DT0 = d.d;
552 }
553
554 void helper_fmul8sux16(void)
555 {
556 vis64 s, d;
557 uint32_t tmp;
558
559 s.d = DT0;
560 d.d = DT1;
561
562 #define PMUL(r) \
563 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
564 if ((tmp & 0xff) > 0x7f) \
565 tmp += 0x100; \
566 d.VIS_W64(r) = tmp >> 8;
567
568 PMUL(0);
569 PMUL(1);
570 PMUL(2);
571 PMUL(3);
572 #undef PMUL
573
574 DT0 = d.d;
575 }
576
577 void helper_fmul8ulx16(void)
578 {
579 vis64 s, d;
580 uint32_t tmp;
581
582 s.d = DT0;
583 d.d = DT1;
584
585 #define PMUL(r) \
586 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
587 if ((tmp & 0xff) > 0x7f) \
588 tmp += 0x100; \
589 d.VIS_W64(r) = tmp >> 8;
590
591 PMUL(0);
592 PMUL(1);
593 PMUL(2);
594 PMUL(3);
595 #undef PMUL
596
597 DT0 = d.d;
598 }
599
600 void helper_fmuld8sux16(void)
601 {
602 vis64 s, d;
603 uint32_t tmp;
604
605 s.d = DT0;
606 d.d = DT1;
607
608 #define PMUL(r) \
609 tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \
610 if ((tmp & 0xff) > 0x7f) \
611 tmp += 0x100; \
612 d.VIS_L64(r) = tmp;
613
614 // Reverse calculation order to handle overlap
615 PMUL(1);
616 PMUL(0);
617 #undef PMUL
618
619 DT0 = d.d;
620 }
621
622 void helper_fmuld8ulx16(void)
623 {
624 vis64 s, d;
625 uint32_t tmp;
626
627 s.d = DT0;
628 d.d = DT1;
629
630 #define PMUL(r) \
631 tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \
632 if ((tmp & 0xff) > 0x7f) \
633 tmp += 0x100; \
634 d.VIS_L64(r) = tmp;
635
636 // Reverse calculation order to handle overlap
637 PMUL(1);
638 PMUL(0);
639 #undef PMUL
640
641 DT0 = d.d;
642 }
643
644 void helper_fexpand(void)
645 {
646 vis32 s;
647 vis64 d;
648
649 s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff);
650 d.d = DT1;
651 d.VIS_W64(0) = s.VIS_B32(0) << 4;
652 d.VIS_W64(1) = s.VIS_B32(1) << 4;
653 d.VIS_W64(2) = s.VIS_B32(2) << 4;
654 d.VIS_W64(3) = s.VIS_B32(3) << 4;
655
656 DT0 = d.d;
657 }
658
659 #define VIS_HELPER(name, F) \
660 void name##16(void) \
661 { \
662 vis64 s, d; \
663 \
664 s.d = DT0; \
665 d.d = DT1; \
666 \
667 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \
668 d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \
669 d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \
670 d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \
671 \
672 DT0 = d.d; \
673 } \
674 \
675 uint32_t name##16s(uint32_t src1, uint32_t src2) \
676 { \
677 vis32 s, d; \
678 \
679 s.l = src1; \
680 d.l = src2; \
681 \
682 d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \
683 d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \
684 \
685 return d.l; \
686 } \
687 \
688 void name##32(void) \
689 { \
690 vis64 s, d; \
691 \
692 s.d = DT0; \
693 d.d = DT1; \
694 \
695 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \
696 d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \
697 \
698 DT0 = d.d; \
699 } \
700 \
701 uint32_t name##32s(uint32_t src1, uint32_t src2) \
702 { \
703 vis32 s, d; \
704 \
705 s.l = src1; \
706 d.l = src2; \
707 \
708 d.l = F(d.l, s.l); \
709 \
710 return d.l; \
711 }
712
713 #define FADD(a, b) ((a) + (b))
714 #define FSUB(a, b) ((a) - (b))
715 VIS_HELPER(helper_fpadd, FADD)
716 VIS_HELPER(helper_fpsub, FSUB)
717
718 #define VIS_CMPHELPER(name, F) \
719 void name##16(void) \
720 { \
721 vis64 s, d; \
722 \
723 s.d = DT0; \
724 d.d = DT1; \
725 \
726 d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \
727 d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \
728 d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \
729 d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \
730 \
731 DT0 = d.d; \
732 } \
733 \
734 void name##32(void) \
735 { \
736 vis64 s, d; \
737 \
738 s.d = DT0; \
739 d.d = DT1; \
740 \
741 d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \
742 d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \
743 \
744 DT0 = d.d; \
745 }
746
747 #define FCMPGT(a, b) ((a) > (b))
748 #define FCMPEQ(a, b) ((a) == (b))
749 #define FCMPLE(a, b) ((a) <= (b))
750 #define FCMPNE(a, b) ((a) != (b))
751
752 VIS_CMPHELPER(helper_fcmpgt, FCMPGT)
753 VIS_CMPHELPER(helper_fcmpeq, FCMPEQ)
754 VIS_CMPHELPER(helper_fcmple, FCMPLE)
755 VIS_CMPHELPER(helper_fcmpne, FCMPNE)
756 #endif
757
758 void helper_check_ieee_exceptions(void)
759 {
760 target_ulong status;
761
762 status = get_float_exception_flags(&env->fp_status);
763 if (status) {
764 /* Copy IEEE 754 flags into FSR */
765 if (status & float_flag_invalid)
766 env->fsr |= FSR_NVC;
767 if (status & float_flag_overflow)
768 env->fsr |= FSR_OFC;
769 if (status & float_flag_underflow)
770 env->fsr |= FSR_UFC;
771 if (status & float_flag_divbyzero)
772 env->fsr |= FSR_DZC;
773 if (status & float_flag_inexact)
774 env->fsr |= FSR_NXC;
775
776 if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
777 /* Unmasked exception, generate a trap */
778 env->fsr |= FSR_FTT_IEEE_EXCP;
779 raise_exception(TT_FP_EXCP);
780 } else {
781 /* Accumulate exceptions */
782 env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
783 }
784 }
785 }
786
787 void helper_clear_float_exceptions(void)
788 {
789 set_float_exception_flags(0, &env->fp_status);
790 }
791
792 float32 helper_fabss(float32 src)
793 {
794 return float32_abs(src);
795 }
796
797 #ifdef TARGET_SPARC64
798 void helper_fabsd(void)
799 {
800 DT0 = float64_abs(DT1);
801 }
802
803 void helper_fabsq(void)
804 {
805 QT0 = float128_abs(QT1);
806 }
807 #endif
808
809 float32 helper_fsqrts(float32 src)
810 {
811 return float32_sqrt(src, &env->fp_status);
812 }
813
814 void helper_fsqrtd(void)
815 {
816 DT0 = float64_sqrt(DT1, &env->fp_status);
817 }
818
819 void helper_fsqrtq(void)
820 {
821 QT0 = float128_sqrt(QT1, &env->fp_status);
822 }
823
824 #define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
825 void glue(helper_, name) (void) \
826 { \
827 target_ulong new_fsr; \
828 \
829 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
830 switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
831 case float_relation_unordered: \
832 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
833 if ((env->fsr & FSR_NVM) || TRAP) { \
834 env->fsr |= new_fsr; \
835 env->fsr |= FSR_NVC; \
836 env->fsr |= FSR_FTT_IEEE_EXCP; \
837 raise_exception(TT_FP_EXCP); \
838 } else { \
839 env->fsr |= FSR_NVA; \
840 } \
841 break; \
842 case float_relation_less: \
843 new_fsr = FSR_FCC0 << FS; \
844 break; \
845 case float_relation_greater: \
846 new_fsr = FSR_FCC1 << FS; \
847 break; \
848 default: \
849 new_fsr = 0; \
850 break; \
851 } \
852 env->fsr |= new_fsr; \
853 }
854 #define GEN_FCMPS(name, size, FS, TRAP) \
855 void glue(helper_, name)(float32 src1, float32 src2) \
856 { \
857 target_ulong new_fsr; \
858 \
859 env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
860 switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \
861 case float_relation_unordered: \
862 new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
863 if ((env->fsr & FSR_NVM) || TRAP) { \
864 env->fsr |= new_fsr; \
865 env->fsr |= FSR_NVC; \
866 env->fsr |= FSR_FTT_IEEE_EXCP; \
867 raise_exception(TT_FP_EXCP); \
868 } else { \
869 env->fsr |= FSR_NVA; \
870 } \
871 break; \
872 case float_relation_less: \
873 new_fsr = FSR_FCC0 << FS; \
874 break; \
875 case float_relation_greater: \
876 new_fsr = FSR_FCC1 << FS; \
877 break; \
878 default: \
879 new_fsr = 0; \
880 break; \
881 } \
882 env->fsr |= new_fsr; \
883 }
884
885 GEN_FCMPS(fcmps, float32, 0, 0);
886 GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0);
887
888 GEN_FCMPS(fcmpes, float32, 0, 1);
889 GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
890
891 GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
892 GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
893
894 static uint32_t compute_all_flags(void)
895 {
896 return env->psr & PSR_ICC;
897 }
898
899 static uint32_t compute_C_flags(void)
900 {
901 return env->psr & PSR_CARRY;
902 }
903
904 static inline uint32_t get_NZ_icc(target_ulong dst)
905 {
906 uint32_t ret = 0;
907
908 if (!(dst & 0xffffffffULL))
909 ret |= PSR_ZERO;
910 if ((int32_t) (dst & 0xffffffffULL) < 0)
911 ret |= PSR_NEG;
912 return ret;
913 }
914
915 #ifdef TARGET_SPARC64
916 static uint32_t compute_all_flags_xcc(void)
917 {
918 return env->xcc & PSR_ICC;
919 }
920
921 static uint32_t compute_C_flags_xcc(void)
922 {
923 return env->xcc & PSR_CARRY;
924 }
925
926 static inline uint32_t get_NZ_xcc(target_ulong dst)
927 {
928 uint32_t ret = 0;
929
930 if (!dst)
931 ret |= PSR_ZERO;
932 if ((int64_t)dst < 0)
933 ret |= PSR_NEG;
934 return ret;
935 }
936 #endif
937
938 static inline uint32_t get_V_div_icc(target_ulong src2)
939 {
940 uint32_t ret = 0;
941
942 if (src2 != 0)
943 ret |= PSR_OVF;
944 return ret;
945 }
946
947 static uint32_t compute_all_div(void)
948 {
949 uint32_t ret;
950
951 ret = get_NZ_icc(CC_DST);
952 ret |= get_V_div_icc(CC_SRC2);
953 return ret;
954 }
955
956 static uint32_t compute_C_div(void)
957 {
958 return 0;
959 }
960
961 /* carry = (src1[31] & src2[31]) | ( ~dst[31] & (src1[31] | src2[31])) */
962 static inline uint32_t get_C_add_icc(target_ulong dst, target_ulong src1,
963 target_ulong src2)
964 {
965 uint32_t ret = 0;
966
967 if (((src1 & (1ULL << 31)) & (src2 & (1ULL << 31)))
968 | ((~(dst & (1ULL << 31)))
969 & ((src1 & (1ULL << 31)) | (src2 & (1ULL << 31)))))
970 ret |= PSR_CARRY;
971 return ret;
972 }
973
974 static inline uint32_t get_V_add_icc(target_ulong dst, target_ulong src1,
975 target_ulong src2)
976 {
977 uint32_t ret = 0;
978
979 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 31))
980 ret |= PSR_OVF;
981 return ret;
982 }
983
984 #ifdef TARGET_SPARC64
985 static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1)
986 {
987 uint32_t ret = 0;
988
989 if (dst < src1)
990 ret |= PSR_CARRY;
991 return ret;
992 }
993
994 static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1,
995 target_ulong src2)
996 {
997 uint32_t ret = 0;
998
999 if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63))
1000 ret |= PSR_OVF;
1001 return ret;
1002 }
1003
1004 static uint32_t compute_all_add_xcc(void)
1005 {
1006 uint32_t ret;
1007
1008 ret = get_NZ_xcc(CC_DST);
1009 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1010 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1011 return ret;
1012 }
1013
1014 static uint32_t compute_C_add_xcc(void)
1015 {
1016 return get_C_add_xcc(CC_DST, CC_SRC);
1017 }
1018 #endif
1019
1020 static uint32_t compute_all_add(void)
1021 {
1022 uint32_t ret;
1023
1024 ret = get_NZ_icc(CC_DST);
1025 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1026 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1027 return ret;
1028 }
1029
1030 static uint32_t compute_C_add(void)
1031 {
1032 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1033 }
1034
1035 #ifdef TARGET_SPARC64
1036 static uint32_t compute_all_addx_xcc(void)
1037 {
1038 uint32_t ret;
1039
1040 ret = get_NZ_xcc(CC_DST);
1041 ret |= get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1042 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1043 ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2);
1044 return ret;
1045 }
1046
1047 static uint32_t compute_C_addx_xcc(void)
1048 {
1049 uint32_t ret;
1050
1051 ret = get_C_add_xcc(CC_DST - CC_SRC2, CC_SRC);
1052 ret |= get_C_add_xcc(CC_DST, CC_SRC);
1053 return ret;
1054 }
1055 #endif
1056
1057 static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2)
1058 {
1059 uint32_t ret = 0;
1060
1061 if ((src1 | src2) & 0x3)
1062 ret |= PSR_OVF;
1063 return ret;
1064 }
1065
1066 static uint32_t compute_all_tadd(void)
1067 {
1068 uint32_t ret;
1069
1070 ret = get_NZ_icc(CC_DST);
1071 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1072 ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2);
1073 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1074 return ret;
1075 }
1076
1077 static uint32_t compute_C_tadd(void)
1078 {
1079 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1080 }
1081
1082 static uint32_t compute_all_taddtv(void)
1083 {
1084 uint32_t ret;
1085
1086 ret = get_NZ_icc(CC_DST);
1087 ret |= get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1088 return ret;
1089 }
1090
1091 static uint32_t compute_C_taddtv(void)
1092 {
1093 return get_C_add_icc(CC_DST, CC_SRC, CC_SRC2);
1094 }
1095
1096 /* carry = (~src1[31] & src2[31]) | ( dst[31] & (~src1[31] | src2[31])) */
1097 static inline uint32_t get_C_sub_icc(target_ulong dst, target_ulong src1,
1098 target_ulong src2)
1099 {
1100 uint32_t ret = 0;
1101
1102 if (((~(src1 & (1ULL << 31))) & (src2 & (1ULL << 31)))
1103 | ((dst & (1ULL << 31)) & (( ~(src1 & (1ULL << 31)))
1104 | (src2 & (1ULL << 31)))))
1105 ret |= PSR_CARRY;
1106 return ret;
1107 }
1108
1109 static inline uint32_t get_V_sub_icc(target_ulong dst, target_ulong src1,
1110 target_ulong src2)
1111 {
1112 uint32_t ret = 0;
1113
1114 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 31))
1115 ret |= PSR_OVF;
1116 return ret;
1117 }
1118
1119
1120 #ifdef TARGET_SPARC64
1121 static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2)
1122 {
1123 uint32_t ret = 0;
1124
1125 if (src1 < src2)
1126 ret |= PSR_CARRY;
1127 return ret;
1128 }
1129
1130 static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1,
1131 target_ulong src2)
1132 {
1133 uint32_t ret = 0;
1134
1135 if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63))
1136 ret |= PSR_OVF;
1137 return ret;
1138 }
1139
1140 static uint32_t compute_all_sub_xcc(void)
1141 {
1142 uint32_t ret;
1143
1144 ret = get_NZ_xcc(CC_DST);
1145 ret |= get_C_sub_xcc(CC_SRC, CC_SRC2);
1146 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1147 return ret;
1148 }
1149
1150 static uint32_t compute_C_sub_xcc(void)
1151 {
1152 return get_C_sub_xcc(CC_SRC, CC_SRC2);
1153 }
1154 #endif
1155
1156 static uint32_t compute_all_sub(void)
1157 {
1158 uint32_t ret;
1159
1160 ret = get_NZ_icc(CC_DST);
1161 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1162 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1163 return ret;
1164 }
1165
1166 static uint32_t compute_C_sub(void)
1167 {
1168 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1169 }
1170
1171 #ifdef TARGET_SPARC64
1172 static uint32_t compute_all_subx_xcc(void)
1173 {
1174 uint32_t ret;
1175
1176 ret = get_NZ_xcc(CC_DST);
1177 ret |= get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1178 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1179 ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2);
1180 return ret;
1181 }
1182
1183 static uint32_t compute_C_subx_xcc(void)
1184 {
1185 uint32_t ret;
1186
1187 ret = get_C_sub_xcc(CC_DST - CC_SRC2, CC_SRC);
1188 ret |= get_C_sub_xcc(CC_DST, CC_SRC2);
1189 return ret;
1190 }
1191 #endif
1192
1193 static uint32_t compute_all_tsub(void)
1194 {
1195 uint32_t ret;
1196
1197 ret = get_NZ_icc(CC_DST);
1198 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1199 ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1200 ret |= get_V_tag_icc(CC_SRC, CC_SRC2);
1201 return ret;
1202 }
1203
1204 static uint32_t compute_C_tsub(void)
1205 {
1206 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1207 }
1208
1209 static uint32_t compute_all_tsubtv(void)
1210 {
1211 uint32_t ret;
1212
1213 ret = get_NZ_icc(CC_DST);
1214 ret |= get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1215 return ret;
1216 }
1217
1218 static uint32_t compute_C_tsubtv(void)
1219 {
1220 return get_C_sub_icc(CC_DST, CC_SRC, CC_SRC2);
1221 }
1222
1223 static uint32_t compute_all_logic(void)
1224 {
1225 return get_NZ_icc(CC_DST);
1226 }
1227
1228 static uint32_t compute_C_logic(void)
1229 {
1230 return 0;
1231 }
1232
1233 #ifdef TARGET_SPARC64
1234 static uint32_t compute_all_logic_xcc(void)
1235 {
1236 return get_NZ_xcc(CC_DST);
1237 }
1238 #endif
1239
1240 typedef struct CCTable {
1241 uint32_t (*compute_all)(void); /* return all the flags */
1242 uint32_t (*compute_c)(void); /* return the C flag */
1243 } CCTable;
1244
1245 static const CCTable icc_table[CC_OP_NB] = {
1246 /* CC_OP_DYNAMIC should never happen */
1247 [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags },
1248 [CC_OP_DIV] = { compute_all_div, compute_C_div },
1249 [CC_OP_ADD] = { compute_all_add, compute_C_add },
1250 [CC_OP_ADDX] = { compute_all_add, compute_C_add },
1251 [CC_OP_TADD] = { compute_all_tadd, compute_C_tadd },
1252 [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_taddtv },
1253 [CC_OP_SUB] = { compute_all_sub, compute_C_sub },
1254 [CC_OP_SUBX] = { compute_all_sub, compute_C_sub },
1255 [CC_OP_TSUB] = { compute_all_tsub, compute_C_tsub },
1256 [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_tsubtv },
1257 [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic },
1258 };
1259
1260 #ifdef TARGET_SPARC64
1261 static const CCTable xcc_table[CC_OP_NB] = {
1262 /* CC_OP_DYNAMIC should never happen */
1263 [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc },
1264 [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic },
1265 [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc },
1266 [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc },
1267 [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc },
1268 [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc },
1269 [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1270 [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc },
1271 [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc },
1272 [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc },
1273 [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic },
1274 };
1275 #endif
1276
1277 void helper_compute_psr(void)
1278 {
1279 uint32_t new_psr;
1280
1281 new_psr = icc_table[CC_OP].compute_all();
1282 env->psr = new_psr;
1283 #ifdef TARGET_SPARC64
1284 new_psr = xcc_table[CC_OP].compute_all();
1285 env->xcc = new_psr;
1286 #endif
1287 CC_OP = CC_OP_FLAGS;
1288 }
1289
1290 target_ulong helper_compute_C_icc(void)
1291 {
1292 uint32_t ret;
1293
1294 ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT;
1295 return ret;
1296 }
1297
1298 static inline void memcpy32(target_ulong *dst, const target_ulong *src)
1299 {
1300 dst[0] = src[0];
1301 dst[1] = src[1];
1302 dst[2] = src[2];
1303 dst[3] = src[3];
1304 dst[4] = src[4];
1305 dst[5] = src[5];
1306 dst[6] = src[6];
1307 dst[7] = src[7];
1308 }
1309
1310 static void set_cwp(int new_cwp)
1311 {
1312 /* put the modified wrap registers at their proper location */
1313 if (env->cwp == env->nwindows - 1) {
1314 memcpy32(env->regbase, env->regbase + env->nwindows * 16);
1315 }
1316 env->cwp = new_cwp;
1317
1318 /* put the wrap registers at their temporary location */
1319 if (new_cwp == env->nwindows - 1) {
1320 memcpy32(env->regbase + env->nwindows * 16, env->regbase);
1321 }
1322 env->regwptr = env->regbase + (new_cwp * 16);
1323 }
1324
1325 void cpu_set_cwp(CPUState *env1, int new_cwp)
1326 {
1327 CPUState *saved_env;
1328
1329 saved_env = env;
1330 env = env1;
1331 set_cwp(new_cwp);
1332 env = saved_env;
1333 }
1334
1335 static target_ulong get_psr(void)
1336 {
1337 helper_compute_psr();
1338
1339 #if !defined (TARGET_SPARC64)
1340 return env->version | (env->psr & PSR_ICC) |
1341 (env->psref? PSR_EF : 0) |
1342 (env->psrpil << 8) |
1343 (env->psrs? PSR_S : 0) |
1344 (env->psrps? PSR_PS : 0) |
1345 (env->psret? PSR_ET : 0) | env->cwp;
1346 #else
1347 return env->version | (env->psr & PSR_ICC) |
1348 (env->psref? PSR_EF : 0) |
1349 (env->psrpil << 8) |
1350 (env->psrs? PSR_S : 0) |
1351 (env->psrps? PSR_PS : 0) | env->cwp;
1352 #endif
1353 }
1354
1355 target_ulong cpu_get_psr(CPUState *env1)
1356 {
1357 CPUState *saved_env;
1358 target_ulong ret;
1359
1360 saved_env = env;
1361 env = env1;
1362 ret = get_psr();
1363 env = saved_env;
1364 return ret;
1365 }
1366
1367 static void put_psr(target_ulong val)
1368 {
1369 env->psr = val & PSR_ICC;
1370 env->psref = (val & PSR_EF)? 1 : 0;
1371 env->psrpil = (val & PSR_PIL) >> 8;
1372 #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY))
1373 cpu_check_irqs(env);
1374 #endif
1375 env->psrs = (val & PSR_S)? 1 : 0;
1376 env->psrps = (val & PSR_PS)? 1 : 0;
1377 #if !defined (TARGET_SPARC64)
1378 env->psret = (val & PSR_ET)? 1 : 0;
1379 #endif
1380 set_cwp(val & PSR_CWP);
1381 env->cc_op = CC_OP_FLAGS;
1382 }
1383
1384 void cpu_put_psr(CPUState *env1, target_ulong val)
1385 {
1386 CPUState *saved_env;
1387
1388 saved_env = env;
1389 env = env1;
1390 put_psr(val);
1391 env = saved_env;
1392 }
1393
1394 static int cwp_inc(int cwp)
1395 {
1396 if (unlikely(cwp >= env->nwindows)) {
1397 cwp -= env->nwindows;
1398 }
1399 return cwp;
1400 }
1401
1402 int cpu_cwp_inc(CPUState *env1, int cwp)
1403 {
1404 CPUState *saved_env;
1405 target_ulong ret;
1406
1407 saved_env = env;
1408 env = env1;
1409 ret = cwp_inc(cwp);
1410 env = saved_env;
1411 return ret;
1412 }
1413
1414 static int cwp_dec(int cwp)
1415 {
1416 if (unlikely(cwp < 0)) {
1417 cwp += env->nwindows;
1418 }
1419 return cwp;
1420 }
1421
1422 int cpu_cwp_dec(CPUState *env1, int cwp)
1423 {
1424 CPUState *saved_env;
1425 target_ulong ret;
1426
1427 saved_env = env;
1428 env = env1;
1429 ret = cwp_dec(cwp);
1430 env = saved_env;
1431 return ret;
1432 }
1433
1434 #ifdef TARGET_SPARC64
1435 GEN_FCMPS(fcmps_fcc1, float32, 22, 0);
1436 GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
1437 GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
1438
1439 GEN_FCMPS(fcmps_fcc2, float32, 24, 0);
1440 GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0);
1441 GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
1442
1443 GEN_FCMPS(fcmps_fcc3, float32, 26, 0);
1444 GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0);
1445 GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
1446
1447 GEN_FCMPS(fcmpes_fcc1, float32, 22, 1);
1448 GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1);
1449 GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
1450
1451 GEN_FCMPS(fcmpes_fcc2, float32, 24, 1);
1452 GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1);
1453 GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
1454
1455 GEN_FCMPS(fcmpes_fcc3, float32, 26, 1);
1456 GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
1457 GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
1458 #endif
1459 #undef GEN_FCMPS
1460
1461 #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \
1462 defined(DEBUG_MXCC)
1463 static void dump_mxcc(CPUState *env)
1464 {
1465 printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1466 "\n",
1467 env->mxccdata[0], env->mxccdata[1],
1468 env->mxccdata[2], env->mxccdata[3]);
1469 printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1470 "\n"
1471 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64
1472 "\n",
1473 env->mxccregs[0], env->mxccregs[1],
1474 env->mxccregs[2], env->mxccregs[3],
1475 env->mxccregs[4], env->mxccregs[5],
1476 env->mxccregs[6], env->mxccregs[7]);
1477 }
1478 #endif
1479
1480 #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
1481 && defined(DEBUG_ASI)
1482 static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
1483 uint64_t r1)
1484 {
1485 switch (size)
1486 {
1487 case 1:
1488 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
1489 addr, asi, r1 & 0xff);
1490 break;
1491 case 2:
1492 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
1493 addr, asi, r1 & 0xffff);
1494 break;
1495 case 4:
1496 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
1497 addr, asi, r1 & 0xffffffff);
1498 break;
1499 case 8:
1500 DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
1501 addr, asi, r1);
1502 break;
1503 }
1504 }
1505 #endif
1506
1507 #ifndef TARGET_SPARC64
1508 #ifndef CONFIG_USER_ONLY
1509 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
1510 {
1511 uint64_t ret = 0;
1512 #if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
1513 uint32_t last_addr = addr;
1514 #endif
1515
1516 helper_check_align(addr, size - 1);
1517 switch (asi) {
1518 case 2: /* SuperSparc MXCC registers */
1519 switch (addr) {
1520 case 0x01c00a00: /* MXCC control register */
1521 if (size == 8)
1522 ret = env->mxccregs[3];
1523 else
1524 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1525 size);
1526 break;
1527 case 0x01c00a04: /* MXCC control register */
1528 if (size == 4)
1529 ret = env->mxccregs[3];
1530 else
1531 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1532 size);
1533 break;
1534 case 0x01c00c00: /* Module reset register */
1535 if (size == 8) {
1536 ret = env->mxccregs[5];
1537 // should we do something here?
1538 } else
1539 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1540 size);
1541 break;
1542 case 0x01c00f00: /* MBus port address register */
1543 if (size == 8)
1544 ret = env->mxccregs[7];
1545 else
1546 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1547 size);
1548 break;
1549 default:
1550 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1551 size);
1552 break;
1553 }
1554 DPRINTF_MXCC("asi = %d, size = %d, sign = %d, "
1555 "addr = %08x -> ret = %" PRIx64 ","
1556 "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
1557 #ifdef DEBUG_MXCC
1558 dump_mxcc(env);
1559 #endif
1560 break;
1561 case 3: /* MMU probe */
1562 {
1563 int mmulev;
1564
1565 mmulev = (addr >> 8) & 15;
1566 if (mmulev > 4)
1567 ret = 0;
1568 else
1569 ret = mmu_probe(env, addr, mmulev);
1570 DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
1571 addr, mmulev, ret);
1572 }
1573 break;
1574 case 4: /* read MMU regs */
1575 {
1576 int reg = (addr >> 8) & 0x1f;
1577
1578 ret = env->mmuregs[reg];
1579 if (reg == 3) /* Fault status cleared on read */
1580 env->mmuregs[3] = 0;
1581 else if (reg == 0x13) /* Fault status read */
1582 ret = env->mmuregs[3];
1583 else if (reg == 0x14) /* Fault address read */
1584 ret = env->mmuregs[4];
1585 DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
1586 }
1587 break;
1588 case 5: // Turbosparc ITLB Diagnostic
1589 case 6: // Turbosparc DTLB Diagnostic
1590 case 7: // Turbosparc IOTLB Diagnostic
1591 break;
1592 case 9: /* Supervisor code access */
1593 switch(size) {
1594 case 1:
1595 ret = ldub_code(addr);
1596 break;
1597 case 2:
1598 ret = lduw_code(addr);
1599 break;
1600 default:
1601 case 4:
1602 ret = ldl_code(addr);
1603 break;
1604 case 8:
1605 ret = ldq_code(addr);
1606 break;
1607 }
1608 break;
1609 case 0xa: /* User data access */
1610 switch(size) {
1611 case 1:
1612 ret = ldub_user(addr);
1613 break;
1614 case 2:
1615 ret = lduw_user(addr);
1616 break;
1617 default:
1618 case 4:
1619 ret = ldl_user(addr);
1620 break;
1621 case 8:
1622 ret = ldq_user(addr);
1623 break;
1624 }
1625 break;
1626 case 0xb: /* Supervisor data access */
1627 switch(size) {
1628 case 1:
1629 ret = ldub_kernel(addr);
1630 break;
1631 case 2:
1632 ret = lduw_kernel(addr);
1633 break;
1634 default:
1635 case 4:
1636 ret = ldl_kernel(addr);
1637 break;
1638 case 8:
1639 ret = ldq_kernel(addr);
1640 break;
1641 }
1642 break;
1643 case 0xc: /* I-cache tag */
1644 case 0xd: /* I-cache data */
1645 case 0xe: /* D-cache tag */
1646 case 0xf: /* D-cache data */
1647 break;
1648 case 0x20: /* MMU passthrough */
1649 switch(size) {
1650 case 1:
1651 ret = ldub_phys(addr);
1652 break;
1653 case 2:
1654 ret = lduw_phys(addr);
1655 break;
1656 default:
1657 case 4:
1658 ret = ldl_phys(addr);
1659 break;
1660 case 8:
1661 ret = ldq_phys(addr);
1662 break;
1663 }
1664 break;
1665 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
1666 switch(size) {
1667 case 1:
1668 ret = ldub_phys((target_phys_addr_t)addr
1669 | ((target_phys_addr_t)(asi & 0xf) << 32));
1670 break;
1671 case 2:
1672 ret = lduw_phys((target_phys_addr_t)addr
1673 | ((target_phys_addr_t)(asi & 0xf) << 32));
1674 break;
1675 default:
1676 case 4:
1677 ret = ldl_phys((target_phys_addr_t)addr
1678 | ((target_phys_addr_t)(asi & 0xf) << 32));
1679 break;
1680 case 8:
1681 ret = ldq_phys((target_phys_addr_t)addr
1682 | ((target_phys_addr_t)(asi & 0xf) << 32));
1683 break;
1684 }
1685 break;
1686 case 0x30: // Turbosparc secondary cache diagnostic
1687 case 0x31: // Turbosparc RAM snoop
1688 case 0x32: // Turbosparc page table descriptor diagnostic
1689 case 0x39: /* data cache diagnostic register */
1690 ret = 0;
1691 break;
1692 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */
1693 {
1694 int reg = (addr >> 8) & 3;
1695
1696 switch(reg) {
1697 case 0: /* Breakpoint Value (Addr) */
1698 ret = env->mmubpregs[reg];
1699 break;
1700 case 1: /* Breakpoint Mask */
1701 ret = env->mmubpregs[reg];
1702 break;
1703 case 2: /* Breakpoint Control */
1704 ret = env->mmubpregs[reg];
1705 break;
1706 case 3: /* Breakpoint Status */
1707 ret = env->mmubpregs[reg];
1708 env->mmubpregs[reg] = 0ULL;
1709 break;
1710 }
1711 DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg,
1712 ret);
1713 }
1714 break;
1715 case 8: /* User code access, XXX */
1716 default:
1717 do_unassigned_access(addr, 0, 0, asi, size);
1718 ret = 0;
1719 break;
1720 }
1721 if (sign) {
1722 switch(size) {
1723 case 1:
1724 ret = (int8_t) ret;
1725 break;
1726 case 2:
1727 ret = (int16_t) ret;
1728 break;
1729 case 4:
1730 ret = (int32_t) ret;
1731 break;
1732 default:
1733 break;
1734 }
1735 }
1736 #ifdef DEBUG_ASI
1737 dump_asi("read ", last_addr, asi, size, ret);
1738 #endif
1739 return ret;
1740 }
1741
1742 void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
1743 {
1744 helper_check_align(addr, size - 1);
1745 switch(asi) {
1746 case 2: /* SuperSparc MXCC registers */
1747 switch (addr) {
1748 case 0x01c00000: /* MXCC stream data register 0 */
1749 if (size == 8)
1750 env->mxccdata[0] = val;
1751 else
1752 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1753 size);
1754 break;
1755 case 0x01c00008: /* MXCC stream data register 1 */
1756 if (size == 8)
1757 env->mxccdata[1] = val;
1758 else
1759 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1760 size);
1761 break;
1762 case 0x01c00010: /* MXCC stream data register 2 */
1763 if (size == 8)
1764 env->mxccdata[2] = val;
1765 else
1766 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1767 size);
1768 break;
1769 case 0x01c00018: /* MXCC stream data register 3 */
1770 if (size == 8)
1771 env->mxccdata[3] = val;
1772 else
1773 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1774 size);
1775 break;
1776 case 0x01c00100: /* MXCC stream source */
1777 if (size == 8)
1778 env->mxccregs[0] = val;
1779 else
1780 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1781 size);
1782 env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1783 0);
1784 env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1785 8);
1786 env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1787 16);
1788 env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) +
1789 24);
1790 break;
1791 case 0x01c00200: /* MXCC stream destination */
1792 if (size == 8)
1793 env->mxccregs[1] = val;
1794 else
1795 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1796 size);
1797 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0,
1798 env->mxccdata[0]);
1799 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8,
1800 env->mxccdata[1]);
1801 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16,
1802 env->mxccdata[2]);
1803 stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24,
1804 env->mxccdata[3]);
1805 break;
1806 case 0x01c00a00: /* MXCC control register */
1807 if (size == 8)
1808 env->mxccregs[3] = val;
1809 else
1810 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1811 size);
1812 break;
1813 case 0x01c00a04: /* MXCC control register */
1814 if (size == 4)
1815 env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL)
1816 | val;
1817 else
1818 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1819 size);
1820 break;
1821 case 0x01c00e00: /* MXCC error register */
1822 // writing a 1 bit clears the error
1823 if (size == 8)
1824 env->mxccregs[6] &= ~val;
1825 else
1826 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1827 size);
1828 break;
1829 case 0x01c00f00: /* MBus port address register */
1830 if (size == 8)
1831 env->mxccregs[7] = val;
1832 else
1833 DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr,
1834 size);
1835 break;
1836 default:
1837 DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr,
1838 size);
1839 break;
1840 }
1841 DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n",
1842 asi, size, addr, val);
1843 #ifdef DEBUG_MXCC
1844 dump_mxcc(env);
1845 #endif
1846 break;
1847 case 3: /* MMU flush */
1848 {
1849 int mmulev;
1850
1851 mmulev = (addr >> 8) & 15;
1852 DPRINTF_MMU("mmu flush level %d\n", mmulev);
1853 switch (mmulev) {
1854 case 0: // flush page
1855 tlb_flush_page(env, addr & 0xfffff000);
1856 break;
1857 case 1: // flush segment (256k)
1858 case 2: // flush region (16M)
1859 case 3: // flush context (4G)
1860 case 4: // flush entire
1861 tlb_flush(env, 1);
1862 break;
1863 default:
1864 break;
1865 }
1866 #ifdef DEBUG_MMU
1867 dump_mmu(env);
1868 #endif
1869 }
1870 break;
1871 case 4: /* write MMU regs */
1872 {
1873 int reg = (addr >> 8) & 0x1f;
1874 uint32_t oldreg;
1875
1876 oldreg = env->mmuregs[reg];
1877 switch(reg) {
1878 case 0: // Control Register
1879 env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
1880 (val & 0x00ffffff);
1881 // Mappings generated during no-fault mode or MMU
1882 // disabled mode are invalid in normal mode
1883 if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) !=
1884 (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm)))
1885 tlb_flush(env, 1);
1886 break;
1887 case 1: // Context Table Pointer Register
1888 env->mmuregs[reg] = val & env->def->mmu_ctpr_mask;
1889 break;
1890 case 2: // Context Register
1891 env->mmuregs[reg] = val & env->def->mmu_cxr_mask;
1892 if (oldreg != env->mmuregs[reg]) {
1893 /* we flush when the MMU context changes because
1894 QEMU has no MMU context support */
1895 tlb_flush(env, 1);
1896 }
1897 break;
1898 case 3: // Synchronous Fault Status Register with Clear
1899 case 4: // Synchronous Fault Address Register
1900 break;
1901 case 0x10: // TLB Replacement Control Register
1902 env->mmuregs[reg] = val & env->def->mmu_trcr_mask;
1903 break;
1904 case 0x13: // Synchronous Fault Status Register with Read and Clear
1905 env->mmuregs[3] = val & env->def->mmu_sfsr_mask;
1906 break;
1907 case 0x14: // Synchronous Fault Address Register
1908 env->mmuregs[4] = val;
1909 break;
1910 default:
1911 env->mmuregs[reg] = val;
1912 break;
1913 }
1914 if (oldreg != env->mmuregs[reg]) {
1915 DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n",
1916 reg, oldreg, env->mmuregs[reg]);
1917 }
1918 #ifdef DEBUG_MMU
1919 dump_mmu(env);
1920 #endif
1921 }
1922 break;
1923 case 5: // Turbosparc ITLB Diagnostic
1924 case 6: // Turbosparc DTLB Diagnostic
1925 case 7: // Turbosparc IOTLB Diagnostic
1926 break;
1927 case 0xa: /* User data access */
1928 switch(size) {
1929 case 1:
1930 stb_user(addr, val);
1931 break;
1932 case 2:
1933 stw_user(addr, val);
1934 break;
1935 default:
1936 case 4:
1937 stl_user(addr, val);
1938 break;
1939 case 8:
1940 stq_user(addr, val);
1941 break;
1942 }
1943 break;
1944 case 0xb: /* Supervisor data access */
1945 switch(size) {
1946 case 1:
1947 stb_kernel(addr, val);
1948 break;
1949 case 2:
1950 stw_kernel(addr, val);
1951 break;
1952 default:
1953 case 4:
1954 stl_kernel(addr, val);
1955 break;
1956 case 8:
1957 stq_kernel(addr, val);
1958 break;
1959 }
1960 break;
1961 case 0xc: /* I-cache tag */
1962 case 0xd: /* I-cache data */
1963 case 0xe: /* D-cache tag */
1964 case 0xf: /* D-cache data */
1965 case 0x10: /* I/D-cache flush page */
1966 case 0x11: /* I/D-cache flush segment */
1967 case 0x12: /* I/D-cache flush region */
1968 case 0x13: /* I/D-cache flush context */
1969 case 0x14: /* I/D-cache flush user */
1970 break;
1971 case 0x17: /* Block copy, sta access */
1972 {
1973 // val = src
1974 // addr = dst
1975 // copy 32 bytes
1976 unsigned int i;
1977 uint32_t src = val & ~3, dst = addr & ~3, temp;
1978
1979 for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
1980 temp = ldl_kernel(src);
1981 stl_kernel(dst, temp);
1982 }
1983 }
1984 break;
1985 case 0x1f: /* Block fill, stda access */
1986 {
1987 // addr = dst
1988 // fill 32 bytes with val
1989 unsigned int i;
1990 uint32_t dst = addr & 7;
1991
1992 for (i = 0; i < 32; i += 8, dst += 8)
1993 stq_kernel(dst, val);
1994 }
1995 break;
1996 case 0x20: /* MMU passthrough */
1997 {
1998 switch(size) {
1999 case 1:
2000 stb_phys(addr, val);
2001 break;
2002 case 2:
2003 stw_phys(addr, val);
2004 break;
2005 case 4:
2006 default:
2007 stl_phys(addr, val);
2008 break;
2009 case 8:
2010 stq_phys(addr, val);
2011 break;
2012 }
2013 }
2014 break;
2015 case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
2016 {
2017 switch(size) {
2018 case 1:
2019 stb_phys((target_phys_addr_t)addr
2020 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2021 break;
2022 case 2:
2023 stw_phys((target_phys_addr_t)addr
2024 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2025 break;
2026 case 4:
2027 default:
2028 stl_phys((target_phys_addr_t)addr
2029 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2030 break;
2031 case 8:
2032 stq_phys((target_phys_addr_t)addr
2033 | ((target_phys_addr_t)(asi & 0xf) << 32), val);
2034 break;
2035 }
2036 }
2037 break;
2038 case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
2039 case 0x31: // store buffer data, Ross RT620 I-cache flush or
2040 // Turbosparc snoop RAM
2041 case 0x32: // store buffer control or Turbosparc page table
2042 // descriptor diagnostic
2043 case 0x36: /* I-cache flash clear */
2044 case 0x37: /* D-cache flash clear */
2045 case 0x4c: /* breakpoint action */
2046 break;
2047 case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/
2048 {
2049 int reg = (addr >> 8) & 3;
2050
2051 switch(reg) {
2052 case 0: /* Breakpoint Value (Addr) */
2053 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2054 break;
2055 case 1: /* Breakpoint Mask */
2056 env->mmubpregs[reg] = (val & 0xfffffffffULL);
2057 break;
2058 case 2: /* Breakpoint Control */
2059 env->mmubpregs[reg] = (val & 0x7fULL);
2060 break;
2061 case 3: /* Breakpoint Status */
2062 env->mmubpregs[reg] = (val & 0xfULL);
2063 break;
2064 }
2065 DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg,
2066 env->mmuregs[reg]);
2067 }
2068 break;
2069 case 8: /* User code access, XXX */
2070 case 9: /* Supervisor code access, XXX */
2071 default:
2072 do_unassigned_access(addr, 1, 0, asi, size);
2073 break;
2074 }
2075 #ifdef DEBUG_ASI
2076 dump_asi("write", addr, asi, size, val);
2077 #endif
2078 }
2079
2080 #endif /* CONFIG_USER_ONLY */
2081 #else /* TARGET_SPARC64 */
2082
2083 #ifdef CONFIG_USER_ONLY
2084 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2085 {
2086 uint64_t ret = 0;
2087 #if defined(DEBUG_ASI)
2088 target_ulong last_addr = addr;
2089 #endif
2090
2091 if (asi < 0x80)
2092 raise_exception(TT_PRIV_ACT);
2093
2094 helper_check_align(addr, size - 1);
2095 addr = address_mask(env, addr);
2096
2097 switch (asi) {
2098 case 0x82: // Primary no-fault
2099 case 0x8a: // Primary no-fault LE
2100 if (page_check_range(addr, size, PAGE_READ) == -1) {
2101 #ifdef DEBUG_ASI
2102 dump_asi("read ", last_addr, asi, size, ret);
2103 #endif
2104 return 0;
2105 }
2106 // Fall through
2107 case 0x80: // Primary
2108 case 0x88: // Primary LE
2109 {
2110 switch(size) {
2111 case 1:
2112 ret = ldub_raw(addr);
2113 break;
2114 case 2:
2115 ret = lduw_raw(addr);
2116 break;
2117 case 4:
2118 ret = ldl_raw(addr);
2119 break;
2120 default:
2121 case 8:
2122 ret = ldq_raw(addr);
2123 break;
2124 }
2125 }
2126 break;
2127 case 0x83: // Secondary no-fault
2128 case 0x8b: // Secondary no-fault LE
2129 if (page_check_range(addr, size, PAGE_READ) == -1) {
2130 #ifdef DEBUG_ASI
2131 dump_asi("read ", last_addr, asi, size, ret);
2132 #endif
2133 return 0;
2134 }
2135 // Fall through
2136 case 0x81: // Secondary
2137 case 0x89: // Secondary LE
2138 // XXX
2139 break;
2140 default:
2141 break;
2142 }
2143
2144 /* Convert from little endian */
2145 switch (asi) {
2146 case 0x88: // Primary LE
2147 case 0x89: // Secondary LE
2148 case 0x8a: // Primary no-fault LE
2149 case 0x8b: // Secondary no-fault LE
2150 switch(size) {
2151 case 2:
2152 ret = bswap16(ret);
2153 break;
2154 case 4:
2155 ret = bswap32(ret);
2156 break;
2157 case 8:
2158 ret = bswap64(ret);
2159 break;
2160 default:
2161 break;
2162 }
2163 default:
2164 break;
2165 }
2166
2167 /* Convert to signed number */
2168 if (sign) {
2169 switch(size) {
2170 case 1:
2171 ret = (int8_t) ret;
2172 break;
2173 case 2:
2174 ret = (int16_t) ret;
2175 break;
2176 case 4:
2177 ret = (int32_t) ret;
2178 break;
2179 default:
2180 break;
2181 }
2182 }
2183 #ifdef DEBUG_ASI
2184 dump_asi("read ", last_addr, asi, size, ret);
2185 #endif
2186 return ret;
2187 }
2188
2189 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2190 {
2191 #ifdef DEBUG_ASI
2192 dump_asi("write", addr, asi, size, val);
2193 #endif
2194 if (asi < 0x80)
2195 raise_exception(TT_PRIV_ACT);
2196
2197 helper_check_align(addr, size - 1);
2198 addr = address_mask(env, addr);
2199
2200 /* Convert to little endian */
2201 switch (asi) {
2202 case 0x88: // Primary LE
2203 case 0x89: // Secondary LE
2204 switch(size) {
2205 case 2:
2206 val = bswap16(val);
2207 break;
2208 case 4:
2209 val = bswap32(val);
2210 break;
2211 case 8:
2212 val = bswap64(val);
2213 break;
2214 default:
2215 break;
2216 }
2217 default:
2218 break;
2219 }
2220
2221 switch(asi) {
2222 case 0x80: // Primary
2223 case 0x88: // Primary LE
2224 {
2225 switch(size) {
2226 case 1:
2227 stb_raw(addr, val);
2228 break;
2229 case 2:
2230 stw_raw(addr, val);
2231 break;
2232 case 4:
2233 stl_raw(addr, val);
2234 break;
2235 case 8:
2236 default:
2237 stq_raw(addr, val);
2238 break;
2239 }
2240 }
2241 break;
2242 case 0x81: // Secondary
2243 case 0x89: // Secondary LE
2244 // XXX
2245 return;
2246
2247 case 0x82: // Primary no-fault, RO
2248 case 0x83: // Secondary no-fault, RO
2249 case 0x8a: // Primary no-fault LE, RO
2250 case 0x8b: // Secondary no-fault LE, RO
2251 default:
2252 do_unassigned_access(addr, 1, 0, 1, size);
2253 return;
2254 }
2255 }
2256
2257 #else /* CONFIG_USER_ONLY */
2258
2259 uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
2260 {
2261 uint64_t ret = 0;
2262 #if defined(DEBUG_ASI)
2263 target_ulong last_addr = addr;
2264 #endif
2265
2266 asi &= 0xff;
2267
2268 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2269 || ((env->def->features & CPU_FEATURE_HYPV)
2270 && asi >= 0x30 && asi < 0x80
2271 && !(env->hpstate & HS_PRIV)))
2272 raise_exception(TT_PRIV_ACT);
2273
2274 helper_check_align(addr, size - 1);
2275 switch (asi) {
2276 case 0x82: // Primary no-fault
2277 case 0x8a: // Primary no-fault LE
2278 case 0x83: // Secondary no-fault
2279 case 0x8b: // Secondary no-fault LE
2280 {
2281 /* secondary space access has lowest asi bit equal to 1 */
2282 int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX
2283 : MMU_KERNEL_SECONDARY_IDX;
2284
2285 if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) {
2286 #ifdef DEBUG_ASI
2287 dump_asi("read ", last_addr, asi, size, ret);
2288 #endif
2289 return 0;
2290 }
2291 }
2292 // Fall through
2293 case 0x10: // As if user primary
2294 case 0x11: // As if user secondary
2295 case 0x18: // As if user primary LE
2296 case 0x19: // As if user secondary LE
2297 case 0x80: // Primary
2298 case 0x81: // Secondary
2299 case 0x88: // Primary LE
2300 case 0x89: // Secondary LE
2301 case 0xe2: // UA2007 Primary block init
2302 case 0xe3: // UA2007 Secondary block init
2303 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2304 if ((env->def->features & CPU_FEATURE_HYPV)
2305 && env->hpstate & HS_PRIV) {
2306 switch(size) {
2307 case 1:
2308 ret = ldub_hypv(addr);
2309 break;
2310 case 2:
2311 ret = lduw_hypv(addr);
2312 break;
2313 case 4:
2314 ret = ldl_hypv(addr);
2315 break;
2316 default:
2317 case 8:
2318 ret = ldq_hypv(addr);
2319 break;
2320 }
2321 } else {
2322 /* secondary space access has lowest asi bit equal to 1 */
2323 if (asi & 1) {
2324 switch(size) {
2325 case 1:
2326 ret = ldub_kernel_secondary(addr);
2327 break;
2328 case 2:
2329 ret = lduw_kernel_secondary(addr);
2330 break;
2331 case 4:
2332 ret = ldl_kernel_secondary(addr);
2333 break;
2334 default:
2335 case 8:
2336 ret = ldq_kernel_secondary(addr);
2337 break;
2338 }
2339 } else {
2340 switch(size) {
2341 case 1:
2342 ret = ldub_kernel(addr);
2343 break;
2344 case 2:
2345 ret = lduw_kernel(addr);
2346 break;
2347 case 4:
2348 ret = ldl_kernel(addr);
2349 break;
2350 default:
2351 case 8:
2352 ret = ldq_kernel(addr);
2353 break;
2354 }
2355 }
2356 }
2357 } else {
2358 /* secondary space access has lowest asi bit equal to 1 */
2359 if (asi & 1) {
2360 switch(size) {
2361 case 1:
2362 ret = ldub_user_secondary(addr);
2363 break;
2364 case 2:
2365 ret = lduw_user_secondary(addr);
2366 break;
2367 case 4:
2368 ret = ldl_user_secondary(addr);
2369 break;
2370 default:
2371 case 8:
2372 ret = ldq_user_secondary(addr);
2373 break;
2374 }
2375 } else {
2376 switch(size) {
2377 case 1:
2378 ret = ldub_user(addr);
2379 break;
2380 case 2:
2381 ret = lduw_user(addr);
2382 break;
2383 case 4:
2384 ret = ldl_user(addr);
2385 break;
2386 default:
2387 case 8:
2388 ret = ldq_user(addr);
2389 break;
2390 }
2391 }
2392 }
2393 break;
2394 case 0x14: // Bypass
2395 case 0x15: // Bypass, non-cacheable
2396 case 0x1c: // Bypass LE
2397 case 0x1d: // Bypass, non-cacheable LE
2398 {
2399 switch(size) {
2400 case 1:
2401 ret = ldub_phys(addr);
2402 break;
2403 case 2:
2404 ret = lduw_phys(addr);
2405 break;
2406 case 4:
2407 ret = ldl_phys(addr);
2408 break;
2409 default:
2410 case 8:
2411 ret = ldq_phys(addr);
2412 break;
2413 }
2414 break;
2415 }
2416 case 0x24: // Nucleus quad LDD 128 bit atomic
2417 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2418 // Only ldda allowed
2419 raise_exception(TT_ILL_INSN);
2420 return 0;
2421 case 0x04: // Nucleus
2422 case 0x0c: // Nucleus Little Endian (LE)
2423 {
2424 switch(size) {
2425 case 1:
2426 ret = ldub_nucleus(addr);
2427 break;
2428 case 2:
2429 ret = lduw_nucleus(addr);
2430 break;
2431 case 4:
2432 ret = ldl_nucleus(addr);
2433 break;
2434 default:
2435 case 8:
2436 ret = ldq_nucleus(addr);
2437 break;
2438 }
2439 break;
2440 }
2441 case 0x4a: // UPA config
2442 // XXX
2443 break;
2444 case 0x45: // LSU
2445 ret = env->lsu;
2446 break;
2447 case 0x50: // I-MMU regs
2448 {
2449 int reg = (addr >> 3) & 0xf;
2450
2451 if (reg == 0) {
2452 // I-TSB Tag Target register
2453 ret = ultrasparc_tag_target(env->immu.tag_access);
2454 } else {
2455 ret = env->immuregs[reg];
2456 }
2457
2458 break;
2459 }
2460 case 0x51: // I-MMU 8k TSB pointer
2461 {
2462 // env->immuregs[5] holds I-MMU TSB register value
2463 // env->immuregs[6] holds I-MMU Tag Access register value
2464 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2465 8*1024);
2466 break;
2467 }
2468 case 0x52: // I-MMU 64k TSB pointer
2469 {
2470 // env->immuregs[5] holds I-MMU TSB register value
2471 // env->immuregs[6] holds I-MMU Tag Access register value
2472 ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access,
2473 64*1024);
2474 break;
2475 }
2476 case 0x55: // I-MMU data access
2477 {
2478 int reg = (addr >> 3) & 0x3f;
2479
2480 ret = env->itlb[reg].tte;
2481 break;
2482 }
2483 case 0x56: // I-MMU tag read
2484 {
2485 int reg = (addr >> 3) & 0x3f;
2486
2487 ret = env->itlb[reg].tag;
2488 break;
2489 }
2490 case 0x58: // D-MMU regs
2491 {
2492 int reg = (addr >> 3) & 0xf;
2493
2494 if (reg == 0) {
2495 // D-TSB Tag Target register
2496 ret = ultrasparc_tag_target(env->dmmu.tag_access);
2497 } else {
2498 ret = env->dmmuregs[reg];
2499 }
2500 break;
2501 }
2502 case 0x59: // D-MMU 8k TSB pointer
2503 {
2504 // env->dmmuregs[5] holds D-MMU TSB register value
2505 // env->dmmuregs[6] holds D-MMU Tag Access register value
2506 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2507 8*1024);
2508 break;
2509 }
2510 case 0x5a: // D-MMU 64k TSB pointer
2511 {
2512 // env->dmmuregs[5] holds D-MMU TSB register value
2513 // env->dmmuregs[6] holds D-MMU Tag Access register value
2514 ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access,
2515 64*1024);
2516 break;
2517 }
2518 case 0x5d: // D-MMU data access
2519 {
2520 int reg = (addr >> 3) & 0x3f;
2521
2522 ret = env->dtlb[reg].tte;
2523 break;
2524 }
2525 case 0x5e: // D-MMU tag read
2526 {
2527 int reg = (addr >> 3) & 0x3f;
2528
2529 ret = env->dtlb[reg].tag;
2530 break;
2531 }
2532 case 0x46: // D-cache data
2533 case 0x47: // D-cache tag access
2534 case 0x4b: // E-cache error enable
2535 case 0x4c: // E-cache asynchronous fault status
2536 case 0x4d: // E-cache asynchronous fault address
2537 case 0x4e: // E-cache tag data
2538 case 0x66: // I-cache instruction access
2539 case 0x67: // I-cache tag access
2540 case 0x6e: // I-cache predecode
2541 case 0x6f: // I-cache LRU etc.
2542 case 0x76: // E-cache tag
2543 case 0x7e: // E-cache tag
2544 break;
2545 case 0x5b: // D-MMU data pointer
2546 case 0x48: // Interrupt dispatch, RO
2547 case 0x49: // Interrupt data receive
2548 case 0x7f: // Incoming interrupt vector, RO
2549 // XXX
2550 break;
2551 case 0x54: // I-MMU data in, WO
2552 case 0x57: // I-MMU demap, WO
2553 case 0x5c: // D-MMU data in, WO
2554 case 0x5f: // D-MMU demap, WO
2555 case 0x77: // Interrupt vector, WO
2556 default:
2557 do_unassigned_access(addr, 0, 0, 1, size);
2558 ret = 0;
2559 break;
2560 }
2561
2562 /* Convert from little endian */
2563 switch (asi) {
2564 case 0x0c: // Nucleus Little Endian (LE)
2565 case 0x18: // As if user primary LE
2566 case 0x19: // As if user secondary LE
2567 case 0x1c: // Bypass LE
2568 case 0x1d: // Bypass, non-cacheable LE
2569 case 0x88: // Primary LE
2570 case 0x89: // Secondary LE
2571 case 0x8a: // Primary no-fault LE
2572 case 0x8b: // Secondary no-fault LE
2573 switch(size) {
2574 case 2:
2575 ret = bswap16(ret);
2576 break;
2577 case 4:
2578 ret = bswap32(ret);
2579 break;
2580 case 8:
2581 ret = bswap64(ret);
2582 break;
2583 default:
2584 break;
2585 }
2586 default:
2587 break;
2588 }
2589
2590 /* Convert to signed number */
2591 if (sign) {
2592 switch(size) {
2593 case 1:
2594 ret = (int8_t) ret;
2595 break;
2596 case 2:
2597 ret = (int16_t) ret;
2598 break;
2599 case 4:
2600 ret = (int32_t) ret;
2601 break;
2602 default:
2603 break;
2604 }
2605 }
2606 #ifdef DEBUG_ASI
2607 dump_asi("read ", last_addr, asi, size, ret);
2608 #endif
2609 return ret;
2610 }
2611
2612 void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
2613 {
2614 #ifdef DEBUG_ASI
2615 dump_asi("write", addr, asi, size, val);
2616 #endif
2617
2618 asi &= 0xff;
2619
2620 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2621 || ((env->def->features & CPU_FEATURE_HYPV)
2622 && asi >= 0x30 && asi < 0x80
2623 && !(env->hpstate & HS_PRIV)))
2624 raise_exception(TT_PRIV_ACT);
2625
2626 helper_check_align(addr, size - 1);
2627 /* Convert to little endian */
2628 switch (asi) {
2629 case 0x0c: // Nucleus Little Endian (LE)
2630 case 0x18: // As if user primary LE
2631 case 0x19: // As if user secondary LE
2632 case 0x1c: // Bypass LE
2633 case 0x1d: // Bypass, non-cacheable LE
2634 case 0x88: // Primary LE
2635 case 0x89: // Secondary LE
2636 switch(size) {
2637 case 2:
2638 val = bswap16(val);
2639 break;
2640 case 4:
2641 val = bswap32(val);
2642 break;
2643 case 8:
2644 val = bswap64(val);
2645 break;
2646 default:
2647 break;
2648 }
2649 default:
2650 break;
2651 }
2652
2653 switch(asi) {
2654 case 0x10: // As if user primary
2655 case 0x11: // As if user secondary
2656 case 0x18: // As if user primary LE
2657 case 0x19: // As if user secondary LE
2658 case 0x80: // Primary
2659 case 0x81: // Secondary
2660 case 0x88: // Primary LE
2661 case 0x89: // Secondary LE
2662 case 0xe2: // UA2007 Primary block init
2663 case 0xe3: // UA2007 Secondary block init
2664 if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
2665 if ((env->def->features & CPU_FEATURE_HYPV)
2666 && env->hpstate & HS_PRIV) {
2667 switch(size) {
2668 case 1:
2669 stb_hypv(addr, val);
2670 break;
2671 case 2:
2672 stw_hypv(addr, val);
2673 break;
2674 case 4:
2675 stl_hypv(addr, val);
2676 break;
2677 case 8:
2678 default:
2679 stq_hypv(addr, val);
2680 break;
2681 }
2682 } else {
2683 /* secondary space access has lowest asi bit equal to 1 */
2684 if (asi & 1) {
2685 switch(size) {
2686 case 1:
2687 stb_kernel_secondary(addr, val);
2688 break;
2689 case 2:
2690 stw_kernel_secondary(addr, val);
2691 break;
2692 case 4:
2693 stl_kernel_secondary(addr, val);
2694 break;
2695 case 8:
2696 default:
2697 stq_kernel_secondary(addr, val);
2698 break;
2699 }
2700 } else {
2701 switch(size) {
2702 case 1:
2703 stb_kernel(addr, val);
2704 break;
2705 case 2:
2706 stw_kernel(addr, val);
2707 break;
2708 case 4:
2709 stl_kernel(addr, val);
2710 break;
2711 case 8:
2712 default:
2713 stq_kernel(addr, val);
2714 break;
2715 }
2716 }
2717 }
2718 } else {
2719 /* secondary space access has lowest asi bit equal to 1 */
2720 if (asi & 1) {
2721 switch(size) {
2722 case 1:
2723 stb_user_secondary(addr, val);
2724 break;
2725 case 2:
2726 stw_user_secondary(addr, val);
2727 break;
2728 case 4:
2729 stl_user_secondary(addr, val);
2730 break;
2731 case 8:
2732 default:
2733 stq_user_secondary(addr, val);
2734 break;
2735 }
2736 } else {
2737 switch(size) {
2738 case 1:
2739 stb_user(addr, val);
2740 break;
2741 case 2:
2742 stw_user(addr, val);
2743 break;
2744 case 4:
2745 stl_user(addr, val);
2746 break;
2747 case 8:
2748 default:
2749 stq_user(addr, val);
2750 break;
2751 }
2752 }
2753 }
2754 break;
2755 case 0x14: // Bypass
2756 case 0x15: // Bypass, non-cacheable
2757 case 0x1c: // Bypass LE
2758 case 0x1d: // Bypass, non-cacheable LE
2759 {
2760 switch(size) {
2761 case 1:
2762 stb_phys(addr, val);
2763 break;
2764 case 2:
2765 stw_phys(addr, val);
2766 break;
2767 case 4:
2768 stl_phys(addr, val);
2769 break;
2770 case 8:
2771 default:
2772 stq_phys(addr, val);
2773 break;
2774 }
2775 }
2776 return;
2777 case 0x24: // Nucleus quad LDD 128 bit atomic
2778 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2779 // Only ldda allowed
2780 raise_exception(TT_ILL_INSN);
2781 return;
2782 case 0x04: // Nucleus
2783 case 0x0c: // Nucleus Little Endian (LE)
2784 {
2785 switch(size) {
2786 case 1:
2787 stb_nucleus(addr, val);
2788 break;
2789 case 2:
2790 stw_nucleus(addr, val);
2791 break;
2792 case 4:
2793 stl_nucleus(addr, val);
2794 break;
2795 default:
2796 case 8:
2797 stq_nucleus(addr, val);
2798 break;
2799 }
2800 break;
2801 }
2802
2803 case 0x4a: // UPA config
2804 // XXX
2805 return;
2806 case 0x45: // LSU
2807 {
2808 uint64_t oldreg;
2809
2810 oldreg = env->lsu;
2811 env->lsu = val & (DMMU_E | IMMU_E);
2812 // Mappings generated during D/I MMU disabled mode are
2813 // invalid in normal mode
2814 if (oldreg != env->lsu) {
2815 DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n",
2816 oldreg, env->lsu);
2817 #ifdef DEBUG_MMU
2818 dump_mmu(env);
2819 #endif
2820 tlb_flush(env, 1);
2821 }
2822 return;
2823 }
2824 case 0x50: // I-MMU regs
2825 {
2826 int reg = (addr >> 3) & 0xf;
2827 uint64_t oldreg;
2828
2829 oldreg = env->immuregs[reg];
2830 switch(reg) {
2831 case 0: // RO
2832 return;
2833 case 1: // Not in I-MMU
2834 case 2:
2835 return;
2836 case 3: // SFSR
2837 if ((val & 1) == 0)
2838 val = 0; // Clear SFSR
2839 env->immu.sfsr = val;
2840 break;
2841 case 4: // RO
2842 return;
2843 case 5: // TSB access
2844 DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016"
2845 PRIx64 "\n", env->immu.tsb, val);
2846 env->immu.tsb = val;
2847 break;
2848 case 6: // Tag access
2849 env->immu.tag_access = val;
2850 break;
2851 case 7:
2852 case 8:
2853 return;
2854 default:
2855 break;
2856 }
2857
2858 if (oldreg != env->immuregs[reg]) {
2859 DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2860 PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
2861 }
2862 #ifdef DEBUG_MMU
2863 dump_mmu(env);
2864 #endif
2865 return;
2866 }
2867 case 0x54: // I-MMU data in
2868 replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env);
2869 return;
2870 case 0x55: // I-MMU data access
2871 {
2872 // TODO: auto demap
2873
2874 unsigned int i = (addr >> 3) & 0x3f;
2875
2876 replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env);
2877
2878 #ifdef DEBUG_MMU
2879 DPRINTF_MMU("immu data access replaced entry [%i]\n", i);
2880 dump_mmu(env);
2881 #endif
2882 return;
2883 }
2884 case 0x57: // I-MMU demap
2885 demap_tlb(env->itlb, addr, "immu", env);
2886 return;
2887 case 0x58: // D-MMU regs
2888 {
2889 int reg = (addr >> 3) & 0xf;
2890 uint64_t oldreg;
2891
2892 oldreg = env->dmmuregs[reg];
2893 switch(reg) {
2894 case 0: // RO
2895 case 4:
2896 return;
2897 case 3: // SFSR
2898 if ((val & 1) == 0) {
2899 val = 0; // Clear SFSR, Fault address
2900 env->dmmu.sfar = 0;
2901 }
2902 env->dmmu.sfsr = val;
2903 break;
2904 case 1: // Primary context
2905 env->dmmu.mmu_primary_context = val;
2906 break;
2907 case 2: // Secondary context
2908 env->dmmu.mmu_secondary_context = val;
2909 break;
2910 case 5: // TSB access
2911 DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016"
2912 PRIx64 "\n", env->dmmu.tsb, val);
2913 env->dmmu.tsb = val;
2914 break;
2915 case 6: // Tag access
2916 env->dmmu.tag_access = val;
2917 break;
2918 case 7: // Virtual Watchpoint
2919 case 8: // Physical Watchpoint
2920 default:
2921 env->dmmuregs[reg] = val;
2922 break;
2923 }
2924
2925 if (oldreg != env->dmmuregs[reg]) {
2926 DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016"
2927 PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
2928 }
2929 #ifdef DEBUG_MMU
2930 dump_mmu(env);
2931 #endif
2932 return;
2933 }
2934 case 0x5c: // D-MMU data in
2935 replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env);
2936 return;
2937 case 0x5d: // D-MMU data access
2938 {
2939 unsigned int i = (addr >> 3) & 0x3f;
2940
2941 replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env);
2942
2943 #ifdef DEBUG_MMU
2944 DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i);
2945 dump_mmu(env);
2946 #endif
2947 return;
2948 }
2949 case 0x5f: // D-MMU demap
2950 demap_tlb(env->dtlb, addr, "dmmu", env);
2951 return;
2952 case 0x49: // Interrupt data receive
2953 // XXX
2954 return;
2955 case 0x46: // D-cache data
2956 case 0x47: // D-cache tag access
2957 case 0x4b: // E-cache error enable
2958 case 0x4c: // E-cache asynchronous fault status
2959 case 0x4d: // E-cache asynchronous fault address
2960 case 0x4e: // E-cache tag data
2961 case 0x66: // I-cache instruction access
2962 case 0x67: // I-cache tag access
2963 case 0x6e: // I-cache predecode
2964 case 0x6f: // I-cache LRU etc.
2965 case 0x76: // E-cache tag
2966 case 0x7e: // E-cache tag
2967 return;
2968 case 0x51: // I-MMU 8k TSB pointer, RO
2969 case 0x52: // I-MMU 64k TSB pointer, RO
2970 case 0x56: // I-MMU tag read, RO
2971 case 0x59: // D-MMU 8k TSB pointer, RO
2972 case 0x5a: // D-MMU 64k TSB pointer, RO
2973 case 0x5b: // D-MMU data pointer, RO
2974 case 0x5e: // D-MMU tag read, RO
2975 case 0x48: // Interrupt dispatch, RO
2976 case 0x7f: // Incoming interrupt vector, RO
2977 case 0x82: // Primary no-fault, RO
2978 case 0x83: // Secondary no-fault, RO
2979 case 0x8a: // Primary no-fault LE, RO
2980 case 0x8b: // Secondary no-fault LE, RO
2981 default:
2982 do_unassigned_access(addr, 1, 0, 1, size);
2983 return;
2984 }
2985 }
2986 #endif /* CONFIG_USER_ONLY */
2987
2988 void helper_ldda_asi(target_ulong addr, int asi, int rd)
2989 {
2990 if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
2991 || ((env->def->features & CPU_FEATURE_HYPV)
2992 && asi >= 0x30 && asi < 0x80
2993 && !(env->hpstate & HS_PRIV)))
2994 raise_exception(TT_PRIV_ACT);
2995
2996 switch (asi) {
2997 case 0x24: // Nucleus quad LDD 128 bit atomic
2998 case 0x2c: // Nucleus quad LDD 128 bit atomic LE
2999 helper_check_align(addr, 0xf);
3000 if (rd == 0) {
3001 env->gregs[1] = ldq_kernel(addr + 8);
3002 if (asi == 0x2c)
3003 bswap64s(&env->gregs[1]);
3004 } else if (rd < 8) {
3005 env->gregs[rd] = ldq_kernel(addr);
3006 env->gregs[rd + 1] = ldq_kernel(addr + 8);
3007 if (asi == 0x2c) {
3008 bswap64s(&env->gregs[rd]);
3009 bswap64s(&env->gregs[rd + 1]);
3010 }
3011 } else {
3012 env->regwptr[rd] = ldq_kernel(addr);
3013 env->regwptr[rd + 1] = ldq_kernel(addr + 8);
3014 if (asi == 0x2c) {
3015 bswap64s(&env->regwptr[rd]);
3016 bswap64s(&env->regwptr[rd + 1]);
3017 }
3018 }
3019 break;
3020 default:
3021 helper_check_align(addr, 0x3);
3022 if (rd == 0)
3023 env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0);
3024 else if (rd < 8) {
3025 env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0);
3026 env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3027 } else {
3028 env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0);
3029 env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0);
3030 }
3031 break;
3032 }
3033 }
3034
3035 void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
3036 {
3037 unsigned int i;
3038 target_ulong val;
3039
3040 helper_check_align(addr, 3);
3041 switch (asi) {
3042 case 0xf0: // Block load primary
3043 case 0xf1: // Block load secondary
3044 case 0xf8: // Block load primary LE
3045 case 0xf9: // Block load secondary LE
3046 if (rd & 7) {
3047 raise_exception(TT_ILL_INSN);
3048 return;
3049 }
3050 helper_check_align(addr, 0x3f);
3051 for (i = 0; i < 16; i++) {
3052 *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4,
3053 0);
3054 addr += 4;
3055 }
3056
3057 return;
3058 default:
3059 break;
3060 }
3061
3062 val = helper_ld_asi(addr, asi, size, 0);
3063 switch(size) {
3064 default:
3065 case 4:
3066 *((uint32_t *)&env->fpr[rd]) = val;
3067 break;
3068 case 8:
3069 *((int64_t *)&DT0) = val;
3070 break;
3071 case 16:
3072 // XXX
3073 break;
3074 }
3075 }
3076
3077 void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
3078 {
3079 unsigned int i;
3080 target_ulong val = 0;
3081
3082 helper_check_align(addr, 3);
3083 switch (asi) {
3084 case 0xe0: // UA2007 Block commit store primary (cache flush)
3085 case 0xe1: // UA2007 Block commit store secondary (cache flush)
3086 case 0xf0: // Block store primary
3087 case 0xf1: // Block store secondary
3088 case 0xf8: // Block store primary LE
3089 case 0xf9: // Block store secondary LE
3090 if (rd & 7) {
3091 raise_exception(TT_ILL_INSN);
3092 return;
3093 }
3094 helper_check_align(addr, 0x3f);
3095 for (i = 0; i < 16; i++) {
3096 val = *(uint32_t *)&env->fpr[rd++];
3097 helper_st_asi(addr, val, asi & 0x8f, 4);
3098 addr += 4;
3099 }
3100
3101 return;
3102 default:
3103 break;
3104 }
3105
3106 switch(size) {
3107 default:
3108 case 4:
3109 val = *((uint32_t *)&env->fpr[rd]);
3110 break;
3111 case 8:
3112 val = *((int64_t *)&DT0);
3113 break;
3114 case 16:
3115 // XXX
3116 break;
3117 }
3118 helper_st_asi(addr, val, asi, size);
3119 }
3120
3121 target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
3122 target_ulong val2, uint32_t asi)
3123 {
3124 target_ulong ret;
3125
3126 val2 &= 0xffffffffUL;
3127 ret = helper_ld_asi(addr, asi, 4, 0);
3128 ret &= 0xffffffffUL;
3129 if (val2 == ret)
3130 helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4);
3131 return ret;
3132 }
3133
3134 target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
3135 target_ulong val2, uint32_t asi)
3136 {
3137 target_ulong ret;
3138
3139 ret = helper_ld_asi(addr, asi, 8, 0);
3140 if (val2 == ret)
3141 helper_st_asi(addr, val1, asi, 8);
3142 return ret;
3143 }
3144 #endif /* TARGET_SPARC64 */
3145
3146 #ifndef TARGET_SPARC64
3147 void helper_rett(void)
3148 {
3149 unsigned int cwp;
3150
3151 if (env->psret == 1)
3152 raise_exception(TT_ILL_INSN);
3153
3154 env->psret = 1;
3155 cwp = cwp_inc(env->cwp + 1) ;
3156 if (env->wim & (1 << cwp)) {
3157 raise_exception(TT_WIN_UNF);
3158 }
3159 set_cwp(cwp);
3160 env->psrs = env->psrps;
3161 }
3162 #endif
3163
3164 target_ulong helper_udiv(target_ulong a, target_ulong b)
3165 {
3166 uint64_t x0;
3167 uint32_t x1;
3168
3169 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3170 x1 = b;
3171
3172 if (x1 == 0) {
3173 raise_exception(TT_DIV_ZERO);
3174 }
3175
3176 x0 = x0 / x1;
3177 if (x0 > 0xffffffff) {
3178 env->cc_src2 = 1;
3179 return 0xffffffff;
3180 } else {
3181 env->cc_src2 = 0;
3182 return x0;
3183 }
3184 }
3185
3186 target_ulong helper_sdiv(target_ulong a, target_ulong b)
3187 {
3188 int64_t x0;
3189 int32_t x1;
3190
3191 x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32);
3192 x1 = b;
3193
3194 if (x1 == 0) {
3195 raise_exception(TT_DIV_ZERO);
3196 }
3197
3198 x0 = x0 / x1;
3199 if ((int32_t) x0 != x0) {
3200 env->cc_src2 = 1;
3201 return x0 < 0? 0x80000000: 0x7fffffff;
3202 } else {
3203 env->cc_src2 = 0;
3204 return x0;
3205 }
3206 }
3207
3208 void helper_stdf(target_ulong addr, int mem_idx)
3209 {
3210 helper_check_align(addr, 7);
3211 #if !defined(CONFIG_USER_ONLY)
3212 switch (mem_idx) {
3213 case 0:
3214 stfq_user(addr, DT0);
3215 break;
3216 case 1:
3217 stfq_kernel(addr, DT0);
3218 break;
3219 #ifdef TARGET_SPARC64
3220 case 2:
3221 stfq_hypv(addr, DT0);
3222 break;
3223 #endif
3224 default:
3225 break;
3226 }
3227 #else
3228 stfq_raw(address_mask(env, addr), DT0);
3229 #endif
3230 }
3231
3232 void helper_lddf(target_ulong addr, int mem_idx)
3233 {
3234 helper_check_align(addr, 7);
3235 #if !defined(CONFIG_USER_ONLY)
3236 switch (mem_idx) {
3237 case 0:
3238 DT0 = ldfq_user(addr);
3239 break;
3240 case 1:
3241 DT0 = ldfq_kernel(addr);
3242 break;
3243 #ifdef TARGET_SPARC64
3244 case 2:
3245 DT0 = ldfq_hypv(addr);
3246 break;
3247 #endif
3248 default:
3249 break;
3250 }
3251 #else
3252 DT0 = ldfq_raw(address_mask(env, addr));
3253 #endif
3254 }
3255
3256 void helper_ldqf(target_ulong addr, int mem_idx)
3257 {
3258 // XXX add 128 bit load
3259 CPU_QuadU u;
3260
3261 helper_check_align(addr, 7);
3262 #if !defined(CONFIG_USER_ONLY)
3263 switch (mem_idx) {
3264 case 0:
3265 u.ll.upper = ldq_user(addr);
3266 u.ll.lower = ldq_user(addr + 8);
3267 QT0 = u.q;
3268 break;
3269 case 1:
3270 u.ll.upper = ldq_kernel(addr);
3271 u.ll.lower = ldq_kernel(addr + 8);
3272 QT0 = u.q;
3273 break;
3274 #ifdef TARGET_SPARC64
3275 case 2:
3276 u.ll.upper = ldq_hypv(addr);
3277 u.ll.lower = ldq_hypv(addr + 8);
3278 QT0 = u.q;
3279 break;
3280 #endif
3281 default:
3282 break;
3283 }
3284 #else
3285 u.ll.upper = ldq_raw(address_mask(env, addr));
3286 u.ll.lower = ldq_raw(address_mask(env, addr + 8));
3287 QT0 = u.q;
3288 #endif
3289 }
3290
3291 void helper_stqf(target_ulong addr, int mem_idx)
3292 {
3293 // XXX add 128 bit store
3294 CPU_QuadU u;
3295
3296 helper_check_align(addr, 7);
3297 #if !defined(CONFIG_USER_ONLY)
3298 switch (mem_idx) {
3299 case 0:
3300 u.q = QT0;
3301 stq_user(addr, u.ll.upper);
3302 stq_user(addr + 8, u.ll.lower);
3303 break;
3304 case 1:
3305 u.q = QT0;
3306 stq_kernel(addr, u.ll.upper);
3307 stq_kernel(addr + 8, u.ll.lower);
3308 break;
3309 #ifdef TARGET_SPARC64
3310 case 2:
3311 u.q = QT0;
3312 stq_hypv(addr, u.ll.upper);
3313 stq_hypv(addr + 8, u.ll.lower);
3314 break;
3315 #endif
3316 default:
3317 break;
3318 }
3319 #else
3320 u.q = QT0;
3321 stq_raw(address_mask(env, addr), u.ll.upper);
3322 stq_raw(address_mask(env, addr + 8), u.ll.lower);
3323 #endif
3324 }
3325
3326 static inline void set_fsr(void)
3327 {
3328 int rnd_mode;
3329
3330 switch (env->fsr & FSR_RD_MASK) {
3331 case FSR_RD_NEAREST:
3332 rnd_mode = float_round_nearest_even;
3333 break;
3334 default:
3335 case FSR_RD_ZERO:
3336 rnd_mode = float_round_to_zero;
3337 break;
3338 case FSR_RD_POS:
3339 rnd_mode = float_round_up;
3340 break;
3341 case FSR_RD_NEG:
3342 rnd_mode = float_round_down;
3343 break;
3344 }
3345 set_float_rounding_mode(rnd_mode, &env->fp_status);
3346 }
3347
3348 void helper_ldfsr(uint32_t new_fsr)
3349 {
3350 env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK);
3351 set_fsr();
3352 }
3353
3354 #ifdef TARGET_SPARC64
3355 void helper_ldxfsr(uint64_t new_fsr)
3356 {
3357 env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK);
3358 set_fsr();
3359 }
3360 #endif
3361
3362 void helper_debug(void)
3363 {
3364 env->exception_index = EXCP_DEBUG;
3365 cpu_loop_exit();
3366 }
3367
3368 #ifndef TARGET_SPARC64
3369 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3370 handling ? */
3371 void helper_save(void)
3372 {
3373 uint32_t cwp;
3374
3375 cwp = cwp_dec(env->cwp - 1);
3376 if (env->wim & (1 << cwp)) {
3377 raise_exception(TT_WIN_OVF);
3378 }
3379 set_cwp(cwp);
3380 }
3381
3382 void helper_restore(void)
3383 {
3384 uint32_t cwp;
3385
3386 cwp = cwp_inc(env->cwp + 1);
3387 if (env->wim & (1 << cwp)) {
3388 raise_exception(TT_WIN_UNF);
3389 }
3390 set_cwp(cwp);
3391 }
3392
3393 void helper_wrpsr(target_ulong new_psr)
3394 {
3395 if ((new_psr & PSR_CWP) >= env->nwindows) {
3396 raise_exception(TT_ILL_INSN);
3397 } else {
3398 cpu_put_psr(env, new_psr);
3399 }
3400 }
3401
3402 target_ulong helper_rdpsr(void)
3403 {
3404 return get_psr();
3405 }
3406
3407 #else
3408 /* XXX: use another pointer for %iN registers to avoid slow wrapping
3409 handling ? */
3410 void helper_save(void)
3411 {
3412 uint32_t cwp;
3413
3414 cwp = cwp_dec(env->cwp - 1);
3415 if (env->cansave == 0) {
3416 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3417 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3418 ((env->wstate & 0x7) << 2)));
3419 } else {
3420 if (env->cleanwin - env->canrestore == 0) {
3421 // XXX Clean windows without trap
3422 raise_exception(TT_CLRWIN);
3423 } else {
3424 env->cansave--;
3425 env->canrestore++;
3426 set_cwp(cwp);
3427 }
3428 }
3429 }
3430
3431 void helper_restore(void)
3432 {
3433 uint32_t cwp;
3434
3435 cwp = cwp_inc(env->cwp + 1);
3436 if (env->canrestore == 0) {
3437 raise_exception(TT_FILL | (env->otherwin != 0 ?
3438 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3439 ((env->wstate & 0x7) << 2)));
3440 } else {
3441 env->cansave++;
3442 env->canrestore--;
3443 set_cwp(cwp);
3444 }
3445 }
3446
3447 void helper_flushw(void)
3448 {
3449 if (env->cansave != env->nwindows - 2) {
3450 raise_exception(TT_SPILL | (env->otherwin != 0 ?
3451 (TT_WOTHER | ((env->wstate & 0x38) >> 1)):
3452 ((env->wstate & 0x7) << 2)));
3453 }
3454 }
3455
3456 void helper_saved(void)
3457 {
3458 env->cansave++;
3459 if (env->otherwin == 0)
3460 env->canrestore--;
3461 else
3462 env->otherwin--;
3463 }
3464
3465 void helper_restored(void)
3466 {
3467 env->canrestore++;
3468 if (env->cleanwin < env->nwindows - 1)
3469 env->cleanwin++;
3470 if (env->otherwin == 0)
3471 env->cansave--;
3472 else
3473 env->otherwin--;
3474 }
3475
3476 static target_ulong get_ccr(void)
3477 {
3478 target_ulong psr;
3479
3480 psr = get_psr();
3481
3482 return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20);
3483 }
3484
3485 target_ulong cpu_get_ccr(CPUState *env1)
3486 {
3487 CPUState *saved_env;
3488 target_ulong ret;
3489
3490 saved_env = env;
3491 env = env1;
3492 ret = get_ccr();
3493 env = saved_env;
3494 return ret;
3495 }
3496
3497 static void put_ccr(target_ulong val)
3498 {
3499 target_ulong tmp = val;
3500
3501 env->xcc = (tmp >> 4) << 20;
3502 env->psr = (tmp & 0xf) << 20;
3503 CC_OP = CC_OP_FLAGS;
3504 }
3505
3506 void cpu_put_ccr(CPUState *env1, target_ulong val)
3507 {
3508 CPUState *saved_env;
3509
3510 saved_env = env;
3511 env = env1;
3512 put_ccr(val);
3513 env = saved_env;
3514 }
3515
3516 static target_ulong get_cwp64(void)
3517 {
3518 return env->nwindows - 1 - env->cwp;
3519 }
3520
3521 target_ulong cpu_get_cwp64(CPUState *env1)
3522 {
3523 CPUState *saved_env;
3524 target_ulong ret;
3525
3526 saved_env = env;
3527 env = env1;
3528 ret = get_cwp64();
3529 env = saved_env;
3530 return ret;
3531 }
3532
3533 static void put_cwp64(int cwp)
3534 {
3535 if (unlikely(cwp >= env->nwindows || cwp < 0)) {
3536 cwp %= env->nwindows;
3537 }
3538 set_cwp(env->nwindows - 1 - cwp);
3539 }
3540
3541 void cpu_put_cwp64(CPUState *env1, int cwp)
3542 {
3543 CPUState *saved_env;
3544
3545 saved_env = env;
3546 env = env1;
3547 put_cwp64(cwp);
3548 env = saved_env;
3549 }
3550
3551 target_ulong helper_rdccr(void)
3552 {
3553 return get_ccr();
3554 }
3555
3556 void helper_wrccr(target_ulong new_ccr)
3557 {
3558 put_ccr(new_ccr);
3559 }
3560
3561 // CWP handling is reversed in V9, but we still use the V8 register
3562 // order.
3563 target_ulong helper_rdcwp(void)
3564 {
3565 return get_cwp64();
3566 }
3567
3568 void helper_wrcwp(target_ulong new_cwp)
3569 {
3570 put_cwp64(new_cwp);
3571 }
3572
3573 // This function uses non-native bit order
3574 #define GET_FIELD(X, FROM, TO) \
3575 ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
3576
3577 // This function uses the order in the manuals, i.e. bit 0 is 2^0
3578 #define GET_FIELD_SP(X, FROM, TO) \
3579 GET_FIELD(X, 63 - (TO), 63 - (FROM))
3580
3581 target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
3582 {
3583 return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
3584 (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
3585 (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
3586 (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
3587 (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
3588 (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
3589 (((pixel_addr >> 55) & 1) << 4) |
3590 (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
3591 GET_FIELD_SP(pixel_addr, 11, 12);
3592 }
3593
3594 target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
3595 {
3596 uint64_t tmp;
3597
3598 tmp = addr + offset;
3599 env->gsr &= ~7ULL;
3600 env->gsr |= tmp & 7ULL;
3601 return tmp & ~7ULL;
3602 }
3603
3604 target_ulong helper_popc(target_ulong val)
3605 {
3606 return ctpop64(val);
3607 }
3608
3609 static inline uint64_t *get_gregset(uint32_t pstate)
3610 {
3611 switch (pstate) {
3612 default:
3613 DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n",
3614 pstate,
3615 (pstate & PS_IG) ? " IG" : "",
3616 (pstate & PS_MG) ? " MG" : "",
3617 (pstate & PS_AG) ? " AG" : "");
3618 /* pass through to normal set of global registers */
3619 case 0:
3620 return env->bgregs;
3621 case PS_AG:
3622 return env->agregs;
3623 case PS_MG:
3624 return env->mgregs;
3625 case PS_IG:
3626 return env->igregs;
3627 }
3628 }
3629
3630 static inline void change_pstate(uint32_t new_pstate)
3631 {
3632 uint32_t pstate_regs, new_pstate_regs;
3633 uint64_t *src, *dst;
3634
3635 if (env->def->features & CPU_FEATURE_GL) {
3636 // PS_AG is not implemented in this case
3637 new_pstate &= ~PS_AG;
3638 }
3639
3640 pstate_regs = env->pstate & 0xc01;
3641 new_pstate_regs = new_pstate & 0xc01;
3642
3643 if (new_pstate_regs != pstate_regs) {
3644 DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n",
3645 pstate_regs, new_pstate_regs);
3646 // Switch global register bank
3647 src = get_gregset(new_pstate_regs);
3648 dst = get_gregset(pstate_regs);
3649 memcpy32(dst, env->gregs);
3650 memcpy32(env->gregs, src);
3651 }
3652 else {
3653 DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n",
3654 new_pstate_regs);
3655 }
3656 env->pstate = new_pstate;
3657 }
3658
3659 void helper_wrpstate(target_ulong new_state)
3660 {
3661 change_pstate(new_state & 0xf3f);
3662
3663 #if !defined(CONFIG_USER_ONLY)
3664 if (cpu_interrupts_enabled(env)) {
3665 cpu_check_irqs(env);
3666 }
3667 #endif
3668 }
3669
3670 void helper_wrpil(target_ulong new_pil)
3671 {
3672 #if !defined(CONFIG_USER_ONLY)
3673 DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n",
3674 env->psrpil, (uint32_t)new_pil);
3675
3676 env->psrpil = new_pil;
3677
3678 if (cpu_interrupts_enabled(env)) {
3679 cpu_check_irqs(env);
3680 }
3681 #endif
3682 }
3683
3684 void helper_done(void)
3685 {
3686 trap_state* tsptr = cpu_tsptr(env);
3687
3688 env->pc = tsptr->tnpc;
3689 env->npc = tsptr->tnpc + 4;
3690 put_ccr(tsptr->tstate >> 32);
3691 env->asi = (tsptr->tstate >> 24) & 0xff;
3692 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3693 put_cwp64(tsptr->tstate & 0xff);
3694 env->tl--;
3695
3696 DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl);
3697
3698 #if !defined(CONFIG_USER_ONLY)
3699 if (cpu_interrupts_enabled(env)) {
3700 cpu_check_irqs(env);
3701 }
3702 #endif
3703 }
3704
3705 void helper_retry(void)
3706 {
3707 trap_state* tsptr = cpu_tsptr(env);
3708
3709 env->pc = tsptr->tpc;
3710 env->npc = tsptr->tnpc;
3711 put_ccr(tsptr->tstate >> 32);
3712 env->asi = (tsptr->tstate >> 24) & 0xff;
3713 change_pstate((tsptr->tstate >> 8) & 0xf3f);
3714 put_cwp64(tsptr->tstate & 0xff);
3715 env->tl--;
3716
3717 DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl);
3718
3719 #if !defined(CONFIG_USER_ONLY)
3720 if (cpu_interrupts_enabled(env)) {
3721 cpu_check_irqs(env);
3722 }
3723 #endif
3724 }
3725
3726 static void do_modify_softint(const char* operation, uint32_t value)
3727 {
3728 if (env->softint != value) {
3729 env->softint = value;
3730 DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint);
3731 #if !defined(CONFIG_USER_ONLY)
3732 if (cpu_interrupts_enabled(env)) {
3733 cpu_check_irqs(env);
3734 }
3735 #endif
3736 }
3737 }
3738
3739 void helper_set_softint(uint64_t value)
3740 {
3741 do_modify_softint("helper_set_softint", env->softint | (uint32_t)value);
3742 }
3743
3744 void helper_clear_softint(uint64_t value)
3745 {
3746 do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value);
3747 }
3748
3749 void helper_write_softint(uint64_t value)
3750 {
3751 do_modify_softint("helper_write_softint", (uint32_t)value);
3752 }
3753 #endif
3754
3755 void helper_flush(target_ulong addr)
3756 {
3757 addr &= ~7;
3758 tb_invalidate_page_range(addr, addr + 8);
3759 }
3760
3761 #ifdef TARGET_SPARC64
3762 #ifdef DEBUG_PCALL
3763 static const char * const excp_names[0x80] = {
3764 [TT_TFAULT] = "Instruction Access Fault",
3765 [TT_TMISS] = "Instruction Access MMU Miss",
3766 [TT_CODE_ACCESS] = "Instruction Access Error",
3767 [TT_ILL_INSN] = "Illegal Instruction",
3768 [TT_PRIV_INSN] = "Privileged Instruction",
3769 [TT_NFPU_INSN] = "FPU Disabled",
3770 [TT_FP_EXCP] = "FPU Exception",
3771 [TT_TOVF] = "Tag Overflow",
3772 [TT_CLRWIN] = "Clean Windows",
3773 [TT_DIV_ZERO] = "Division By Zero",
3774 [TT_DFAULT] = "Data Access Fault",
3775 [TT_DMISS] = "Data Access MMU Miss",
3776 [TT_DATA_ACCESS] = "Data Access Error",
3777 [TT_DPROT] = "Data Protection Error",
3778 [TT_UNALIGNED] = "Unaligned Memory Access",
3779 [TT_PRIV_ACT] = "Privileged Action",
3780 [TT_EXTINT | 0x1] = "External Interrupt 1",
3781 [TT_EXTINT | 0x2] = "External Interrupt 2",
3782 [TT_EXTINT | 0x3] = "External Interrupt 3",
3783 [TT_EXTINT | 0x4] = "External Interrupt 4",
3784 [TT_EXTINT | 0x5] = "External Interrupt 5",
3785 [TT_EXTINT | 0x6] = "External Interrupt 6",
3786 [TT_EXTINT | 0x7] = "External Interrupt 7",
3787 [TT_EXTINT | 0x8] = "External Interrupt 8",
3788 [TT_EXTINT | 0x9] = "External Interrupt 9",
3789 [TT_EXTINT | 0xa] = "External Interrupt 10",
3790 [TT_EXTINT | 0xb] = "External Interrupt 11",
3791 [TT_EXTINT | 0xc] = "External Interrupt 12",
3792 [TT_EXTINT | 0xd] = "External Interrupt 13",
3793 [TT_EXTINT | 0xe] = "External Interrupt 14",
3794 [TT_EXTINT | 0xf] = "External Interrupt 15",
3795 };
3796 #endif
3797
3798 trap_state* cpu_tsptr(CPUState* env)
3799 {
3800 return &env->ts[env->tl & MAXTL_MASK];
3801 }
3802
3803 void do_interrupt(CPUState *env)
3804 {
3805 int intno = env->exception_index;
3806 trap_state* tsptr;
3807
3808 #ifdef DEBUG_PCALL
3809 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3810 static int count;
3811 const char *name;
3812
3813 if (intno < 0 || intno >= 0x180)
3814 name = "Unknown";
3815 else if (intno >= 0x100)
3816 name = "Trap Instruction";
3817 else if (intno >= 0xc0)
3818 name = "Window Fill";
3819 else if (intno >= 0x80)
3820 name = "Window Spill";
3821 else {
3822 name = excp_names[intno];
3823 if (!name)
3824 name = "Unknown";
3825 }
3826
3827 qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
3828 " SP=%016" PRIx64 "\n",
3829 count, name, intno,
3830 env->pc,
3831 env->npc, env->regwptr[6]);
3832 log_cpu_state(env, 0);
3833 #if 0
3834 {
3835 int i;
3836 uint8_t *ptr;
3837
3838 qemu_log(" code=");
3839 ptr = (uint8_t *)env->pc;
3840 for(i = 0; i < 16; i++) {
3841 qemu_log(" %02x", ldub(ptr + i));
3842 }
3843 qemu_log("\n");
3844 }
3845 #endif
3846 count++;
3847 }
3848 #endif
3849 #if !defined(CONFIG_USER_ONLY)
3850 if (env->tl >= env->maxtl) {
3851 cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d),"
3852 " Error state", env->exception_index, env->tl, env->maxtl);
3853 return;
3854 }
3855 #endif
3856 if (env->tl < env->maxtl - 1) {
3857 env->tl++;
3858 } else {
3859 env->pstate |= PS_RED;
3860 if (env->tl < env->maxtl)
3861 env->tl++;
3862 }
3863 tsptr = cpu_tsptr(env);
3864
3865 tsptr->tstate = (get_ccr() << 32) |
3866 ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
3867 get_cwp64();
3868 tsptr->tpc = env->pc;
3869 tsptr->tnpc = env->npc;
3870 tsptr->tt = intno;
3871
3872 switch (intno) {
3873 case TT_IVEC:
3874 change_pstate(PS_PEF | PS_PRIV | PS_IG);
3875 break;
3876 case TT_TFAULT:
3877 case TT_DFAULT:
3878 case TT_TMISS ... TT_TMISS + 3:
3879 case TT_DMISS ... TT_DMISS + 3:
3880 case TT_DPROT ... TT_DPROT + 3:
3881 change_pstate(PS_PEF | PS_PRIV | PS_MG);
3882 break;
3883 default:
3884 change_pstate(PS_PEF | PS_PRIV | PS_AG);
3885 break;
3886 }
3887
3888 if (intno == TT_CLRWIN) {
3889 set_cwp(cwp_dec(env->cwp - 1));
3890 } else if ((intno & 0x1c0) == TT_SPILL) {
3891 set_cwp(cwp_dec(env->cwp - env->cansave - 2));
3892 } else if ((intno & 0x1c0) == TT_FILL) {
3893 set_cwp(cwp_inc(env->cwp + 1));
3894 }
3895 env->tbr &= ~0x7fffULL;
3896 env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
3897 env->pc = env->tbr;
3898 env->npc = env->pc + 4;
3899 env->exception_index = -1;
3900 }
3901 #else
3902 #ifdef DEBUG_PCALL
3903 static const char * const excp_names[0x80] = {
3904 [TT_TFAULT] = "Instruction Access Fault",
3905 [TT_ILL_INSN] = "Illegal Instruction",
3906 [TT_PRIV_INSN] = "Privileged Instruction",
3907 [TT_NFPU_INSN] = "FPU Disabled",
3908 [TT_WIN_OVF] = "Window Overflow",
3909 [TT_WIN_UNF] = "Window Underflow",
3910 [TT_UNALIGNED] = "Unaligned Memory Access",
3911 [TT_FP_EXCP] = "FPU Exception",
3912 [TT_DFAULT] = "Data Access Fault",
3913 [TT_TOVF] = "Tag Overflow",
3914 [TT_EXTINT | 0x1] = "External Interrupt 1",
3915 [TT_EXTINT | 0x2] = "External Interrupt 2",
3916 [TT_EXTINT | 0x3] = "External Interrupt 3",
3917 [TT_EXTINT | 0x4] = "External Interrupt 4",
3918 [TT_EXTINT | 0x5] = "External Interrupt 5",
3919 [TT_EXTINT | 0x6] = "External Interrupt 6",
3920 [TT_EXTINT | 0x7] = "External Interrupt 7",
3921 [TT_EXTINT | 0x8] = "External Interrupt 8",
3922 [TT_EXTINT | 0x9] = "External Interrupt 9",
3923 [TT_EXTINT | 0xa] = "External Interrupt 10",
3924 [TT_EXTINT | 0xb] = "External Interrupt 11",
3925 [TT_EXTINT | 0xc] = "External Interrupt 12",
3926 [TT_EXTINT | 0xd] = "External Interrupt 13",
3927 [TT_EXTINT | 0xe] = "External Interrupt 14",
3928 [TT_EXTINT | 0xf] = "External Interrupt 15",
3929 [TT_TOVF] = "Tag Overflow",
3930 [TT_CODE_ACCESS] = "Instruction Access Error",
3931 [TT_DATA_ACCESS] = "Data Access Error",
3932 [TT_DIV_ZERO] = "Division By Zero",
3933 [TT_NCP_INSN] = "Coprocessor Disabled",
3934 };
3935 #endif
3936
3937 void do_interrupt(CPUState *env)
3938 {
3939 int cwp, intno = env->exception_index;
3940
3941 #ifdef DEBUG_PCALL
3942 if (qemu_loglevel_mask(CPU_LOG_INT)) {
3943 static int count;
3944 const char *name;
3945
3946 if (intno < 0 || intno >= 0x100)
3947 name = "Unknown";
3948 else if (intno >= 0x80)
3949 name = "Trap Instruction";
3950 else {
3951 name = excp_names[intno];
3952 if (!name)
3953 name = "Unknown";
3954 }
3955
3956 qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
3957 count, name, intno,
3958 env->pc,
3959 env->npc, env->regwptr[6]);
3960 log_cpu_state(env, 0);
3961 #if 0
3962 {
3963 int i;
3964 uint8_t *ptr;
3965
3966 qemu_log(" code=");
3967 ptr = (uint8_t *)env->pc;
3968 for(i = 0; i < 16; i++) {
3969 qemu_log(" %02x", ldub(ptr + i));
3970 }
3971 qemu_log("\n");
3972 }
3973 #endif
3974 count++;
3975 }
3976 #endif
3977 #if !defined(CONFIG_USER_ONLY)
3978 if (env->psret == 0) {
3979 cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state",
3980 env->exception_index);
3981 return;
3982 }
3983 #endif
3984 env->psret = 0;
3985 cwp = cwp_dec(env->cwp - 1);
3986 set_cwp(cwp);
3987 env->regwptr[9] = env->pc;
3988 env->regwptr[10] = env->npc;
3989 env->psrps = env->psrs;
3990 env->psrs = 1;
3991 env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4);
3992 env->pc = env->tbr;
3993 env->npc = env->pc + 4;
3994 env->exception_index = -1;
3995 }
3996 #endif
3997
3998 #if !defined(CONFIG_USER_ONLY)
3999
4000 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4001 void *retaddr);
4002
4003 #define MMUSUFFIX _mmu
4004 #define ALIGNED_ONLY
4005
4006 #define SHIFT 0
4007 #include "softmmu_template.h"
4008
4009 #define SHIFT 1
4010 #include "softmmu_template.h"
4011
4012 #define SHIFT 2
4013 #include "softmmu_template.h"
4014
4015 #define SHIFT 3
4016 #include "softmmu_template.h"
4017
4018 /* XXX: make it generic ? */
4019 static void cpu_restore_state2(void *retaddr)
4020 {
4021 TranslationBlock *tb;
4022 unsigned long pc;
4023
4024 if (retaddr) {
4025 /* now we have a real cpu fault */
4026 pc = (unsigned long)retaddr;
4027 tb = tb_find_pc(pc);
4028 if (tb) {
4029 /* the PC is inside the translated code. It means that we have
4030 a virtual CPU fault */
4031 cpu_restore_state(tb, env, pc, (void *)(long)env->cond);
4032 }
4033 }
4034 }
4035
4036 static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
4037 void *retaddr)
4038 {
4039 #ifdef DEBUG_UNALIGNED
4040 printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx
4041 "\n", addr, env->pc);
4042 #endif
4043 cpu_restore_state2(retaddr);
4044 raise_exception(TT_UNALIGNED);
4045 }
4046
4047 /* try to fill the TLB and return an exception if error. If retaddr is
4048 NULL, it means that the function was called in C code (i.e. not
4049 from generated code or from helper.c) */
4050 /* XXX: fix it to restore all registers */
4051 void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
4052 {
4053 int ret;
4054 CPUState *saved_env;
4055
4056 /* XXX: hack to restore env in all cases, even if not called from
4057 generated code */
4058 saved_env = env;
4059 env = cpu_single_env;
4060
4061 ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
4062 if (ret) {
4063 cpu_restore_state2(retaddr);
4064 cpu_loop_exit();
4065 }
4066 env = saved_env;
4067 }
4068
4069 #endif /* !CONFIG_USER_ONLY */
4070
4071 #ifndef TARGET_SPARC64
4072 #if !defined(CONFIG_USER_ONLY)
4073 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4074 int is_asi, int size)
4075 {
4076 CPUState *saved_env;
4077 int fault_type;
4078
4079 /* XXX: hack to restore env in all cases, even if not called from
4080 generated code */
4081 saved_env = env;
4082 env = cpu_single_env;
4083 #ifdef DEBUG_UNASSIGNED
4084 if (is_asi)
4085 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4086 " asi 0x%02x from " TARGET_FMT_lx "\n",
4087 is_exec ? "exec" : is_write ? "write" : "read", size,
4088 size == 1 ? "" : "s", addr, is_asi, env->pc);
4089 else
4090 printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx
4091 " from " TARGET_FMT_lx "\n",
4092 is_exec ? "exec" : is_write ? "write" : "read", size,
4093 size == 1 ? "" : "s", addr, env->pc);
4094 #endif
4095 /* Don't overwrite translation and access faults */
4096 fault_type = (env->mmuregs[3] & 0x1c) >> 2;
4097 if ((fault_type > 4) || (fault_type == 0)) {
4098 env->mmuregs[3] = 0; /* Fault status register */
4099 if (is_asi)
4100 env->mmuregs[3] |= 1 << 16;
4101 if (env->psrs)
4102 env->mmuregs[3] |= 1 << 5;
4103 if (is_exec)
4104 env->mmuregs[3] |= 1 << 6;
4105 if (is_write)
4106 env->mmuregs[3] |= 1 << 7;
4107 env->mmuregs[3] |= (5 << 2) | 2;
4108 /* SuperSPARC will never place instruction fault addresses in the FAR */
4109 if (!is_exec) {
4110 env->mmuregs[4] = addr; /* Fault address register */
4111 }
4112 }
4113 /* overflow (same type fault was not read before another fault) */
4114 if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) {
4115 env->mmuregs[3] |= 1;
4116 }
4117
4118 if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
4119 if (is_exec)
4120 raise_exception(TT_CODE_ACCESS);
4121 else
4122 raise_exception(TT_DATA_ACCESS);
4123 }
4124
4125 /* flush neverland mappings created during no-fault mode,
4126 so the sequential MMU faults report proper fault types */
4127 if (env->mmuregs[0] & MMU_NF) {
4128 tlb_flush(env, 1);
4129 }
4130
4131 env = saved_env;
4132 }
4133 #endif
4134 #else
4135 #if defined(CONFIG_USER_ONLY)
4136 static void do_unassigned_access(target_ulong addr, int is_write, int is_exec,
4137 int is_asi, int size)
4138 #else
4139 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
4140 int is_asi, int size)
4141 #endif
4142 {
4143 CPUState *saved_env;
4144
4145 /* XXX: hack to restore env in all cases, even if not called from
4146 generated code */
4147 saved_env = env;
4148 env = cpu_single_env;
4149
4150 #ifdef DEBUG_UNASSIGNED
4151 printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx
4152 "\n", addr, env->pc);
4153 #endif
4154
4155 if (is_exec)
4156 raise_exception(TT_CODE_ACCESS);
4157 else
4158 raise_exception(TT_DATA_ACCESS);
4159
4160 env = saved_env;
4161 }
4162 #endif
4163
4164
4165 #ifdef TARGET_SPARC64
4166 void helper_tick_set_count(void *opaque, uint64_t count)
4167 {
4168 #if !defined(CONFIG_USER_ONLY)
4169 cpu_tick_set_count(opaque, count);
4170 #endif
4171 }
4172
4173 uint64_t helper_tick_get_count(void *opaque)
4174 {
4175 #if !defined(CONFIG_USER_ONLY)
4176 return cpu_tick_get_count(opaque);
4177 #else
4178 return 0;
4179 #endif
4180 }
4181
4182 void helper_tick_set_limit(void *opaque, uint64_t limit)
4183 {
4184 #if !defined(CONFIG_USER_ONLY)
4185 cpu_tick_set_limit(opaque, limit);
4186 #endif
4187 }
4188 #endif